
Flow Straight and Fast: Learning to Generate and
Transfer Data with Rectified Flow

Xingchao Liu∗

University of Texas at Austin
xcliu@utexas.edu

Chengyue Gong∗
University of Texas at Austin
cygong@cs.utexas.edu

Qiang Liu
University of Texas at Austin
lqiang@cs.utexas.edu

Abstract

We present rectified flow, a surprisingly simple approach to learning (neural)
ordinary differential equation (ODE) models to transport between two empirically
observed distributions π0 and π1, hence providing a unified solution to generative
modeling and domain transfer, among various other tasks involving distribution
transport. The idea of rectified flow is to learn the ODE to follow the straight paths
connecting the points drawn from π0 and π1 as much as possible. This is achieved
by solving a straightforward nonlinear least squares optimization problem, which
can be easily scaled to large models without introducing extra parameters beyond
standard supervised learning. The straight paths are special and preferred because
they are the shortest paths between two points, and can be simulated exactly without
time discretization and hence yield computationally efficient models. We show that
the procedure of learning a rectified flow from data, called rectification, turns an
arbitrary coupling of π0 and π1 to a new deterministic coupling with provably non-
increasing convex transport costs. In addition, recursively applying rectification
allows us to obtain a sequence of flows with increasingly straight paths, which
can be simulated accurately with coarse time discretization in the inference phase.
In empirical studies, we show that rectified flow performs superbly on image
generation and image-to-image translation. In particular, on image generation
and translation, our method yields nearly straight flows that give high quality
results even with a single Euler discretization step. The full paper can be found at
https://arxiv.org/abs/2209.03003.

1 Introduction

Compared with supervised learning, the shared difficulty of various forms of unsupervised learning
is the lack of paired input/output data with which standard regression or classification tasks can
be invoked. The gist of most unsupervised methods is to find, in one way or another, meaningful
correspondences between points from two distributions. For example, generative models such as
generative adversarial networks (GAN) and variational autoencoders (VAE) [e.g., 4, 8, 2] seek to
map data points to latent codes following a simple elementary (Gaussian) distribution with which the
data can be generated and manipulated. Representation learning rests on the idea that if a sufficiently
smooth function can map a structured data distribution to an elementary distribution, it can (likely)
be endowed with certain semantically meaningful interpretation and useful for various downstream
learning tasks. On the other hand, domain transfer methods find mappings to transfer points from two

∗XL and CG contributed equally to this work.

NeurIPS 2022 Workshop on Score-Based Methods.

https://arxiv.org/abs/2209.03003


Figure 1: The trajectories of rectified flows for image generation (π0: standard Gaussian noise, π1: cat faces, top
two rows), and image transfer between human and cat faces (π0: human faces, π1: cat faces, bottom two rows),
when simulated using Euler method with step size 1/N for N steps. The first rectified flow induced from the
training data (1-rectified flow) yields good results with a very small number (e.g., ≥ 2) of steps; the straightened
reflow induced from 1-rectified flow (denoted as 2-rectified flow) has nearly straight line trajectories and yield
good results even with one discretization step.

different data distributions, both observed empirically, for the purpose of image-to-image translation,
style transfer, and domain adaption [e.g., 21, 3, 17, 13]. All these tasks can be framed unifiedly as
finding a transport map between two distributions:

The Transport Mapping Problem Given empirical observations of two distributions X0 ∼ π0, X1 ∼
π1 on Rd, find a transport map T : Rd → Rd (hopefully nice or optimal in certain sense), such that
Z1 := T (Z0) ∼ π1 when Z0 ∼ π0, that is, (Z0, Z1) is a coupling (a.k.a transport plan) of π0, π1.

We present a simple approach to this transport mapping problem. Our method, called rectified flow,
learns an ODE model that transports distribution π0 to π1 by following straight line paths as much as
possible. The straight paths are preferred both theoretically because it is the shortest path between
two end points, and computationally because it can be exactly simulated without time discretization.
Hence, flows with straight paths are simultaneously continuous-time (or infinite-step) models, and
one-step models (as the case of GANs and VAEs).

