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ABSTRACT

A significant body of work has focused on studying the mechanisms behind the
implicit regularization observed in neural networks. Recently, developments in
ensemble theory have demonstrated that, for a wide variety of loss functions, the
expected risk of the ensemble can be decomposed into a bias and variance term
together with an additional term called diversity. By using this theoretical frame-
work and by interpreting a single neural network as an ensemble, we expose a
hidden diversity term in the decomposition of a neural network’s expected risk. We
argue that the additional diversity term regulates the variance error, thus identify-
ing a new source of implicit regularization in neural networks. We demonstrate
this regularization on regression and classification datasets by estimating the bias,
variance, and diversity terms for MLPs and CNNs. Using double descent as an
example, we observe that diversity significantly increases for wide overparame-
terized neural networks. These results demonstrate a new perspective on implicit
regularization in neural networks and open new possible avenues of research into
their generalization.

1 INTRODUCTION

Figure 1: Implicit regularization In a new de-
composition, variance error increases as parame-
ters increase; a corresponding increase in diversity
causes the risk to reduce in the over-parameterized
regime. (Top): One-layer MLP trained with full
batch SGD on MNIST. (Bottom): Three-layer
CNN trained with mini-batch SGD on CIFAR10.

In the overparameterized regime, neural networks
seem to defy conventional wisdom: despite the abil-
ity to interpolate their training data, neural networks
are able to still generalize well on unseen data. Ex-
amples of this phenomenon range from fitting neu-
ral networks on noisy data (Neyshabur et al., 2015;
Zhang et al., 2017) to the classical double descent ex-
periments (Belkin et al., 2019; Nakkiran et al., 2020).

To explain this phenomenon, a long-standing conjec-
ture has been that neural networks experience a form
of implicit regularization (Neyshabur et al., 2015;
Zhang et al., 2017; Vardi, 2022). The most prominent
approach to understanding this implicit regularization
has been through analysis of the optimization process,
in particular, how gradient descent finds minima in
the loss landscape that leads to good generalization
for both linear and nonlinear networks (Neyshabur
et al., 2015; Gunasekar et al., 2017; Arora et al., 2019;
Razin & Cohen, 2020; Li et al., 2021; Lyu & Li, 2020;
Chizat & Bach, 2020; Vardi & Shamir, 2021) or mod-
ifications to the gradient descent trajectories in the
loss landscape (Barrett & Dherin, 2021; Smith et al.,
2021). An alternative approach to understanding over-
parameterization behavior from a bias-variance de-
composition perspective, is by identifying sources of
additional randomness to provide a more fine-grained
decomposition of the variance error (Geman et al.,
1992; Neal et al., 2019; Adlam & Pennington, 2020; D’Ascoli et al., 2020).
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Inspired by the ability of ensembles to reduce overfitting, we view a single neural network as an
implicit ensemble. Then, by only considering the randomness introduced by the sampling of training
sets, we introduce a new bias-variance decomposition for neural networks that exhibit an additional
term that acts as an implicit regularizer. Our main contributions are as follows:

• Development of a theoretical framework to analyze neural network behavior in a regression
or classification setting. This framework is applicable to a wide range of loss functions and
any model that contains a dense layer.

• Exposing a new source of implicit regularization in such networks: By viewing a network
as an ensemble of subpredictors, the diversity of ensemble members is shown to act as an
implicit regularizer.

• We confirm our results empirically by deriving and estimating the bias, variance and diversity
terms for two loss functions, namely, square loss and cross entropy. We use several well-
known classification and regression datasets and present results for scenarios such as double
descent and small/large data limits. In addition, we demonstrate the difference in behavior
between networks parameterized with standard and mean-field parameterization (MFP).

2 RELATED WORK

Related works that view a neural network as a form of implicit ensemble typically aim to achieve
different goals than those studied here. For example, Veit et al. (2016) use an ensemble perspective
to study the vanishing gradient problem in deep residual networks. Dropout can be interpreted as
training many “thinned-out” subnetworks of the neural network (Srivastava et al., 2014). More
recently, when studying continual learning and the problem of catastrophic forgetting, a neural
network can be viewed as an ensemble of its weights (Benjamin et al., 2024).

In contrast, Olson et al. (2018) is the only work that we are aware of that studies implicit regularization
from an ensemble perspective, and is the work that is conceptually closest to ours. By using a linear
program procedure and constraints, they decompose a single neural network into an ensemble of non-
overlapping subnetworks under the constraint that the networks have low bias and low subpredictor
correlation. (While they refer to this concept as “diversity”, this is not the same definition of
diversity as ours, and seems to be a proxy for this concept.) In analogy to the implicit regularization
seen in random forests, they argue that there is a similar mechanism of implicit regularization for
overparameterized neural networks, but this mechanism is not explained. In contrast, in our work we
use the recent theoretical framework of Wood et al. (2023) to define the subnetworks in the implicit
ensemble, producing results that are more generally applicable, in particular, since our subnetworks
are allowed to overlap in terms of parameter sharing. We also use the “unified” notion of diversity of
Wood et al. (2023), which exposes the exact mechanism of implicit regularization that was speculated
to exist in Olson et al. (2018).

More distantly related to our work are the approaches to implicit regularization discussed in the
introduction to this paper. In particular, these works approach the problem from the optimization point
of view by studying the implicit bias of gradient descent towards favoring solutions that generalize
well (Vardi, 2022; Gunasekar et al., 2017; Arora et al., 2019; Razin & Cohen, 2020; Li et al., 2021;
Lyu & Li, 2020; Chizat & Bach, 2020; Vardi & Shamir, 2021; Barrett & Dherin, 2021; Smith et al.,
2021). These works do not address implicit regularization through internal structure. Finally, our
work crucially depends on the framework of Wood et al. (2023), which was developed for explicit
ensembles and as a unifying framework for the notion of diversity. In contrast, our theoretical results
extend this framework to the internal structure of a single neural network and, additionally, show
that the framework provides new insight into the problem of overparameterized neural networks and
overfitting.

3 PRELIMINARIES AND BACKGROUND

Crucial to our work is the development of the theoretical framework in Wood et al. (2023) for
ensembles, which we briefly review here. In contrast to the decomposition in Geman et al. (1992)
for a single model, this theoretical framework offers a novel decomposition of the expected risk of
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ensembles into three terms, namely, a bias, variance, and diversity term. All proofs for this section
can be found in Appendix A.2.

3.1 ENSEMBLES

We define an explicit ensemble to consist of subpredictors {q(i)}mi=1, where each q(i) : X ⊆ Rdi →
Y ⊆ Rdf . We consider supervised learning and, thus, define a training set D = {(x(i), y(i))}ni=1,
where x(i) ∈ X , y(i) ∈ Y ′ ⊆ Rdf (where Y ′ may or may not be the same as Y) and (x, y)

iid∼
P (X,Y ). Each subpredictor q(i) is trained using a learning algorithm and a loss function ℓ : Y×Y →
R+ by minimizing the empirical risk Remp[q(i)] =

1
n

∑n
j=1 ℓ(q(i)(x

(j)), y(j)). To emphasize the
dependence on the training dataset D, we will sometimes write the output of subpredictor q(i) for a
given x as q(i)(x;D).

Depending on the task, the ensemble of subpredictors is then aggregated in some fashion to produce
a single output in Rdf . For example, in the case of univariate regression, a popular way to combine
the outputs of the ensemble of subpredictors is by a simple average: q̄(x) = 1

m

∑m
i=1 q(i)(x).

3.2 CENTROID AND ENSEMBLE COMBINER

An important aspect of the framework of Wood et al. (2023) is the notion of the centroid of a
distribution, which was first defined in James & Hastie (1997). Using an equivalent definition of the
variance of a random variable T given by var(T ) = minz ET [ℓ(z, t)], where ℓ(z, t) = (z − t)2, the
nonrandom number t̊, which minimizes the variance, is called the centroid of the distribution. The
utility of this formulation is that we can generalize it to other loss functions ℓ.

Definition 1 (Centroid of a distribution). Let T be a random variable. Then, for a given loss ℓ, we
define the centroid of the distribution t̊ to be the minimizer of the expected loss over T

t̊ = arg min
z

ET [ℓ(z, t)],

where z is nonrandom.

Intuitively, as described in (James & Hastie, 1997), the quantity var(T ) can be interpreted as a
measure of the expected distance (in terms of the loss) of the random variable T from its nearest
nonrandom number t̊. Importantly, the loss function determines the form of the centroid. We
provide the following two lemmas for the square loss function and the Kullback-Leibler divergence
(KL-divergence) (Heskes, 1998).

Lemma 1 (Centroid for least squares loss). Let ℓ be the least squares loss function ℓ(z, t) = (z− t)2.
Then, for a random variable T , the centroid of the distribution is given by

t̊ = ET [t]. (1)

Lemma 2 (Centroid for KL-divergence). For a target probability density z(y), let f(y) be an
estimator of this density. Suppose we had an ensemble of such estimators, possibly infinite, with
ET representing expectation with respect to this ensemble. Let ℓ be the KL-divergence loss function
ℓ(z, f) = K(z||f). Then, the (normalized) centroid of the distribution is given by

f̊(y) =
1

Z
exp(ET [ln f(y)]), (2)

where Z is a normalization constant independent of y.

