

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPLICIT REGULARIZATION THROUGH HIDDEN DIVERSITY IN NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

A significant body of work has focused on studying the mechanisms behind the implicit regularization observed in neural networks. Recently, developments in ensemble theory have demonstrated that, for a wide variety of loss functions, the expected risk of the ensemble can be decomposed into a bias and variance term together with an additional term called *diversity*. By using this theoretical framework and by interpreting a *single* neural network as an ensemble, we expose a hidden diversity term in the decomposition of a neural network’s expected risk. We argue that the additional diversity term regulates the variance error, thus identifying a new source of *implicit regularization* in neural networks. We demonstrate this regularization on regression and classification datasets by estimating the bias, variance, and diversity terms for MLPs and CNNs. Using double descent as an example, we observe that diversity significantly increases for wide overparameterized neural networks. These results demonstrate a new perspective on implicit regularization in neural networks and open new possible avenues of research into their generalization.

1 INTRODUCTION

In the overparameterized regime, neural networks seem to defy conventional wisdom: despite the ability to interpolate their training data, neural networks are able to still generalize well on unseen data. Examples of this phenomenon range from fitting neural networks on noisy data (Neyshabur et al., 2015; Zhang et al., 2017) to the classical double descent experiments (Belkin et al., 2019; Nakkiran et al., 2020).

To explain this phenomenon, a long-standing conjecture has been that neural networks experience a form of implicit regularization (Neyshabur et al., 2015; Zhang et al., 2017; Vardi, 2022). The most prominent approach to understanding this implicit regularization has been through analysis of the optimization process, in particular, how gradient descent finds minima in the loss landscape that leads to good generalization for both linear and nonlinear networks (Neyshabur et al., 2015; Gunasekar et al., 2017; Arora et al., 2019; Razin & Cohen, 2020; Li et al., 2021; Lyu & Li, 2020; Chizat & Bach, 2020; Vardi & Shamir, 2021) or modifications to the gradient descent trajectories in the loss landscape (Barrett & Dherin, 2021; Smith et al., 2021). An alternative approach to understanding overparameterization behavior from a bias-variance decomposition perspective, is by identifying sources of additional randomness to provide a more fine-grained decomposition of the variance error (Geman et al., 1992; Neal et al., 2019; Adlam & Pennington, 2020; D’Ascoli et al., 2020).

Figure 1: **Implicit regularization** In a new decomposition, variance error increases as parameters increase; a corresponding increase in diversity causes the risk to reduce in the over-parameterized regime. (Top): One-layer MLP trained with full batch SGD on MNIST. (Bottom): Three-layer CNN trained with mini-batch SGD on CIFAR10.

054 Inspired by the ability of ensembles to reduce overfitting, we view a single neural network as an
 055 implicit ensemble. Then, by only considering the randomness introduced by the sampling of training
 056 sets, we introduce a new bias-variance decomposition for neural networks that exhibit an additional
 057 term that acts as an implicit regularizer. Our main contributions are as follows:
 058

- 059 • Development of a theoretical framework to analyze neural network behavior in a regression
 060 or classification setting. This framework is applicable to a wide range of loss functions and
 061 any model that contains a dense layer.
- 062 • Exposing a new source of implicit regularization in such networks: By viewing a network
 063 as an ensemble of subpredictors, the diversity of ensemble members is shown to act as an
 064 implicit regularizer.
- 065 • We confirm our results empirically by deriving and estimating the bias, variance and diversity
 066 terms for two loss functions, namely, square loss and cross entropy. We use several well-
 067 known classification and regression datasets and present results for scenarios such as double
 068 descent and small/large data limits. In addition, we demonstrate the difference in behavior
 069 between networks parameterized with standard and mean-field parameterization (MFP).

071 2 RELATED WORK

072 Related works that view a neural network as a form of implicit ensemble typically aim to achieve
 073 different goals than those studied here. For example, Veit et al. (2016) use an ensemble perspective
 074 to study the vanishing gradient problem in deep residual networks. Dropout can be interpreted as
 075 training many “thinned-out” subnetworks of the neural network (Srivastava et al., 2014). More
 076 recently, when studying continual learning and the problem of catastrophic forgetting, a neural
 077 network can be viewed as an ensemble of its weights (Benjamin et al., 2024).

078 In contrast, Olson et al. (2018) is the only work that we are aware of that studies implicit regularization
 079 from an ensemble perspective, and is the work that is conceptually closest to ours. By using a linear
 080 program procedure and constraints, they decompose a single neural network into an ensemble of non-
 081 overlapping subnetworks under the constraint that the networks have low bias and low subpredictor
 082 correlation. (While they refer to this concept as “diversity”, this is not the same definition of
 083 diversity as ours, and seems to be a proxy for this concept.) In analogy to the implicit regularization
 084 seen in random forests, they argue that there is a similar mechanism of implicit regularization for
 085 overparameterized neural networks, but this mechanism is not explained. In contrast, in our work we
 086 use the recent theoretical framework of Wood et al. (2023) to define the subnetworks in the implicit
 087 ensemble, producing results that are more generally applicable, in particular, since our subnetworks
 088 are allowed to overlap in terms of parameter sharing. We also use the “unified” notion of diversity of
 089 Wood et al. (2023), which exposes the exact mechanism of implicit regularization that was speculated
 090 to exist in Olson et al. (2018).

091 More distantly related to our work are the approaches to implicit regularization discussed in the
 092 introduction to this paper. In particular, these works approach the problem from the optimization point
 093 of view by studying the implicit bias of gradient descent towards favoring solutions that generalize
 094 well (Vardi, 2022; Gunasekar et al., 2017; Arora et al., 2019; Razin & Cohen, 2020; Li et al., 2021;
 095 Lyu & Li, 2020; Chizat & Bach, 2020; Vardi & Shamir, 2021; Barrett & Dherin, 2021; Smith et al.,
 096 2021). These works do not address implicit regularization through internal structure. Finally, our
 097 work crucially depends on the framework of Wood et al. (2023), which was developed for explicit
 098 ensembles and as a unifying framework for the notion of diversity. In contrast, our theoretical results
 099 extend this framework to the internal structure of a single neural network and, additionally, show
 100 that the framework provides new insight into the problem of overparameterized neural networks and
 101 overfitting.

103 3 PRELIMINARIES AND BACKGROUND

104 Crucial to our work is the development of the theoretical framework in Wood et al. (2023) for
 105 ensembles, which we briefly review here. In contrast to the decomposition in Geman et al. (1992)
 106 for a single model, this theoretical framework offers a novel decomposition of the expected risk of

108 ensembles into three terms, namely, a bias, variance, and diversity term. All proofs for this section
 109 can be found in Appendix A.2.
 110

111 **3.1 ENSEMBLES**
 112

113 We define an explicit ensemble to consist of *subpredictors* $\{q_{(i)}\}_{i=1}^m$, where each $q_{(i)} : \mathcal{X} \subseteq \mathbb{R}^{d_i} \rightarrow$
 114 $\mathcal{Y} \subseteq \mathbb{R}^{d_f}$. We consider supervised learning and, thus, define a training set $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$,
 115 where $x^{(i)} \in \mathcal{X}$, $y^{(i)} \in \mathcal{Y} \subseteq \mathbb{R}^{d_f}$ (where \mathcal{Y} may or may not be the same as \mathcal{Y}) and $(x, y) \stackrel{\text{iid}}{\sim}$
 116 $P(X, Y)$. Each subpredictor $q_{(i)}$ is trained using a learning algorithm and a loss function $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow$
 117 \mathbb{R}^+ by minimizing the *empirical risk* $R_{\text{emp}}[q_{(i)}] = \frac{1}{n} \sum_{j=1}^n \ell(q_{(i)}(x^{(j)}), y^{(j)})$. To emphasize the
 118 dependence on the training dataset \mathcal{D} , we will sometimes write the output of subpredictor $q_{(i)}$ for a
 119 given x as $q_{(i)}(x; \mathcal{D})$.
 120

121 Depending on the task, the ensemble of subpredictors is then aggregated in some fashion to produce
 122 a single output in \mathbb{R}^{d_f} . For example, in the case of univariate regression, a popular way to combine
 123 the outputs of the ensemble of subpredictors is by a simple average: $\bar{q}(x) = \frac{1}{m} \sum_{i=1}^m q_{(i)}(x)$.
 124

125 **3.2 CENTROID AND ENSEMBLE COMBINER**
 126

127 An important aspect of the framework of Wood et al. (2023) is the notion of the *centroid of a*
 128 *distribution*, which was first defined in James & Hastie (1997). Using an equivalent definition of the
 129 variance of a random variable T given by $\text{var}(T) = \min_z \mathbb{E}_T[\ell(z, t)]$, where $\ell(z, t) = (z - t)^2$, the
 130 nonrandom number \hat{t} , which minimizes the variance, is called the centroid of the distribution. The
 131 utility of this formulation is that we can generalize it to other loss functions ℓ .
 132

Definition 1 (Centroid of a distribution). *Let T be a random variable. Then, for a given loss ℓ , we
 133 define the centroid of the distribution \hat{t} to be the minimizer of the expected loss over T*

$$\hat{t} = \arg \min_z \mathbb{E}_T[\ell(z, t)],$$

136 where z is nonrandom.
 137

138 Intuitively, as described in (James & Hastie, 1997), the quantity $\text{var}(T)$ can be interpreted as a
 139 measure of the expected distance (in terms of the loss) of the random variable T from its nearest
 140 nonrandom number \hat{t} . Importantly, the loss function determines the form of the centroid. We
 141 provide the following two lemmas for the square loss function and the Kullback-Leibler divergence
 142 (KL-divergence) (Heskes, 1998).

143 **Lemma 1** (Centroid for least squares loss). *Let ℓ be the least squares loss function $\ell(z, t) = (z - t)^2$.
 144 Then, for a random variable T , the centroid of the distribution is given by*

$$\hat{t} = \mathbb{E}_T[t]. \tag{1}$$

147 **Lemma 2** (Centroid for KL-divergence). *For a target probability density $z(y)$, let $f(y)$ be an
 148 estimator of this density. Suppose we had an ensemble of such estimators, possibly infinite, with
 149 \mathbb{E}_T representing expectation with respect to this ensemble. Let ℓ be the KL-divergence loss function
 150 $\ell(z, f) = K(z||f)$. Then, the (normalized) centroid of the distribution is given by*

$$\hat{f}(y) = \frac{1}{Z} \exp(\mathbb{E}_T[\ln f(y)]), \tag{2}$$

153 where Z is a normalization constant independent of y .
 154

155 **Ensemble Combiner** A special example of the centroid is the centroid over ensemble members
 156 called the *ensemble combiner*, which we denote with the symbol \bar{q} . Let T be the random variable
 157 distributed according to a discrete *model distribution*, such that each subpredictor $q_{(i)}$ can be drawn
 158 with probability $p(q_{(i)})$. Then, for the case of square loss, the combiner \bar{q} can be found through
 159 Lemma 1 as
 160

$$\bar{q}(x) = \sum_{i=1}^m p(q_{(i)}) q_{(i)}(x), \tag{3}$$

162 where we have replaced the expected value \mathbb{E}_T by the weighted average $\sum_{i=1}^m p(q_{(i)})$. Intuitively,
 163 the weights $p(q_{(i)})$, which sum to unity, can represent our ‘belief’ in the output of subpredictor $q_{(i)}$
 164 (Krogh & Vedelsby, 1994). In the case where $p(q_{(i)}) = 1/m$ for all $i \in [m] := \{1, \dots, m\}$, we
 165 recover the simple average combiner from Section 3.1. Similarly, for the case of the KL-divergence,
 166 one finds the *logarithmic opinion pool* (Heskes, 1997; 1998) which is given through Lemma 2 as
 167

$$168 \bar{q}(x) = \frac{1}{Z} \exp \left(\sum_{i=1}^m p(q_{(i)}) \ln q_{(i)}(x) \right) = \frac{1}{Z} \prod_{i=1}^m q_{(i)}(x)^{p(q_{(i)})}, \quad (4)$$

170 where we emphasize that each $q_{(i)}$ is a normalized probability distribution. As in Wood et al. (2023),
 171 we note that this is not necessarily the optimal way to combine the output of the subpredictors.
 172 However, for the bias-variance-diversity decomposition that we review in Section 3.3, the centroid
 173 from Definition 1 provides a framework that neatly allows us to decompose the expected risk.
 174

175 3.3 BIAS-VARIANCE-DIVERSITY DECOMPOSITION

177 Up to now, we have worked with a general random variable T and, for the model distribution, weights
 178 $p(q_{(i)})$. We now specialize to T representing the training sets of size n which we represent with the
 179 symbol D . We also specialize to uniform model weights $p(q_{(i)}) = 1/m$ for all $i \in [m]$. Finally,
 180 thanks to Lemma 3 (see Appendix A.2.2), one finds the main result from Wood et al. (2023) which
 181 we state here.

