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ABSTRACT

Small Language Models (SLMs) are attractive for cost-sensitive and resource-
limited settings due to their efficient, low-latency inference. However, they often
struggle with complex, knowledge-intensive tasks that require structured reasoning
and effective retrieval. To address these limitations, we propose FutureMind, a
modular reasoning framework that equips SLMs with strategic thinking-pattern
priors via adaptive knowledge distillation from large language models (LLMs).
FutureMind introduces a dynamic reasoning pipeline composed of four key mod-
ules: Problem Analysis, Logical Reasoning, Strategy Planning, and Retrieval
Guidance. This pipeline is augmented by three distinct retrieval paradigms that
decompose complex queries into tractable subproblems, ensuring efficient and
accurate retrieval execution. Extensive experiments on multi-hop QA benchmarks,
including 2WikiMultihopQA, MuSiQue, Bamboogle, and Frames, demonstrate the
superiority of FutureMind. It consistently outperforms strong baselines such as
Search-o1, achieving state-of-the-art results under free training conditions across
diverse SLM architectures and scales. Beyond empirical gains, our analysis reveals
that the process of thinking-pattern distillation is restricted by the cognitive bias
bottleneck between the teacher (LLMs) and student (SLMs) models. This provides
new perspectives on the transferability of reasoning skills, paving the way for the
development of SLMs that combine efficiency with genuine cognitive capability.

1 INTRODUCTION

In recent years, driven by massive datasets and scalable computing, Large Language Models (LLMs)
have achieved outstanding problem-understanding and problem-solving performance on a wide range
of general tasks such as commonsense inference (Yang et al., 2025), code generation (Guo et al.,
2024), and mathematical reasoning (Shao et al., 2024) through pre-training (Raffel et al., 2020),
instruction tuning (Wei et al., 2022a), reinforcement learning from human feedback (RLHF) (Touvron
et al., 2023; OpenAI, 2023). However, once problems become time-sensitive or require domain-
specific knowledge (Peng et al., 2023; Li et al., 2023b), model performance is constrained by their
inherent, static parameters, exposing shortcomings like stale knowledge and insufficient domain
coverage. This limitation highlights the necessity of introducing external knowledge sources during
reasoning. Against this backdrop, Retrieval-Augmented Generation (RAG)(Gao et al., 2023; Xiong
et al., 2025) has emerged: by supplying the model with retrieved documents before inference, it
effectively enhances both the accuracy and domain adaptability of language models. Yet, single-step
retrieval often struggles with knowledge-intensive, multi-hop reasoning tasks (Yang et al., 2018; Ho
et al., 2020b). In response, recent studies have proposed "deep search" paradigms (Li et al., 2025c;
Alzubi et al., 2025) that emphasize dynamic interaction between reasoning and retrieval: during
problem solving, the model continuously decomposes the question, iteratively retrieves information,
and aggregates evidence until the answer converges.

As problem complexity grows, increasing model size or memory alone is insufficient; effective
reasoning also requires explicit "retrieval logic" to determine when, what, and how to retrieve
relevant evidence (Schick et al., 2023; Zhang et al., 2024). Search-o1 (Li et al., 2025a) inte-
grates retrieval into the chain-of-thought, while ReAct (Yao et al., 2023) formalizes a "reason-
ing–acting–observing–reasoning" paradigm for targeted external information (Li et al., 2025b). These
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Figure 1: Overall performance comparison of FutureMind with other methods across four multi-hop
QA benchmarks. The left panel depicts the performance on a 3B small language model (SLM), while
the right panel illustrates the performance on a 72B large language model (LLM).

approaches illustrate a long-standing consensus: LLM capabilities should be activated dynamically
and on demand during inference (Wang et al., 2024b; Jin et al., 2024b). For autonomous agents, this
shifts the objective from answering directly to reasoning systematically—analyzing, decomposing,
and integrating evidence for deeper insight and more robust strategies.

However, implementing explicit retrieval logic places substantial demands on model capabilities.
LLMs are proficient in multi-turn reasoning and retrieval but incur prohibitive latency and com-
putational costs (Wan et al., 2023; Wang, 2024). In contrast, SLMs offer notable advantages in
efficiency, cost, and privacy, but their limited memory, weak context retention, and restricted struc-
tured reasoning hinder effective problem decomposition, iterative evidence retrieval, and multi-hop
aggregation (Wang et al., 2024a; Xu et al., 2025). Consequently, achieving an optimal balance
between reasoning effectiveness and computational efficiency remains a critical and unresolved
challenge (Bai et al., 2024), particularly for resource-constrained models deployed in real-time or
privacy-sensitive scenarios.

To this end, we propose FutureMind, a training-free modular reasoning framework that enables
low-latency and high-accuracy complex reasoning without gradient updates, leveraging an adaptive
thinking-pattern distillation strategy. The name FutureMind reflects our vision for future AI systems:
even under constrained resources, the model can draw on distilled thinking-pattern priors to generalize
to high-difficulty and unseen problems with free training. FutureMind decomposes reasoning into
a four-stage pipeline—Problem Analysis, Logical Reasoning, Strategy Planning, and Retrieval
Guidance—which sequentially address whether to retrieve, what to retrieve, how to integrate
retrieved evidence, and how to generate a coherent answer. To further reduce retrieval overhead, we
design three retrieval paradigms based on the decomposition of complex-question retrieval logic: (1)
Forward Stepwise Reasoning — progressive expansion of sub-queries; (2) Backward Constraint
Focusing — start from answer constraints and narrow search; (3) Parallel Intersection Reasoning
— run parallel sub-searches and intersect evidence. By completing the reasoning strategy within a
single turn, the framework endows models with clear planning, retrieval, and knowledge-synthesis
capabilities, bridging the gap between reasoning depth and efficiency. The contributions of this paper
are summarised as follows:

1. A training-free modular reasoning framework: We propose FutureMind, a four-stage
pipeline (Problem Analysis, Logic Reasoning, Strategy Planning, Retrieval Guidance)
supplemented by a dynamic thinking module that provides explicit knowledge support for
structured reasoning. The framework is applicable to both LLMs and SLMs, balancing
accuracy and efficiency, as shown in Figure 1.

