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ABSTRACT

Fine-tuning has emerged as a widely used transfer learning technique for lever-
aging pre-trained vision transformers in various downstream tasks. However, its
success relies on tuning a significant number of trainable parameters, which could
lead to significant costs in terms of both model training and storage. When it
comes to audio-visual multimodal learning, the challenge also lies in effectively
incorporating both audio and visual cues into the transfer learning process, es-
pecially when the original model has been trained with unimodal samples only.
This paper introduces a novel audio-visual parameter-efficient adapter (AV-PEA)
designed to improve multimodal transfer learning for audio-visual tasks. Through
the integration of AV-PEA into a frozen vision transformer, like ViT (Dosovitskiy
et al., 2021), the transformer becomes adept at processing audio inputs without
prior knowledge of audio pre-training. This also facilitates the exchange of essen-
tial audio-visual cues between audio and visual modalities, all while introducing a
limited set of trainable parameters into each block of the frozen transformer. The
experimental results demonstrate that our AV-PEA consistently achieves superior
or comparable performance to state-of-the-art methods in a range of audio-visual
tasks, including audio-visual event localization (AVEL), audio-visual question
answering (AVQA), audio-visual retrieval (AVR), and audio-visual captioning
(AVC). Furthermore, it distinguishes itself from competitors by enabling seam-
less integration into these tasks while maintaining a consistent number of train-
able parameters, typically accounting for less than 3.7% of the total parameters
per task.

1 INTRODUCTION

The prevailing trend among recent machine learning models revolves around developing large-scale
transformers to encode audio (Gong et al., 2021a; Chen et al., 2020), visual (Dosovitskiy et al.,
2021; Radford et al., 2021), and language (Devlin et al., 2019) modalities. Recently, fine-tuning
these large-scale pre-trained transformers (e.g. CLIP (Radford et al., 2021), BERT (Bugliarello
et al., 2021), ViT (Dosovitskiy et al., 2021)) has also proven its high efficacy in achieving remark-
able performance across various downstream tasks. The main advantage of transformers lies in their
versatility, allowing seamless integration into various modalities with minimal modality-specific
modifications required. This characteristic establishes a flexible and adjustable foundation for dif-
ferent data types, exemplified by transformers’ current dominance as state-of-the-art (SOTA) models
across several downstream tasks, to name a few, text-based image and video retrieval (Gabeur et al.,
2022; Bugliarello et al., 2021; Ge et al., 2022), image and video captioning (Guo et al., 2022a; Yang
et al., 2023a; Guo et al., 2022b), visual question answering (Shao et al., 2023; Ravi et al., 2023), and
speech analysis (Grósz et al., 2022; Wang et al., 2023b).

Although large-scale models specialized for specific modalities like audio (Gong et al., 2021b), vi-
sual (Dosovitskiy et al., 2021), and text (Brown et al., 2020) often exhibit impressive performance on
targeted tasks, they do encounter two significant limitations. First, optimizing and training models
for a specific modality usually requires substantial computing resources (e.g. GPUs and memory)
and relies heavily on extensive pre-trained datasets. For example, the GPT-3 (Brown et al., 2020)
model requires 700GB of memory to accommodate its immense number of trainable parameters,
which can reach up to 175 billion. This presents a challenge for smaller research laboratories with
limited access to high-end computational capabilities (Sung et al., 2022). Second, fine-tuning such
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large-scale models for downstream tasks using relatively small datasets can potentially lead to over-
fitting (Lin et al., 2023). The mismatch in scale between the model’s capacity and the available
downstream data may also impede the effective generalization of large-scale pre-trained models to
new downstream tasks.

On the other hand, multimodal models aim to leverage correlations between different modalities,
enabling a more comprehensive understanding of complex tasks that involve multiple sources of in-
formation, such as audio-visual event localization (AVEL) (Geng et al., 2023a; Xia & Zhao, 2022),
audio-visual question answering (AVQA) (Li et al., 2022a; Yun et al., 2021), audio-visual retrieval
(AVR) (Lin et al., 2022), and audio-visual captioning (AVC) (Chen et al., 2023). These models have
gained significant attention due to their ability to handle real-world scenarios where data comes from
diverse sources and often carries complementary information. An example of a large-scale audio-
visual model is the multimodal bottleneck transformer (MBT) (Nagrani et al., 2021) which utilizes
separate audio (Gong et al., 2021b) and visual (Dosovitskiy et al., 2021) transformers, trained in-
dependently on their respective modalities, before integrates them through late fusion techniques
harnessing the benefits of cross-modality interactions. However, late fusion techniques often fail
to leverage cross-modal cues in the early layers, leading to suboptimal performance in audio-visual
tasks requiring integrated multimodal reasoning. Additionally, this necessitates separate audio and
visual dataset curation during pre-training, imposing significant memory and GPU resource de-
mands.