182 **Theorem 1** (Bias-variance-diversity decomposition). *Let $\{q_{(i)}\}_{i=1}^m$ be an ensemble of subpredictors
 183 and let D be the random variable that represents training sets of size n . Let ℓ be a loss function
 184 that permits a valid bias-variance decomposition. Then, the expected value of the risk $R[\bar{q}] =$
 185 $\mathbb{E}_{XY}[\ell(y, \bar{q})]$ over all training sets D can be decomposed as*

$$186 \mathbb{E}_D \mathbb{E}_{XY}[\ell(y, \bar{q})] = \\ 187 \mathbb{E}_X \left[\underbrace{\mathbb{E}_{Y|X}[\ell(y, y^*)]}_{\text{noise}} + \underbrace{\frac{1}{m} \sum_{i=1}^m \ell(y^*, \dot{q}_{(i)})}_{\text{average bias}} + \underbrace{\frac{1}{m} \sum_{i=1}^m \mathbb{E}_D[\ell(\dot{q}_{(i)}, q_{(i)})]}_{\text{average variance}} - \underbrace{\frac{1}{m} \sum_{i=1}^m \mathbb{E}_D[\ell(\bar{q}, q_{(i)})]}_{\text{diversity}} \right],$$

192 where $y^* = \mathbb{E}_{Y|X}[y]$, $\dot{q}_{(i)} = \arg \min_z \mathbb{E}_D[\ell(z, q_{(i)})]$ is the centroid for a subpredictor, and $\bar{q} =$
 193 $\arg \min_z \sum_{i=1}^m p(q_{(i)}) \ell(z, q_{(i)})$ is the ensemble combiner.

194 In comparison to the decompositions in Geman et al. (1992) and Heskes (1998) for a single model,
 195 the decomposition for an ensemble can be decomposed into three terms, namely, a bias, variance,
 196 and diversity term (as well as an irreducible noise term). Importantly, observe that the diversity term
 197 comes with a negative sign. Thus, the greater the diversity, the lower the expected risk. We refer the
 198 reader to Wood et al. (2023) for further theoretical results and experimental verification of Theorem 1.
 199

200 4 IMPLICIT ENSEMBLES AND IMPLICIT REGULARIZATION

202 Having established the theoretical framework for ensembles in the previous section, we now turn to
 203 the case of a *single* feedforward neural network with ReLU activations. We extend the theoretical
 204 framework for ensembles by viewing the neural network as an *implicit ensemble*.
 205

206 4.1 SETUP

208 We consider any neural network with fully connected (FC) layers at the end with ReLU activations.
 209 More precisely, let $f = h \circ g : \mathcal{X} \subset \mathbb{R}^{d_i} \rightarrow \mathcal{Y} \subset \mathbb{R}^{d_f}$ represent a neural network, where
 210 $g : \mathcal{X} \subset \mathbb{R}^{d_i} \rightarrow \mathbb{R}^{d_0}$ is any flattened feature map (such as a set of convolutional layers) and
 211 $h : \mathbb{R}^{d_0} \rightarrow \mathcal{Y} \subset \mathbb{R}^{d_f}$ is L -hidden FC layers, with hidden widths $d_1, \dots, d_L \in \mathbb{N}$, that uses ReLU
 212 activations $\sigma(x) = \max(0, x)$. For h , we consider a $\{\alpha, \beta, H\}$ -family of FC layers as follows:

$$213 \begin{aligned} h_{(1)}(x) &= \sigma(z_{(1)}(x)), & z_{(1)}(x) &= \alpha w_{(1)} h_{(0)}(x), \\ 214 h_{(\ell)}(x) &= \sigma(z_{(\ell)}(x)), & z_{(\ell)}(x) &= w_{(\ell)} h_{(\ell-1)}(x), & \ell > 1, \\ 215 h_{(L+1)}(x) &= \beta w_{(L+1)} h_{(L)}(x), \end{aligned} \quad (5)$$

216 where $h_{(0)}(x) = g(x) \in \mathbb{R}^{d_0}$ is the input to the FC layers, $z_{(\ell)}(x) \in \mathbb{R}^{d_\ell}$ is the preactivation vector to
 217 layer ℓ , $h_{(\ell)}(x) \in \mathbb{R}^{d_\ell}$ is the activation vector of layer ℓ , $h_{(L+1)}(x) \in \mathbb{R}^{d_f}$ is the output of the neural
 218 network, and $w_{(\ell)} \in \mathbb{R}^{d_\ell \times d_{\ell-1}}$ is a learnable weight matrix with elements initialized as $w_{(\ell)}^i \stackrel{\text{iid}}{\sim} H$.
 219 The family of neural networks are determined by the (non-learnable) parameters $\alpha, \beta \in \mathbb{R}$ and the
 220 distribution H and, as we will discuss later, plays a nontrivial role in the infinite width limit of the FC
 221 layers (Yang & Hu, 2022). Important to our case, the parameter β will lead to different identifications
 222 of subpredictors within the neural network. We consider three particular choices of $\{\alpha, \beta, H\}$ called,
 223 namely, *standard parameterization* (SP) (Paszke et al., 2019), *mean-field parameterization* (MFP)
 224 (Mei et al., 2018) and *maximal-update parameterization* (μP) (Yang & Hu, 2022) – their values are
 225 listed in Table 1.

226

227

228 Table 1: Parameterizations for FC layer

Parameterization	L	α	β	H
Standard	≥ 1	1	1	$\text{Uniform}(-\sqrt{\frac{6}{d_{\ell-1}}}, \sqrt{\frac{6}{d_{\ell-1}}})$
Mean-field	1	1	$\frac{1}{d_L}$	$\mathcal{N}(0, 1)$
Maximal-update	≥ 1	$\sqrt{d_0}$	$\frac{1}{\sqrt{d_L}}$	$\mathcal{N}(0, \frac{1}{d_{\ell-1}})$

235

236

Finally, for the case of a C -class classification task, we use a Softmax function on the output

$$\text{Softmax}[h_{(L+1)}(x)] = \frac{1}{Z} \exp(h_{(L+1)}(x)), \quad Z = \sum_{c=1}^C \exp(h_{(L+1)}^c(x)), \quad (6)$$

240

241

where the exponent is applied component-wise.

242

243

4.2 SUBPREDICTOR IDENTIFICATION

244

245

Regression We first consider a regression task with square loss (see Figure 2). We apply the theoretical framework of Section 3 by working backwards from the definition of the combiner to formulate a notion of subpredictor within the neural network. The combiner \bar{q} in this case is fixed – it is, of course, the output nodes of the neural network $h_{(L+1)}(x)$.

246

247

Now, consider Equation 3. We need to identify both subpredictors $q_{(i)}$ and model weights $p(q_{(i)})$, where we are *constrained* to $\sum_{i=1}^m p(q_{(i)}) = 1$ and $p(q_{(i)}) \geq 0$ for all $i \in [m]$. The constraint limits our choices of possible subpredictors. Setting $\bar{q} = h_{(L+1)}$, we have at the level of components

$$\bar{q}^i(x) = \beta w_{(L+1)}^i h_{(L)}(x) = \beta \sum_{j=1}^{d_L} w_{(L+1)}^i j h_{(L)}^j(x), \quad (7)$$

248

249

where $w_{(L+1)}^i \in \mathbb{R}^{1 \times d_L}$ (i.e. the i th row of $w_{(L+1)}$).

250

By comparing to Equation 3, we observe that we can naturally satisfy the constraint if $\sum_{i=1}^{d_L} \beta = 1$ and β is nonnegative, which is satisfied if $\beta = 1/d_L$. Interestingly, this is naturally realized by MFP for

251

252

$L = 1$ (i.e. a single hidden layer MLP). Consequently, in this case, a subpredictor is naturally identified as $q_{(j)}(x) = w_{(2)} j h_{(1)}^j(x) \in \mathbb{R}^{d_f}$, $j \in [d_1]$ (where $w_{(2)} j \in \mathbb{R}^{d_f}$, i.e. the j th column of $w_{(2)}$).

253

254

For SP and μP , we can still satisfy the constraint and identify valid subpredictors. For SP, $\beta = 1$, hence, we can factor out $1 = 1/d_L \times d_L$ so that $p(q_{(i)}) = 1/d_L$ and $q_{(j)}(x) = d_L w_{(L+1)} j h_{(L)}^j(x)$.

255

Similarly, for μP , $\beta = 1/\sqrt{d_L}$, and so we can factor $1/\sqrt{d_L} = 1/d_L \times \sqrt{d_L}$, giving weight

Figure 2: **Implicit ensemble** A single hidden layer neural network can be viewed as an ensemble. Each subpredictor of the ensemble consists of a hidden node multiplied by a weight. The subpredictor outputs are combined with weights $p(q_{(i)})$ to form the combiner.

270 $p(q_{(i)}) = 1/d_L$ and subpredictor $q_{(j)}(x) = \sqrt{d_L} w_{(L+1),j} h_{(L)}^j(x)$. We therefore find that, unlike the
 271 MFP case, the subpredictors for SP and μP comes with a scalar factor determined by the width of
 272 the last hidden layer.
 273

274 Furthermore, using Lemma 1, we can immediately identify the centroid for each subpredictor as
 275 $\hat{q}_{(i)}(x) = \mathbb{E}_D[q_{(i)}(x)]$. For example, for the MFP case, $\hat{q}_{(i)}(x) = \mathbb{E}_D[w_{(2),i} h_{(1)}^i(x)]$, where we
 276 note that both the weights $w_{(2)}$ and the hidden nodes $h_{(1)}$ depend on the training set \mathcal{D} . Results are
 277 summarized in Table 2 for the MFP (the other parameterizations are similar).
 278

279 **Classification** For classification, the neural network output is given by Equation 6 where it now
 280 outputs a *probability vector* (components are nonnegative and sum to one). Recall that, for the KL-
 281 divergence, the combiner is given by Equation 4. For the case of classification, the identification of
 282 subpredictors is more nuanced. As before, we have the constraint that the model distribution weights
 283 $p(q_{(i)})$ need to be nonnegative and sum to one. Additionally, we now require each subpredictor
 284 to output a valid probability vector: $q_{(i)}(x) \in \mathbb{R}^C$, $\sum_{c=1}^C q_{(i)}^c(x) = 1$, $q_{(i)}^c(x) \geq 0$. Using the
 285 Softmax function from Equation 6, we identify the subpredictors as in Table 2 for the MFP (the other
 286 parameterizations are similar). See Appendix A.3.1 for details.
 287

288 Table 2: Framework components for 1-layer neural networks initialised with MFP.
 289 square loss KL-loss

subpredictor	$q_{(i)}(x) = w_{(2),i} h_{(1)}^i(x)$	$q_{(i)}(x) = \text{Softmax}(w_{(2),i} h_{(1)}^i(x))$
centroid	$\hat{q}_{(i)}(x) = \mathbb{E}_D[w_{(2),i} h_{(1)}^i(x)]$ (8)	$\hat{q}_{(i)}(x) = \text{Softmax}(\mathbb{E}_D[\ln q_{(i)}(x)])$ (9)
combiner	$\bar{q}(x) = \frac{1}{d_1} \sum_{i=1}^{d_1} q_{(i)}(x)$	$\bar{q}(x) = \text{Softmax}\left(\frac{1}{d_1} \sum_{i=1}^{d_1} \ln q_{(i)}(x)\right)$

296 **Discussion** For two popular loss functions, the square-loss and KL-loss, we have shown that a
 297 single neural network can be reinterpreted as an implicit ensemble. In particular, we have shown that
 298 the notion of a subpredictor within the neural network is dependent on the choice of loss function
 299 used for training. Naively, one might associate a hidden node to a subpredictor but, instead, we
 300 find that a subpredictor typically consists of a hidden node multiplied by an outgoing weight vector.
 301 Apart from its contribution to the output of the subpredictor, the role of the outgoing weight vector
 302 $w_{(L+1),j} \in \mathbb{R}^{d_f}$ has additional importance: it carries the necessary index structure to ensure that the
 303 subpredictor is a vector (if the neural network output is a vector). For example, for a subpredictor j ,
 304 $q_{(j)}^i = w_{(L+1),j}^i h_{(L)}^j$ carries a free index i (due to the weight vector) that ensures that $q_{(j)}$ is a vector.
 305 This substructure in the neural network naturally emerges when we apply the framework of Section 3.
 306 Finally, we also see that the number of subpredictors within a single neural network is determined by
 307 the width d_L of the last hidden layer.
 308

309 In order to perform these identifications, we have considered three parameterizations of the FC layers.
 310 Notably, for MFP, this choice of parameterization already includes the correct factor $p(q_{(i)}) = 1/d_1$
 311 on the output nodes; in fact, this factor is also needed to guarantee feature learning in the large
 312 width limit (Chizat et al., 2019; Mei et al., 2018)¹. Unlike MFP, SP and μP carry an explicit factor
 313 dependent on d_L (the last hidden layer width) in the definition of the subpredictor and, thus, risk
 314 diverging in the large width limit. Although beyond the scope of this paper, we consider the potential
 315 connection between the implicit ensemble view developed here and the feature learning/kernel
 316 regimes to be an interesting avenue of future work.
 317

4.3 DECOMPOSITION

318 Using the identifications in the previous section, we can now apply Theorem 1 to the case of a
 319 single neural network. For regression using least squares loss, we assume a training set $\mathcal{D} =$
 320

321 ¹Both MFP and μP belong to a family of abc-parameterizations in the rich regime of feature learning (note
 322 that MFP is a special case of μP modulo a symmetry transformation) (Yang & Hu, 2022). In contrast to the rich
 323 regime, standard parameterization (SP) belongs to the kernel or lazy regime (Jacot et al., 2018; Chizat et al.,
 324 2019; Yang & Hu, 2022).