2. Composable retrieval strategies: We design three adaptive retrieval paradigms (forward
stepwise reasoning, backward constraint focusing, parallel intersection reasoning) that
decompose complex multi-hop questions into manageable sub-queries and perform evidence
integration efficiently.
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3. Systematic experiments and cognitive insights: Experiments on four multi-hop QA
benchmarks demonstrate that FutureMind consistently improves performance across models
of various architectures and scales, with the largest gains on SLMs, establishing a new state
of the art among training-free methods. Moreover, we identify a "cognitive-bias bottleneck":
once the teacher’s plan surpasses the student’s capacity, distillation becomes lossy, snapping
reasoning chains and amplifying noise. This emphasizes the importance of teacher-student
compatibility over raw model size, offering guidance for the design of lightweight yet
scalable reasoning systems.

2 RELATED WORK

Large Language Models and Retrieval. LLMs (Achiam et al., 2023; Team, 2024) exhibit strong
reasoning and code-generation abilities (Guo et al., 2025; 2024), but remain prone to hallucination
due to their reliance on static parametric knowledge (Zhang et al., 2023). To mitigate this, external
search is widely adopted via (i) retrieval-augmented generation (RAG) (Gao et al., 2023), which
integrates retrieved evidence into the generation process, and (ii) search-as-a-tool (Schick et al.,
2023), where LLMs explicitly interact with a search engine through prompting (Trivedi et al.,
2022; Schick et al., 2023) or fine-tuning (Schick et al., 2023). However, RAG’s static, single-stage
retrieval—i.e., a non-adaptive, one-shot lookup that ignores query complexity and intermediate
generation signals—can return irrelevant or weakly informative passages, impeding compositional
and multi-hop reasoning (Jin et al., 2024a); tool-based approaches, though more interactive, still
struggle to retrieve evidence that is sufficiently relevant and precise for complex, multi-step inference.

Small Language Models and Cognitive Transfer. SLMs are attractive for cost-sensitive, low-
latency, and privacy-preserving applications, yet they exhibit pronounced deficiencies in memory,
context propagation, and structured, multi-step reasoning (Fu et al., 2023; Hsieh et al., 2023). To
close this gap, Cognitive-Transfer techniques attempt to migrate reasoning behaviors from larger
models. CoT Distillation transfers step-by-step traces (Wei et al., 2022b; Wang et al., 2023; Fu
et al., 2023) but provides limited adaptivity and can be brittle under distributional or stylistic shift.
Prompt Distillation reduces stylistic mismatch by extracting compact prompts (Li et al., 2023a;
Chen & Feng, 2023), yet typically encodes mostly static knowledge templates that do not support
dynamic planning. Retrieval-augmented transfers such as Meta-RAG improve efficiency through
external knowledge (Mombaerts et al., 2024), but commonly treat retrieval as a fixed, non-adaptive
pipeline and thus fail to fully integrate retrieval with adaptive reasoning. Overall, these approaches
only partially mitigate SLMs’ reasoning deficits and lack the generalizability and dynamic adaptivity
required for robust problem decomposition, iterative retrieval, and multi-hop aggregation—motivating
methods that endow SLMs with lightweight, structured reasoning routines and strategic retrieval
policies.

3 METHODOLOGY

3.1 OVERVIEW

FutureMind is a modular reasoning framework that employs adaptive knowledge distillation to
transfer structured reasoning and retrieval strategies from teacher models to student models. Unlike
conventional distillation methods, which primarily focus on compressing knowledge representations,
FutureMind targets the distillation of systematic thinking patterns. Specifically, it captures the
complete logical chain from problem definition to retrieval guidance, abstracting these patterns
into lightweight, reusable strategic thinking-pattern priors. This design enables student models,
particularly SLM, to perform adaptive reasoning and deep, structured retrieval planning, thereby
achieving superior retrieval performance even in resource-constrained environments.

As depicted in Figure 2, FutureMind is coordinated by the Thinking Module, which dynamically
generates the optimal retrieval strategies based on task characteristics, data availability, and efficiency
constraints. It of four core modules: Problem Analysis, Logical Reasoning, Strategy Planning,
and Retrieval Guidance, achieving modularity, interpretability, and end-to-end optimization.

3
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Problem Analysis 
Let’s break down the problem to identify its core 
conflict and key conditions.

1. Core Objectives

3. Target Outcomes

2. Intrinsic Attributes

4. Critical Conditions

Sequence

Keyword Resource ScreeningQuerySequence

query 1

query n

query 1

query n
query 2

Retrieval Guidance
Translate the strategy into actionable steps, defining keywords, screening criteria, and execution plans.

Strategy Planning
Develop an efficient retrieval strategy based on problem characteristics and available resources.

��:  Forward Stepwise Reasoning
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��:  Parallel Intersection Reasoning
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Logical Reasoning
Use first principles to deduce step-by-step and clarify the logical sequence and priorities.

K1 : [critical condition] K2 : [critical condition] Km : [critical condition]...K3 : [critical condition]

Problem Analysis Logical Reasoning Strategy Planning Retrieval Guidance

FUTUREMIND

Figure 2: Overview of the FutureMind framework.

Formally, FutureMind is a four-stage pipeline coordinated by the Thinking Module M:

F = M⟨P,L,S,R⟩, (1)

where P , L, S, and R represent Problem Analysis, Logical Reasoning, Strategy Planning, and
Retrieval Guidance, respectively.