Algorithmically, the rectified flow is trained with a simple and scalable unconstrained least squares
optimization procedure, which avoids the instability issues of GANs, the intractable likelihood
of MLE methods, and the subtle hyper-parameter decisions of denoising diffusion models. The
procedure of obtaining the rectified flow from the training data has the attractive theoretical property
of 1) yielding a coupling with non-increasing transport cost jointly for all convex cost c, and 2)
making the paths of flow increasingly straight and hence incurring lower error with numerical solvers.
Therefore, with a reflow procedure that iteratively trains new rectified flows with the data simulated
from the previously obtained rectified flow, we obtain nearly straight flows that yield good results
even with the coarsest time discretization, i.e., one Euler step. Our method is purely ODE-based, and
is both conceptually simpler and practically faster in inference time than the SDE-based approaches
of [5, 16, 15].

Empirically, rectified flow can yield high-quality results for image generation when simulated with
a very few number of Euler steps (see Figure 1, top row). Moreover, with just one step of reflow,
the flow becomes nearly straight and hence yield good results with a single Euler discretization
step (Figure 1, the second row). This substantially improves over the standard denoising diffusion
methods. Quantitatively, we claim a state-of-the-art result of FID (4.85) and recall (0.51) on CIFAR10
for one-step fast diffusion/flow models [1, 11, 18, 20, 10]. The same algorithm also achieves superb
result on domain transfer tasks such as image-to-image translation (the bottom two rows of Figure 1).

2



(a) Linear interpolation

Xt = tX1 + (1 − t)X0

(b) Rectified flow Zt

induced by (X0, X1)

(c) Linear interpolation

Zt = tZ1 + (1 − t)Z0

(d) Rectified flow Z′
t

induced by (Z0, Z1)

Figure 2: (a) Linear interpolation of data input (X0, X1) ∼ π0 × π1. (b) The rectified flow Zt induced
by (X0, X1); the trajectories are “rewired" at the intersection points to avoid the crossing. (c) The linear
interpolation of (Z0, Z1) from flow Zt. (d) The rectified flow induced by (Z0, Z1), which has straight paths.

2 Method
Rectified flow Given empirical observations of X0 ∼ π0, X1 ∼ π1, the rectified flow induced from
(X0, X1) is an ordinary differentiable model (ODE) on time t ∈ [0, 1],

dZt = v(Zt, t)dt,

which converts Z0 from π0 to a Z1 following π1. The drift force v : Rd → Rd is set to drive the flow
to follow the direction (X1 −X0) of the linear path pointing from X0 to X1 as much as possible, by
solving a simple least squares regression problem:

min
v

∫ 1

0

E
[∥∥(X1 −X0)− v

(
Xt, t

)∥∥2] dt, with Xt = tX1 + (1− t)X0, (1)

where Xt is the linear interpolation of X0 and X1. Naviely, Xt follows the ODE of dXt =
(X1 −X0)dt, which is non-causal (or anticipating) as the update of Xt requires the information of
the final point X1. By fitting the drift v with X1 − X0, the rectified flow causalizes the paths of
linear interpolation Xt, yielding an ODE flow that can be simulated without seeing the future. In
practice, we parameterize v with a neural network or other nonlinear models and solve (1) with any
off-the-shelf stochastic optimizer, such as SGD, with empirical draws of (X0, X1). See Algorithm 1.

Flows avoid crossing A key to understanding the method is the non-crossing property of flows: the
different paths following a well defined ODE dZt = v(Zt, t)dt, whose solution exists and is unique,
cannot cross each other at any time t ∈ [0, 1). Specifically, there exists no location z ∈ Rd and time
t ∈ [0, 1), such that two paths go across z at time t along different directions, because otherwise
the solution of the ODE would be non-unique. On the other hand, the paths of the interpolation
process Xt may intersect with each other (Figure 2a), which makes it non-causal. Hence, as shown
in Figure 2b, the rectified flow rewires the individual trajectories passing through the intersection
points to avoid crossing, while tracing out the same density map as the linear interpolation paths due
to the optimization of (1).