324 $\{(x^{(i)}, y^{(i)})\}_{i=1}^n$ where $y^{(i)} \in \mathbb{R}$. With the identification in Equation 8, we find that
 325 $\mathbb{E}_D \mathbb{E}_{XY}[(y - \bar{q})^2] =$
 326
 327
$$\mathbb{E}_X \left[\underbrace{\mathbb{E}_{Y|X}[(y - y^*)^2]}_{\text{noise}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} (y^* - \dot{q}_{(i)})^2}_{\text{average bias}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D[(\dot{q}_{(i)} - q_{(i)})^2]}_{\text{average variance}} - \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D[(\bar{q} - q_{(i)})^2]}_{\text{diversity}} \right], \quad (10)$$

331 where $y^* = \mathbb{E}_{Y|X}[y]$.

333 For classification, we assume a training set $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ where $y^{(i)} \in \mathbb{R}^C$ is a one-hot
 334 vector. Then, the KL-divergence reduces to²

$$335 \quad K(y||\bar{q}) = -y \cdot \ln \bar{q} = \text{cross-entropy}(y, \bar{q}). \quad (11)$$

336 Using the identifications in Equation 9, we find that

337
$$\mathbb{E}_D \mathbb{E}_{XY}[\text{cross-entropy}(y, \bar{q})] =$$

 338
 339
$$\mathbb{E}_X \left[\underbrace{\mathbb{E}_{Y|X}[K(y||y^*)]}_{\text{noise}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} K(y^*||\dot{q}_i)}_{\text{average bias}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D[K(\dot{q}_i||q_i)]}_{\text{average variance}} - \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D[K(\bar{q}||q_i)]}_{\text{diversity}} \right], \quad (12)$$

343 where $y^* = \mathbb{E}_{Y|X}[y]$ is the true class distribution at x (see Appendix B.3 of Wood et al. (2023)).
 344 Note that the noise reduces to $\mathbb{E}_{Y|X}[K(y||y^*)] = -y^* \cdot \ln y^*$, which is the Shannon entropy of the
 345 true class distribution at x .

346 Similar to the case for explicit ensembles, the exposed diversity term for a single neural network
 347 comes with a negative sign. Since the risk is always positive, the diversity term must be less than or
 348 equal to the sum of the bias and variance terms. Due to the sign and the fact that the loss functions
 349 are positive, the diversity term reduces the error introduced through the bias and variance terms.
 350 Consequently, we identify this as a new source of *implicit regularization* that helps neural network
 351 generalization, and that was hidden in the original decomposition of Geman et al. (1992) for neural
 352 networks.

354 4.4 DISCUSSION

355 By viewing a neural network as an implicit ensemble, we gain insight into their implicit regularization.

356 **Overfitting** For the case of high variance error, the diversity term acts as a regularizer that helps
 357 prevent the neural network from overfitting its training set (for sufficiently large diversity). For the
 358 case of wide overparameterized models that interpolate their training data yet still generalizes well,
 359 we hypothesize that the implicit regularization is partly due to the hidden diversity derived from the
 360 subpredictors of the neural network. We empirically validate our hypothesis in Section 5.

361 **Shallow Network Capacity** High bias error is attributed to a low capacity model that is unable
 362 to fit their training data well. A neural network is constructed out of simpler parts. In particular, as
 363 we have argued using the implicit ensemble picture, the neural network is constructed out of smaller
 364 submodels or subpredictors. For shallow networks like in Figure 2, these subpredictors are relatively
 365 simple models (a hidden node multiplied by a weight) and each subpredictor will likely have a high
 366 bias error. However, once combined into a neural network, the bias error of the subpredictors will be
 367 reduced due to the effect of their diversity. Thus, by combining low capacity parts (or models), a
 368 neural network is able to reduce the high bias error thanks to the effects of diversity. We demonstrate
 369 this in Section 5.

373 5 EXPERIMENTS: ESTIMATING BIAS, VARIANCE, AND DIVERSITY

374 In this section, we empirically verify our decompositions from Section 4 by estimating the bias,
 375 variance, and diversity for a large number of trained neural networks. This allows us to explore how

376
 377 ²We use the fact that $\lim_{x \rightarrow 0} x \ln x = 0$.

Figure 3: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposition (right) for models with an increasing number of subpredictors trained on MNIST (top) and CIFAR10 (bottom). The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled subset of the train set. Note that the risk curves are identical between left and right (only the y-axis scale differs).

these measurements vary as the number of subpredictors and the corresponding risk varies, and how this compares to the traditional bias-variance decomposition. Here we demonstrate this on the specific case of double descent (DD) (Belkin et al., 2019; Nakkiran et al., 2020) as it provides an “interesting” risk curve with varied behavior, exhibiting three regimes, namely, the underparameterized regime, the critical regime, and the overparameterized regime. We then demonstrate the regularization effect of diversity on the variance error.

To show the wide applicability and utility of our framework we consider two very different settings: 1) Shallow one layer MLPs trained on MNIST, and 2) Deep three layer CNNs trained on CIFAR10. We then also confirm our observations on many additional datasets and training setups in Appendix C.

Setup For both MNIST and CIFAR10, we train models of increasing capacity with additional label noise in order to elicit a DD. For each model capacity, we repeat this over 50 samplings of the dataset (trials)³, where we average over these trials in order to estimate the expectation over training datasets (\mathbb{E}_D in Equation 12). This results in approximately 450 models that need to be trained for each decomposition – see Appendix B.1 for details. Additionally, we also use these trials to estimate the traditional bias and variance decomposition for each model Geman et al. (1992).

For **MNIST**, we consider one hidden layer fully-connected feedforward networks with the mean-field parameterization trained with cross-entropy loss on a randomly sampled 90% of the training data per trial. To minimize some of the implicit regularization effects due to mini-batch SGD (Smith et al., 2021), we make use of full batch gradient descent as an optimizer. For **CIFAR10**, we train three layer CNNs (two convolutional, one fully connected layers) with the standard parameterization, cross-entropy loss, and mini-batch SGD on a randomly sampled 10% of the training data per trial. These two very different settings allow use to illustrate the wide applicability of our theoretical framework. Further hyperparameter details for these models can be found in Appendix B.2.

³Note that the random initialization seed for each model is fixed over trials, only the randomly sampled dataset differs.

432 **Implicit regularization** The results of our analysis are shown in Figure 3 for both MNIST (top) and
 433 CIFAR10 (bottom), including the traditional bias-variance decomposition (left) and the bias-variance-
 434 diversity decomposition (right). For both MNIST and CIFAR10 we observe a clear DD in the risk
 435 curves. When considering classic decomposition (left) we observe that these changes in risk are
 436 predominately driven by changes in the variance term, which increases rapidly up to a maximum at
 437 the critically-parameterized regime (approximately 10^2 subpredictors for both MNIST and CIFAR10),
 438 before it *inexplicably decreases as the number of subpredictors is further increased*. However, when
 439 considering the bias-variance-diversity curve (right) we observe a remarkably different view of this
 440 behavior. Specifically, we note that all three terms (bias, variance, diversity) *increase*, and appear to
 441 keep increasing past the critically-parameterized regime. It is also evident that the bias and diversity
 442 terms closely track each other, with the diversity term slightly larger, although this difference is
 443 difficult to see on the logarithmic scale.
 444

445 In order to better understand the effect of diversity on the variance error, we plot the difference
 446 between the bias and diversity, which we refer to as the *diversity residual*, along with the variance
 447 and risk on a linear scale. In this case, since the diversity is larger than the bias, the diversity
 448 residual is negative, therefore we plot the absolute value. In this formulation, the risk is given
 449 by $\text{risk} = \text{variance} - |\text{diversity residual}|$. The size of the diversity residual term therefore directly
 450 indicates the size of the regularization effect which stems from the diversity. See Figure 1.
 451

452 For both the MNIST models and CIFAR10 models, we observe that the diversity residual follows
 453 the same shape as that of the variance error. Initially, in the underparameterized regime ($< 10^2$
 454 subpredictors), the variance error grows faster than the diversity residual which results in an increasing
 455 risk. Remarkably, after crossing the interpolation point (approximately 100 subpredictors) into the
 456 overparameterized regime, the diversity residual grows more rapidly than the variance error (despite
 457 the variance error still increasing) which directly results in a decreasing risk (i.e. the second descent).
 458 Put simply, we observe that the subpredictors become more ‘wrong’ individually (bias and variance
 459 grows) but they also become dramatically more diverse, and the diversity grows faster than the bias
 460 and variance. **This increased diversity explains the drop in test risk that is otherwise hidden in
 461 the classical bias-variance decomposition.**
 462

463 These results validate our main hypothesis that the diversity term implicitly regularizes the variance
 464 error and, for networks in the overparameterized regime, helps mitigate the effects of overfitting (see
 465 Section 4.4). Additionally, we also observe in Figure 3 that the subpredictors contribute a high bias
 466 error, as anticipated in Section 4.4, but that this error is mitigated by the larger diversity term.
 467

468 **Additional evidence** To further confirm our results we repeat similar experiments on other datasets
 469 such as MNIST without label noise, MNIST with less data, MNIST with mini-batch training, Fashion
 470 MNIST (Xiao et al., 2017), and a regression task. Additionally, we also consider two layer MLPs
 471 and other parameterization. In all cases, we find similar results and behaviors as discussed here,
 472 namely that 1) the diversity terms closely tracks the bias, and importantly 2) the diversity residual
 473 term grows faster than the variance term as capacity is increased in the overparameterized regime.
 474 See Appendix C for these additional experiments.
 475

476 6 CONCLUSION

477 By extending the theoretical framework of Section 3 to interpret a neural network as an implicit
 478 ensemble, we found a new bias-variance decomposition that includes a diversity term (Section 4). This
 479 additional term, which comes with a negative sign, acts as an implicit regularizer. We demonstrated
 480 this implicit regularization for several different datasets, architectures and network parameterizations
 481 for two losses, namely, the square loss and the cross-entropy loss. For the case of double descent,
 482 we found that, contrary to the original bias-variance decomposition, both the bias and the variance
 483 continues to increase after the interpolation point. However, as can be clearly seen when subtracting
 484 the diversity from the bias, the residual diversity both tracks and increases more rapidly than the
 485 variance, thus regularizing the variance error in the overparameterized regime. This phenomenon has
 486 not previously been observed and provides a new perspective on the ability of neural networks to
 487 self-regularize.
 488

486 **Future work** While this work has demonstrated a new implicit regularizer in neural networks, there
 487 are interesting open questions that remain. Firstly, as seen in Figure 1 (as well as in the additional
 488 experimental results in Appendix C), the reason as to why diversity closely tracks the variance
 489 is currently being investigated. Additionally, the diversity is seen to increase more rapidly when
 490 transitioning to the overparameterized regime. We consider the reason behind this change in the
 491 behavior of the diversity term a highly interesting avenue of further research. We also consider the
 492 extension of our framework to architectures such as transformers to be an important next step. Finally,
 493 we believe that the work in this paper can lead to novel designs for training algorithms that enhances
 494 the diversity of the subpredictors. For existing methods such as Dropout (Srivastava et al., 2014),
 495 we conjecture that it enhances the diversity term in the neural network’s bias-variance-diversity
 496 decomposition.