For clarity and reproducibility, we further provide module-wise Instructions and execution examples
in the Appendix E.5.1- E.5.4, illustrating how each component operates within the overall framework.

Subsequently, we provide a comprehensive overview of the four core modules of FutureMind.

3.2 MODULE DEFINITIONS

3.2.1 PROBLEM ANALYSIS P

The Problem Analysis module initiates the reasoning pipeline by decomposing the input query
x into its fundamental components. This decomposition yields a structured representation that
enables subsequent reasoning and decision-making processes. Specifically, this module identifies the
following key elements:

P(x) → (O,A, T , C), (2)
where:

• O represents the core objectives, which define the primary direction and desired outcomes
of the problem-solving process.
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• A denotes the intrinsic attributes, characterizing the inherent properties and conditions of
the problem.

• T specifies the target outcomes, indicating the expected results or output types upon problem
resolution.

• C = {C1, C2, . . . , Cn} captures the key dimensions, which are critical conditions or factors
within the problem, each Ci representing a specific dimension.

By systematically decomposing the input query into these components, the Problem Analysis module
establishes a clear, structured foundation for the subsequent reasoning stages.

3.2.2 LOGICAL REASONING L

The Logical Reasoning module applies a first-principles approach to derive core problem mechanisms.
It identifies the most fundamental principles and applies deductive reasoning to construct a coherent
abstraction. Unlike heuristic or analogy-based reasoning, this approach grounds inference in causal
structures, reducing reliance on incomplete prior knowledge. Formally:

L(O,A, T , C) → (M,K), (3)
where:

• O, A, T , and C denote the core objectives, intrinsic attributes, target outcomes, and key
dimensions extracted from Problem Analysis.

• M represents the mechanistic understanding, capturing causal relations and fundamental
principles governing the system.

• K = {K1,K2, . . . ,Km} is an ordered set of critical conditions, prioritized by logical
dependency and discriminative importance.

Grounding reasoning in first principles improves interpretability and adaptability, especially in
complex or knowledge-intensive tasks where heuristics are insufficient. By decomposing the problem
into basic components, identifying key conditions, and arranging them in order of logical priority, the
module converts the structured input from Problem Analysis into a mechanistic abstraction (M,K).
This abstraction serves as the foundation for Strategy Planning and Retrieval Guidance.

3.2.3 STRATEGY PLANNING S

The Strategy Planning module bridges the mechanistic insights from Logical Reasoning and the nor-
mative layer of Retrieval Guidance. It dynamically determines the optimal retrieval strategy R∗ based
on the mechanistic understanding M and the prioritized condition sequence K = {K1,K2, . . . ,Km}.
Formally:

S(M,K) → R∗, R∗ = arg min
R∈Pcand

F(R;M,K), (4)

where:

• M: mechanistic understanding derived from logical reasoning.
• K = {K1,K2, . . . ,Km}: prioritized sequence of conditions.
• Pcand = {RA,RB ,RC}: candidate pool of reasoning strategies.
• F(·): a cost function evaluating efficiency, constraints, interdependencies, and data avail-

ability. In this work, F specifically refers to the function implemented by the teacher model
to conduct a preliminary evaluation of retrieval plans, aiming to generate recommendations
for the optimal retrieval strategy.

Based on insights from knowledge-intensive tasks, we design three distinct retrieval paradigms
(Figure 4) to enable more efficient and accurate execution. The Strategy Planning module dynamically
selects among them based on the condition set topology K.

Let U denote the candidate space. For each condition Ki, we define an evaluation function ϕ(Ki, x) ∈
{0, 1} that checks if candidate x ∈ U satisfies Ki. Intermediate sets are defined as:

Xi = {x ∈ U | ϕ(Ki, x) = 1}, X∗ =

m⋂
i=1

Xi. (5)

5
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Strategy A: Forward Stepwise Reasoning (RA) Applied when early conditions are broad yet
effective in pruning. Constraints are applied sequentially from general to specific:

X1 = {x ∈ U | ϕ(K1, x) = 1}, Xj = {x ∈ Xj−1 | ϕ(Kj , x) = 1}, X∗ =

m⋂
i=1

Xi. (6)

Strategy B: Backward Constraint Focusing (RB) Adopted when downstream conditions are
highly selective. Reasoning starts with the tightest constraint and broadens progressively:

Xm = {x ∈ U | ϕ(Km, x) = 1}, Xj = {x ∈ Xj+1 | ϕ(Kj , x) = 1}, X∗ =

m⋂
i=1

Xi. (7)

Strategy C: Parallel Intersection Reasoning (RC) Best suited for independent or orthogonal
conditions. All constraints are processed in parallel, then intersected:

Xi = {x ∈ U | ϕ(Ki, x) = 1}, X∗ =

m⋂
i=1

Xi. (8)

By deeply understanding knowledge-intensive problems, the module adaptively selects the optimal
retrieval strateg, ensuring both efficient and precise retrieval execution.

3.2.4 RETRIEVAL GUIDANCE R

The Retrieval Guidance module serves as a normative layer that transforms abstract reasoning and
the selected retrieval strategy into structured instructions for execution. Unlike direct retrieval, this
module generates prescriptive guidelines that specify how retrieval should be performed.

Given the mechanistic understanding M, the prioritized conditions K, and the chosen strategy R∗,
the module outputs a set of retrieval guidelines:

R(M,K,R∗) → Γ, (9)

where Γ = {γ1, γ2, . . . , γq} is a set of normative principles guiding the retrieval process(e.g., priority
order, source preferences, evaluation criteria).

The guidance is structured into five key, complementary stages:

• Keyword Guidance. Extract core entities, attributes, and relations from K and specify the
lexical and semantic variants that retrieval should prioritize. This guidance outlines the
dimensions along which queries can vary, enabling adaptive retrieval across domains while
maintaining alignment with the underlying reasoning structure.