Ensemble Combiner A special example of the centroid is the centroid over ensemble members
called the ensemble combiner, which we denote with the symbol q̄. Let T be the random variable
distributed according to a discrete model distribution, such that each subpredictor q(i) can be drawn
with probability p(q(i)). Then, for the case of square loss, the combiner q̄ can be found through
Lemma 1 as

q̄(x) =

m∑
i=1

p(q(i))q(i)(x), (3)

3
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where we have replaced the expected value ET by the weighted average
∑m

i=1 p(q(i)). Intuitively,
the weights p(q(i)), which sum to unity, can represent our ‘belief’ in the output of subpredictor q(i)
(Krogh & Vedelsby, 1994). In the case where p(q(i)) = 1/m for all i ∈ [m] := {1, ...,m}, we
recover the simple average combiner from Section 3.1. Similarly, for the case of the KL-divergence,
one finds the logarithmic opinion pool (Heskes, 1997; 1998) which is given through Lemma 2 as

q̄(x) =
1

Z
exp

( m∑
i=1

p(q(i)) ln q(i)(x)

)
=

1

Z

m∏
i=1

q(i)(x)
p(q(i)), (4)

where we emphasize that each q(i) is a normalized probability distribution. As in Wood et al. (2023),
we note that this is not necessarily the optimal way to combine the output of the subpredictors.
However, for the bias-variance-diversity decomposition that we review in Section 3.3, the centroid
from Definition 1 provides a framework that neatly allows us to decompose the expected risk.

3.3 BIAS-VARIANCE-DIVERSITY DECOMPOSITION

Up to now, we have worked with a general random variable T and, for the model distribution, weights
p(q(i)). We now specialize to T representing the training sets of size n which we represent with the
symbol D. We also specialize to uniform model weights p(q(i)) = 1/m for all i ∈ [m]. Finally,
thanks to Lemma 3 (see Appendix A.2.2), one finds the main result from Wood et al. (2023) which
we state here.
Theorem 1 (Bias-variance-diversity decomposition). Let {q(i)}mi=1 be an ensemble of subpredictors
and let D be the random variable that represents training sets of size n. Let ℓ be a loss function
that permits a valid bias-variance decomposition. Then, the expected value of the risk R[q̄] =
EXY [ℓ(y, q̄)] over all training sets D can be decomposed as

EDEXY [ℓ(y, q̄)] =

EX

[
EY |X [ℓ(y, y∗)]︸ ︷︷ ︸

noise

+
1

m

m∑
i=1

ℓ(y∗, q̊(i))︸ ︷︷ ︸
average bias

+
1

m

m∑
i=1

ED[ℓ(q̊(i), q(i))]︸ ︷︷ ︸
average variance

− 1

m

m∑
i=1

ED[ℓ(q̄, q(i))]︸ ︷︷ ︸
diversity

]
,

where y∗ = EY |X [y], q̊(i) = arg minz ED[ℓ(z, q(i))] is the centroid for a subpredictor, and q̄ =

arg minz
∑m

i=1 p(q(i))ℓ(z, q(i)) is the ensemble combiner.

In comparison to the decompositions in Geman et al. (1992) and Heskes (1998) for a single model,
the decomposition for an ensemble can be decomposed into three terms, namely, a bias, variance,
and diversity term (as well as an irreducible noise term). Importantly, observe that the diversity term
comes with a negative sign. Thus, the greater the diversity, the lower the expected risk. We refer the
reader to Wood et al. (2023) for further theoretical results and experimental verification of Theorem 1.

4 IMPLICIT ENSEMBLES AND IMPLICIT REGULARIZATION

Having established the theoretical framework for ensembles in the previous section, we now turn to
the case of a single feedforward neural network with ReLU activations. We extend the theoretical
framework for ensembles by viewing the neural network as an implicit ensemble.

4.1 SETUP

We consider any neural network with fully connected (FC) layers at the end with ReLU activations.
More precisely, let f = h ◦ g : X ⊂ Rdi → Y ⊂ Rdf represent a neural network, where
g : X ⊂ Rdi → Rd0 is any flattened feature map (such as a set of convolutional layers) and
h : Rd0 → Y ⊂ Rdf is L-hidden FC layers, with hidden widths d1, ..., dL ∈ N, that uses ReLU
activations σ(x) = max(0, x). For h, we consider a {α, β,H}-family of FC layers as follows:

h(1)(x) = σ(z(1)(x)), z(1)(x) = αw(1)h(0)(x),

h(ℓ)(x) = σ(z(ℓ)(x)), z(ℓ)(x) = w(ℓ)h(ℓ−1)(x), ℓ > 1,

h(L+1)(x) = βw(L+1)h(L)(x),

(5)

4
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where h(0)(x) = g(x) ∈ Rd0 is the input to the FC layers, z(ℓ)(x) ∈ Rdℓ is the preactivation vector to
layer ℓ , h(ℓ)(x) ∈ Rdℓ is the activation vector of layer ℓ, h(L+1)(x) ∈ Rdf is the output of the neural

network, and w(ℓ) ∈ Rdℓ×dℓ−1 is a learnable weight matrix with elements initialized as wi
(ℓ) j

iid∼ H .
The family of neural networks are determined by the (non-learnable) parameters α, β ∈ R and the
distribution H and, as we will discuss later, plays a nontrivial role in the infinite width limit of the FC
layers (Yang & Hu, 2022). Important to our case, the parameter β will lead to different identifications
of subpredictors within the neural network. We consider three particular choices of {α, β,H} called,
namely, standard parameterization (SP) (Paszke et al., 2019), mean-field parameterization (MFP)
(Mei et al., 2018) and maximal-update parameterization (µP ) (Yang & Hu, 2022) – their values are
listed in Table 1.

Table 1: Parameterizations for FC layer
Parameterization L α β H

Standard ≥ 1 1 1 Uniform(−
√

6
dℓ−1

,
√

6
dℓ−1

)

Mean-field 1 1 1
dL

N (0, 1)

Maximal-update ≥ 1
√
d0

1√
dL

N (0, 1
dℓ−1

)

Finally, for the case of a C-class classification task, we use a Softmax function on the output

Softmax[h(L+1)(x)] =
1

Z
exp(h(L+1)(x)), Z =

C∑
c=1

exp(hc
(L+1)(x)), (6)

where the exponent is applied component-wise.

4.2 SUBPREDICTOR IDENTIFICATION

Regression We first consider a regression task with square loss (see Figure 2). We ap-
ply the theoretical framework of Section 3 by working backwards from the definition of the
combiner to formulate a notion of subpredictor within the neural network. The combiner q̄
in this case is fixed – it is, of course, the output nodes of the neural network h(L+1)(x).

Combiner

Subpredictor

Neural Network

Figure 2: Implicit ensemble A single hidden
layer neural network can be viewed as an ensem-
ble. Each subpredictor of the ensemble consists of
a hidden node multiplied by a weight. The subpre-
dictor outputs are combined with weights p(q(i))
to form the combiner.

Now, consider Equation 3. We need to identify
both subpredictors q(i) and model weights p(q(i)),
where we are constrained to

∑m
i=1 p(q(i)) = 1 and

p(q(i)) ≥ 0 for all i ∈ [m]. The constraint lim-
its our choices of possible subpredictors. Setting
q̄ = h(L+1), we have at the level of components

q̄i(x) = βwi
(L+1)h(L)(x) = β

dL∑
j=1

wi
(L+1) jh

j
(L)(x),

(7)
where wi

(L+1) ∈ R1×dL (i.e. the ith row of w(L+1)).
By comparing to Equation 3, we observe that we can
naturally satisfy the constraint if

∑dL

i=1 β = 1 and
β is nonnegative, which is satisfied if β = 1/dL.
Interestingly, this is naturally realized by MFP for
L = 1 (i.e. a single hidden layer MLP). Consequently, in this case, a subpredictor is naturally
identified as q(j)(x) = w(2) jh

j
(1)(x) ∈ Rdf , j ∈ [d1] (where w(2) j ∈ Rdf , i.e. the jth column of

w(2)).

For SP and µP , we can still satisfy the constraint and identify valid subpredictors. For SP, β = 1,
hence, we can factor out 1 = 1/dL × dL so that p(q(i)) = 1/dL and q(j)(x) = dLw(L+1) jh

j
(L)(x).

Similarly, for µP , β = 1/
√
dL, and so we can factor 1/

√
dL = 1/dL ×

√
dL, giving weight

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

p(q(i)) = 1/dL and subpredictor q(j)(x) =
√
dLw(L+1) jh

j
(L)(x). We therefore find that, unlike the

MFP case, the subpredictors for SP and µP comes with a scalar factor determined by the width of
the last hidden layer.

Furthermore, using Lemma 1, we can immediately identify the centroid for each subpredictor as
q̊(i)(x) = ED[q(i)(x)]. For example, for the MFP case, q̊(i)(x) = ED[w(2) ih

i
(1)(x)], where we

note that both the weights w(2) and the hidden nodes h(1) depend on the training set D. Results are
summarized in Table 2 for the MFP (the other parameterizations are similar).

Classification For classification, the neural network output is given by Equation 6 where it now
outputs a probability vector (components are nonnegative and sum to one). Recall that, for the KL-
divergence, the combiner is given by Equation 4. For the case of classification, the identification of
subpredictors is more nuanced. As before, we have the constraint that the model distribution weights
p(q(i)) need to be nonnegative and sum to one. Additionally, we now require each subpredictor
to output a valid probability vector: q(i)(x) ∈ RC ,

∑C
c=1 q

c
(i)(x) = 1, qc(i)(x) ≥ 0. Using the

Softmax function from Equation 6, we identify the subpredictors as in Table 2 for the MFP (the other
parameterizations are similar). See Appendix A.3.1 for details.