497 More tangential to this paper, we remarked in Section 4.2 that the MFP is already in the correct
 498 form for our construction of the implicit ensemble. More generally, the implicit ensemble picture
 499 developed here for various parameterizations and their connection with the feature-learning regimes
 500 or kernel regimes may be an interesting avenue of research. We also mention the study of Golubeva
 501 et al. (2021) that showed that width plays a more primary role in generalization when compared
 502 to number of parameters. We hypothesize that this is due to the effect of increasing diversity and
 503 believe that this should be testable using the methods of Golubeva et al. (2021). Finally, while we
 504 did investigate the effects of mini-batch versus full batch training (Appendix C.1), we also consider
 505 the general effects of the training algorithm on the diversity of the subpredictors to be potentially
 506 interesting future work.

507 7 REPRODUCIBILITY STATEMENT

510 For Section 3, we provide proofs and extra details in Appendix A.2. For Section 4.2, we provide
 511 additional details in Appendix A.3 for the classification case. For our experiments, we provide
 512 experimental details in Appendix B; in particular, this appendix includes the method we used for
 513 estimating bias, variance, and diversity (Appendix B.1), the estimation equations for the terms in
 514 the decomposition (Appendix B.1.1 and Appendix B.1.2), and a full description of our experimental
 515 details and hyperparameter settings (Appendix B.2). Additionally, we also include our code repository
 516 as supplementary material for further reproducibility of our results.

577 REFERENCES

599 Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained
 600 bias-variance decomposition. In *Advances in Neural Information Processing Systems*, volume 33, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/7d420e2b2939762031eed0447a9be19f-Paper.pdf.

601 Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in
 602 deep matrix factorization. In *Advances in Neural Information Processing Systems*, volume 32, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/c0c783b5fc0d7d808f1d14a6e9c8280d-Abstract.html>.

603 David Barrett and Benoit Dherin. Implicit gradient regularization. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=3q5IqUrkcF>.

604 Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
 605 practice and the classical bias-variance trade-off. *Proceedings of the National Academy of Sciences*,
 606 116(32), 2019. doi: 10.1073/pnas.1903070116. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1903070116>.

607 Ari S. Benjamin, Christian Pehle, and Kyle Daruwalla. Continual learning with the neu-
 608 ral tangent ensemble. In *Advances in Neural Information Processing Systems*, volume 37,
 609 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/6bf333d4ca7c7f6fe6e301b2a3160163-Paper-Conference.pdf.

540 Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
 541 trained with the logistic loss. In *Proceedings of Thirty Third Conference on Learning Theory*, 2020.
 542 URL <https://proceedings.mlr.press/v125/chizat20a.html>.

543

544 Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
 545 programming. In *Advances in Neural Information Processing Systems*, volume 32, 2019. URL https://papers.nips.cc/paper_files/paper/2019/hash/ae614c557843b1df326cb29c57225459-Abstract.html.

546

547 Pedro Domingos. A unified bias-variance decomposition. In *Proceedings of 17th international
 548 conference on machine learning*. Morgan Kaufmann Stanford, 2000.

549

550 Stéphane D’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double
 551 descent: bias and variance(s) in the lazy regime. In *Proceedings of the 37th International Conference
 552 on Machine Learning*, 2020. URL <https://proceedings.mlr.press/v119/d-ascoli20a.html>.

553

554 Jonas Geiping, Micah Goldblum, Phil Pope, Michael Moeller, and Tom Goldstein. Stochastic training
 555 is not necessary for generalization. In *International Conference on Learning Representations*,
 556 2022.

557

558 Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
 559 *Neural Computation*, 4(1), 1992. ISSN 0899-7667, 1530-888X. doi: 10.1162/neco.1992.4.1.1.
 560 URL <https://direct.mit.edu/neco/article/4/1/1-58/5624>.

561

562 Anna Golubeva, Guy Gur-Ari, and Behnam Neyshabur. Are wider nets better given the same
 563 number of parameters? In *International Conference on Learning Representations*, 2021. URL
 564 https://openreview.net/forum?id=_zx8Oka09eF.

565

566 Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
 567 Implicit regularization in matrix factorization. In *Advances in Neural Information Processing
 568 Systems*, volume 30, 2017. URL https://papers.nips.cc/paper_files/paper/2017/hash/58191d2a914c6dae66371c9dc91b41-Abstract.html.

569

570 Tom Heskes. Selecting weighting factors in logarithmic opinion pools. In *Advances in Neural Information Processing Systems*, volume 10, 1997. URL https://papers.nips.cc/paper_files/paper/1997/hash/59f51fd6937412b7e56ded1ea2470c25-Abstract.html.

571

572

573 Tom Heskes. Bias/variance decompositions for likelihood-based estimators. *Neural Computation*, 10
 574 (6), 1998. ISSN 0899-7667. doi: 10.1162/089976698300017232. URL <https://ieeexplore.ieee.org/document/6790909>.

575

576 Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: convergence and
 577 generalization in neural networks. In *Advances in Neural Information Processing Systems*, vol-
 578 ume 31, 2018. URL https://papers.nips.cc/paper_files/paper/2018/hash/5a4be1fa34e62bb8a6ec6b91d2462f5a-Abstract.html.

579

580

581 Gareth James and Trevor Hastie. Generalizations of the bias/variance decomposition for prediction
 582 error. *Dept. Statistics, Stanford Univ., Stanford, CA, Tech. Rep*, 1997.

583

584 Ron Kohavi and David Wolpert. Bias plus variance decomposition for zero-one loss functions. In
 585 *Proceedings of the Thirteenth International Conference on International Conference on Machine
 586 Learning*, ICML’96, 1996. ISBN 978-1-55860-419-3.

587

588 Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation,
 589 and active learning. In *Advances in Neural Information Processing Systems*, vol-
 590 ume 7, 1994. URL <https://proceedings.neurips.cc/paper/1994/hash/b8c37e33defde51cf91e1e03e51657da-Abstract.html>.

591

592 Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
 593 for matrix factorization: greedy low-rank learning. In *International Conference on Learning
 594 Representations*, 2021. URL <https://openreview.net/forum?id=AH0s7Sm5H7R>.

594 Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
 595 In *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=SJeLIGBKPS>.
 596

597 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A Mean Field View of the Landscape
 598 of Two-Layers Neural Networks. *Proceedings of the National Academy of Sciences*, 115(33),
 600 August 2018. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1806579115. URL <http://arxiv.org/abs/1804.06561>. arXiv:1804.06561 [stat].
 601

602 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
 603 double descent: where bigger models and more data hurt. In *International Conference on Learning
 604 Representations*, 2020. URL <https://openreview.net/forum?id=B1g5sA4twr>.
 605

606 Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-
 607 Julien, and Ioannis Mitliagkas. A Modern Take on the Bias-Variance Tradeoff in Neural Networks,
 608 2019. URL <http://arxiv.org/abs/1810.08591>. arXiv:1810.08591 [cs, stat].
 609

610 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On
 611 the role of implicit regularization in deep learning, 2015. URL <http://arxiv.org/abs/1412.6614>.
 612

613 Matthew Olson, Abraham Wyner, and Richard Berk. Modern neural networks generalize on small data sets. In *Advances in Neural Information Processing Systems*, volume 31, 2018. URL https://papers.nips.cc/paper_files/paper/2018/hash/fface8385abbf94b4593a0ed53a0c70f-Abstract.html.
 614

615 Kelley Pace and Ronald Barry. Sparse spatial autoregressions. *Statistics & Probability Letters*, 33
 616 (3), 1997. URL <https://EconPapers.repec.org/RePEc:eee:stapro:v:33:y:1997:i:3:p:291-297>.
 617

618 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 619 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 620 Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 621 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
 622 performance deep learning library. In *Advances in Neural Information Processing Systems*,
 623 volume 32, 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
 624

625 Noam Razin and Nadav Cohen. Implicit regularization in deep learning may not be ex-
 626 plainable by norms. In *Advances in Neural Information Processing Systems*, volume 33,
 627 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/f21e255f89e0f258accbe4e984eef486-Paper.pdf.
 628

629 Samuel L Smith, Benoit Dherin, David Barrett, and Soham De. On the origin of implicit regularization
 630 in stochastic gradient descent. In *International Conference on Learning Representations*, 2021.
 631 URL https://openreview.net/forum?id=rq_Qr0c1Hy0.
 632

633 Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Bar-
 634 niuk, Micah Goldblum, and Tom Goldstein. Can Neural Nets Learn the Same Model
 635 Twice? Investigating Reproducibility and Double Descent from the Decision Boundary Per-
 636 spective. In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
 637 (CVPR)*. IEEE Computer Society, June 2022. doi: 10.1109/CVPR52688.2022.01333. URL
 638 <https://doi.ieee.org/10.1109/CVPR52688.2022.01333>.
 639

640 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 641 Dropout: a simple way to prevent neural networks from overfitting. *Journal of Machine Learn-
 642 ing Research*, 15(56), 2014. URL <http://jmlr.org/papers/v15/srivastava14a.html>.
 643

644 Gal Vardi. On the Implicit Bias in Deep-Learning Algorithms, 2022. URL <http://arxiv.org/abs/2208.12591>. arXiv:2208.12591 [cs].
 645

648 Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In *Proceed-
649 ings of Thirty Fourth Conference on Learning Theory*, 2021. URL <https://proceedings.mlr.press/v134/vardi21b.html>.
650
651 Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles
652 of relatively shallow networks. In *Advances in Neural Information Processing Systems*, volume 29, 2016.
653 URL https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450ala41c200364c-Paper.pdf.
654
655 Danny Wood, Tingting Mu, Andrew M. Webb, Henry W. J. Reeve, Mikel Luján, and Gavin Brown.
656 A unified theory of diversity in ensemble learning. *Journal of Machine Learning Research*, 24
657 (359), 2023. ISSN 1533-7928. URL <http://jmlr.org/papers/v24/23-0041.html>.
658
659 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
660 machine learning algorithms, 2017. URL <https://arxiv.org/abs/1708.07747>.
661
662 Greg Yang and Edward J. Hu. Feature Learning in Infinite-Width Neural Networks, 2022. URL
663 <http://arxiv.org/abs/2011.14522>. arXiv:2011.14522 [cs].
664
665 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
666 deep learning requires rethinking generalization. In *International Conference on Learning
667 Representations*, 2017. URL <https://openreview.net/forum?id=Sy8gdB9xx>.
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A ADDITIONAL THEORY**
 703

704 In this appendix, we provide additional theoretical details.
 705

706 The appendix is organized as follows: in Appendix A.1, we discuss the limitations of our theoretical
 707 method. In Appendix A.2, we provide proofs in support of Section 3. In Appendix A.3, we provide
 708 supplementary details concerning the derivation of the subpredictors in the case of the KL-divergence.
 709

710 **A.1 LIMITATIONS**
 711

712 In this section, we discuss the limitations of our approach.
 713

714 **Loss functions** Our analysis is valid for any loss function that satisfies Definition 2. This can, in
 715 principle, be applied to any loss function derived from a *Bregman divergence* (Wood et al., 2023). In
 716 principle, the decomposition can also be extended to any loss function by distinguishing between
 717 the measurement of bias and variance, and the measurement of its effect, as defined by James and
 718 Hastie (James & Hastie, 1997) and demonstrated in (Wood et al., 2023). In this paper, however, we
 719 only analyze squared error and cross-entropy loss functions, and extensions will be required to handle
 720 loss functions such as 0/1-loss and absolute loss.
 721

722 **Architectures** Our current theoretical framework is limited to any architecture that has a L -hidden
 723 layer feedforward ReLU network at the end. As this is the case for many types of architectures, our
 724 framework covers a wide range of use cases.
 725

726 **A.2 PROOFS**
 727

728 In this section, we provide proofs and extra details around the background section of our paper
 729 (Section 3). For more details on the background section, see the work of Wood et al. (2023).
 730