• Resource Guidance. Indicate categories of information sources (e.g., academic databases,
industry reports, policy documents) ranked by relevance M and credibility, guiding retrieval
toward reliable knowledge domains.

• Sequence Guidance. Provide recommendations on the ordering of retrieval steps in accor-
dance with R∗. For instance, a Forward Stepwise strategy begins with broad, high-recall
repositories to establish initial coverage before moving to domain-specific collections. Con-
versely, a Backward Constraint strategy starts with highly selective regulatory to anchor the
search with high-precision evidence, then expands outward as needed.

• Query Guidance. Provide structural templates for query formulation (e.g., Boolean patterns,
semantic expansions, hierarchical constraints), emphasizing inclusiveness in initial searches
and progressive narrowing in later stages. This guidance offers adaptable design principles
rather than fixed query strings.

• Screening Guidance. Define the principles for evaluating retrieved results, including
their relevance to M, source credibility, and methodological rigor. The module specifies
evaluation criteria conceptually.

By structuring guidance around keywords, resources, sequencing, query formulation, and evaluation,
the module bridges cognitive strategy with retrieval while maintaining executional independence.

6
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on four widely-used multi-hop question answering (QA)
benchmarks: 2WikiMultihopQA (2WikiMQA) (Ho et al., 2020a), Bamboogle (Press et al., 2022),
MuSiQue (Tang & Yang, 2024), and FRAMES (Krishna et al., 2024). Specifically, we randomly
sample 500 instances from the validation sets of 2WikiMQA and MuSiQue, while evaluating on the
full test sets of Bamboogle and FRAMES.

Metrics. For evaluation, following prior work (Sun et al., 2025), we adopt two complementary
metrics: Coverage-based Exact Match (ACCE) and LLM-as-Judge (ACCL). ACCE measures
whether the predicted answer fully covers the gold reference while allowing for paraphrastic variations;
its detailed calculation formula is provided in Appendix G.1. In contrast, ACCL employs GPT-4o-
mini as an automatic evaluator to judge the semantic correctness of predicted answers relative to the
gold reference. The full evaluation prompt for ACCL is provided in Appendix F.1.

Baselines. We consider three categories of baselines: (1) Naive Generation: Generates answers
without retrieval. (2) Standard RAG (Zhao et al., 2024): Retrieves documents using the original
question as the query. (3) Search-o1 (Li et al., 2025a): Performs self-initiated retrieval using prompts.

Implementation Details. We evaluate the effectiveness of the proposed FutureMind method using
models at different architectures and scales (Qwen-2.5-3B/7B/14B/32B/72B-Instruct and Llama3.1-
8B-Instruct). For generation, we set the maximum sequence length to 32768 tokens, with temperature
= 0.0, top-p = 0.8, top-k = 20, and repetition penalty = 1.05 across all models. For retrieval, we
employ the Google Web Search API, retrieving the top k = 10 results. In experiments, FutureMind
leverages an enhanced version of Toolcall (TC), a ReAct-Style orchestration framework 1. We modify
the original TC framework by replacing its single search process with parallel search, enabling more
efficient and robust aggregation of retrieved evidence. This configuration is referred to as TC+FM.
Details of implementation are provided in Appendix E.

4.2 MAIN RESULTS

Table 1 compares the performance of different model architectures and scales across four multi-hop
QA benchmarks, under four methods: naive generation, standard RAG, Search-o1, and ToolCall-
driven FutureMind. Several key observations emerge from the results. Additional benchmark results
are presented in Table 6 in Appendix B due to space limitations.

1. Inherent Limitations of Baseline Methods. Naive generation (internal knowledge only) yields
the lowest accuracy, underscoring its inability to integrate external evidence. While standard
RAG (retrieval-enabled) cannot reliably perform multi-step reasoning and may even underperform
naive generation when reasoning integration fails. Search-o1 (reason-in-documents) enhances
retrieval quality but remains limited: small models benefit minimally, and even larger models are
constrained by these intrinsic summarization and integration capacity.

2. Effectiveness of FutureMind with Adaptive Knowledge Distillation. Unlike Search-o1’s
fixed-prompt design, FutureMind employs adaptive knowledge, enabling a more flexible and
effective problem-solving process that yields consistent performance gains. For instance, Qwen-
3B improves on Frames (ACCE: 11.77 → 18.84), Llama3.1-8B on Bamboogle (ACCL: 52.00 →
64.00), and Qwen-72B on 2WikiMQA (ACCL: 75.40 → 80.60). By providing adaptive external
strategy empowerment rather than depending solely on internal capability, FutureMind achieves
stronger and more scalable reasoning, particularly under resource-constrained settings.

3. Universal Applicability of FutureMind Across Model Architectures and Scales. TC+FM∗

achieves state-of-the-art results in nearly all settings, delivering scalable improvements across both
model architectures and parameter scales. This demonstrates FutureMind’s broad effectiveness in
enhancing multi-hop reasoning via external strategy transfer, alleviating capability bottlenecks in
resource-limited models, while maintaining strong performance in larger models.
1https://github.com/QwenLM/Qwen-Agent/
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Table 1: Main results on four multi-hop QA benchmarks. Bold denotes the best performance and
underline indicates the second best. Rows with blue background correspond to our methods TC+FM∗,
where FM∗ selects the best-performing FutureMind-enhanced variant for each base model.