On top of all these, transformers are continuously growing in size, making full fine-tuning increas-
ingly infeasible. To address these challenges, parameter-efficient fine-tuning approaches, such as
prompt tuning (Kirillov et al., 2023; Wasim et al., 2023) and adapter modules (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021; Lin et al., 2023; Sung et al., 2022; Pan et al., 2022), have emerged
as a solution. Among these approaches, adapter modules have demonstrated excellent performance
by introducing a limited set of trainable parameters while keeping the pre-trained model parame-
ters frozen (Houlsby et al., 2019; Lin et al., 2023; Sung et al., 2022; Pan et al., 2022). Freezing
the pre-trained model’s parameters allows effective transfer of knowledge gained from a large-scale
pre-training dataset to downstream tasks. Moreover, these frozen parameters can be readily shared
among different modalities (e.g. audio and visual). This approach not only optimizes resource
utilization, but also encourages seamless transfer of knowledge between these distinct modalities
(Houlsby et al., 2019; Lin et al., 2023). Drawing inspiration from the adaptability of the transformer
architecture, which can be applied to diverse modalities with minimal modality-specific alterations,
we find examples such as the BERT language transformer (Devlin et al., 2019) being extensively
used in a wide range of domains. These domains span image and video processing (Li et al., 2022b;
Wang et al., 2022), and speech analysis (Hsu et al., 2021; Chang et al., 2022).

The main goal of this work is to investigate the capacity of pre-trained vision transformers to general-
ize across diverse multimodal domains, with a specific emphasis on the field of audio-visual learning.
In this context, the core idea revolves around the representation of audio inputs as 2D spectrogram
images, which can be jointly processed alongside real visual inputs using a vision transformer. This
approach eliminates the need for prior pre-training of the transformer on a separate audio dataset.
To achieve this goal, we propose an innovative audio-visual parameter-efficient adapter (AV-PEA)
explicitly crafted for multimodal learning. The proposed AV-PEA facilitates seamless adaptation
of frozen vision transformers, initially pre-trained on images, to audio-visual tasks. It also effec-
tively leverages the complementary nature of audio and visual modalities through a cross-attention
module, all achieved with a limited set of extra trainable parameters. Specifically, within a dual-
stream visual transformer, AV-PEA is employed at each layer to enhance the representations of both
audio and visual inputs. This enhancement is achieved through a proficient cross-attention mod-
ule, followed by a lightweight bottleneck block, wherein each stream generates a token dedicated
to facilitating information exchange with the other stream. By utilizing a single token from each
stream for information exchange, it significantly mitigates the quadratic costs typically associated
with traditional cross-attention mechanisms, resulting in enhanced overall efficiency.

The key contributions of our work are outlined as follows: (a) We propose a novel adapter, called
AV-PEA, to adapt pre-trained vision transformers for efficient audio learning without requiring an
audio model pre-trained with a large dataset. (b) We introduce a simple yet effective token fusion
module founded on cross-attention, which operates linearly in both computation and memory usage
while effectively improving the integration of cues from both audio and visual modalities. (c) Our
AV-PEA outperforms contemporary audio-visual adapter modules in terms of accuracy and model
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parameters, while also achieving performance on par with or exceeding SOTA methods in various
audio-visual downstream tasks, such as AVEL, AVQA, AVR, and AVC.

2 RELATED WORK

Audio-Visual Pre-trained Models. Vision transformer (ViT) (Dosovitskiy et al., 2021) and au-
dio spectrogram transformer (AST) (Gong et al., 2021b) have emerged as cutting-edge solutions
for image and audio classification, respectively. Beyond their original specific tasks, these models
have shown significant potential as versatile foundations for transfer learning in various downstream
tasks (Chen et al., 2023). Typically, they undergo training using extensive labeled datasets (such as
ImageNet (Deng et al., 2009) and AudioSet (Gemmeke et al., 2017)) in a supervised manner. How-
ever, recent models (Radford et al., 2021; Wang et al., 2023a; Guzhov et al., 2022) have embraced
multimodal data (e.g. audio-visual and text pairs, image-text pairs, and video-text pairs) resulting in
more potent representations.