Table 2: Framework components for 1-layer neural networks initialised with MFP.
square loss KL-loss

subpredictor q(i)(x) = w(2) ih
i
(1)(x) q(i)(x) = Softmax(w(2) ih

i
(1)(x))

centroid q̊(i)(x) = ED[w(2) ih
i
(1)(x)] (8) q̊(i)(x) = Softmax(ED[ln q(i)(x)]) (9)

combiner q̄(x) = 1
d1

∑d1

i=1 q(i)(x) q̄(x) = Softmax
(

1
d1

∑d1

i=1 ln q(i)(x)

)

Discussion For two popular loss functions, the square-loss and KL-loss, we have shown that a
single neural network can be reinterpreted as an implicit ensemble. In particular, we have shown that
the notion of a subpredictor within the neural network is dependent on the choice of loss function
used for training. Naively, one might associate a hidden node to a subpredictor but, instead, we
find that a subpredictor typically consists of a hidden node multiplied by an outgoing weight vector.
Apart from its contribution to the output of the subpredictor, the role of the outgoing weight vector
w(L+1) j ∈ Rdf has additional importance: it carries the necessary index structure to ensure that the
subpredictor is a vector (if the neural network output is a vector). For example, for a subpredictor j,
qi(j) = wi

(L+1) jh
j
(L) carries a free index i (due to the weight vector) that ensures that q(j) is a vector.

This substructure in the neural network naturally emerges when we apply the framework of Section 3.
Finally, we also see that the number of subpredictors within a single neural network is determined by
the width dL of the last hidden layer.

In order to perform these identifications, we have considered three parameterizations of the FC layers.
Notably, for MFP, this choice of parameterization already includes the correct factor p(q(i)) = 1/d1
on the output nodes; in fact, this factor is also needed to guarantee feature learning in the large
width limit (Chizat et al., 2019; Mei et al., 2018) 1. Unlike MFP, SP and µP carry an explicit factor
dependent on dL (the last hidden layer width) in the definition of the subpredictor and, thus, risk
diverging in the large width limit. Although beyond the scope of this paper, we consider the potential
connection between the implicit ensemble view developed here and the feature learning/kernel
regimes to be an interesting avenue of future work.

4.3 DECOMPOSITION

Using the identifications in the previous section, we can now apply Theorem 1 to the case of a
single neural network. For regression using least squares loss, we assume a training set D =

1Both MFP and µP belong to a family of abc-parameterizations in the rich regime of feature learning (note
that MFP is a special case of µP modulo a symmetry transformation) (Yang & Hu, 2022). In contrast to the rich
regime, standard parameterization (SP) belongs to the kernel or lazy regime (Jacot et al., 2018; Chizat et al.,
2019; Yang & Hu, 2022).
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{(x(i), y(i))}ni=1 where y(i) ∈ R. With the identification in Equation 8, we find that
EDEXY [(y − q̄)2] =

EX

[
EY |X [(y − y∗)2]︸ ︷︷ ︸

noise

+
1

dL

dL∑
i=1

(y∗ − q̊(i))
2

︸ ︷︷ ︸
average bias

+
1

dL

dL∑
i=1

ED[(q̊(i) − q(i))
2]︸ ︷︷ ︸

average variance

− 1

dL

dL∑
i=1

ED[(q̄ − q(i))
2]︸ ︷︷ ︸

diversity

]
,

(10)
where y∗ = EY |X [y].

For classification, we assume a training set D = {(x(i), , y(i))}ni=1 where y(i) ∈ RC is a one-hot
vector. Then, the KL-divergence reduces to2

K(y||q̄) = −y · ln q̄ = cross-entropy(y, q̄). (11)
Using the identifications in Equation 9, we find that

EDEXY [cross-entropy(y, q̄)] =

EX

[
EY |X [K(y||y∗)]︸ ︷︷ ︸

noise

+
1

dL

dL∑
i=1

K(y∗||̊qi)︸ ︷︷ ︸
average bias

+
1

dL

dL∑
i=1

ED[K(q̊i||qi)]︸ ︷︷ ︸
average variance

− 1

dL

dL∑
i=1

ED[K(q̄||qi)]︸ ︷︷ ︸
diversity

]
,

(12)
where y∗ = EY |X [y] is the true class distribution at x (see Appendix B.3 of Wood et al. (2023)).
Note that the noise reduces to EY |X [K(y||y∗)] = −y∗ · ln y∗, which is the Shannon entropy of the
true class distribution at x.

Similar to the case for explicit ensembles, the exposed diversity term for a single neural network
comes with a negative sign. Since the risk is always positive, the diversity term must be less than or
equal to the sum of the bias and variance terms. Due to the sign and the fact that the loss functions
are positive, the diversity term reduces the error introduced through the bias and variance terms.
Consequently, we identify this as a new source of implicit regularization that helps neural network
generalization, and that was hidden in the original decomposition of Geman et al. (1992) for neural
networks.

4.4 DISCUSSION

By viewing a neural network as an implicit ensemble, we gain insight into their implicit regularization.

Overfitting For the case of high variance error, the diversity term acts as a regularizer that helps
prevent the neural network from overfitting its training set (for sufficiently large diversity). For the
case of wide overparameterized models that interpolate their training data yet still generalizes well,
we hypothesize that the implicit regularization is partly due to the hidden diversity derived from the
subpredictors of the neural network. We empirically validate our hypothesis in Section 5.

Shallow Network Capacity High bias error is attributed to a low capacity model that is unable
to fit their training data well. A neural network is constructed out of simpler parts. In particular, as
we have argued using the implicit ensemble picture, the neural network is constructed out of smaller
submodels or subpredictors. For shallow networks like in Figure 2, these subpredictors are relatively
simple models (a hidden node multiplied by a weight) and each subpredictor will likely have a high
bias error. However, once combined into a neural network, the bias error of the subpredictors will be
reduced due to the effect of their diversity. Thus, by combining low capacity parts (or models), a
neural network is able to reduce the high bias error thanks to the effects of diversity. We demonstrate
this in Section 5.

5 EXPERIMENTS: ESTIMATING BIAS, VARIANCE, AND DIVERSITY

In this section, we empirically verify our decompositions from Section 4 by estimating the bias,
variance, and diversity for a large number of trained neural networks. This allows us to explore how

2We use the fact that limx→0 x lnx = 0.
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Figure 3: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposition
(right) for models with an increasing number of subpredictors trained on MNIST (top) and CIFAR10
(bottom). The estimates are calculated over 50 trials for each model, where each trial is trained on
a randomly sampled subset of the train set. Note that the risk curves are identical between left and
right (only the y-axis scale differs).

these measurements vary as the number of subpredictors and the corresponding risk varies, and how
this compares to the traditional bias-variance decomposition. Here we demonstrate this on the specific
case of double descent (DD) (Belkin et al., 2019; Nakkiran et al., 2020) as it provides an “interesting”
risk curve with varied behavior, exhibiting three regimes, namely, the underparameterized regime, the
critical regime, and the overparameterized regime. We then demonstrate the regularization effect of
diversity on the variance error.

To show the wide applicability and utility of our framework we consider two very different settings:
1) Shallow one layer MLPs trained on MNIST, and 2) Deep three layer CNNs trained on CIFAR10.
We then also confirm our observations on many additional datasets and training setups in Appendix C.

Setup For both MNIST and CIFAR10, we train models of increasing capacity with additional label
noise in order to elicit a DD. For each model capacity, we repeat this over 50 samplings of the dataset
(trials) 3, where we average over these trials in order to estimate the expectation over training datasets
(ED in Equation 12). This results in approximately 450 models that need to be trained for each
decomposition – see Appendix B.1 for details. Additionally, we also use these trials to estimate the
traditional bias and variance decomposition for each model Geman et al. (1992).

For MNIST, we consider one hidden layer fully-connected feedforward networks with the mean-field
parameterization trained with cross-entropy loss on a randomly sampled 90% of the training data
per trial. To minimize some of the implicit regularization effects due to mini-batch SGD (Smith
et al., 2021), we make use of full batch gradient descent as an optimizer. For CIFAR10, we train
three layer CNNs (two convolutional, one fully connected layers) with the standard parameterization,
cross-entropy loss, and mini-batch SGD on a randomly sampled 10% of the training data per trial.
These two very different settings allow use to illustrate the wide applicability of our theoretical
framework. Further hyperparameter details for these models can be found in Appendix B.2.

3Note that the random initialization seed for each model is fixed over trials, only the randomly sampled
dataset differs.
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Implicit regularization The results of our analysis are shown in Figure 3 for both MNIST (top) and
CIFAR10 (bottom), including the traditional bias-variance decomposition (left) and the bias-variance-
diversity decomposition (right). For both MNIST and CIFAR10 we observe a clear DD in the risk
curves. When considering classic decomposition (left) we observe that these changes in risk are
predominately driven by changes in the variance term, which increases rapidly up to a maximum at
the critically-parameterized regime (approximately 102 subpredictors for both MNIST and CIFAR10),
before it inexplicably decreases as the number of subpredictors is further increased. However, when
considering the bias-variance-diversity curve (right) we observe a remarkably different view of this
behavior. Specifically, we note that all three terms (bias, variance, diversity) increase, and appear to
keep increasing past the critically-parameterized regime. It is also evident that the bias and diversity
terms closely track each other, with the diversity term slightly larger, although this difference is
difficult to see on the logarithmic scale.

In order to better understand the effect of diversity on the variance error, we plot the difference
between the bias and diversity, which we refer to as the diversity residual, along with the variance
and risk on a linear scale. In this case, since the diversity is larger than the bias, the diversity
residual is negative, therefore we plot the absolute value. In this formulation, the risk is given
by risk = variance − |diversity residual|. The size of the diversity residual term therefore directly
indicates the size of the regularization effect which stems from the diversity. See Figure 1.

For both the MNIST models and CIFAR10 models, we observe that the diversity residual follows
the same shape as that of the variance error. Initially, in the underparameterized regime (< 102

subpredictors), the variance error grows faster than the diversity residual which results in an increasing
risk. Remarkably, after crossing the interpolation point (approximately 100 subpredictors) into the
overparameterized regime, the diversity residual grows more rapidly than the variance error (despite
the variance error still increasing) which directly results in a decreasing risk (i.e. the second descent).
Put simply, we observe that the subpredictors become more ‘wrong’ individually (bias and variance
grows) but they also become dramatically more diverse, and the diversity grows faster than the bias
and variance. This increased diversity explains the drop in test risk that is otherwise hidden in
the classical bias-variance decomposition.