Rectified coupling reduces transport costs If (1) is solved exactly, the pair (Z0, Z1) of the rectified
flow has the following two key properties:

1) (Z0, Z1) is guaranteed to be a valid coupling of π0, π1, that is, Z1 follows π1 if Z0 ∼ π0.

2) (Z0, Z1) guarantees to yield no larger transport cost than the data pair (X0, X1) simultaneously
for all convex cost functions c, that is,

E[c(Z1 − Z0)] ≤ E[c(X1 −X0)], ∀ convex c : Rd → R.

The data pair (X0, X1) can be an arbitrary coupling of π0, π1, typically independent (i.e., (X0, X1) ∼
π0 × π1) as dictated by the lack of meaningfully paired observations in practical problems. In
comparison, the rectified coupling (Z0, Z1) has a deterministic dependency as it is constructed
from an ODE model. Hence, the rectification procedure above converts an arbitrary coupling into a
deterministic coupling with lower or equal convex transport costs.

Straight line flows yield fast inference Following Algorithm 1, denote by Z =
RectFlow((X0, X1)) the rectified flow induced from (X0, X1). Applying this operator recursively

3



Algorithm 1 Rectified Flow: Main Algorithm

Procedure: Z = RectFlow((X0, X1)):
Inputs: Draws from a coupling (X0, X1); velocity model vθ : Rd → Rd with parameter θ.

Training: θ̂ = argmin
θ

E
[
∥X1 −X0 − v(tX1 + (1− t)X0, t)∥2

]
, with t ∼ Uniform([0, 1]).

Sampling: Draw (Z0, Z1) from dZt = vθ̂(Zt, t)dt with Z0 ∼ π0 (or backwardly Z1 ∼ π1).
Return: Z = {Zt : t ∈ [0, 1]}.

Reflow (optional): Zk+1 = RectFlow((Zk
0 , Z

k
1 )), starting from (Z0

0 , Z
0
1 ) = (X0, X1).

Distill (optional): Learn a neural network T̂ to distill the k-rectified flow, such that Zk
1 ≈ T̂ (Zk

0 ).

yields a sequence of rectified flows Zk+1 = RectFlow((Zk
0 , Z

k
1 )) with (Z0

0 , Z
0
1 ) = (X0, X1),

where Zk is the k-th rectified flow, or simply k-rectified flow, induced from (X0, X1). This reflow
procedure not only decreases transport cost, but also has the important effect of straightening paths
of rectified flows, that is, making the paths of the flow more straight. This is highly attractive
computationally as flows with nearly straight paths incur small time-discretization error in numerical
simulation. Indeed, perfectly straight paths can be simulated exactly with a single Euler step and is
effectively a one-step model, addressing the very bottleneck of slow inference of ODE/SDE models.

3 Experiments
Unconditional Image Generation on CIFAR-10 Among one-step generative models, the distilled
2-rectified flow achieves an FID of 4.85, beating the best known one-step generative model with U-net
architecture, 8.91 (TDPM, Table 1 (b)). The recalls of both 2-rectified flow (0.50) and 3-rectified
flow (0.51) outperform the best known results of GANs (0.49 from StyleGAN2+ADA) showing an
advantage in diversity.

Image-to-Image Translation As shown in Figure 3, rectified flow can effectively transfer images
between different domains in a unsupervised manner, without the burdensome cycle consistency
regularization in CycleGAN [21].

Method NFE(↓) IS (↑) FID (↓) Recall (↑)
ODE One-Step Generation (Euler solver, N=1)
1-Rectified Flow (+Distill) 1 1.13 (9.08) 378 (6.18) 0.0 (0.45)
2-Rectified Flow (+Distill) 1 8.08 (9.01) 12.21 (4.85) 0.34 (0.50)
3-Rectified Flow (+Distill) 1 8.47 (8.79) 8.15 (5.21) 0.41 (0.51)
VP ODE [16] (+Distill) 1 1.20 (8.73) 451 (16.23) 0.0 (0.29)
sub-VP ODE [16] (+Distill) 1 1.21 (8.80) 451 (14.32) 0.0 (0.35)
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N )
1-Rectified Flow 127 9.60 2.58 0.57
2-Rectified Flow 110 9.24 3.36 0.54
3-Rectified Flow 104 9.01 3.96 0.53
VP ODE [16] 140 9.37 3.93 0.51
sub-VP ODE [16] 146 9.46 3.16 0.55
SDE Full Simulation (Euler solver, N=2000)
VP SDE [16] 2000 9.58 2.55 0.58
sub-VP SDE [16] 2000 9.56 2.61 0.58