731 **A.2.1 PROOF OF LEMMA 1 AND LEMMA 2**
 732

733 We start with the proof for Lemma 1:
 734

735 *Proof.* By Definition 1, we need to compute $\hat{t} = \arg \min_z \mathbb{E}_T[(t - z)^2]$. We note that since $z \in \mathcal{B}$ is
 736 a nonrandom number,
 737

$$\begin{aligned} 0 &= \frac{d}{dz} \mathbb{E}_T[(t - z)^2] \\ &= -2\mathbb{E}_T[(t - z)] \\ &\Rightarrow z = \mathbb{E}_T[t]. \end{aligned}$$

738 \square

739 Next, we provide the proof of Lemma 2:
 740

741 *Proof.* By Definition 1, we need to compute $\hat{p} = \arg \min_z \mathbb{E}_T[K(z||p)]$. Unlike the least squares
 742 loss, z is now a function and we therefore need to use a functional derivative to compute
 743

$$\arg \min_z \mathbb{E}_T[K(z||p)] \quad \text{s.t.} \quad \int dy z(y) = 1.$$

744 We use the following Lagrangian with a Lagrange multiplier λ to enforce the constraint:
 745

$$\mathcal{L}[z(y)] = \int dy z(y) \ln z(y) - z(y) \mathbb{E}_T[\ln p(y)] + \lambda(z(y) - 1).$$

746 Then, for an arbitrary variation $z(y) \mapsto z(y) + \epsilon \delta \phi(y)$,
 747

$$\begin{aligned} \frac{d}{d\epsilon} \mathcal{L}[z(y) + \epsilon \delta \phi(y)] \Big|_{\epsilon=0} &= \int dy (\ln z(y) - \mathbb{E}_T[\ln p(y)] + \lambda) \delta \phi(y) = 0 \\ &\Rightarrow z(y) = \frac{1}{Z} \exp(\mathbb{E}_T[\ln p(y)]), \end{aligned}$$

748 where Z is a normalization constant independent of y . \square
 749

756 The above result can be easily extended to the discrete case.
 757

758 A.2.2 PROOF OF THEOREM 1
 759

760 Using the notion of a centroid, Wood et al. (2023) gave a generalized definition of the bias-variance
 761 decomposition, which we state here.

762 **Definition 2** (Generalized bias-variance decomposition). *Let T be a random variable and let ℓ be a loss function. Let $R[q] = \mathbb{E}_{XY}[\ell(y, q(x))]$ be the risk for a model that depends on T , $q = q(x; t)$, $T = t \in \mathcal{B}$. If the following form holds, then we refer to it as a generalized bias-variance decomposition*

$$766 \quad \mathbb{E}_T R[q] = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{Y|X}[\ell(y, y^*)]}_{\text{noise}} + \underbrace{\ell(y^*, \hat{q})}_{\text{bias}} + \underbrace{\mathbb{E}_T[\ell(\hat{q}, q)]}_{\text{variance}} \right], \quad (13)$$

769 where $y^* = \mathbb{E}_{Y|X}[y]$ and \hat{q} is as defined in Definition 1.

770 For example, if the random variable T represents the training datasets \mathcal{D} of size n drawn from
 771 $P(X, Y)^n$ and the loss function ℓ is the square loss, then we recover the bias-variance decomposition
 772 from Geman et al. (1992) using Lemma 1. Similarly, if ℓ is the KL-divergence, then we recover the
 773 analogous decomposition from Heskes (1998) using Lemma 2.

774 We next introduce a special term called the *ambiguity*, which was first derived in Krogh & Vedelsby
 775 (1994), and which can be interpreted as the variance of the weighted ensemble around the weighted
 776 average. Intuitively, given an input x , it measures the degree of disagreement among the subpredictors
 777 of the ensemble.

778 **Definition 3** (Ambiguity). *Let $\{q_{(i)}\}_{i=1}^m$ be an ensemble of subpredictors and let $\bar{q} = \arg \min_z \sum_{i=1}^m p(q_{(i)}) \ell(z, q_{(i)})$ be their ensemble combiner. Then, given an input x , the ensemble
 779 ambiguity $a(x)$ over the model distribution is defined as*

$$782 \quad a(x) = \sum_{i=1}^m p(q_{(i)}) \ell(\bar{q}(x), q_{(i)}(x)).$$

785 A consequence of this definition is that one can decompose the loss $\ell(y, \bar{q})$ between the combiner
 786 output \bar{q} and the target y into a term involving the weighted average loss (between the subpredictors
 787 and y) and the ambiguity (Krogh & Vedelsby, 1994; Wood et al., 2023).

788 **Lemma 3** (Generalized ambiguity decomposition). *Let ℓ be a loss function that allows a bias-variance
 789 decomposition in the sense of Definition 2. Then, for a pair (x, y) and for an ensemble of
 790 subpredictors $\{q_{(i)}\}_{i=1}^m$, the generalized ambiguity decomposition is given by*

$$792 \quad \ell(y, \bar{q}) = \sum_{i=1}^m p(q_{(i)}) \ell(y, q_{(i)}) - \sum_{i=1}^m p(q_{(i)}) \ell(\bar{q}, q_{(i)}).$$

795 *Proof.* By assumption, ℓ permits a decomposition in the sense of Definition 2. Let the random variable
 796 T represent a subpredictor $T = q_{(i)}$ drawn from a discrete model distribution with probability $p(q_{(i)})$.
 797 Then, replacing the expectation value \mathbb{E}_T with an average $\sum_{i=1}^m p(q_{(i)})$ and using the combiner
 798 $\bar{q} = \arg \min_{z \in \mathcal{B}} \sum_{i=1}^m p(q_{(i)}) \ell(q_{(i)}, z)$ for \hat{q} , Definition 2 gives

$$801 \quad \mathbb{E}_{XY} \left[\sum_{i=1}^m p(q_{(i)}) \ell(q_{(i)}, y) \right] = \mathbb{E}_{XY} \left[\ell(y, \bar{q}) + \sum_{i=1}^m p(q_{(i)}) \ell(\bar{q}, q_{(i)}) \right],$$

803 where we assumed, without loss of generality, that the noise term is zero⁴. Equating the terms in the
 804 parentheses and rearranging gives the required result. \square
 805

806 We can now prove Theorem 1 as follows:
 807

808 ⁴If a noise term is present, then one can show that $\mathbb{E}_{Y|X}[\ell(y, y^*)] + \ell(y^*, q) = \mathbb{E}_{Y|X}[\ell(y, q)]$ for a valid
 809 loss function. For example, see the original derivation in (Geman et al., 1992) for square loss and the derivation
 in (Heskes, 1998) for KL-divergence.

810 *Proof.* From Lemma 3, we find that

$$812 \quad \mathbb{E}_D \mathbb{E}_{XY} [\ell(y, \bar{q})] = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_D \mathbb{E}_{XY} [\ell(y, q_{(i)})] - \frac{1}{m} \sum_{i=1}^m \mathbb{E}_D \mathbb{E}_{XY} [\ell(\bar{q}, q_{(i)})].$$

814 Applying Definition 2 to the first term yields the required result. \square

816 A.3 CLASSIFICATION SUPPLEMENTARY

818 By extending the framework of Section 3 to a single neural network, we derived subpredictors for
819 two loss function in Section 4. In this section, we provide additional details for the case of the
820 Kullback-Leibler divergence loss. In Section A.3.1, we explicitly derive the subpredictors in the
821 neural network for the KL-loss.

822 A.3.1 SUBPREDICTORS DERIVATION

824 Similar to the regression case, the combiner \bar{q} is already fixed and is given by Equation 6, which we
825 write in component form as

$$827 \quad \bar{q}^c(x) = \frac{1}{Z(x)} \exp \left(\beta \sum_{i=1}^{d_L} w_{(L+1)}^c{}_i h_{(L)}^i(x) \right), \quad Z(x) = \sum_{c=1}^C \exp \left(\beta \sum_{i=1}^{d_L} w_{(L+1)}^c{}_i h_{(L)}^i(x) \right). \quad (14)$$

830 We follow the same approach used for regression and work backwards to identify the subpredictors
831 in the implicit ensemble. For the discrete model distribution weights $p(q_{(i)})$, recall that we have
832 the constraints that the weights should sum to unity and be nonnegative. Additionally, we have
833 the constraint that our subpredictors need to be normalized and output a valid probability vector
834 (components need to be nonnegative and sum to unity). In comparison to Equation 4 and using our
835 constraints, we naturally interpret the *normalized* subpredictor and combiner weights for the MFP
836 case as (recall that $L = 1$ for MFP – see Table 1)

$$837 \quad p(q_{(i)}) = \beta = \frac{1}{d_1}, \quad q_{(i)}^c(y) = \frac{1}{Z_i(x)} \exp(w_{(2)}^c{}_i h_{(1)}^i(x)), \quad i \in [d_1], \quad c \in [C], \quad (15)$$

839 where $Z_i(x) = \sum_{c=1}^C \exp(w_{(2)}^c{}_i h_{(1)}^i(x))$. Due to the normalization $Z_i(x)$ needed for each subpre-
840 dictor, we therefore find that the combiner factorizes with an additional term as follows:

$$841 \quad \bar{q}^c(x) = \frac{1}{Z} \exp \left(\frac{1}{d_1} \sum_{i=1}^{d_1} w_{(2)}^c{}_i h_{(1)}^i(x) \right) = \frac{1}{Z} \exp \left(\frac{1}{d_1} \sum_{i=1}^{d_1} \ln q_{(i)}^c \right) \exp \left(\frac{1}{d_1} \sum_{j=1}^{d_1} \ln Z_j \right). \quad (16)$$

844 At first glance, our choice of subpredictor does not factor into the correct form seen in Equation 4.
845 However, note that we can factor the combiner normalization Z as follows:

$$846 \quad Z = \sum_{c=1}^C \exp \left(\frac{1}{d_1} \sum_{j=1}^{d_1} w_{(2)}^c{}_j h_{(1)}^j(x) \right) = \exp \left(\frac{1}{d_1} \sum_{j=1}^{d_1} \ln Z_j \right) \sum_{c=1}^C \exp \left(\frac{1}{d_1} \sum_{i=1}^{d_1} \ln q_{(i)}^c \right), \quad (17)$$

849 which yields the same term. Hence, the extra term can be canceled and the combiner \bar{q} remains
850 unchanged, as it should, while satisfying the form in Equation 4. Finally, the normalized centroid $\hat{q}_{(i)}$
851 is given by Lemma 2

$$852 \quad \hat{q}_{(i)}(x) = \frac{1}{\hat{Z}_j(x)} \exp(\mathbb{E}_D[\ln q_{(i)}(x)]), \quad (18)$$

854 where $\hat{Z}_j(x) = \sum_{c=1}^C \exp(\mathbb{E}_D[\ln q_{(j)}^c(x)])$. Together, these identifications yield the results in Table 2
855 for the MFP case.

856 The same procedure also yields the subpredictors for the SP and μP cases for $L \geq 1$. Similar to the
857 regression case, their subpredictors are scaled by a factor determined by the last layer’s hidden width
858 d_L . For SP, we find that

$$860 \quad p(q_{(i)}) = \frac{1}{d_L}, \quad q_{(i)}^c(y) = \frac{1}{Z_i(x)} \exp(d_L w_{(L+1)}^c{}_i h_{(L)}^i(x)), \quad i \in [d_L], \quad c \in [C], \quad (19)$$

862 and for μP we find that

$$863 \quad p(q_{(i)}) = \frac{1}{d_L}, \quad q_{(i)}^c(y) = \frac{1}{Z_i(x)} \exp(\sqrt{d_L} w_{(L+1)}^c{}_i h_{(L)}^i(x)), \quad i \in [d_L], \quad c \in [C]. \quad (20)$$

Figure 4: **Estimating bias, variance, diversity** We follow the example of Wood et al. (2023): after performing a train-test split, we randomly subsample t trial sets from the training set. On each trial set, we train a model with fixed hyperparameters. We then estimate bias, variance, and diversity over the test set.

B EXPERIMENTAL DETAILS

B.1 ESTIMATING BIAS, VARIANCE, AND DIVERSITY

To estimate the bias, variance, and diversity terms given in Equation 10 and Equation 12, we follow the approach used in Wood et al. (2023) (see also Neal et al. (2019)). Below we provide a high-level overview of the method. In the next sections, we provide the precise equations to estimate the various terms.