These results validate our main hypothesis that the diversity term implicitly regularizes the variance
error and, for networks in the overparameterized regime, helps mitigate the effects of overfitting (see
Section 4.4). Additionally, we also observe in Figure 3 that the subpredictors contribute a high bias
error, as anticipated in Section 4.4, but that this error is mitigated by the larger diversity term.

Additional evidence To further confirm our results we repeat similar experiments on other datasets
such as MNIST without label noise, MNIST with less data, MNIST with mini-batch training, Fashion
MNIST (Xiao et al., 2017), and a regression task. Additionally, we also consider two layer MLPs
and other parameterization. In all cases, we find similar results and behaviors as discussed here,
namely that 1) the diversity terms closely tracks the bias, and importantly 2) the diversity residual
term grows faster than the variance term as capacity is increased in the overparameterized regime.
See Appendix C for these additional experiments.

6 CONCLUSION

By extending the theoretical framework of Section 3 to interpret a neural network as an implicit
ensemble, we found a new bias-variance decomposition that includes a diversity term (Section 4). This
additional term, which comes with a negative sign, acts as an implicit regularizer. We demonstrated
this implicit regularization for several different datasets, architectures and network parameterizations
for two losses, namely, the square loss and the cross-entropy loss. For the case of double descent,
we found that, contrary to the original bias-variance decomposition, both the bias and the variance
continues to increase after the interpolation point. However, as can be clearly seen when subtracting
the diversity from the bias, the residual diversity both tracks and increases more rapidly than the
variance, thus regularizing the variance error in the overparameterized regime. This phenomenon has
not previously been observed and provides a new perspective on the ability of neural networks to
self-regularize.
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Future work While this work has demonstrated a new implicit regularizer in neural networks, there
are interesting open questions that remain. Firstly, as seen in Figure 1 (as well as in the additional
experimental results in Appendix C), the reason as to why diversity closely tracks the variance
is currently being investigated. Additionally, the diversity is seen to increase more rapidly when
transitioning to the overparameterized regime. We consider the reason behind this change in the
behavior of the diversity term a highly interesting avenue of further research. We also consider the
extension of our framework to architectures such as transformers to be an important next step. Finally,
we believe that the work in this paper can lead to novel designs for training algorithms that enhances
the diversity of the subpredictors. For existing methods such as Dropout (Srivastava et al., 2014),
we conjecture that it enhances the diversity term in the neural network’s bias-variance-diversity
decomposition.

More tangential to this paper, we remarked in Section 4.2 that the MFP is already in the correct
form for our construction of the implicit ensemble. More generally, the implicit ensemble picture
developed here for various parameterizations and their connection with the feature-learning regimes
or kernel regimes may be an interesting avenue of research. We also mention the study of Golubeva
et al. (2021) that showed that width plays a more primary role in generalization when compared
to number of parameters. We hypothesize that this is due to the effect of increasing diversity and
believe that this should be testable using the methods of Golubeva et al. (2021). Finally, while we
did investigate the effects of mini-batch versus full batch training (Appendix C.1), we also consider
the general effects of the training algorithm on the diversity of the subpredictors to be potentially
interesting future work.

7 REPRODUCIBILITY STATEMENT

For Section 3, we provide proofs and extra details in Appendix A.2. For Section 4.2, we provide
additional details in Appendix A.3 for the classification case. For our experiments, we provide
experimental details in Appendix B; in particular, this appendix includes the method we used for
estimating bias, variance, and diversity (Appendix B.1), the estimation equations for the terms in
the decomposition (Appendix B.1.1 and Appendix B.1.2), and a full description of our experimental
details and hyperparameter settings (Appendix B.2). Additionally, we also include our code repository
as supplementary material for further reproducibility of our results.
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A ADDITIONAL THEORY

In this appendix, we provide additional theoretical details.

The appendix is organized as follows: in Appendix A.1, we discuss the limitations of our theoretical
method. In Appendix A.2, we provide proofs in support of Section 3. In Appendix A.3, we provide
supplementary details concerning the derivation of the subpredictors in the case of the KL-divergence.

A.1 LIMITATIONS

In this section, we discuss the limitations of our approach.

Loss functions Our analysis is valid for any loss function that satisfies Definition 2. This can, in
principle, be applied to any loss function derived from a Bregman divergence (Wood et al., 2023). In
principle, the decomposition can also be extended to any loss function by distinguishing between
the measurement of bias and variance, and the measurement of its effect, as defined by James and
Hastie (James & Hastie, 1997) and demonstrated in (Wood et al., 2023). In this paper, however, we
only analyze squared error and cross-entropy loss functions, and extensions will be required to handle
loss functions such as 0/1-loss and absolute loss.

Architectures Our current theoretical framework is limited to any architecture that has a L-hidden
layer feedforward ReLU network at the end. As this is the case for many types of architectures, our
framework covers a wide range of use cases.

A.2 PROOFS

In this section, we provide proofs and extra details around the background section of our paper
(Section 3). For more details on the background section, see the work of Wood et al. (2023).

A.2.1 PROOF OF LEMMA 1 AND LEMMA 2

We start with the proof for Lemma 1:

Proof. By Definition 1, we need to compute t̊ = arg minz ET [(t− z)2]. We note that since z ∈ B is
a nonrandom number,

0 =
d

dz
ET [(t− z)2]

= −2ET [(t− z)]

⇒ z = ET [t].

Next, we provide the proof of Lemma 2:

Proof. By Definition 1, we need to compute p̊ = arg minz ET [K(z||p)]. Unlike the least squares
loss, z is now a function and we therefore need to use a functional derivative to compute

arg minz ET [K(z||p)] s.t.
∫

dy z(y) = 1.

We use the following Lagrangian with a Lagrange multiplier λ to enforce the constraint:

L[z(y)] =
∫

dy z(y) ln z(y)− z(y)ET [ln p(y)] + λ(z(y)− 1).

Then, for an arbitrary variation z(y) 7→ z(y) + ϵδϕ(y),
d

dϵ
L[z(y) + ϵδϕ(y)]

∣∣∣∣
ϵ=0

=

∫
dy

(
ln z(y)− ET [ln p(y)] + λ

)
δϕ(y) = 0

⇒ z(y) =
1

Z
exp(ET [ln p(y)]),

where Z is a normalization constant independent of y.
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The above result can be easily extended to the discrete case.

A.2.2 PROOF OF THEOREM 1

Using the notion of a centroid, Wood et al. (2023) gave a generalized definition of the bias-variance
decomposition, which we state here.
Definition 2 (Generalized bias-variance decomposition). Let T be a random variable and let ℓ
be a loss function. Let R[q] = EXY [ℓ(y, q(x))] be the risk for a model that depends on T , q =
q(x; t), T = t ∈ B. If the following form holds, then we refer to it as a generalized bias-variance
decomposition

ETR[q] = EX

[
EY |X [ℓ(y, y∗)]︸ ︷︷ ︸

noise

+ ℓ(y∗, q̊)︸ ︷︷ ︸
bias

+ET [ℓ(q̊, q)]︸ ︷︷ ︸
variance

]
, (13)

where y∗ = EY |X [y] and q̊ is as defined in Definition 1.

For example, if the random variable T represents the training datasets D of size n drawn from
P (X,Y )n and the loss function ℓ is the square loss, then we recover the bias-variance decomposition
from Geman et al. (1992) using Lemma 1. Similarly, if ℓ is the KL-divergence, then we recover the
analogous decomposition from Heskes (1998) using Lemma 2.

We next introduce a special term called the ambiguity, which was first derived in Krogh & Vedelsby
(1994), and which can be interpreted as the variance of the weighted ensemble around the weighted
average. Intuitively, given an input x, it measures the degree of disagreement among the subpredictors
of the ensemble.
Definition 3 (Ambiguity). Let {q(i)}mi=1 be an ensemble of subpredictors and let q̄ =

arg minz

∑m
i=1 p(q(i))ℓ(z, q(i)) be their ensemble combiner. Then, given an input x, the ensemble

ambiguity a(x) over the model distribution is defined as

a(x) =

m∑
i=1

p(q(i))ℓ(q̄(x), q(i)(x)).

A consequence of this definition is that one can decompose the loss ℓ(y, q̄) between the combiner
output q̄ and the target y into a term involving the weighted average loss (between the subpredictors
and y) and the ambiguity (Krogh & Vedelsby, 1994; Wood et al., 2023).
Lemma 3 (Generalized ambiguity decomposition). Let ℓ be a loss function that allows a bias-
variance decomposition in the sense of Definition 2. Then, for a pair (x, y) and for an ensemble of
subpredictors {q(i)}mi=1, the generalized ambiguity decomposition is given by

ℓ(y, q̄) =

m∑
i=1

p(q(i))ℓ(y, q(i))−
m∑
i=1

p(q(i))ℓ(q̄, q(i)).

Proof. By assumption, ℓ permits a decomposition in the sense of Definition 2. Let the random variable
T represent a subpredictor T = q(i) drawn from a discrete model distribution with probability p(q(i)).
Then, replacing the expectation value ET with an average

∑m
i=1 p(q(i)) and using the combiner

q̄ = arg minz∈B
∑m

i=1 p(q(i))ℓ(q(i), z) for q̊, Definition 2 gives

EXY

[ m∑
i=1

p(q(i))ℓ(q(i), y)

]
= EXY

[
ℓ(y, q̄) +

m∑
i=1

p(q(i))ℓ(q̄, q)

]
,

where we assumed, without loss of generality, that the noise term is zero 4. Equating the terms in the
parentheses and rearranging gives the required result.