Model Method 2WikiMQA Bamboogle Frames MuSiQue AVG

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

Qwen-3B

Naive Gen 16.80 17.20 20.80 24.00 5.94 8.98 3.60 4.60 11.79 13.70
Standard RAG 24.00 24.40 26.40 38.40 12.01 19.17 10.20 13.00 18.15 23.74
Search-o1 41.00 41.80 34.40 39.20 11.77 18.81 10.40 12.60 24.39 28.10
TC+FM∗ 56.40 43.80 39.20 43.20 18.84 19.42 14.20 15.20 32.16 30.41

Qwen-7B

Naive Gen 29.40 25.20 34.40 37.60 11.29 16.87 7.60 10.80 20.67 22.62
Standard RAG 30.20 29.80 42.40 52.80 15.78 24.76 13.20 16.80 25.39 31.04
Search-o1 57.80 59.80 43.20 51.20 24.63 38.34 20.80 23.80 36.61 43.29
TC+FM∗ 62.00 64.00 58.40 64.80 25.12 34.71 20.00 23.80 41.38 46.83

Qwen-14B

Naive Gen 30.40 30.80 48.80 55.20 14.81 22.82 8.80 12.40 25.70 30.30
Standard RAG 27.40 28.40 44.80 56.00 17.96 28.40 14.00 18.60 26.04 32.85
Search-o1 66.80 68.40 43.20 55.20 30.46 46.48 20.60 25.60 40.27 48.92
TC+FM∗ 71.60 75.20 70.40 72.80 34.83 49.51 24.00 28.20 50.21 56.43

Qwen-32B

Naive Gen 30.80 31.30 54.40 60.80 15.66 24.51 10.80 15.20 27.91 32.95
Standard RAG 24.60 24.40 52.80 61.60 19.78 30.95 16.20 19.60 28.35 34.14
Search-o1 68.60 71.60 60.80 67.20 34.34 54.12 22.80 27.80 46.63 55.18
TC+FM∗ 74.40 77.80 68.80 72.80 37.15 53.86 26.00 30.40 51.59 58.71

Qwen-72B

Naive Gen 38.20 38.60 60.00 67.20 21.12 32.16 12.80 18.40 33.03 39.09
Standard RAG 31.00 31.40 59.20 67.20 25.97 37.62 19.00 23.80 33.79 40.01
Search-o1 72.60 75.40 67.20 72.80 37.37 56.67 24.60 30.80 50.44 58.92
TC+FM∗ 74.20 80.60 75.20 79.20 41.38 58.59 28.40 36.60 54.80 63.75

Llama3.1-8B

Naive Gen 38.20 38.60 60.00 67.20 21.12 32.16 12.80 18.40 33.03 39.09
Standard RAG 29.20 30.40 39.20 47.20 15.05 22.82 12.20 15.20 23.91 28.90
Search-o1 54.00 56.00 46.40 52.00 24.88 37.62 15.40 18.20 35.17 40.95
TC+FM∗ 55.20 56.80 58.40 64.00 27.43 39.92 21.80 25.20 40.71 46.48

Table 2: Impact of Teacher Model Scale on Student Performance in multi-hop QA benchmarks. Bold
denotes the best performance and underline indicates the second best. Rows with blue background
correspond to the best teacher model scale for each student model.

Model Method 2WikiMQA Bamboogle Frames MuSiQue Avg

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

Qwen-3B

TC 54.20 42.40 37.60 40.00 17.96 22.94 13.00 12.60 30.69 29.49
TC+FM (3B) 42.00 30.80 28.00 30.40 11.53 10.32 7.40 8.60 22.23 20.03
TC+FM (7B) 53.00 39.60 30.40 36.00 15.78 16.26 11.20 11.40 27.60 25.82
TC+FM (14B) 55.20 45.60 40.80 42.40 17.11 18.46 12.20 12.80 31.33 29.82
TC+FM (32B) 49.20 37.00 36.00 37.60 12.26 12.01 10.20 10.40 26.92 24.25
TC+FM (72B) 56.40 43.80 39.20 43.20 17.84 19.42 14.20 15.20 31.91 30.41

Qwen-7B

TC 56.80 56.20 49.60 54.40 23.78 32.28 16.40 18.80 36.65 40.42
TC+FM (3B) 60.20 60.00 49.60 50.40 23.09 30.83 17.00 19.60 37.97 40.21
TC+FM (7B) 60.20 61.80 53.60 57.60 24.39 33.55 17.60 21.20 38.95 43.04
TC+FM (14B) 62.00 64.00 58.40 64.80 25.12 34.71 20.00 23.80 41.38 46.83
TC+FM (32B) 57.80 57.60 52.00 58.40 22.57 29.98 15.20 19.40 36.89 41.35
TC+FM (72B) 60.40 60.00 56.80 61.60 26.58 34.71 18.20 21.20 40.50 44.38

4.3 IMPACT OF TEACHER MODEL DESIGN ON TEACHER–STUDENT COGNITIVE ALIGNMENT

We systematically analyze the impact of teacher model design on student performance in knowledge
distillation (Table 2). Several consistent patterns emerge:

1. Small-scale teachers models degrade student performance. In TC+FM, using a 3B teacher
for Qwen-3B reduces average performance (ACCE: 30.69 → 22.23, ACCL: 29.49 → 20.03),
indicating that low-capacity teachers may generate noisy or misleading planning signals, hindering
transfer effectiveness.
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Table 3: Ablation study of modular components on multi-hop QA benchmarks. Bold denotes the
performance with all modules enabled.

Model Method 2WikiMQA Bamboogle Frames MuSiQue Avg

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

Qwen-7B

All Modules 62.00 64.00 58.40 64.80 25.12 34.71 20.00 23.80 41.38 46.83
- w/o Problem Analysis 58.20 57.40 56.00 62.40 24.93 34.57 16.00 21.00 38.78 43.84
- w/o Logical Reasoning 60.40 59.00 49.60 53.60 24.59 34.21 19.20 23.00 38.45 42.45
- w/o Strategy Planning 56.40 57.20 49.30 51.20 22.63 33.10 17.60 19.80 36.48 40.33
- w/o Retrieval Guidance 59.20 60.40 57.60 60.00 23.39 33.34 18.40 20.60 39.65 43.59

Table 4: Ablation study of retrieval strategies on multi-hop QA benchmarks. Bold denotes the
performance with all three retrieval strategies distilled from the Qwen-14B teacher.