There are two expectation values that we need to estimate, namely, \mathbb{E}_{XY} and \mathbb{E}_D , where the random variable D represents training sets of size n . Following Wood et al. (2023), the procedure is as follows (see Figure 4):

Estimating \mathbb{E}_{XY} We perform a standard train-test split of the data. We then use the test set to estimate \mathbb{E}_{XY} by taking an average over the test samples. Let s be the number of test sample pairs in our test set.

Estimating \mathbb{E}_D Since $D = \mathcal{D}$ represents different draws of our training set, we estimate this expectation value as follows: we randomly subsample (without replacement) 90% of the training set. We perform this repeatedly over different seeds to form t such trial sets \mathcal{D}_k , $k = 1, \dots, t$ (see Figure 4). In the case of the small data limit, we subsample a smaller percentage of the training set (details are provided in later appendices). On each trial set, we train a neural network $h_{(L+1)}(\mathcal{D}_k)$. Importantly, we use the same seed to initialize the neural network weights on each trial set (per experiment, we fixed the initialization seed for two reasons, to minimize additional sources of randomness (in addition to the randomness introduced by data sampling – see for example works such as Adlam & Pennington (2020) and D’Ascoli et al. (2020) which study bias-variance decompositions with randomness coming from weight initialization) and to ensure that sub-predictors can be matched across trials to form the centroid (see for example Appendix C.7)). Thus, for a network with fixed hyperparameters, we train t such networks $h_{(L+1)}(\mathcal{D}_k)$, $k = 1, \dots, t$. We estimate the expectation \mathbb{E}_D using an average.

Results tensor Additionally, we also have d_L subpredictors in the neural network to consider: $q_{(i)}$, $i \in [d_L]$. Thus, combining everything, we construct a results tensor of shape (t, d_L, s) with an entry in the tensor given by $q_{(i)}(x^{(j)}; \mathcal{D}_k)$; in other words, the output of subpredictor $i \in [d_L]$, trained on trial set $k \in [t]$, on test sample $j \in [s]$. The results tensor is then used to compute the relevant averages. To extract the output of a subpredictor on a test sample, we used Pytorch’s forward hooks method.

The above procedure is repeated for each set of model hyperparameters. For example, for our shallow neural networks, we considered width-wise experiments for 7 widths. For each width, we used $t = 50$ trial sets and, therefore, trained 50 models. All in all, this results in 350 models that need to be trained to estimate a single bias-variance-diversity decomposition. Due to this fact and the hardware that we used (see Appendix B.2), we did not consider additional experimental details such as different choices of weight initialization or different train-test splits.

Finally, when performing the estimates, we found it necessary to use `torch.double()` precision (`torch.float64`) on the model weights, the output of the Pytorch forward hook, and the output of the neural network to avoid numerical issues.

B.1.1 ESTIMATORS - LEAST SQUARES

In this section, we present the estimators of the bias, variance, and diversity terms for the case of square loss $\ell(x, y) = (x - y)^2$. For convenience, we restate the decomposition from Equation 10 here,

$$\mathbb{E}_D \mathbb{E}_{XY} [\ell(y, \bar{q})] = \mathbb{E}_X \left[\underbrace{\mathbb{E}_{Y|X} [\ell(y, y^*)]}_{\text{noise}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \ell(y^*, \dot{q}_{(i)})}_{\text{average bias}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D [\ell(\dot{q}_{(i)}, q_{(i)})]}_{\text{average variance}} - \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D [\ell(\bar{q}, q_{(i)})]}_{\text{diversity}} \right]. \quad (21)$$

We estimate each term as follows:

$$\begin{aligned} \text{centroid: } \dot{q}_{(i)}(x) &= \mathbb{E}_D [q_{(i)}(x)] \approx \frac{1}{t} \sum_{k=1}^t q_{(i)}(x; \mathcal{D}_k) = \dot{q}_{(i)}^{\text{est}}(x) \\ \text{bias: } \mathbb{E}_X \left[\frac{1}{d_L} \sum_{i=1}^{d_L} \ell(y^*, \dot{q}_{(i)}) \right] &\approx \frac{1}{d_L} \frac{1}{s} \sum_{i=1}^{d_L} \sum_{j=1}^s \ell(y^{(j)}, \dot{q}_{(i)}^{\text{est}}(x^{(j)})) \\ \text{variance: } \mathbb{E}_X \left[\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D [\ell(\dot{q}_{(i)}, q_{(i)})] \right] &\approx \frac{1}{t} \frac{1}{d_L} \frac{1}{s} \sum_{k=1}^t \sum_{i=1}^{d_L} \sum_{j=1}^s \ell(\dot{q}_{(i)}^{\text{est}}(x^{(j)}), q_{(i)}(x^{(j)}; \mathcal{D}_k)) \\ \text{diversity: } \mathbb{E}_X \left[\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D [\ell(\bar{q}, q_{(i)})] \right] &\approx \frac{1}{t} \frac{1}{d_L} \frac{1}{s} \sum_{k=1}^t \sum_{i=1}^{d_L} \sum_{j=1}^s \ell(\bar{q}(x^{(j)}; \mathcal{D}_k), q_{(i)}(x^{(j)}; \mathcal{D}_k)) \end{aligned} \quad (22)$$

Note that, similar to (Kohavi & Wolpert, 1996; Domingos, 2000; Neal et al., 2019), we assume noiseless labels (in the sense that, for a given x , there is not a distribution of y values) so that the noise term vanishes; in particular, we assume that y^* can be approximated by the label y . This is a common simplification made when estimating bias-variance decompositions.

B.1.2 ESTIMATORS - KL-DIVERGENCE/CROSS-ENTROPY

We next present the estimators for the KL-divergence/cross-entropy loss. Recall that we consider one-hot encoded target labels $y \in \mathbb{R}^C$. In this case, the KL-divergence reduces to the cross-entropy loss $K(y||\bar{q}) = -y \cdot \ln \bar{q} = \text{cross-entropy}(y, \bar{q})$ (see the discussion around Equation 12). As in the previous section, we will assume noiseless labels (not to be confused with the label corruption used in our experiments); in particular, the probability vector y^* will be estimated by y . In this approximation, the decomposition, given by Equation 12, reduces to

$$\mathbb{E}_D \mathbb{E}_{XY} [K(y||\bar{q})] \approx \mathbb{E}_X \left[\underbrace{-\frac{1}{d_L} \sum_{i=1}^{d_L} y \cdot \ln \dot{q}_{(i)}}_{\text{average bias}} + \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D [K(\dot{q}_{(i)}||q_{(i)})]}_{\text{average variance}} - \underbrace{\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D [K(\bar{q}||q_{(i)})]}_{\text{diversity}} \right]. \quad (23)$$

972 We estimate each term as follows:
 973

$$\begin{aligned}
 \text{Normalization: } \mathring{Z}_i(x) &= \sum_{c=1}^C \exp(\mathbb{E}_D[\ln q_{(i)}^c]) \approx \sum_{c=1}^C \exp\left(\frac{1}{t} \sum_{k=1}^t \ln q_{(i)}^c(x; \mathcal{D}_k)\right) = \mathring{Z}_i^{est}(x) \\
 \text{Centroid: } \mathring{q}_{(i)}(x) &= \frac{1}{\mathring{Z}_i(x)} \exp(\mathbb{E}_D[\ln q_{(i)}]) \approx \frac{1}{\mathring{Z}_i^{est}(x)} \exp\left(\frac{1}{t} \sum_{k=1}^t \ln q_{(i)}(x; \mathcal{D}_k)\right) = \mathring{q}_{(i)}^{est}(x) \\
 \text{Bias: } \mathbb{E}_X \left[-\frac{1}{d_L} \sum_{i=1}^{d_L} y \cdot \ln \mathring{q}_{(i)} \right] &\approx -\frac{1}{d_L} \frac{1}{s} \sum_{j=1}^s \sum_{i=1}^{d_L} y^{(j)} \cdot \ln \mathring{q}_{(i)}^{est}(x^{(j)}) \\
 \text{Variance: } \mathbb{E}_X \left[\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D[K(\mathring{q}_{(i)} || q_{(i)})] \right] &\approx \frac{1}{t} \frac{1}{s} \frac{1}{d_L} \sum_{j=1}^s \sum_{i=1}^{d_L} \sum_{k=1}^t K(\mathring{q}_{(i)}^{est}(x^{(j)}) || q_{(i)}(x^{(j)}; \mathcal{D}_k)) \\
 \text{Diversity: } \mathbb{E}_X \left[\frac{1}{d_L} \sum_{i=1}^{d_L} \mathbb{E}_D[K(\bar{q} || q_{(i)})] \right] &\approx \frac{1}{t} \frac{1}{s} \frac{1}{d_L} \sum_{j=1}^s \sum_{i=1}^{d_L} \sum_{k=1}^t K(\bar{q}(x^{(j)}; \mathcal{D}_k) || q_{(i)}(x^{(j)}; \mathcal{D}_k))
 \end{aligned} \tag{24}$$

990 B.2 DETAILS AND HYPERPARAMETERS

992 In this section, we elaborate on the experimental setup used in Section 5. Furthermore, we report the
 993 hyperparameters used for the models in Appendix C.
 994

995 **Double descent** In order to elicit a clear double descent for the both the MNIST and CIFAR10
 996 models, we introduce label noise by assigning a randomly selected different class label to a small
 997 percentage of the train set samples. All models are trained as close to zero train loss as possible over
 998 a fixed number of epochs, and no early stopping is performed. This is a similar setup to those used in
 999 prior work to elicit a clear model-wise double descent (Nakkiran et al., 2020; Somepalli et al., 2022).
 1000

1001 **MLP architecture** Our MNIST MLP consist of a single fully connected hidden layer followed
 1002 by an output layer. We select the number of subpredictors (i.e., the width) in the range of 5 to
 1003 5×10^3 . This allows us to explore both the under-parameterized, critically-parameterized, and
 1004 over-parameterized regime. This set uses the mean-field parameterization.
 1005

1006 **CNN architecture** Our CNN architecture has two ReLU-activated convolutional layers (using 3×3
 1007 kernels), with widths of 16 and k , respectively. The second layer is followed by a global average
 1008 pooling layer, which is finally followed by a fully connected output layer. Thus, to vary the number of
 1009 subpredictors, we vary $k \in \{8, 16, 32, 64, 128, 512, 1024, 2048, 4096\}$. As mentioned, these models
 1010 use the standard parameterization.
 1011

1012 **CNN Subpredictors** For standard parameterization, we construct our subpredictors by working
 1013 backwards from the combiner. However, note that instead of each subpredictor consisting of fully
 1014 connected layers as for MNIST, each subpredictor is now represented by a sequence of filters, a
 1015 nonlinear activation, and a global averaging layer, which is then multiplied by an outgoing weight
 1016 vector.
 1017

1018 **Hyperparameters** The exact hyperparameters for each model set is shown in Table 3, as well as
 1019 those for the models used in Appendix C. Note that the top two rows (“CIFAR10 corrupt low data”
 1020 and “MNIST full batch”) correspond to those used in Section 5. Here follows additional details of
 1021 the different settings:
 1022

- 1023 • **Optimizer and optimization procedure.** All models are trained with (stochastic) gradient
 1024 descent including momentum set to 0.9. We do not employ early stopping in the traditional
 1025 sense using a held-out set, although as the final model we select the epoch which reached
 the lowest *train loss*. This is simply to account for slight instabilities that can occur in the
 final epochs of training (e.g. a model suddenly ‘forgetting’ a sample).

- **Explicit regularization.** For all our experiments, we do not use any explicit regularization such as weight decay or Dropout. This is intentional as we are investigating sources of implicit regularization.
- **Learning rate warmup.** The learning rate for each set is as indicated in the table, although for some we first (linearly) warmup to this learning rate over a set number of epochs. This is indicated by the ‘Warmup Epochs’ column. It should also be noted that for the mean-field parameterization, the true learning rate for each model is given by the one specified times the number of subpredictors.
- **Learning rate scheduler.** Besides warmup, we also linearly decay the learning rate by multiplying it by 0.99 every few epochs. The number of epochs used is indicated by the ‘Scheduler Steps’ column. The decay naturally only starts once warmup is complete. ‘None’ indicates that no scheduler is used.
- **Subsampling and label corruption.** As explained earlier in Section 5, we train 50 different models per width, where each is trained on a fraction of the train set. This fraction is indicated by the ‘Subsample Size’ column. Similarly, the ‘Label Corruption’ column indicates the fraction of the train set samples that are randomly assigned a different class label. Note that the label corruption is first applied to the entire train set before subsampling takes place.