We can now prove Theorem 1 as follows:

4If a noise term is present, then one can show that EY |X [ℓ(y, y∗)] + ℓ(y∗, q) = EY |X [ℓ(y, q)] for a valid
loss function. For example, see the original derivation in (Geman et al., 1992) for square loss and the derivation
in (Heskes, 1998) for KL-divergence.
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Proof. From Lemma 3, we find that

EDEXY [ℓ(y, q̄)] =
1

m

m∑
i=1

EDEXY [ℓ(y, q(i))]−
1

m

m∑
i=1

EDEXY [ℓ(q̄, q(i))].

Applying Definition 2 to the first term yields the required result.

A.3 CLASSIFICATION SUPPLEMENTARY

By extending the framework of Section 3 to a single neural network, we derived subpredictors for
two loss function in Section 4. In this section, we provide additional details for the case of the
Kullback-Leibler divergence loss. In Section A.3.1, we explicitly derive the subpredictors in the
neural network for the KL-loss.

A.3.1 SUBPREDICTORS DERIVATION

Similar to the regression case, the combiner q̄ is already fixed and is given by Equation 6, which we
write in component form as

q̄c(x) =
1

Z(x)
exp

(
β

dL∑
i=1

wc
(L+1) ih

i
(L)(x)

)
, Z(x) =

C∑
c=1

exp

(
β

dL∑
i=1

wc
(L+1) ih

i
(L)(x)

)
.

(14)
We follow the same approach used for regression and work backwards to identify the subpredictors
in the implicit ensemble. For the discrete model distribution weights p(q(i)), recall that we have
the constraints that the weights should sum to unity and be nonnegative. Additionally, we have
the constraint that our subpredictors need to be normalized and output a valid probability vector
(components need to be nonnegative and sum to unity). In comparison to Equation 4 and using our
constraints, we naturally interpret the normalized subpredictor and combiner weights for the MFP
case as (recall that L = 1 for MFP – see Table 1)

p(q(i)) = β =
1

d1
, qc(i)(y) =

1

Zi(x)
exp(wc

(2) ih
i
(1)(x)), i ∈ [d1], c ∈ [C], (15)

where Zi(x) =
∑C

c=1 exp(w
c
(2) ih

i
(1)(x)). Due to the normalization Zi(x) needed for each subpre-

dictor, we therefore find that the combiner factorizes with an additional term as follows:

q̄c(x) =
1

Z
exp

(
1

d1

d1∑
i=1

wc
2 ih

i
(1)(x)

)
=

1

Z
exp

(
1

d1

d1∑
i=1

ln qci

)
exp

(
1

d1

d1∑
j=1

lnZj

)
. (16)

At first glance, our choice of subpredictor does not factor into the correct form seen in Equation 4.
However, note that we can factor the combiner normalization Z as follows:

Z =

C∑
c=1

exp

(
1

d1

d1∑
j=1

wc
(2) jh

j
(1)(x)

)
= exp

(
1

d1

d1∑
j=1

lnZj

) C∑
c=1

exp

(
1

d1

d1∑
i=1

ln qc(i)

)
, (17)

which yields the same term. Hence, the extra term can be canceled and the combiner q̄ remains
unchanged, as it should, while satisfying the form in Equation 4. Finally, the normalized centroid q̊(i)
is given by Lemma 2

q̊(i)(x) =
1

Z̊j(x)
exp(ED[ln q(i)(x)]), (18)

where Z̊j(x) =
∑C

c=1 exp(ED[ln qc(j)(x)]). Together, these identifications yield the results in Table 2
for the MFP case.

The same procedure also yields the subpredictors for the SP and µP cases for L ≥ 1. Similar to the
regression case, their subpredictors are scaled by a factor determined by the last layer’s hidden width
dL. For SP, we find that

p(q(i)) =
1

dL
, qc(i)(y) =

1

Zi(x)
exp(dLw

c
(L+1) ih

i
(L)(x)), i ∈ [dL], c ∈ [C], (19)

and for µP we find that

p(q(i)) =
1

dL
, qc(i)(y) =

1

Zi(x)
exp(

√
dLw

c
(L+1) ih

i
(L)(x)), i ∈ [dL], c ∈ [C]. (20)
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Training Test

90% 
Subsample

90% 
Subsample

90% 
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90% 
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MLP MLP MLP MLP

Trials

Figure 4: Estimating bias, variance, diversity We follow the example of Wood et al. (2023): after performing
a train-test split, we randomly subsample t trial sets from the training set. On each trial set, we train a model
with fixed hyperparameters. We then estimate bias, variance, and diversity over the test set.

B EXPERIMENTAL DETAILS

B.1 ESTIMATING BIAS, VARIANCE, AND DIVERSITY

To estimate the bias, variance, and diversity terms given in Equation 10 and Equation 12, we follow
the approach used in Wood et al. (2023) (see also Neal et al. (2019)). Below we provide a high-level
overview of the method. In the next sections, we provide the precise equations to estimate the various
terms.

There are two expectation values that we need to estimate, namely, EXY and ED, where the random
variable D represents training sets of size n. Following Wood et al. (2023), the procedure is as
follows (see Figure 4):

Estimating EXY We perform a standard train-test split of the data. We then use the test set to
estimate EXY by taking an average over the test samples. Let s be the number of test sample pairs in
our test set.

Estimating ED Since D = D represents different draws of our training set, we estimate this
expectation value as follows: we randomly subsample (without replacement) 90% of the training set.
We perform this repeatedly over different seeds to form t such trial sets Dk, k = 1, ..., t (see Figure 4).
In the case of the small data limit, we subsample a smaller percentage of the training set (details are
provided in later appendices). On each trial set, we train a neural network h(L+1)(Dk). Importantly,
we use the same seed to initialize the neural network weights on each trial set (per experiment,
we fixed the initialization seed for two reasons, to minimize additional sources of randomness (in
addition to the randomness introduced by data sampling – see for example works such as Adlam
& Pennington (2020) and D’Ascoli et al. (2020) which study bias-variance decompositions with
randomness coming from weight initialization) and to ensure that sub-predictors can be matched
across trials to form the centroid (see for example Appendix C.7)). Thus, for a network with fixed
hyperparameters, we train t such networks h(L+1)(Dk), k = 1, ..., t. We estimate the expectation
ED using an average.

Results tensor Additionally, we also have dL subpredictors in the neural network to consider:
q(i), i ∈ [dL]. Thus, combining everything, we construct a results tensor of shape (t, dL, s) with
an entry in the tensor given by q(i)(x

(j);Dk); in other words, the output of subpredictor i ∈ [dL],
trained on trial set k ∈ [t], on test sample j ∈ [s]. The results tensor is then used to compute the
relevant averages. To extract the output of a subpredictor on a test sample, we used Pytorch’s forward
hooks method.
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The above procedure is repeated for each set of model hyperparameters. For example, for our shallow
neural networks, we considered width-wise experiments for 7 widths. For each width, we used t = 50
trial sets and, therefore, trained 50 models. All in all, this results in 350 models that need to be trained
to estimate a single bias-variance-diversity decomposition. Due to this fact and the hardware that
we used (see Appendix B.2), we did not consider additional experimental details such as different
choices of weight initialization or different train-test splits.

Finally, when performing the estimates, we found it necessary to use torch.double() precision
(torch.float64) on the model weights, the output of the Pytorch forward hook, and the output
of the neural network to avoid numerical issues.

B.1.1 ESTIMATORS - LEAST SQUARES

In this section, we present the estimators of the bias, variance, and diversity terms for the case of
square loss ℓ(x, y) = (x − y)2. For convenience, we restate the decomposition from Equation 10
here,

EDEXY [ℓ(y, q̄)] =

EX

[
EY |X [ℓ(y, y∗)]︸ ︷︷ ︸

noise

+
1

dL

dL∑
i=1

ℓ(y∗, q̊(i))︸ ︷︷ ︸
average bias

+
1

dL

dL∑
i=1

ED[ℓ(q̊(i), q(i))]︸ ︷︷ ︸
average variance

− 1

dL

dL∑
i=1

ED[ℓ(q̄, q(i))]︸ ︷︷ ︸
diversity

]
.

(21)
We estimate each term as follows:

centroid: q̊(i)(x) = ED[q(i)(x)] ≈
1

t

t∑
k=1

q(i)(x;Dk) = q̊est(i) (x)

bias: EX

[
1

dL

dL∑
i=1

ℓ(y∗, q̊(i))

]
≈ 1

dL

1

s

dL∑
i=1

s∑
j=1

ℓ
(
y(j), q̊est(i) (x

(j))
)

variance: EX

[
1

dL

dL∑
i=1

ED

[
ℓ(q̊(i), q(i))

]]
≈ 1

t

1

dL

1

s

t∑
k=1

dL∑
i=1

s∑
j=1

ℓ
(
q̊est(i) (x

(j)), q(i)(x
(j);Dk)

)
diversity: EX

[
1

dL

dL∑
i=1

ED

[
ℓ(q̄, q(i))

]]
≈ 1

t

1

dL

1

s

t∑
k=1

dL∑
i=1

s∑
j=1

ℓ
(
q̄(x(j);Dk), q(i)(x

(j);Dk)
)

(22)
Note that, similar to (Kohavi & Wolpert, 1996; Domingos, 2000; Neal et al., 2019), we assume
noiseless labels (in the sense that, for a given x, there is not a distribution of y values) so that the
noise term vanishes; in particular, we assume that y∗ can be approximated by the label y. This is a
common simplification made when estimating bias-variance decompositions.