Audio-Visual Learning. Audio-visual learning tasks evolve on the integration and understanding
of information from both audio and visual modalities. These tasks often involve processing data that
includes both audio signals, such as speech or sound (Gong et al., 2022; Lin et al., 2022), and visual
cues, such as images or videos. The goal is to leverage the complementary information from both
modalities to achieve improved performance in various tasks, including but not limited to AVEL
(Tian et al., 2018; Xia & Zhao, 2022), AVQA (Li et al., 2022a; Yun et al., 2021), AVR (Chen et al.,
2023; Li et al., 2022a; Yun et al., 2021), AVC (Chen et al., 2023). The AVEL task involves iden-
tifying and localizing events within a multimedia context (e.g. video) that are observable in both
audio and visual data. This involves not only identifying when an event occurs, but also precisely
delineating its temporal boundaries (Tian et al., 2018; Geng et al., 2023b). The majority of cur-
rent methods (Tian et al., 2018; Rao et al., 2022; Xia & Zhao, 2022) developed for AVEL tasks in
the literature depend on pre-trained audio and visual models (e.g. VGGish (Hershey et al., 2017)
and ResNet-152 (He et al., 2016)) tailored to each modality. These models are employed to extract
distinct audio and visual features, which are subsequently integrated to facilitate AVEL. AVQA is
a task that combines both audio and visual modalities with natural language processing to answer
human-generated questions concerning audio-visual content. Similar to the context of AVEL tasks,
a significant portion of existing methods designed for the AVQA task relies on audio and vision
models specialized for their respective modalities. These models are then merged through spatial
and temporal grounding modules (Yun et al., 2021) to effectively provide meaningful answer. How-
ever, in such contexts, irrelevant audio and visual elements processed by modality-specific models
may introduce learning noise, adding complexity to the task. The AVR task involves retrieving rel-
evant multimedia content (i.e. images, videos, or audio clips) based on a query that consists of both
audio and visual input, while the AVC task involves crafting informative textual captions for multi-
media content that includes both audio and visual elements. Recently, Chen et al. (2023) introduced
VALOR, a novel tri-modality (Vision-Audio-Language) pre-trained model and dataset designed to
evaluate audiovisual-language capabilities, including tasks like AVR and AVC. Notably, the VALOR
pre-trained model is also built upon the ViT framework.

Parameter-Efficient Transfer Learning (PETL). The PETL principle has been introduced in the
domain of natural language processing to mitigate the escalating computational demands associated
with full fine-tuning of ever-growing language models across diverse downstream tasks. This is
achieved either by introducing a set of trainable tokens (prompt tuning) at the input (Wasim et al.,
2023) or by incorporating lightweight modules (adapters) between the layers of a pre-trained model
(Houlsby et al., 2019; Pfeiffer et al., 2020). In the same context, PETL has gained significant traction
in the computer vision (CV) domain, as evidenced by recent works (Karimi Mahabadi et al., 2021;
Sung et al., 2022; Pan et al., 2022; Yang et al., 2023b; Lin et al., 2023; Ju et al., 2022; Kirillov et al.,
2023). Sung et al. (2022) developed a vision-language adapter module that targets the text encoder
of the CLIP model. Recently, Pan et al. (2022) and Yang et al. (2023b) proposed adapter modules
to adapt pre-trained image transformer models for video understanding, concentrating on the video
action recognition research. Concurrently, there has been a growing interest in the exploration of
prompt tuning techniques to enhance visual transformers, as demonstrated by the works of Kirillov
et al. (2023) and Ju et al. (2022).
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However, most existing adapter modules in the literature are designed for specific tasks and of-
ten lack the ability to effectively facilitate cross-modal information exchange. To the best of our
knowledge, the latent audio-visual hybrid (LAVISH) adapter (Lin et al., 2023) stands as a singu-
lar instance of PETL modules developed for audio-visual learning. The LAVISH adapter utilizes
a compact collection of latent tokens to first compress information from all modality-specific to-
kens (i.e. audio and video). It subsequently applies cross-attention between these latent tokens and
all tokens from another modality. This enables a two-way flow of information between the audio
and video modalities, leading to an enhanced audio-visual representation. Nonetheless, significant
distinctions exist between LAVISH and our AV-PEA. First, LAVISH requires the adjustment of its
hyper-parameters for each new audio-visual downstream task. In contrast, our AV-PEA seamlessly
integrates into novel audio-visual tasks with a consistent design and invariant parameters, while en-
joying better performance and less trainable parameters. Second, LAVISH relies on latent tokens,
which are heavily influenced by the downstream dataset size, for facilitating information exchange
between audio and visual modalities. Conversely, our AV-PEA relies exclusively on the CLS token
from each modality for cross-modal information exchange, regardless of the downstream dataset
size.

3 METHOD

In this section, we propose AV-PEA, a novel audio-visual adapter designed to fine-tune frozen pre-
trained large-scale vision transformers (e.g. ViT (Dosovitskiy et al., 2021)) for various audio-visual
downstream tasks (like AVEL, AVQA, AVR, and AVC), while introducing only a limited set of
trainable parameters. We will begin with a concise overview of ViT as an example of a transformer
capable of accommodating the proposed AV-PEA adapter, and then present the AV-PEA approach.
Finally, we will delve into the technical details of seamlessly integrating AV-PEA into the ViT
transformer.