Computational resources Due to the large number of trials and experiments, the model sets in Table 3 total approximately 4 500 different MLPs and CNNs. To facilitate training such a large number of models, we trained several in parallel on either one or two Tesla V100 GPUs. Each set (around 350 models, depending on the set) required approximately 8 to 12 hours of training time.

Table 3: Hyperparameter settings for the different model sets considered.

Group	Description	Param	Subsample Size	Label Corruption	Scheduler Steps	Learning Rate	Batch Size	Warmup Epochs	Max Epochs
CIFAR10 CNN	corrupt low data	Standard	0.1	0.1	5	0.1	256	100	1000
	full batch	MFP	0.9	0.2	50	1.2	54001	1000	10000
	corrupt large data	MFP	0.9	0.2	5	0.6	4096	100	1000
MNIST one layer	corrupt low data	MFP	0.1	0.2	5	0.15	512	100	1000
	clean large data	MFP	0.9	0.0	5	0.6	4096	100	200
	clean low data	MFP	0.1	0.0	5	0.15	512	100	200
	standard param	Standard	0.9	0.0	5	0.4	4096	100	200
MNIST two layer	fixed subpreds	MUP	0.9	0.0	None	0.05	4096	100	500
	varying subpreds	MUP	0.9	0.0	None	0.05	4096	100	500
Fashion MNIST	corrupt large data	MFP	0.9	0.2	5	0.4	4096	100	1000
California Housing	clean large data	MFP	0.9	0.0	5	0.15	4096	0	2000
	clean low data	MFP	0.01	0.0	None	0.04	4096	0	1500
	standard param	Standard	0.9	0.0	5	0.0007	2048	0	1000

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide further experimental evidence that diversity acts as an implicit regularizer. Additionally, we provide experimental results for other choices of parameterization.

The subsections of this appendix are organized as follows. We first consider three additional experimental configurations of MLPs trained on MNIST: In Appendix C.1, we study the effects of full batch training versus mini-batch training, before analyzing the small versus large data limit in Appendix C.2. This is then followed by Appendix C.3, where we consider two-hidden layer neural network using μP parameterization. After this, we move on to additional datasets and consider Fashion MNIST in Appendix C.4, and the regression task consisting of the California housing dataset in Appendix C.5. We then consider results for both MNIST and the California housing dataset when using the standard parameterization in Appendix C.6. Finally, in Appendix C.7, we analyze the problem of subpredictor allocation in a neural network.

1080
1081

C.1 THE EFFECT OF MINI-BATCH SGD

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

As discussed in Section 1, there are other sources of implicit regularization due to the learning process. For example, it has been shown that SGD implicitly regularizes the model through a modified loss function of the infinitesimal version; in particular, the loss function receives two modifications, namely, a term that penalizes the norm of the full batch gradient and a term that penalizes the variability of the mini-batch gradients (Smith et al., 2021). In Section 5, we reduced the effects of this additional implicit regularization by using full batch training. This allowed us to study the implicit regularization of diversity in the absence of the additional source of implicit regularization⁵. In this section, we extend this result to mini-batch training, which allows us to verify whether the same trends hold when the implicit regularization of SGD is also present. It also provides additional insight into the effects of using mini-batch versus full batch training on the bias, variance, and diversity of the neural networks.

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
11041105
1106
1107
1108
1109
1110

Figure 5: The variance, risk, and absolute value of the diversity residual for label corrupt large data MNIST using mini-batch training (left) versus full batch training (right). Note that, for 5 subpredictors in the right plot, the risk is higher than the variance and the diversity. This is due to the fact that the diversity residual starts off as positive and then, for more subpredictors, becomes negative.

1111
1112
1113
1114
1115

Setup We train a one-layer MLP on MNIST with mini-batch SGD using the same setup as that of the full-batch MNIST MLP presented in Section 5. We then estimate the bias, variance, and diversity and compare the two sets of results. See the “MNIST one layer - corrupt large data” row in Table 3 for hyperparameter details.

1116
1117
1118
1119
1120
1121
1122

Results Figure 5 shows the variance, risk, and absolute value of the diversity residual for mini-batch training (left) and full batch training (right) on label corrupted MNIST. For the case of mini-batch training, at the critical regime (approximately 100 subpredictors), the neural network interpolates the training data (zero training loss) and, similarly, for the models in the overparameterized regime. In contrast, for full batch training, the models struggle to interpolate the training data, with the interpolation point being shifted to 500 subpredictors. This is mainly due to the optimization being unstable for full batch training (Geiping et al., 2022).

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

For both the mini-batch training and full batch training, we observe that the variance rapidly increases once a model interpolates the training data, as previously reported. However, for mini-batch training, we also observe that both the variance and diversity starts to naturally decrease after 500 subpredictors where, for full batch training, both keep increasing. The decrease of the variance error for mini-batch training is likely due to the additional implicit regularization. However, despite this decrease, we also observe that the gap between the variance and the diversity residual decreases when we use mini-batch training (and thus the risk is lower). This suggests that mini-batch training has an overall positive effect on the diversity of the subpredictors. We believe that an interesting direction of research would be to better understand the connection between the diversity of the subpredictors and mini-batch training.

1133

⁵However, note there are still other sources of implicit regularization present even when using full batch training – see for example Barrett & Dherin (2021).

1134
1135

C.2 VARYING DATA SIZE AND LABEL CORRUPTION

1136
1137
1138
1139
1140
1141
1142
1143

In Section 5, we studied the effect of diversity on neural networks trained on label corrupted MNIST. The label corruption allows for a visible second descent of the risk curve. This allowed us to study the effect of diversity when transitioning between the underparameterized regime, the critical regime, and the overparameterized regime. In this section, we extend these results and consider additional configurations, namely 1) the low data limit, and 2) MNIST without label corruption (clean MNIST). By comparing these variants we are able to determine the interplay between the estimated bias, variance, and diversity in different training scenarios. Importantly, it allows us to verify whether the diversity still implicitly regularizes the variance under different training configurations.

1144
1145

Setup We compare the following four sets of models:

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

- **Label corrupted with large data.** The same (mini-batch SGD) set from Appendix C.1, where each trial model is trained on a random 90% subset of the MNIST training set, and 20% of the samples have a randomly assigned different label.
- **Label corrupted with small data.** The same as above, but now each trial is trained on a mere 10% subset of the training data. We expect this modification to significantly increase the variance and increase the risk.
- **Clean with large data.** For this set, we do not introduce any label noise, and each model is trained on a 90% subset of the training data. With clean data, we no longer expect to observe a double descent on the risk curve. This allows us to determine the effects of the diversity regularization when the risk is a monotonically decreasing function of the number of subpredictors. Additionally, it allows us to determine whether the increased diversity observed in Section 5 is merely a side-effect of noisy labels.
- **Clean with small data.** The clean counterpart to the label corrupted small dataset of models.

1160
1161
1162
1163
1164

For all of these sets, the training setup is kept the same as described earlier in Section 5, except that we employ mini-batch SGD and adjust the hyperparameters to ensure proper convergence. See Table 3 for the exact settings. Similarly, we again estimate the bias, variance, and diversity in the same fashion. The results of this analysis for all four sets is shown in Figure 6 with a shared y-axis.

1184
1185
1186
1187

Figure 6: The estimated bias-variance-diversity decomposition for clean (left) and label corrupted (right) MNIST with large (top) and small (bottom) data. Note that the y-axis is shared across all plots.

1188 **Results** We first compare the risk curves of these four sets. When comparing the clean models
 1189 with the corrupt (left to right), it is clear that the label corruption results in increased risk, and
 1190 also the familiar curve which shows a double descent. As expected, the clean models do not show
 1191 this double descent and the risk decreases as the number of subpredictors is increased (it is well
 1192 established in prior work that a double descent is typically not easily observed without introducing
 1193 label corruption (Nakkiran et al., 2020; Somepalli et al., 2022)). Comparing the large data models
 1194 versus the small data models, it is evident that the risk is increased when the size of the dataset is
 1195 reduced. For the label corrupted models, we also observe that the point of highest risk has shifted
 1196 from 100 subpredictors with the large data to 50 subpredictors with the small data. This too is to be
 1197 expected, as less capacity is required to fit a smaller number of samples, i.e. the interpolation regime
 1198 has shifted.
 1199

1200 When considering the diversity curves, we observe that all four sets shows similar behavior to that
 1201 observed earlier: The diversity closely tracks the bias error, and the diversity is larger than this bias.
 1202 In order to do a more fine-grained comparison, we again plot the absolute value of the diversity
 1203 residual and the variance instead of all three terms separately. This is shown in Figure 7. Note that
 1204 the y-axis is now on a linear scale.
 1205

1226 Figure 7: The estimated diversity residual decomposition for clean (left) and label corrupted (right)
 1227 MNIST with large (top) and small (bottom) data. Note that the y-axis is shared across all plots and
 1228 on a linear scale.
 1229

1230 Armed with this visualization, let us once again consider the differences in risk observed between the
 1231 different sets:
 1232

- **Clean versus corrupt** (left to right comparison): For the corrupt sets, we observe that the variance is significantly larger than their clean counterparts. Interestingly, we observe that the diversity residual is also significantly larger. However, the difference in risk between the two sets can be explained by the fact that the diversity for the clean models appears to grow faster in comparison to the variance, and therefore the ‘gap’ between the two terms is smaller.
- **Large data versus small data** (top to bottom comparison): Similarly to above, we observe increased variance for the small data models. Again, we also observe a corresponding increase in the diversity residual, however the gap between the two terms remains larger for the small data models.

1242 It is also interesting to note that for the clean large dataset of models, we still observe a rapid increase
 1243 in the diversity and variance as the model width transitions from the under-parameterized to the
 1244 over-parameterized regime. This is highlighted by the zoomed region in the top left of Figure 7. This
 1245 shows that the regularization effect of the diversity is not merely an artifact of noisy labels. Taken
 1246 together, we observe the following for all four sets: 1) the diversity closely tracks the bias, 2) the
 1247 diversity grows as the variance grows (i.e. the diversity regularizes the variance), and 3) the relative
 1248 size between the variance and diversity explains the observed risk. In conclusion, these results support
 1249 our findings expressed in Section 5.

1250 C.3 TWO-HIDDEN LAYER MLPs

1251 In terms of MLPs, we have relied on shallow networks to demonstrate the bias-variance-diversity
 1252 decompositions and the effect of diversity on the variance error. In this section, we study the
 1253 influence of depth in the neural network. For deep neural networks, we used the μP parameterization
 1254 scheme. We consider a two-hidden layer neural network with hidden widths $d_1, d_2 \in \mathbb{N}$. For this
 1255 parameterization, we observe that the subpredictors contains a factor of $\sqrt{d_2}$ in their definitions.
 1256 Hence, the subpredictor outputs might diverge as a function of width in the last hidden layer.

1257 **Shallow versus Deep** Recall that the subpredictors are determined by the hidden nodes of the
 1258 last hidden layer, multiplied by an outgoing weight. In contrast to the shallow neural network, the
 1259 subpredictors now share weights (the weights that extend from the input layer to the first hidden
 1260 layer). Thus, the diversity of the subpredictors may be impacted. Additionally, for a fixed second
 1261 hidden layer width d_2 , we can now vary the capacity of each subpredictor by varying the width d_1 of
 1262 the first hidden layer. This may impact the bias and variance error of each subpredictor.

1263 **Setup** We consider two experiments for a two-hidden layer neural network on clean MNIST
 1264 (hyperparameter details can be found in Appendix B.2). In the first experiment, we fix the number
 1265 of subpredictors in the neural network by fixing $d_2 = 100$ and we vary the width of the first hidden
 1266 layer d_1 over values 5, 10, 50, 100, 500, 1000. For the second experiment, we vary the number of
 1267 subpredictors through d_2 while keeping the width of the first layer fixed to $d_1 = 100$, which can be
 1268 considered as the rough MLP equivalent of our CNN experiment in Section 5.

1282 Figure 8: The variance, risk, and absolute value of the diversity residual for two layer MLPs trained
 1283 on MNIST. Left: Fixed subpredictors - First layer with a varying capacity and second layer with a
 1284 fixed 100 subpredictors. Right: Fixed capacity - First layer with a fixed width of 100 and a second
 1285 layer with a varying number of subpredictors.