B.1.2 ESTIMATORS - KL-DIVERGENCE/CROSS-ENTROPY

We next present the estimators for the KL-divergence/cross-entropy loss. Recall that we consider
one-hot encoded target labels y ∈ RC . In this case, the KL-divergence reduces to the cross-entropy
loss K(y||q̄) = −y · ln q̄ = cross-entropy(y, q̄) (see the discussion around Equation 12). As in the
previous section, we will assume noiseless labels (not to be confused with the label corruption used in
our experiments); in particular, the probability vector y∗ will be estimated by y. In this approximation,
the decomposition, given by Equation 12, reduces to

EDEXY [K(y||q̄)] ≈

EX

[
− 1

dL

dL∑
i=1

y · ln q̊(i)︸ ︷︷ ︸
average bias

+
1

dL

dL∑
i=1

ED[K(q̊(i)||q(i))]︸ ︷︷ ︸
average variance

− 1

dL

dL∑
i=1

ED[K(q̄||q(i))]︸ ︷︷ ︸
diversity

]
. (23)
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We estimate each term as follows:

Normalization: Z̊i(x) =

C∑
c=1

exp(ED[ln qc(i)]) ≈
C∑

c=1

exp(
1

t

t∑
k=1

ln qc(i)(x;Dk)) = Z̊est
i (x)

Centroid: q̊(i)(x) =
1

Z̊i(x)
exp(ED[ln q(i)]) ≈

1

Z̊est
i (x)

exp(
1

t

t∑
k=1

ln q(i)(x;Dk)) = q̊est(i) (x)

Bias: EX

[
− 1

dL

dL∑
i=1

y · ln q̊(i)
]
≈ − 1

dL

1

s

s∑
j=1

dL∑
i=1

y(j) · ln q̊est(i) (x
(j))

Variance: EX

[
1

dL

dL∑
i=1

ED

[
K(q̊(i)||q(i))

]]
≈ 1

t

1

s

1

dL

s∑
j=1

dL∑
i=1

t∑
k=1

K
(
q̊est(i) (x

(j))||q(i)(x(j);Dk)
)

Diversity: EX

[
1

dL

dL∑
i=1

ED

[
K(q̄||q(i))

]]
≈ 1

t

1

s

1

dL

s∑
j=1

dL∑
i=1

t∑
k=1

K
(
q̄(x(j);Dk)||q(i)(x(j);Dk)

)
(24)

B.2 DETAILS AND HYPERPARAMETERS

In this section, we elaborate on the experimental setup used in Section 5. Furthermore, we report the
hyperparameters used for the models in Appendix C.

Double descent In order to elicit a clear double descent for the both the MNIST and CIFAR10
models, we introduce label noise by assigning a randomly selected different class label to a small
percentage of the train set samples. All models are trained as close to zero train loss as possible over
a fixed number of epochs, and no early stopping is performed. This is a similar setup to those used in
prior work to elicit a clear model-wise double descent (Nakkiran et al., 2020; Somepalli et al., 2022).

MLP architecture Our MNIST MLP consist of a single fully connected hidden layer followed
by an output layer. We select the number of subpredictors (i.e., the width) in the range of 5 to
5 × 103. This allows us to explore both the under-parameterized, critically-parameterized, and
over-parameterized regime. This set uses the mean-field parameterization.

CNN architecture Our CNN architecture has two ReLU-activated convolutional layers (using 3×3
kernels), with widths of 16 and k, respectively. The second layer is followed by a global average
pooling layer, which is finally followed by a fully connected output layer. Thus, to vary the number of
subpredictors, we vary k ∈ {8, 16, 32, 64, 128, 512, 1024, 2048, 4096}. As mentioned, these models
use the standard parameterization.

CNN Subpredictors For standard parameterization, we construct our subpredictors by working
backwards from the combiner. However, note that instead of each subpredictor consisting of fully
connected layers as for MNIST, each subpredictor is now represented by a sequence of filters, a
nonlinear activation, and a global averaging layer, which is then multiplied by an outgoing weight
vector.

Hyperparameters The exact hyperparameters for each model set is shown in Table 3, as well as
those for the models used in Appendix C. Note that the top two rows (“CIFAR10 corrupt low data”
and “MNIST full batch”) correspond to those used in Section 5. Here follows additional details of
the different settings:

• Optimizer and optimization procedure. All models are trained with (stochastic) gradient
descent including momentum set to 0.9. We do not employ early stopping in the traditional
sense using a held-out set, although as the final model we select the epoch which reached
the lowest train loss. This is simply to account for slight instabilities that can occur in the
final epochs of training (e.g. a model suddenly ‘forgetting’ a sample).
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• Explicit regularization. For all our experiments, we do not use any explicit regularization
such as weight decay or Dropout. This is intentional as we are investigating sources of
implicit regularization.

• Learning rate warmup. The learning rate for each set is as indicated in the table, although
for some we first (linearly) warmup to this learning rate over a set number of epochs. This is
indicated by the ‘Warmup Epochs’ column. It should also be noted that for the mean-field
parameterization, the true learning rate for each model is given by the one specified times
the number of subpredictors.

• Learning rate scheduler. Besides warmup, we also linearly decay the learning rate by
multiplying it by 0.99 every few epochs. The number of epochs used is indicated by the
‘Scheduler Steps’ column. The decay naturally only starts once warmup is complete. ‘None’
indicates that no scheduler is used.

• Subsampling and label corruption. As explained earlier in Section 5, we train 50 different
models per width, where each is trained on a fraction of the train set. This fraction is
indicated by the ‘Subsample Size’ column. Similarly, the ‘Label Corruption’ column
indicates the fraction of the train set samples that are randomly assigned a different class
label. Note that the label corruption is first applied to the entire train set before subsampling
takes place.

Computational resources Due to the large number of trials and experiments, the model sets in
Table 3 total approximately 4 500 different MLPs and CNNs. To facilitate training such a large
number of models, we trained several in parallel on either one or two Tesla V100 GPUs. Each set
(around 350 models, depending on the set) required approximately 8 to 12 hours of training time.

Table 3: Hyperparameter settings for the different model sets considered.
Group Description Param Subsample

Size
Label

Corruption
Scheduler

Steps
Learning

Rate
Batch
Size

Warmup
Epochs

Max
Epochs

CIFAR10
CNN corrupt low data Standard 0.1 0.1 5 0.1 256 100 1000

MNIST
one layer

full batch MFP 0.9 0.2 50 1.2 54001 1000 10000
corrupt large data MFP 0.9 0.2 5 0.6 4096 100 1000
corrupt low data MFP 0.1 0.2 5 0.15 512 100 1000
clean large data MFP 0.9 0.0 5 0.6 4096 100 200
clean low data MFP 0.1 0.0 5 0.15 512 100 200
standard param Standard 0.9 0.0 5 0.4 4096 100 200

MNIST
two layer

fixed subpreds MUP 0.9 0.0 None 0.05 4096 100 500
varying subpreds MUP 0.9 0.0 None 0.05 4096 100 500

Fashion
MNIST corrupt large data MFP 0.9 0.2 5 0.4 4096 100 1000

California
Housing

clean large data MFP 0.9 0.0 5 0.15 4096 0 2000
clean low data MFP 0.01 0.0 None 0.04 4096 0 1500
standard param Standard 0.9 0.0 5 0.0007 2048 0 1000

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide further experimental evidence that diversity acts as an implicit regularizer.
Additionally, we provide experimental results for other choices of parameterization.

The subsections of this appendix are organized as follows. We first consider three additional
experimental configurations of MLPs trained on MNIST: In Appendix C.1, we study the effects of
full batch training versus mini-batch training, before analyzing the small versus large data limit in
Appendix C.2. This is then followed by Appendix C.3, where we consider two-hidden layer neural
network using µP parameterization. After this, we move on to additional datasets and consider
Fashion MNIST in Appendix C.4, and the regression task consisting of the California housing dataset
in Appendix C.5. We then consider results for both MNIST and the California housing dataset when
using the standard parameterization in Appendix C.6. Finally, in Appendix C.7, we analyze the
problem of subpredictor allocation in a neural network.
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C.1 THE EFFECT OF MINI-BATCH SGD

As discussed in Section 1, there are other sources of implicit regularization due to the learning process.
For example, it has been shown that SGD implicitly regularizes the model through a modified loss
function of the infinitesimal version; in particular, the loss function receives two modifications,
namely, a term that penalizes the norm of the full batch gradient and a term that penalizes the
variability of the mini-batch gradients (Smith et al., 2021). In Section 5, we reduced the effects of this
additional implicit regularization by using full batch training. This allowed us to study the implicit
regularization of diversity in the absence of the additional source of implicit regularization 5. In this
section, we extend this result to mini-batch training, which allows us to verify whether the same
trends hold when the implicit regularization of SGD is also present. It also provides additional insight
into the effects of using mini-batch versus full batch training on the bias, variance, and diversity of
the neural networks.

Figure 5: The variance, risk, and absolute value of the diversity residual for label corrupt large data
MNIST using mini-batch training (left) versus full batch training (right). Note that, for 5 subpredictors
in the right plot, the risk is higher than the variance and the diversity. This is due to the fact that the
diversity residual starts off as positive and then, for more subpredictors, becomes negative.

Setup We train a one-layer MLP on MNIST with mini-batch SGD using the same setup as that of
the full-batch MNIST MLP presented in Section 5. We then estimate the bias, variance, and diversity
and compare the two sets of results. See the “MNIST one layer - corrupt large data” row in Table 3
for hyperparameter details.

Results Figure 5 shows the variance, risk, and absolute value of the diversity residual for mini-batch
training (left) and full batch training (right) on label corrupted MNIST. For the case of mini-batch
training, at the critical regime (approximately 100 subpredictors), the neural network interpolates
the training data (zero training loss) and, similarly, for the models in the overparameterized regime.
In contrast, for full batch training, the models struggle to interpolate the training data, with the
interpolation point being shifted to 500 subpredictors. This is mainly due to the optimization being
unstable for full batch training (Geiping et al., 2022).