3.1 VIT TRANSFORMER

ViT draws inspiration from natural language processing transformers, like BERT (Devlin et al.,
2019), to capture complex relationships among visual components through self-attention mecha-
nisms. This model has gained significant prominence in the field of computer vision, attracting con-
siderable interest and consistently delivering exceptional classification performance. In ViT (Figure
1a), the initial step involves transforming the input image into fixed-size patches, known as tokens,
through the ViT’s embedding layer. Similar to the BERT model, an additional classification (CLS)
token is introduced among the image patch tokens to represent the global context of the image. To
capture spatial relationships, position embeddings are also integrated into each token, providing cru-
cial positional information. These tokens are then directed into a series of stacked transformer blocks
for further processing. Each transformer block consists of a multiheaded self-attention (MSA) layer
and a feed-forward network (FFN), collectively enhancing the model’s ability to capture and in-
tegrate pertinent visual information across the entire sequence of token. Finally, the classification
task is performed using the information aggregated within the CLS token (Dosovitskiy et al., 2021;
Chen et al., 2021).

3.2 THE PROPOSED AV-PEA

Our AV-PEA is founded on a parameter-efficient bottleneck block, as introduced by Houlsby et al.
(2019). This bottleneck block is applied on top of a simple cross-attention (CA) module as shown
in Figure 1b. Particularly, our AV-PEA capitalizes on the ability of the CLS token in ViT to capture
abstract information among patch tokens, thus enhancing audio-visual representation through the
CA module. To achieve this, we propose a dual-stream ViT transformer (Figure 1a): the visual-
stream for processing visual input and the audio-stream for processing audio input. Within each
block of both streams, we integrate our AV-PEA to efficiently adapt the ViT transformer to audio
input (which is unseen during the training phase of ViT) while also enabling seamless information
exchange between the audio and visual streams. In the CA module, the CLS token of each stream
serves as an intermediary to facilitate information exchange with the token sequence from the other
stream. The CLS token is then back-projected to its respective stream, allowing it to interact with
its own patch tokens once again in the bottleneck block. This enables the learned information from
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(a) (b)

Figure 1: (a) Integration of the proposed AV-PEA into the ViT transformer. (b) The proposed AV-
PEA, highlighting the cross-attention (CA) module enclosed by a dotted rectangle.

the other stream to be effectively conveyed to each patch token, thereby enriching the representation
of individual patch tokens and ensuring comprehensive integration of multimodal representations.

3.3 TECHNICAL INTEGRATION OF AV-PEA INTO THE VIT TRANSFORMER

Within our proposed dual-stream ViT transformer (Figure 1a), consider the visual tokens Xv ∈
R(n+1)×D, comprising both the patch tokens Xv

p ∈ Rn×D and the CLS token Xv
cls ∈ R1×D

directed to the visual stream. Similarly, the audio tokens Xa ∈ R(n+1)×D consist of the patch
tokens Xa

p ∈ Rn×D and the CLS token Xa
cls ∈ R1×D directed to the audio stream, where n and

D represent the number of patch tokens and the embedding dimension, respectively. Before we
integrate our AV-PEA into the ViT block of each stream, let’s first outline the standard operations
of a ViT block ℓ within the visual stream v. The block ℓ begins by applying the multiheaded self-
attention layer (MSA) as:

Y v
ℓ = Xv

ℓ + MSA(Xv
ℓ ). (1)

Subsequently, the intermediate representation Y v
ℓ from MSA is passed through the feed-forward

network (FFN) of the block ℓ, resulting in:

Xv
ℓ+1 = Y v

ℓ + FFN(Y v
ℓ ). (2)

These MSA and FFN operations are iteratively applied to the visual tokens Xv at each block of v.
The same procedure is applied to the audio stream a, with the only difference being the interchange
of the indices v and a.

The integration of AV-PEA into each block ℓ of the dual-stream ViT transformer proceeds as follows:

Xv
ℓ+1 = Y v

ℓ + FFN(Y v
ℓ ) and Y v

ℓ = Xv
ℓ + MSA(Xv

ℓ ) +Bv
ℓ (3)

Xa
ℓ+1 = Y a

ℓ + FFN(Y a
ℓ ) and Y a

ℓ = Xa
ℓ + MSA(Xa

ℓ ) +Ba
ℓ , (4)
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where Bv
ℓ and Ba

ℓ denote the bottleneck blocks of AV-PEA on the v and a streams, respectively.
Mathematically, the expressions for the Bv

ℓ and Ba
ℓ bottleneck blocks are as follows:

Bv
ℓ = hv · fv(CAv ∥ Xv

p ) (5)