1286 **Results** Figure 8 shows the variance, risk, and absolute value of the diversity residual for the
 1287 networks with a fixed number of subpredictors (left) and fixed capacity (right). We note that the
 1288 fixed capacity two layer networks show a curve similar to what we've observed earlier: the variance
 1289 increases as the number of subpredictors increases, but this is matched by a larger increase in the
 1290 diversity residual and the risk decreases. On the other hand, we see a different trend on the left side of
 1291 Figure 8. We observe that, for the fixed number of subpredictor networks, that both the variance and
 1292 diversity decreases as the capacity of the subpredictors increases. We suspect that this is likely due to
 1293 the fact that the subpredictors now share weights among themselves which causes the subpredictors
 1294 to be more correlated with each other and, hence, less diverse. Despite this, we note that the diversity
 1295

1296 residual remains positive and therefore still regularizes the variance for subpredictors larger than 100
 1297 nodes (note that the log scale of the graph exaggerates the difference between the variance error and
 1298 the diversity, especially for smaller values).

1299 Although we have captured the effect of diversity for subpredictors defined through the final layer of
 1300 the neural network, we hypothesize that there are further hidden diversity effects when the network
 1301 has depth, which may help explain why the variance naturally decreases when we vary the width of
 1302 the first hidden layer. We believe that the identifications we used in Section 4.2 can, in principle,
 1303 be extended to the level of subpredictors by treating a subpredictor as a combiner and repeating the
 1304 procedure to identify new subpredictors that are defined by the first hidden layer.

1306 C.4 FASHION MNIST

1308 In this section, we consider one-layer MLPs trained on the fashion MNIST dataset (FMNIST) (Xiao
 1309 et al., 2017) This allows us to verify our MNIST results on a different dataset.

1311 **Setup** We again train single hidden layer neural networks using the mean-field parameterization
 1312 and vary the number of subpredictors by varying the width of the neural network. We use 20% label
 1313 corruption to induce a double descent. Additional hyperparameter details concerning the training of
 1314 the models can be found in Table 3.

1326 Figure 9: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposition
 1327 (right) for models with an increasing number of subpredictors trained on label corrupted Fashion
 1328 MNIST. The estimates are calculated over 50 trials for each model, where each trial is trained on a
 1329 randomly sampled 90%.

1332 **Results** Figure 9 shows the usual bias-variance decomposition (left) and the bias-variance-diversity
 1333 decomposition (right). Similar to the MNIST experiments, for the usual bias-variance decomposition,
 1334 we observe that initially the bias decreases and the variance increases to produce a U-shaped risk
 1335 curve. Then, at the critical interpolation point at 500 subpredictors, the risk curve produces a peak and
 1336 starts to display a second descent. Similarly, we again find that the variance inexplicably decreases
 1337 after the interpolation point. Interestingly, we also find that the bias decreases up to 50 subpredictors,
 1338 then increases up to 500 subpredictors, and then decreases slowly again. In contrast, for the bias-
 1339 variance-diversity decomposition, we observe the same pattern as with our other experiments, namely,
 1340 that bias, variance, and diversity tends to increase as we vary the number of subpredictors.

1341 In Figure 10, we plot the absolute value of the diversity residual. Similar to our other experiments, we
 1342 observe that the diversity residual tracks the variance error and regularizes it to produce the resulting
 1343 risk curve.

1345 C.5 CALIFORNIA HOUSING DATASET

1347 In this appendix, we confirm our bias-variance-diversity decomposition for a regression task using
 1348 squared error loss as well as the implicit regularization due to diversity. In particular, we use the
 1349 popular California Housing dataset (Pace & Barry, 1997). We performed two types of experiments
 where we used the full training set as well as a small data limit, similar to Appendix C.2, although we

Figure 10: The estimated bias-variance-diversity decomposition (left) and absolute value of the diversity residual (right) for models with an increasing number of subpredictors trained on label corrupted Fashion MNIST. The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled 90%.

do not consider artificial label corruption. In the small data limit, most of our models are significantly in the overparameterized regime.

C.5.1 DATA PREPARATION AND MODELS

Data We used a train, validation, and test split of 0.6, 0.1, and 0.3, respectively. In particular, we aimed to keep the test set large in order to ensure good estimates of the bias-variance-diversity decompositions. Categorical features were one-hot encoded. Using the mean and standard deviation from the training set, we z-normalized all numerical features on both the train, validation, and test set. Any missing values were replaced with the mean.

For the trial sets used in the estimates (see Appendix B.1), we randomly subsampled 90% of the training set over different trials. Similarly, for our experiments in the small data limit, we randomly subsampled 1% of the training set.

Models In both the large data and small data experiments, we trained single hidden layer neural networks of widths 5, 10, 50, 100, 500, 1000, and 5000, using the mean-field parameterization. Importantly, for a fixed width, we used the same seed to initialize the model weights over each trial set. The training details for the experiments are given in Appendix B.2. Similar to the double descent experiments on MNIST, we aimed to minimize the training loss as far as possible.

C.5.2 DECOMPOSITIONS

Figure 11: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposition (right) for models with an increasing number of subpredictors trained on California Housing. The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled 90%.

Figure 12: The estimated bias-variance-diversity decomposition (left) and absolute value of the diversity residual (right) for models with an increasing number of subpredictors trained on California Housing. The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled 90%.

Similar to our MNIST results, we observe the same patterns in the decompositions for the California Housing dataset. Figure 11 shows the usual bias-variance decomposition versus the new bias-variance-diversity decomposition for the large dataset of models. Interestingly, although difficult to see in the plot, we observe a U-shaped curve for the risk followed by a second descent (a clear plot of the risk is shown in the left image of Figure 14) with the critical point at approximately 1000 subpredictors. This is likely due to inherent noise in the dataset. As in the MNIST double descent experiments, for the usual decomposition (left figure) we again see a decreasing bias, with the variance increasing, until about 500 subpredictors where it starts to decrease again. In contrast, for the new decomposition (right figure), we see that the bias and variance errors of the subpredictors increase as we increase width but start to plateau at 5000 subpredictors. At the same time, the diversity term also increases and its magnitude is larger than the bias and variance errors. Similar to our other experiments, to see the effect of diversity on the variance error, we plot the absolute value of the residual diversity in Figure 12. Although difficult to see in the plot, the residual diversity strongly regularizes the variance error, which results in the final observed risk curve. A slightly more clear plot can be found in the left figure of Figure 14.

Figure 13: The estimated bias-variance decomposition (left) and bias-variance-diversity decomposition (right) for models with an increasing number of subpredictors trained on a small subset of California Housing. The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled 1%.

Small data limit The patterns remain similar for the small data limit. Figure 13 shows the usual bias-variance decomposition and the new bias-variance-diversity decomposition. As with the large data case, we again see a U-shaped risk curve, with an increase in the risk up to 10 subpredictors, followed by a decrease in the risk. As before, for the left figure (bias-variance) we see that the bias steadily decreases while the variance increases up to 10 subpredictors and then starts to decrease again. In contrast, for the right figure (bias-variance-diversity), we see that the bias and variance both

Figure 14: Diversity residual plot for the large data limit (left) and the small data limit (right) of the California Housing dataset. In both cases, we see that the diversity residual strongly regularizes the variance error. Note, due to the differences in magnitudes, we use a twin-axis plot with the left axis indicating the squared error for the residual and the variance, and the right axis indicating the error for the risk.

increase but eventually plateaus after approximately 50 subpredictors. The diversity closely tracks the bias and variance errors and, as before, is greater in magnitude.

In Figure 14, we compare the absolute value of the diversity residuals for the large data limit (left figure) and the small data limit (right figure) on a twin-axis plot (left axis is squared error for the variance and the residual, while the right axis is the squared error for the risk). We observe that the diversity residual strongly regularizes the variance in both cases.

C.6 STANDARD PARAMETERIZATION

We have predominantly conducted experiments using the mean-field parameterization, while we consider μP parameterization in Appendix C.3 as part of the network depth experiments. In this appendix, we repeat the same one-layer MLP experiments on clean MNIST and California Housing for the standard parameterization. Notably, the standard parameterization has an explicit factor of d_1 that appears in the definition of the subpredictor. In the large width limit, the subpredictors might, therefore, diverge.

Figure 15: The estimated bias-variance-diversity decomposition (left) and the absolute value of the diversity residual (right) for models with an increasing number of subpredictors trained on clean MNIST using standard parameterization. The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled 90%. Note that the residual is initially positive at 5 subpredictors and then becomes negative for 10 subpredictors and higher.

Figure 16: The estimated bias-variance-diversity decomposition (left) and the absolute value of the diversity residual (right) for models with an increasing number of subpredictors trained on California Housing using standard parameterization. The estimates are calculated over 50 trials for each model, where each trial is trained on a randomly sampled 90%. Note that the residual is initially positive at 5 subpredictors and then becomes negative for 10 subpredictors and higher.

Setup We train the ‘clean large data’ variants for the MNIST and California Housing datasets of Appendices C.2 and C.5, respectively, using the standard parameterization. See the ‘standard param’ rows of Table 3 for details.

Results - MNIST In Figure 15 we show the estimated bias-variance-diversity decomposition (left) and the absolute value of the diversity residual (right) for the standard parameterization MNIST models. We see that, despite the explicit factor of d_1 that appears in the subpredictors for the standard parameterization, the bias, variance, and diversity (left) does not diverge as width is increased. Instead, all three terms show an increase until 50 subpredictors and then plateaus for higher subpredictors. As in the MFP case, we observe that the diversity residual closely tracks and regularizes the variance error.

Results - California Housing In Figure 16, we again plot the bias-variance-diversity decomposition (left) and the absolute value of the diversity residual (right). We now see that the bias, variance, and diversity terms increase as a function of the number of subpredictors without producing a plateau as in our other experiments. This suggests that the explicit d_1 factor that appears in the definition of the standard parameterization subpredictors starts to dominate as the width of the neural network (in other words, d_1) increases. However, despite the diverging variance, we still find that the diversity residual closely tracks and regularizes the variance error.

C.7 SUBPREDICTOR ALLOCATION

For each model architecture, a centroid is estimated per subpredictor across trials. Given that nodes in a dense layer can occur in any order without affecting model output, how do we know the correct subpredictors are matched across trials? From Theorem 1, sub-predictor allocation will not affect the value of the diversity estimate, but could have an impact on the balance between the bias and variance estimates. We therefore explore additonal ways to allocate subpredictors to centroids (across trials) and measure the effect of these allocations on variance: the best allocation is expected to produce the lowest variance. Specifically, we consider different measures of similarity, related to either the individual predictions or the weight structure of subpredictors.

Setup Trials are re-organised in a sequential manner. When re-organising the subpredictors in a single trial, a prototype trial is first constructed. The simiarlity metric is then applied to all d_l subpredictors, across all samples, resulting in a $d_l \times d_l$ matrix. Using this matrix, the best-matching estimators are paired in a greedy manner, resulting in a new ordering applied to the specific trial.

We explore different setup variants using the ‘small data’ California Housing regression task models. Among others, we investigate:

1566

- **Prototype:** Selecting either the mean over trials or the first trial as the prototype.

1567

- **Prediction matching:** The predictions for all samples are compared using either correlation

1568

- among predictions, or prediction loss.

1569

- **Function distance:** The weight structure of each sub-predictor is used directly, to determine

1570

- the function that the sub-predictor applies to the input. This function vector is compared

1571

- using cosine similarity. Either the whole weight structure is considered (*full*), or only the

1572

- first layer (*L1*).

1573

1574 **Results** We show the estimated variance using these allocations in Figure 17. Similar results

1575 were obtained using additional variants, such as using the magnitude (rather than signed value)

1576 and considering different forms or normalization: trends are similar but no variant obtains a better

1577 predictor than the initial ordering. At larger layers, this becomes very similar to the weight-based

1578 ordering if only the first layer is considered. We find that the best indicator is the value with which

1579 the sub-predictor was initialized. This is the allocation used in all reported experiments.

1580

1594 Figure 17: Estimated variance as subpredictors are re-ordered using different metrics: *init* is the

1595 original ordering; *correlation* or *loss* indicates different ways to measure similarity; *trial0* or *mean*

1596 indicates different choices of prototype when using predictions over samples, and *full* or *L1* indicate

1597 that the weight structure was used, either the full structure or only the first layer. Note that the

1598 variance of *init* (black) is always lowest.

1599