For both the mini-batch training and full batch training, we observe that the variance rapidly increases
once a model interpolates the training data, as previously reported. However, for mini-batch training,
we also observe that both the variance and diversity starts to naturally decrease after 500 subpredictors
where, for full batch training, both keep increasing. The decrease of the variance error for mini-batch
training is likely due to the additional implicit regularization. However, despite this decrease, we also
observe that the gap between the variance and the diversity residual decreases when we use mini-batch
training (and thus the risk is lower). This suggests that mini-batch training has an overall positive
effect on the diversity of the subpredictors. We believe that an interesting direction of research would
be to better understand the connection between the diversity of the subpredictors and mini-batch
training.

5However, note there are still other sources of implicit regularization present even when using full batch
training – see for example Barrett & Dherin (2021).
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C.2 VARYING DATA SIZE AND LABEL CORRUPTION

In Section 5, we studied the effect of diversity on neural networks trained on label corrupted MNIST.
The label corruption allows for a visible second descent of the risk curve. This allowed us to study
the effect of diversity when transitioning between the underparameterized regime, the critical regime,
and the overparameterized regime. In this section, we extend these results and consider additional
configurations, namely 1) the low data limit, and 2) MNIST without label corruption (clean MNIST).
By comparing these variants we are able to determine the interplay between the estimated bias,
variance, and diversity in different training scenarios. Importantly, it allows us to verify whether the
diversity still implicitly regularizes the variance under different training configurations.

Setup We compare the following four sets of models:

• Label corrupted with large data. The same (mini-batch SGD) set from Appendix C.1,
where each trial model is trained on a random 90% subset of the MNSIT training set, and
20% of the samples have a randomly assigned different label.

• Label corrupted with small data. The same as above, but now each trial is trained on a
mere 10% subset of the training data. We expect this modification to significantly increase
the variance and increase the risk.

• Clean with large data. For this set, we do not introduce any label noise, and each model
is trained on a 90% subset of the training data. With clean data, we no longer expect to
observe a double descent on the risk curve. This allows us to determine the effects of the
diversity regularization when the risk is a monotonically decreasing function of the number
of subpredictors. Additionally, it allows us to determine whether the increased diversity
observed in Section 5 is merely a side-effect of noisy labels.

• Clean with small data. The clean counterpart to the label corrupted small dataset of models.

For all of these sets, the training setup is kept the same as described earlier in Section 5, except
that we employ mini-batch SGD and adjust the hyperparameters to ensure proper convergence. See
Table 3 for the exact settings. Similarly, we again estimate the bias, variance, and diversity in the
same fashion. The results of this analysis for all four sets is shown in Figure 6 with a shared y-axis.

Figure 6: The estimated bias-variance-diversity decomposition for clean (left) and label corrupted
(right) MNIST with large (top) and small (bottom) data. Note that the y-axis is shared across all plots.
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Results We first compare the risk curves of these four sets. When comparing the clean models
with the corrupt (left to right), it is clear that the label corruption results in increased risk, and
also the familiar curve which shows a double descent. As expected, the clean models do not show
this double descent and the risk decreases as the number of subpredictors is increased (it is well
established in prior work that a double descent is typically not easily observed without introducing
label corruption (Nakkiran et al., 2020; Somepalli et al., 2022)). Comparing the large data models
versus the small data models, it is evident that the risk is increased when the size of the dataset is
reduced. For the label corrupted models, we also observe that the point of highest risk has shifted
from 100 subpredictors with the large data to 50 subpredictors with the small data. This too is to be
expected, as less capacity is required to fit a smaller number of samples, i.e. the interpolation regime
has shifted.

When considering the diversity curves, we observe that all four sets shows similar behavior to that
observed earlier: The diversity closely tracks the bias error, and the diversity is larger than this bias.
In order to do a more fine-grained comparison, we again plot the absolute value of the diversity
residual and the variance instead of all three terms separately. This is shown in Figure 7. Note that
the y-axis is now on a linear scale.

Figure 7: The estimated diversity residual decomposition for clean (left) and label corrupted (right)
MNIST with large (top) and small (bottom) data. Note that the y-axis is shared across all plots and
on a linear scale.

Armed with this visualization, let us once again consider the differences in risk observed between the
different sets:

• Clean versus corrupt (left to right comparison): For the corrupt sets, we observe that the
variance is significantly larger than their clean counterparts. Interestingly, we observe that
the diversity residual is also significantly larger. However, the difference in risk between
the two sets can be explained by the fact that the diversity for the clean models appears to
grow faster in comparison to the variance, and therefore the ‘gap’ between the two terms is
smaller.

• Large data versus small data (top to bottom comparison): Similarly to above, we observe
increased variance for the small data models. Again, we also observe a corresponding
increase in the diversity residual, however the gap between the two terms remains larger for
the small data models.
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It is also interesting to note that for the clean large dataset of models, we still observe a rapid increase
in the diversity and variance as the model width transitions from the under-parameterized to the
over-parameterized regime. This is highlighted by the zoomed region in the top left of Figure 7. This
shows that the regularization effect of the diversity is not merely an artifact of noisy labels. Taken
together, we observe the following for all four sets: 1) the diversity closely tracks the bias, 2) the
diversity grows as the variance grows (i.e. the diversity regularizes the variance), and 3) the relative
size between the variance and diversity explains the observed risk. In conclusion, these results support
our findings expressed in Section 5.

C.3 TWO-HIDDEN LAYER MLPS

In terms of MLPs, we have relied on shallow networks to demonstrate the bias-variance-diversity
decompositions and the effect of diversity on the variance error. In this section, we study the
influence of depth in the neural network. For deep neural networks, we used the µP parameterization
scheme. We consider a two-hidden layer neural network with hidden widths d1, d2 ∈ N. For this
parameterization, we observe that the subpredictors contains a factor of

√
d2 in their definitions.

Hence, the subpredictor outputs might diverge as a function of width in the last hidden layer.

Shallow versus Deep Recall that the subpredictors are determined by the hidden nodes of the
last hidden layer, multiplied by an outgoing weight. In contrast to the shallow neural network, the
subpredictors now share weights (the weights that extend from the input layer to the first hidden
layer). Thus, the diversity of the subpredictors may be impacted. Additionally, for a fixed second
hidden layer width d2, we can now vary the capacity of each subpredictor by varying the width d1 of
the first hidden layer. This may impact the bias and variance error of each subpredictor.

Setup We consider two experiments for a two-hidden layer neural network on clean MNIST
(hyperparameter details can be found in Appendix B.2). In the first experiment, we fix the number
of subpredictors in the neural network by fixing d2 = 100 and we vary the width of the first hidden
layer d1 over values 5, 10, 50, 100, 500, 1000. For the second experiment, we vary the number of
subpredictors through d2 while keeping the width of the first layer fixed to d1 = 100, which can be
considered as the rough MLP equivalent of our CNN experiment in Section 5.

Figure 8: The variance, risk, and absolute value of the diversity residual for two layer MLPs trained
on MNIST. Left: Fixed subpredictors - First layer with a varying capacity and second layer with a
fixed 100 subpredictors. Right: Fixed capacity - First layer with a fixed width of 100 and a second
layer with a varying number of subpredictors.

Results Figure 8 shows the variance, risk, and absolute value of the diversity residual for the
networks with a fixed number of subpredictors (left) and fixed capacity (right). We note that the
fixed capacity two layer networks show a curve similar to what we’ve observed earlier: the variance
increases as the number of subpredictors increases, but this is matched by a larger increase in the
diversity residual and the risk decreases. On the other hand, we see a different trend on the left side of
Figure 8. We observe that, for the fixed number of subpredictor networks, that both the variance and
diversity decreases as the capacity of the subpredictors increases. We suspect that this is likely due to
the fact that the subpredictors now share weights among themselves which causes the subpredictors
to be more correlated with each other and, hence, less diverse. Despite this, we note that the diversity
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residual remains positive and therefore still regularizes the variance for subpredictors larger than 100
nodes (note that the log scale of the graph exaggerates the difference between the variance error and
the diversity, especially for smaller values).

Although we have captured the effect of diversity for subpredictors defined through the final layer of
the neural network, we hypothesize that there are further hidden diversity effects when the network
has depth, which may help explain why the variance naturally decreases when we vary the width of
the first hidden layer. We believe that the identifications we used in Section 4.2 can, in principle,
be extended to the level of subpredictors by treating a subpredictor as a combiner and repeating the
procedure to identify new subpredictors that are defined by the first hidden layer.

C.4 FASHION MNIST

In this section, we consider one-layer MLPs trained on the fashion MNIST dataset (FMNIST) (Xiao
et al., 2017) This allows us to verify our MNIST results on a different dataset.

Setup We again train single hidden layer neural networks using the mean-field parameterization
and vary the number of subpredictors by varying the width of the neural network. We use 20% label
corruption to induce a double descent. Additional hyperparameter details concerning the training of
the models can be found in Table 3.

Figure 9: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposition
(right) for models with an increasing number of subpredictors trained on label corrupted Fashion
MNIST. The estimates are calculated over 50 trials for each model, where each trial is trained on a
randomly sampled 90%.

Results Figure 9 shows the usual bias-variance decomposition (left) and the bias-variance-diversity
decomposition (right). Similar to the MNIST experiments, for the usual bias-variance decomposition,
we observe that initially the bias decreases and the variance increases to produce a U-shaped risk
curve. Then, at the critical interpolation point at 500 subpredictors, the risk curve produces a peak and
starts to display a second descent. Similarly, we again find that the variance inexplicably decreases
after the interpolation point. Interestingly, we also find that the bias decreases up to 50 subpredictors,
then increases up to 500 subpredictors, and then decreases slowly again. In contrast, for the bias-
variance-diversity decomposition, we observe the same pattern as with our other experiments, namely,
that bias, variance, and diversity tends to increase as we vary the number of subpredictors.