Model Method 2WikiMQA Bamboogle Frames MuSiQue Avg

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

Qwen-7B

All Strategies 62.00 64.00 58.40 64.80 25.12 34.71 20.00 23.80 41.38 46.83
- w/o Strategy A 57.40 57.80 54.20 60.00 24.64 32.16 16.60 21.20 38.21 42.79
- w/o Strategy B 58.80 58.00 57.60 61.60 25.09 34.47 18.40 22.60 39.97 44.67
- w/o Strategy C 60.40 59.00 54.40 60.80 24.72 33.37 17.40 21.40 39.23 43.64

2. Mid-scale teachers provide optimal alignment. Both student models benefit most from the
14B teacher(Qwen-3B: ACCE: 31.33, ACCL: 29.82; Qwen-7B: ACCE: 41.38, ACCL: 46.83),
outperforming the 32B variant and matching or exceeding the 72B model on average.

3. Cognitive compatibility outweighs raw scale. Although the 72B teacher excels in certain sub-
tasks, it does not consistently surpass the 14B teacher on average (Qwen-7B student: 72B teacher
ACCE: 40.50, ACCL:44.38 < 14B teacher ACCE: 41.38, ACCL: 46.83), suggesting that cognitive
alignment between teacher and student plays a more critical role in distillation effectiveness than
raw scale.

The "cognitive bias bottleneck“ further demonstrates that overly complex teacher plans may fail to
transfer reasoning capabilities to smaller students, as strategic information loss can disrupt critical
reasoning chains or amplify noise. Therefore, in knowledge distillation, prioritizing teacher–student
compatibility is more important than considering raw model size. Future work should systematically
quantify planning quality and evaluate generalization across tasks and alignment strategies to ensure
scalable reasoning in lightweight models.

Beyond scale, the teacher’s architecture, reasoning orientation, and instruction tuning must be
compatible with the student. Experiments in Appendix B show that teachers with architectures
well-aligned to the student consistently enable more effective thinking-pattern distillation, leading to
improved multi-hop reasoning performance.

4.4 ABLATION STUDIES

We first evaluate the contributions of the four core modules of FutureMind: Problem Analysis, Logical
Reasoning, Strategy Planning, and Retrieval Guidance. As shown in Table 3, removing any module
leads to noticeable performance drops, confirming their complementary roles. Among them, Strategy
Planning has the largest impact, highlighting its central role in converting structured reasoning into
effective retrieval actions.

Next, we analyze the three retrieval strategies within the Strategy Planning module. Table 4 shows that
removing any single strategy—Forward Stepwise Reasoning (RA), Backward Constraint Focusing
(RB), or Parallel Intersection Reasoning (RC )—degrades performance. Overall, RA is most critical,
RC contributes more on datasets with independent conditions, and RB benefits constraint-focused
cases.

Finally, we evaluate the overall impact of FutureMind by comparing enhanced ToolCall alone versus
ToolCall-driven FutureMind. Figure 3 shows that removing the FutureMind module consistently
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Figure 3: Ablation study of enhanced ToolCall across different models.

lowers performance, demonstrating its essential role in coordinating multi-hop reasoning and retrieval
planning. The detailed numerical results are provided in Table 7.

Together, these ablations show that FutureMind, along with its modules and retrieval strategies,
establishes an effective and coherent reasoning framework.

5 CONCLUSION

We introduce FutureMind, a training-free modular reasoning framework that enables both large and
small language models to perform efficient, accurate, and structured reasoning. By decomposing
reasoning into Problem Analysis, Logical Reasoning, Strategy Planning, and Retrieval Guidance,
and leveraging adaptive retrieval strategies, FutureMind provides clear guidance on when, what, and
how to retrieve evidence, effectively balancing reasoning depth and efficiency.

Evaluations on four multi-hop QA benchmarks show consistent gains across model scales and
architectures, with the largest improvements in SLMs. We further identify a cognitive bias bottleneck
in teacher-student thinking-pattern distillation: overly complex teacher plans can overwhelm student
capacity, causing strategic information loss and degraded reasoning. Effective distillation requires
both scale and architectural alignment, as structurally compatible teachers with aligned reasoning
orientations enable more effective strategy transfer.

In summary, FutureMind shows that structured, adaptive reasoning is achievable even for SLMs,
turning them into cognitively capable agents through strategic thinking-pattern priors.

ETHICS STATEMENT

We strictly adhere to the ICLR Code of Ethics. This work only uses four publicly available multi-hop
QA datasets and does not involve any personal or sensitive information, nor does it recruit human
subjects. There are no conflicts of interest or foreseeable ethical risks associated with this study.
Our research does not introduce ethical concerns beyond the scope of standard multi-hop question
answering tasks.
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We will publicly release all experimental code and data processing scripts upon paper acceptance
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Table 5: Effect of Teacher Model Architecture on Student Performance. We evaluate student
models (3B–72B) under different teacher model architectures, specifically Qwen2.5-72B-Instruct
(denoted as Q2.5) and Llama3.1-70B-Instruct (denoted as L3.1) within the Toolcall-driven FutureMind
(TC+FM). Bold denotes the best performance and underline indicates the second best. Rows with
blue background correspond to the best teacher model architecture for each student model.