Ba
ℓ = ha · fa(CAa ∥ Xa

p ), (6)

where f is the projection function of the bottleneck block, ∥ denotes concatenation, and h is a scalar
trainable parameter that acts as a learnable gate to regulate the flow of information through the
model. The CAv and CAa denote the cross-attention process within the AV-PEA of the v and a
streams, respectively, and can be mathematically expressed as follows:

CAv(X
v
cls, X

a) = gv ·ΘvX
a and Θv = Softmax(Xv

clsX
aT ) (7)

CAa(X
a
cls, X

v) = ga ·ΘaX
v and Θa = Softmax(Xa

clsX
vT ), (8)

where g is a scalar trainable parameter utilized to control the flow of information between the two
streams. Equations 7 and 8 reveal that only the CLS token is used as the query, ensuring that the
generation of the attention maps Θ maintain linear computation and memory complexity. In addition
to the CA process, the bottleneck block in AV-PEA involves projecting the original D-dimensional
tokens into a lower-dimensional space with dimensionality d. Subsequently, a non-linear activation
function ReLU is applied before projecting the tokens back into their original D-dimensional space.
This dimensionality reduction, achieved by setting d ≪ D, substantially decreases the number of
additional parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

For the AVEL and AVQA experiments: we employed the conventional ViT (Dosovitskiy et al., 2021)
model, which underwent supervised pre-training on annotated data sourced from ImageNet-21K
(Deng et al., 2009) as our base pre-trained model. The ViT-B/16 and ViT-L/16 variants, optimized
for processing patches of size 16 × 16, took precedence in most of our experiments. In the context
of the AVR and AVC experiments, we integrated our AV-PEA into the VALOR pre-trained model
(Chen et al., 2023). While this model shares foundational principles with the ViT transformer, it has
undergone supervised pre-training on the VALOR-1M audio-visual-language dataset (Chen et al.,
2023). To conduct a comprehensive comparison with the SOTA models, we just replaced the visual
and audio encoders of the SOTA models with the frozen ViT (or VALOR) transformer augmented by
our AV-PEA, as explained in Section3. Additionally, we followed the evaluation procedures of the
SOTA approaches, including the extraction of audio and visual features, to ensure methodological
alignment. Throughout the training process, the parameters of the pre-trained transformer remained
frozen, while the parameters of the AV-PEA were randomly initialized to meet the specific require-
ments of the audio-visual downstream task. Across all our experiments, we maintained a consistent
learning rate of 3× 10−4, set D to eight times d, and initialized g, ha, and hv from zero.

4.2 DOWNSTREAM TASKS AND RESULTS ANALYSIS

AVEL: the audio-visual event (AVE) dataset (Tian et al., 2018) was used to assess the performance
of our AV-PEA within the audio-visual event localization task. This dataset consists of 4,143 fully-
supervised videos, with 3,339 in the training set, 402 in the validation set, and 402 in the testing set.
Each video lasts 10 seconds covering events belonging to 28 distinct categories. To this end, AV-PEA
was incorporated into the cross-modal background suppression (CMBS) model (Xia & Zhao, 2022)
with replacing its pre-trained visual and audio encoders by the frozen ViT transformer. Following
the procedure outlined in the CMBS work (Xia & Zhao, 2022), the event category label for each
second within the videos was predicted, and the model’s performance was evaluated using the overall
accuracy metric for predicting event categories. The comparison results with SOTA models on the
AVE dataset were presented in Table 1. Our primary emphasis was placed on the CMBS model,
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Table 1: Audio-Visual Event Localization (AVEL): comparison with SOTA on the AVE dateset.
Within this context, ”PD” stands for pre-trained dataset, ”N/A” abbreviates not available, ⋆ indicates
the absence of official code, ✗ denotes a non-relevance criterion, ^ signifies frozen, and means
full fine-tuning.

Parameters (M) ↓
Adapter Total

Method Visual Encoder Audio Encoder Visual PD Audio PD ^ Acc ↑
DPNet⋆Rao et al. (2022) VGG-19 VGGish ImageNet AudioSet ✗ N/A N/A 79.68

CMBSXia & Zhao (2022) ResNet-152 ^ VGGish ^ ImageNet AudioSet ✗ 14.4 202.3 79.70
MBTNagrani et al. (2021) ViT-B/16 AST ImageNet AudioSet ✗ 172 ✗ 77.80
LAVISHLin et al. (2023) ViT-B/16 ^ (shared) ImageNet ✗ 3.9 4.7 102.5 75.30
LAVISH Lin et al. (2023) ViT-L/16 ^ (shared) ImageNet ✗ 13.4 14.5 325.6 78.10
CMBS+AV-PEA(Ours) ViT-B/16 ^ (shared) ImageNet ✗ 3.7 17.8 102.5 75.65
CMBS+AV-PEA(Ours) ViT-L/16 ^ (shared) ImageNet ✗ 12.9 27.2 325.6 79.90

well-known for its attainment of SOTA results on the AVE benchmark dataset. Furthermore, we
conducted comparative analyses with the published outcomes derived from the MBT, the recent
LAVISH adapter, and the dual perspective network (DPNet) (Rao et al., 2022) on the AVE dataset.
Importantly, the LAVISH adapter employed the same pre-trained ViT models as those integrated
with our AV-PEA.