In Figure 10, we plot the absolute value of the diversity residual. Similar to our other experiments, we
observe that the diversity residual tracks the variance error and regularizes it to produce the resulting
risk curve.

C.5 CALIFORNIA HOUSING DATASET

In this appendix, we confirm our bias-variance-diversity decomposition for a regression task using
squared error loss as well as the implicit regularization due to diversity. In particular, we use the
popular California Housing dataset (Pace & Barry, 1997). We performed two types of experiments
where we used the full training set as well as a small data limit, similar to Appendix C.2, although we
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Figure 10: The estimated bias-variance-diversity decomposition (left) and absolute value of the
diversity residual (right) for models with an increasing number of subpredictors trained on label
corrupted Fashion MNIST. The estimates are calculated over 50 trials for each model, where each
trial is trained on a randomly sampled 90%.

do not consider artificial label corruption. In the small data limit, most of our models are significantly
in the overparameterized regime.

C.5.1 DATA PREPARATION AND MODELS

Data We used a train, validation, and test split of 0.6, 0.1, and 0.3, respectively. In particular,
we aimed to keep the test set large in order to ensure good estimates of the bias-variance-diversity
decompositions. Categorical features were one-hot encoded. Using the mean and standard deviation
from the training set, we z-normalized all numerical features on both the train, validation, and test set.
Any missing values were replaced with the mean.

For the trial sets used in the estimates (see Appendix B.1), we randomly subsampled 90% of the
training set over different trials. Similarly, for our experiments in the small data limit, we randomly
subsampled 1% of the training set.

Models In both the large data and small data experiments, we trained single hidden layer neural
networks of widths 5, 10, 50, 100, 500, 1000, and 5000, using the mean-field parameterization.
Importantly, for a fixed width, we used the same seed to initialize the model weights over each trial
set. The training details for the experiments are given in Appendix B.2. Similar to the double descent
experiments on MNIST, we aimed to minimize the training loss as far as possible.

C.5.2 DECOMPOSITIONS

Figure 11: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposi-
tion (right) for models with an increasing number of subpredictors trained on California Housing.
The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly
sampled 90%.
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Figure 12: The estimated bias-variance-diversity decomposition (left) and absolute value of the
diversity residual (right) for models with an increasing number of subpredictors trained on California
Housing. The estimates are calculated over 50 trials for each model, where each trial is trained on a
randomly sampled 90%.

Similar to our MNIST results, we observe the same patterns in the decompositions for the California
Housing dataset. Figure 11 shows the usual bias-variance decomposition versus the new bias-variance-
diversity decomposition for the large dataset of models. Interestingly, although difficult to see in the
plot, we observe a U-shaped curve for the risk followed by a second descent (a clear plot of the risk
is shown in the left image of Figure 14) with the critical point at approximately 1000 subpredictors.
This is likely due to inherent noise in the dataset. As in the MNIST double descent experiments, for
the usual decomposition (left figure) we again see a decreasing bias, with the variance increasing,
until about 500 subpredictors where it starts to decrease again. In contrast, for the new decomposition
(right figure), we see that the bias and variance errors of the subpredictors increase as we increase
width but start to plateau at 5000 subpredictors. At the same time, the diversity term also increases
and its magnitude is larger than the bias and variance errors. Similar to our other experiments, to see
the effect of diversity on the variance error, we plot the absolute value of the residual diversity in
Figure 12. Although difficult to see in the plot, the residual diversity strongly regularizes the variance
error, which results in the final observed risk curve. A slightly more clear plot can be found in the left
figure of Figure 14.

Figure 13: The estimated bias-variance decomposition (left) and bias-variance-diversity decompo-
sition (right) for models with an increasing number of subpredictors trained on a small subset of
California Housing. The estimates are calculated over 50 trials for each model, where each trial is
trained on a randomly sampled 1%.

Small data limit The patterns remain similar for the small data limit. Figure 13 shows the usual
bias-variance decomposition and the new bias-variance-diversity decomposition. As with the large
data case, we again see a U-shaped risk curve, with an increase in the risk up to 10 subpredictors,
followed by a decrease in the risk. As before, for the left figure (bias-variance) we see that the bias
steadily decreases while the variance increases up to 10 subpredictors and then starts to decrease
again. In contrast, for the right figure (bias-variance-diversity), we see that the bias and variance both
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Figure 14: Diversity residual plot for the large data limit (left) and the small data limit (right) of the
California Housing dataset. In both cases, we see that the diversity residual strongly regularizes the
variance error. Note, due to the differences in magnitudes, we use a twin-axis plot with the left axis
indicating the squared error for the residual and the variance, and the right axis indicating the error
for the risk.

increase but eventually plateaus after approximately 50 subpredictors. The diversity closely tracks
the bias and variance errors and, as before, is greater in magnitude.

In Figure 14, we compare the absolute value of the diversity residuals for the large data limit (left
figure) and the small data limit (right figure) on a twin-axis plot (left axis is squared error for the
variance and the residual, while the right axis is the squared error for the risk). We observe that the
diversity residual strongly regularizes the variance in both cases.

C.6 STANDARD PARAMETERIZATION

We have predominantly conducted experiments using the mean-field parameterization, while we
consider µP parameterization in Appendix C.3 as part of the network depth experiments. In this
appendix, we repeat the same one-layer MLP experiments on clean MNIST and California Housing
for the standard parameterization. Notably, the standard parameterization has an explicit factor of d1
that appears in the definition of the subpredictor. In the large width limit, the subpredictors might,
therefore, diverge.

Figure 15: The estimated bias-variance-diversity decomposition (left) and the absolute value of the
diversity residual (right) for models with an increasing number of subpredictors trained on clean
MNIST using standard parameterization. The estimates are calculated over 50 trials for each model,
where each trial is trained on a randomly sampled 90%. Note that the residual is initially positive at 5
subpredictors and then becomes negative for 10 subpredictors and higher.
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Figure 16: The estimated bias-variance-diversity decomposition (left) and the absolute value of the
diversity residual (right) for models with an increasing number of subpredictors trained on California
Housing using standard parameterization. The estimates are calculated over 50 trials for each model,
where each trial is trained on a randomly sampled 90%. Note that the residual is initially positive at 5
subpredictors and then becomes negative for 10 subpredictors and higher.

Setup We train the ‘clean large data’ variants for the MNIST and California Housing datasets of
Appendices C.2 and C.5, respectively, using the standard parameterization. See the ‘standard param’
rows of Table 3 for details.

Results - MNIST In Figure 15 we show the estimated bias-variance-diversity decomposition (left)
and the absolute value of the diversity residual (right) for the standard parameterization MNIST
models. We see that, despite the explicit factor of d1 that appears in the subpredictors for the standard
parameterization, the bias, variance, and diversity (left) does not diverge as width is increased. Instead,
all three terms show an increase until 50 subpredictors and then plateaus for higher subpredictors. As
in the MFP case, we observe that the diversity residual closely tracks and regularizes the variance
error.

Results - California Housing In Figure 16, we again plot the bias-variance-diversity decomposition
(left) and the absolute value of the diversity residual (right). We now see that the bias, variance, and
diversity terms increase as a function of the number of subpredictors without producing a plateau as
in our other experiments. This suggests that the explicit d1 factor that appears in the definition of
the standard parameterization subpredictors starts to dominate as the width of the neural network (in
other words, d1) increases. However, despite the diverging variance, we still find that the diversity
residual closely tracks and regularizes the variance error.

C.7 SUBPREDICTOR ALLOCATION

For each model architecture, a centroid is estimated per subpredictor across trials. Given that nodes
in a dense layer can occur in any order without affecting model output, how do we know the correct
subpredictors are matched across trials? From Theorem 1, sub-predictor allocation will not affect the
value of the diversity estimate, but could have an impact on the balance between the bias and variance
estimates. We therefore explore additonal ways to allocate subpredictors to centroids (across trials)
and measure the effect of these allocations on variance: the best allocation is expected to produce
the lowest variance. Specifically, we consider different measures of similarity, related to either the
individual predictions or the weight structure of subpredictors.

Setup Trials are re-organised in a sequential manner. When re-organising the subpredictors in
a single trial, a prototype trial is first constructed. The simiarlity metric is then applied to all dl
subpredictors, across all samples, resulting in a dl × dl matrix. Using this matrix, the best-matching
estimators are paired in a greedy manner, resulting in a new ordering applied to the specific trial.

We explore different setup variants using the ‘small data’ California Housing regression task models.
Among others, we investigate:
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• Prototype: Selecting either the mean over trials or the first trial as the prototype.
• Prediction matching: The predictions for all samples are compared using either correlation

among predictions, or prediction loss.
• Function distance: The weight structure of each sub-predictor is used directly, to determine

the function that the sub-predictor applies to the input. This function vector is compared
using cosine similarity. Either the whole weight structure is considered (full), or only the
first layer (L1).

Results We show the estimated variance using these allocations in Figure 17. Similar results
were obtained using additional variants, such as using the magnitude (rather than signed value)
and considering different forms or normalization: trends are similar but no variant obtains a better
predictor than the initial ordering. At larger layers, this becomes very similar to the weight-based
ordering if only the first layer is considered. We find that the best indicator is the value with which
the sub-predictor was initialized. This is the allocation used in all reported experiments.

Figure 17: Estimated variance as subpredictors are re-ordered using different metrics: init is the
original ordering; correlation or loss indicates different ways to measure similarity; trial0 or mean
indicates different choices of prototype when using predictions over samples, and full or L1 indicate
that the weight structure was used, either the full structure or only the first layer. Note that the
variance of init (black) is always lowest.
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