Model Method 2WikiMQA Bamboogle Frames MuSiQue Avg

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

Qwen-3B
TC 54.20 42.40 37.60 40.00 17.96 22.94 13.00 12.60 30.69 29.49
TC+FM (L3.1) 47.80 34.00 27.20 27.20 11.53 9.83 10.20 10.40 24.18 20.36
TC+FM (Q2.5) 56.40 43.80 39.20 43.20 17.84 19.42 14.20 15.20 31.91 30.41

Qwen-7B
TC 56.80 56.20 49.60 54.40 23.78 32.28 16.40 18.80 36.65 40.42
TC+FM (L3.1) 53.60 50.20 48.80 51.20 19.54 26.58 14.20 17.20 34.03 36.30
TC+FM (Q2.5) 57.80 57.60 52.00 58.40 22.57 29.98 15.20 19.40 36.89 41.34

Qwen-14B
TC 64.40 64.60 64.00 68.00 34.22 44.66 20.40 23.20 45.76 50.11
TC+FM (L3.1) 63.40 63.80 63.60 67.20 28.16 37.86 22.80 25.20 44.49 48.52
TC+FM (Q2.5) 70.00 71.60 64.00 68.00 35.92 48.06 25.80 28.20 48.93 53.96

Qwen-32B
TC 71.20 72.40 66.40 68.80 36.28 49.15 24.60 27.80 49.62 54.54
TC+FM (L3.1) 63.40 61.40 66.40 68.00 28.79 38.74 23.20 26.20 45.45 48.59
TC+FM (Q2.5) 74.40 77.80 68.80 72.80 34.15 47.86 26.00 30.40 50.84 57.21

Qwen-72B
TC 71.60 74.20 68.80 76.80 40.04 56.67 27.40 35.00 51.96 60.67
TC+FM (L3.1) 67.40 69.80 69.60 76.00 33.98 47.33 23.20 29.60 48.54 55.68
TC+FM (Q2.5) 74.20 80.60 75.20 79.20 41.38 58.59 27.40 34.60 54.55 63.25

Zihan Zhang, Meng Fang, and Ling Chen. Retrievalqa: Assessing adaptive retrieval-augmented
generation for short-form open-domain question answering. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 6963–6975. Association for
Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.415. URL https:
//doi.org/10.18653/v1/2024.findings-acl.415.

Penghao Zhao, Hailin Zhang, Qinhan Yu, Zhengren Wang, Yunteng Geng, Fangcheng Fu, Ling
Yang, Wentao Zhang, and Bin Cui. Retrieval-augmented generation for ai-generated content:
A survey. CoRR, abs/2402.19473, 2024. doi: 10.48550/ARXIV.2402.19473. URL https:
//doi.org/10.48550/arXiv.2402.19473.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing process of this paper, we utilized the large language models (LLMs) as an auxiliary
tool, solely for polishing the grammar and expression of the paper to enhance its standardization and
readability. The research conception, core content, experimental design, and conclusions of the paper
were all independently completed by the authors, with the large language models not participating in
any substantive aspects of the research or creative process.

B ADDITIONAL EXPERIMENTAL RESULTS

As shown in Table 5, teacher architecture has a decisive impact on student adaptation under the
TC+FM framework: across all scales (3B–72B), Qwen2.5-72B consistently surpasses Llama3.1-70B
in both ACCE and ACCL. This pattern demonstrates that architectural alignment is the key of
effective cognitive transfer in multi-hop reasoning.

C TOOLS DESIGN

To enable efficient and accurate retrieval-driven reasoning, we adopt the ReAct framework as
implemented in Qwen-Agent and develop two complementary tools. The first is a Parallel Search
Tool C.1 built on the Google Search API that performs parallel retrievals and makes retrieval decisions,
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Table 6: Additional results on four multi-hop QA benchmarks.

Model Method 2WikiMQA Bamboogle Frames MuSiQue AVG

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

Qwen-14B

TC 64.40 64.60 64.00 68.00 34.22 44.66 20.40 23.20 45.76 50.12
TC+FM (3B) 68.40 70.00 58.40 64.00 32.89 43.33 22.80 27.00 45.62 51.08
TC+FM (7B) 69.00 71.20 63.20 72.00 33.37 46.84 20.60 24.40 46.54 53.61
TC+FM (14B) 71.60 75.20 70.40 72.80 34.83 49.51 24.00 28.20 50.21 56.43
TC+FM (32B) 71.80 74.40 64.80 72.00 35.25 46.24 22.20 27.20 48.51 54.96
TC+FM (72B) 70.00 71.60 64.00 68.00 35.92 48.06 25.80 28.20 48.93 53.96

Qwen-32B

TC 71.20 72.40 66.40 68.80 36.28 49.15 24.60 27.80 49.62 54.54
TC+FM (3B) 70.40 70.00 60.80 67.20 32.77 44.53 22.60 24.80 46.64 51.63
TC+FM (7B) 71.80 73.20 61.60 67.80 34.83 45.14 22.90 25.80 47.28 53.49
TC+FM (14B) 74.60 76.40 70.40 75.20 35.19 47.33 23.20 29.80 50.85 57.18
TC+FM (32B) 69.60 70.00 64.00 73.60 31.10 42.89 21.00 24.60 46.43 52.77
TC+FM (72B) 74.40 77.80 68.80 72.80 37.15 53.86 26.00 30.40 51.59 59.71

Qwen-72B

TC 71.60 74.20 68.80 76.80 40.04 56.67 27.40 35.00 51.96 60.67
TC+FM (3B) 71.20 75.20 65.60 72.00 38.23 53.64 24.60 29.40 49.91 57.56
TC+FM (7B) 72.80 76.80 71.20 76.00 37.13 55.70 24.60 30.40 51.93 59.73
TC+FM (14B) 71.00 73.40 74.40 77.60 35.56 50.12 23.60 30.00 51.14 57.78
TC+FM (72B) 74.20 80.60 75.20 79.20 41.38 58.59 28.40 36.60 54.80 63.75

Table 7: Ablation study of enhanced ToolCall across different models.