Method NFE(↓) IS (↑) FID (↓) Recall (↑)
GAN One-Step Generation
SNGAN [12] 1 8.22 21.7 0.44
StyleGAN2 [7] 1 9.18 8.32 0.41
StyleGAN-XL [14] 1 - 1.85 0.47
StyleGAN2 + ADA [7] 1 9.40 2.92 0.49
StyleGAN2 + DiffAug [19] 1 9.40 5.79 0.42
TransGAN + DiffAug [6] 1 9.02 9.26 0.41
GAN with U-Net One-step Generation
TDPM (T=1) [20] 1 8.65 8.91 0.46
Denoising Diffusion GAN (T=1) [18] 1 8.93 14.6 0.19
ODE One Step Generation (Euler solver, N=1)
DDIM Distillation [10] 1 8.36 9.36 0.51
NCSN++ (VE ODE) [16] (+Distill) 1 1.18 (2.57) 461 (254) 0.0 (0.0)
ODE Full Simulation (Runge–Kutta (RK45), Adaptive N )
NCSN++ (VE ODE) [16] 176 9.35 5.38 0.56
SDE Full Simulation (Euler solver)
DDPM [5] 1000 9.46 3.21 0.57
NCSN++ (VE SDE) [16] 2000 9.83 2.38 0.59

(a) Results using the DDPM++ architecture. (b) Recent results with different architectures reported in literature.
Table 1: Results on CIFAR10 unconditioned image generation. Fréchet Inception Distance (FID) and Inception
Score (IS) measure the quality of the generated images, and recall score [9] measures diversity. The number of
function evaluation (NFE) denotes the number of times we need to call the main neural network during inference.
It coincides with the number of discretization steps N for ODE and SDE models.

4



1-Rectified Flow

2-Rectified Flow

1-Rectified Flow

2-Rectified Flow

(a) 1-rectified flow between different domains (b) 1- and 2-rectified flow for MetFace → Cat.

Figure 3: Samples of trajectories zt of 1- and 2-rectified flow for transferring between different domains.

5



References
[1] Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the

optimal reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503,
2022.

[2] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[3] R Flamary, N Courty, D Tuia, and A Rakotomamonjy. Optimal transport for domain adaptation.
IEEE Trans. Pattern Anal. Mach. Intell, 1, 2016.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[6] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN: Two pure transformers can make
one strong GAN, and that can scale up. Advances in Neural Information Processing Systems,
34, 2021.

[7] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. Advances in Neural Information
Processing Systems, 33:12104–12114, 2020.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[9] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

[10] Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

[11] Zhaoyang Lyu, Xudong Xu, Ceyuan Yang, Dahua Lin, and Bo Dai. Accelerating diffusion
models via early stop of the diffusion process. arXiv preprint arXiv:2205.12524, 2022.

[12] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

[13] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[14] Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-XL: Scaling StyleGAN to large
diverse datasets. In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Proceedings, pages 1–10, 2022.

[15] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2020.

[16] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[17] Giulio Trigila and Esteban G Tabak. Data-driven optimal transport. Communications on Pure
and Applied Mathematics, 69(4):613–648, 2016.

[18] Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion GANs. arXiv preprint arXiv:2112.07804, 2021.

6



[19] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation
for data-efficient GAN training. Advances in Neural Information Processing Systems, 33:
7559–7570, 2020.

[20] Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion
probabilistic models. arXiv preprint arXiv:2202.09671, 2022.

[21] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2223–2232, 2017.

7


	Introduction
	Method
	Experiments