From Table 1, among the models employing AudioSet pre-training and demanding modality-specific
dual encoders (visual and audio), the MBT model demonstrated the lowest accuracy (77.80%), lag-
ging behind both DPNet and CMBS (79.68% and 79.70%, respectively). This is a significant ob-
servation, especially considering that the MBT model underwent full parameter tuning. Without
the need for extensive audio pre-training on AudioSet, the LAVISH and our AV-PEA approaches,
based on ViT-B and utilizing a shared pre-trained encoder for both visual and audio inputs, achieved
comparable results ranging from 75.30% to 75.65%. However, our AV-PEA achieved this while uti-
lizing fewer adapter parameters than LAVISH (3.7M vs. 3.9M), and amounting to just 3.1% of the
total parameters (3.7M vs. (17.8+102.5)M). Significantly, our AV-PEA with ViT-L outperformed all
other methods, attaining an accuracy of 79.90%, even surpassing the analogous LAVISH adapter
with ViT-L (78.10%). Worth noting is that LAVISH presented lower performance on larger mod-
els like ViT-L due to its substantial reliance on latent tokens. On the contrary, our AV-PEA model
demonstrated continuous improvement, all while utilizing fewer adapter parameters than LAVISH
(12.9M vs. 13.4M), accounting for only 3.7% of the total parameters (12.9M vs. (27.2+325.6)M),
all the while capitalizing on its seamless plug-and-play functionality.

AVQA: In Table 2, we further evaluated the effectiveness of our AV-PEA in the context of audio-
visual question answering task, utilizing the MUSIC-AVQA (Li et al., 2022a) dataset. In these
experiments, we implemented a more robust AVQA (Li et al., 2022a) baseline using the frozen
ViT augmented with our AV-PEA. The MUSIC-AVQA dataset comprises 9,288 videos and 45,867
question-answer pairs. It includes 33 question templates encompassing 9 question types, which span
across audio, visual, and audio-visual domains. Each of these question templates is associated with
a specific answer, resulting in a pool of 42 potential answers. The dataset is divided into training,
validation, and testing sets containing 32,087, 4,595, and 9,185 QA pairs, respectively.

Table 2 revealed outstanding performance by the AVQA (Li et al., 2022a) with Swin-V2-L visual en-
coder within the methods employing AudioSet pre-training. This configuration of AVQA achieved
a marginal accuracy improvement of 0.84% compared to the baseline AVQA (Li et al., 2022a) em-
ploying a ResNet-1 visual encoder. However, achieving this modest improvement demanded the
integration of an extra 229.4M trainable parameters. These experiments also highlight the limita-
tions of the LAVISH adapter with larger datasets such as the MUSIC-AVQA dataset. Remarkably,
LAVISH with ViT-B/16 presented inferior performance compared to its own baseline AVQA model
(68.93% vs. 73.37%). This is despite the introduction of additional latent tokens, as evidenced
by the contrast in the number of adapter parameters of the AVEL (Table 1) and AVQA (Table 2)
tasks (3.9M vs. 4.4M). On the contrary, our AV-PEA with ViT-B/16 not only outperformed AVSD
(Schwartz et al., 2019) and Pano-AVQA (Yun et al., 2021), but also surpassed various AVQA base-
line variants, including LAVISH with ViT-B/16. Additionally, it obtained comparable results to the
LAVISH with ViT-L/16 (74.90% vs. 74.94%), while utilizing only 0.25 of trainable parameters used
by the LAVISH with ViT-L/16. Finally, we noted a consistent improvement in accuracy through our
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Table 2: Audio-Visual Question Answering (AVQA) using the Music-AVQA dataset. We reported
accuracy spans three question categories: audio, visual, and audio-visual.

Parameters (M) ↓
Adapter Total Question ↑

Method Visual Encoder Audio Encoder Visual PD Audio PD ^ Audio Visual Audio-visual Avg ↑
AVSD⋆Schwartz et al. (2019) VGG-19 VGGish ImageNet AudioSet ✗ N/A N/A 68.52 70.83 65.49 68.28
Pano-AVQA⋆Yun et al. (2021) Faster RCNN VGGish ImageNet AudioSet ✗ N/A N/A 70.73 72.56 66.64 69.98

AVQALi et al. (2022a) ResNet-18 ^ VGGish ^ ImageNet AudioSet ✗ 10.6 94.4 74.06 74.00 69.54 72.53
AVQALi et al. (2022a) Swin-V2-L VGGish ^ ImageNet AudioSet ✗ 240 312.1 73.16 73.80 73.16 73.37

AVQA+LAVISH ViT-B/16 ^ (shared) ImageNet ✗ 4.4 13.1 102.5 73.14 68.73 64.93 68.93
AVQA+LAVISH ViT-L/16 ^ (shared) ImageNet ✗ 14.8 23.8 325.6 75.05 79.44 70.34 74.94

AVQA+AV-PEA(Ours) ViT-B/16 ^ (shared) ImageNet ✗ 3.7 12.4 102.5 76.16 78.82 69.72 74.90
AVQA+AV-PEA(Ours) ViT-L/16 ^ (shared) ImageNet ✗ 12.9 21.9 325.6 74.49 80.06 71.26 75.27

AV-PEA with ViT-L/16, achieving an accuracy of 75.27%, and amounting to just 3.7% of the total
parameters (12.9M vs. (21.9+325.6)M). It’s noteworthy that our AV-PEA adapter maintains param-
eter consistency across diverse tasks, coupled with its user-friendly design that enables effortless
integration into new tasks, eliminating the need for parameter adjustments.

AVR and AVC: thanks to the seamless design of our AV-PEA, it allows for easy integration into
pre-trained models across various downstream tasks. For the audio-visual retrieval and captioning
tasks, our AV-PEA was incorporated into the recent VALOR pre-trained model, and subsequently
evaluated using the VALOR-32K (Chen et al., 2023) dataset. The VALOR-32K dataset includes
32K videos (25K for training, 3.5K for validation, and 3.5K for testing), and serves as a vision-
audio-language correlated dataset specifically designed for tri-modality downstream tasks. For a
fair comparison with the rival LAVISH, we integrated the LAVISH adapter into the frozen VALOR
model. Specifically, we replaced the audio transformer of VALOR with its corresponding frozen
visual transformer, thereby excluding the need for AudioSet pre-training. Just like the VALOR
evaluation protocol, the recall at rank K (R@K,K = 1, 5, 10) were used as metrics for the AVR
task, whereas BLEU4, METEOR, and ROUGE-L were used as metrics for the AVC task. On top of
these, our evaluation extended to re-evaluating the performance of both the AV-PEA and LAVISH
approach, now integrated into the VALOR model, using the MUSIC-AVQA dataset. This evaluation
was conducted in line with the VALOR framework. Worth noting is that while the AVQA framework
in Table 2 primarily pertains to a classification problem where answers are retrieved from a pool of
42 potential answers, the VALOR framework formulates the AVQA task as a generative problem,
aiming to directly generate the answer based on the input question.

The results presented in Table 3 revealed several findings. Firstly, our AV-PEA presented supe-
rior average performance in comparison to the baseline VALOR model for the AVC task (22.51 vs.
18.93), despite not using a pre-trained audio encoder or undergoing extensive AudioSet pre-training
like the VALOR model. Secondly, our AV-PEA performed comparably to the VALOR model for
the AVQA task (78.63% and 78.90%). Thirdly, our AV-PEA showcased a slight performance im-
provement over the LAVISH for both the AVC (22.51 vs. 22.41) and AVQA (78.63% vs. 77.93%)
tasks, while maintained parity on the AVR task (81.00% and 81.10%). Finally, it’s truly impressive
to witness the remarkable efficacy of adapter modules, including our AV-PEA and the LAVISH,
when seamlessly incorporated into pre-trained models. Even with a relatively modest count of addi-
tional trainable parameters and without the need for extensive AudioSet pre-training, these adapter
modules manage to attain comparable or even superior performance across a range of downstream
tasks.

Table 3: Comparison of performance results on the VALOR-32K dataset, covering Text-to-Audio-
Visual Retrieval (AVR) and Audio-Visual Captioning (AVC), along with results on the MUSIC-
AVQA dataset, which focuses on the Audio-Visual Question Answering (AVQA) benchmark.

AVR ↑ AVC ↑ AVQA ↑
Method R@1 R@5 R@10 Avg BLEU4 METEOR ROUGE-L Avg Acc
VALOR 67.90 89.70 94.40 84.00 9.60 15.40 31.80 18.93 78.90

VALOR+LAVISH 64.70 86.70 92.00 81.10 11.14 19.53 36.66 22.44 77.93
VALOR+AV-PEA(Ours) 64.10 86.60 92.40 81.00 11.37 19.09 37.06 22.51 78.63
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Table 4: Effectiveness of AV-PEA on audio-visual learning.

Method Audio stream Visual stream Acc ↑
CMBS ✗ ✗ 72.01
CMBS AV-PEA ✗ 72.71
CMBS ✗ AV-PEA 74.68
CMBS AV-PEA AV-PEA 75.65

4.3 ABLATION STUDIES

To validate the efficiency of our AV-PEA in the context of the dual-stream transformer (Figure
1), we used the ViT-B/16 pre-trained model on the AVE dataset (Tian et al., 2018). We replaced
the visual and audio encoders of the CMBS (Xia & Zhao, 2022) model with the frozen ViT-B/16
transformer, and integrated our AV-PEA into each transformer block following the methodology
detailed in Section 3.3. We delved into a range of different design possibilities for our AV-PEA. This
encompassed scenarios where the AV-PEA was integrated into both the visual and audio streams, as
well as instances where it was omitted from either of them.

As observed in Table 4, AV-PEA played a significant role in bridging the gap in handling audio
inputs, as evident from the results achieved through the integration of AV-PEA on the audio stream
(72.71% vs. 72.01%). This was achieved despite the frozen ViT pre-trained model did not undergo
AudioSet pre-training. It also demonstrated significant enhancement in the visual stream (74.68%
vs. 72.01%), primarily attributed to the CA module (Figure 1b), which effectively enables the
exchange of information between the audio and visual modalities, leading to the robust establishment
of audio-visual cues in both streams. Last but not least, it becomes evident that integrating AV-PEA
into both the audio and visual streams clearly outperforms the highest achievement obtained by
augmenting only the visual stream with AV-PEA (75.65% vs. 74.68%).

5 CONCLUSIONS

In this paper, we introduced a novel audio-visual parameter-efficient adapter (AV-PEA) module that
serves a dual purpose: (1) simplifying the integration of audio inputs into frozen vision transformers
without the need for audio pre-training and (2) enabling seamless information exchange between
the audio and visual modalities, all achieved with a limited set of additional trainable parameters.
Through a lightweight bottleneck block on top of a simple cross-attention module that employs the
CLS token from both modalities as an intermediary for cross-modal information exchange, AV-PEA
achieves robust audio-visual representations for several audio-visual tasks, including audio-visual
event localization (AVEL), audio-visual question answering (AVQA), audio-visual retrieval (AVR),
and audio-visual captioning (AVC). Encouragingly, comprehensive experimentation revealed that
our AV-PEA achieves performance on par with or exceeding state-of-the-art methods. Furthermore,
AV-PEA distinguishes itself with a consistent design and a uniform count of trainable parameters
across diverse tasks, ensuring straightforward generalization for many audio-visual applications.
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6 PYTORCH CODE OF THE PROPOSED AV-PEA

As explained in the paper, the proposed AV-PEA (audio-visual parameter-efficient adapter) is a
streamlined adapter module crafted for fine-tuning pre-trained vision transformers in the context of
audio-visual learning. Algorithm 1 provides the PyTorch code snippet for the AV-PEA, as mathe-
matically presented in Section 3.3.

Algorithm 1 PyTorch code for the AV-PEA adapter
class AVPEA(nn.Module):

"""An audio-visual parameter-effecient adapter (AV-PEA)."""
def __init__(self, in_dim, out_dim, reduction_factor=8):

super().__init__()
#scalar parameter
self.gate = nn.Parameter(torch.tensor(0))# g in the equations 7 & 8
self.q_gate = nn.Parameter(torch.tensor(0))# h in the equations 5 & 6

#dimension reduction
self.sampling_size = in_dim // reduction_factor

#bottleneck block
self.ln_before = nn.LayerNorm(in_dim)
self.down_sampler = nn.Conv2d(in_dim, self.sampling_size, 1, bias=False)
self.bn_before = nn.BatchNorm2d(self.sampling_size)
self.activation = nn.ReLU(inplace=True)
self.bn_after = nn.BatchNorm2d(out_dim)
self.up_sampler = nn.Conv2d(self.sampling_size, out_dim, 1, bias=False)
self.ln_after = nn.LayerNorm(out_dim)

def forward(self,x, y=None):#e.g. x=audio input and y=visual input
q = x[:,0:1,...]#the CLS token of modality x
new_x = y
k = new_x.permute(0,2,1)
v = new_x

#cross attention
att = torch.bmm(q, k)
att = F.softmax(att, dim=-1)
res = torch.bmm(att, v)

#
res = x[:,0:1,...] + self.q_gate*res.contiguous()
new_x = torch.cat((res,x[:,1:,...]), dim=1)

#bottleneck block
new_x = self.ln_before(new_x).permute(0,2,1).unsqueeze(-1) #normalization
z = self.down_sampler(new_x) #down_sampler
z = self.bn_before(z) #batch normalization
z = self.activation(z) #activation
output = self.up_sampler(z) #up_sampler
output = self.bn_after(output) #batch normalization
output = self.ln_after(output.squeeze(-1).permute(0,2,1)) #normalization

#
output = self.gate * output

return output
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