Method Model 2WikiMQA Bamboogle Frames MuSiQue Avg

ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL ACCE ACCL

ToolCall

Qwen-3B 54.20 42.40 37.60 40.00 17.96 22.94 13.00 12.60 30.69 29.49
Qwen-7B 56.80 56.20 49.60 54.40 23.78 32.28 16.40 18.80 36.65 40.42
Qwen-14B 64.40 64.60 64.00 68.00 34.22 44.66 20.40 23.20 45.76 50.11
Qwen-32B 71.20 72.40 66.40 68.80 36.28 49.15 24.60 27.80 49.62 54.54
Qwen-72B 71.60 74.20 68.80 76.80 40.04 56.67 27.40 35.00 51.96 60.67
Llama3.1-8B 51.20 51.40 55.20 57.60 24.51 37.38 17.40 20.80 37.08 41.80

enabling high-efficiency searching. The second is FutureMind Tool C.2, a module instantiated with
a larger language model that strengthens structured reasoning and retrieval logic, enabling more
precise, targeted retrieval. Together, these components decouple the complex retrieval process from
the reasoning logic, enabling efficient and accurate retrieval execution, thereby facilitating better
evidence integration and yielding more accurate final answers.

C.1 PARALLEL SEARCH TOOL

Parallel Search Tool (Google) Introduction

Name: Parallel_Search (google)

Description:
You should invoke the Parallel_Search Tool (google) whenever the user’s query falls into one
of the following categories:
1. Your internal knowledge base and training data are insufficient to answer the question
accurately.
2. The user asks about a specific example, product, or piece of information that you can
retrieve in greater detail via the web.
3. The question involves the latest data, dynamic information, or any knowledge that
postdates your training cutoff and requires real-time updates.
4. The answer exists in external knowledge sources you cannot directly access; you must
search to retrieve it.
5. Although you possess general knowledge of the topic, an online search would yield more
detailed or up-to-date information (e.g. current buzzwords or trending topics).
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6. You encounter an unfamiliar term or concept and must avoid fabrication by verifying it
through the search tool.
7. You need to consult a product manual or official specification to support your response.

The search tool supports both parallel and sequential queries:
1. If multiple searches are independent, you may issue them in parallel.
2. If queries depend on each other (i.e. require ordered steps), perform them sequentially.

Parameters:
{
"type": "object",
"properties": {
"queries": {
"type": "array",
"items": { "type": "string" },
"description": (
"List of search keywords:"
"- Parallel search: supply multiple keywords at once;"
"- Iterative search: supply a single-element array."

),
"examples": [
{
"queries": [
"Xiaomi SU7 Ultra official price",
"Tesla Model S latest price"

]
},
{
"queries": ["Mishi wolffin fish namer"]

}
]

}
},
"required": ["queries"]

}

C.2 FUTUREMIND TOOL

FutureMind Tool Instroduction

Name: FutureMind

Description:
Upon receiving a query, the FutureMind Tool is invoked first to obtain a systematic thinking
pattern and solution roadmap for the problem.

For retrieval-oriented questions:
1. It produces a structured problem-solving workflow and retrieval strategy.
2. It explicitly delineates the logical chain from "Problem Definition" through "Condition
Decomposition" to "Conclusion Derivation."
3. It provides executable search sequences and combined query conditions as retrieval
guidance, thereby enhancing information acquisition efficiency and ensuring retrieval
accuracy.

Parameters:
{
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"type": "object",
"properties": {

"query": {
"type": "string",
"description": "A query that requires systematic

problem analysis and retrieval-strategy formulation"
}

},
"required": ["query"]

}

D TOOLCALL TEMPLATE

Toolcall Template

Tools
You may call one or more functions to assist with the user query.

You are provided with function signatures within <tools></tools> XML tags:

<tools>
{tool_descs}
</tools>

For each function call, return a json object with function name and arguments within
<tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

E FUTUREMIND: DESCRIPTION AND IMPLEMENTATION DETAILS

E.1 OVERVIEW OF FUTUREMIND

As depicted in Figure 2, FutureMind is a lightweight, training-free reasoning framework that transfers
systematic thinking patterns from teacher models to smaller student models via adaptive thinking-
pattern distillation. It decomposes tasks into four staged modules—Problem Analysis, Logical
Reasoning, Strategy Planning, and Retrieval Guidance—and emits concise, auditable plans that
specify whether to retrieve, what to retrieve, and how to integrate evidence. To reduce retrieval
overhead, the framework supports three composable paradigms (Figure 4): Forward Stepwise
Reasoning, Backward Constraint Focusing, and Parallel Intersection Reasoning. Overall, FutureMind
enables resource-constrained models to perform structured, low-latency retrieval and reasoning with
improved accuracy and interpretability.

SequenceStrategy A: Forward Reasoning (��)

��(�������� ����������) → ��

→ ��Perfect for step-by-step filtering!

Strategy B: Backward Focusing (��)

��(��������� ����������) → �� → ��

 Start from the hardest clue!

Strategy C: Parallel Retrieval (��)

�� ∩ �� ∩ �� ( All at once! )

 Handle everything simultaneously!

The Three Retrieval Strategies!

Figure 4: Three adaptive retrieval paradigms employed in FutureMind.
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E.2 INSTRUCTION FOR ENHANCED TOOLCALL USING PARALLEL SEARCH TOOL C.1

Instruction for Enhanced ToolCall Using Parallel Search Tool

System:
You are a helpful assistant.

Tools:
You may call one or more functions to assist with the user query. You are provided with
function signatures within <tools></tools> XML tags:

<tools>
{

"type": "function",
"function":

{
"name": "google_search",
"description": "Parallel Search Tool of

description",
"parameters": "Parallel Search Tool of

parameters",
}

}
</tools>}

For each function call, return a json object with function name and arguments within
<tools></tools> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>

User:
Question: {user question}
You FIRST think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process MUST BE enclosed within <think> </think> tags. The
final answer MUST BE put in <answer> </answer> tags.

E.3 INSTRUCTION FOR TOOLCALL-DRIVEN FUTUREMIND USING PARALLEL SEARCH
TOOL C.1

Instruction for ToolCall-driven FutureMind Using Parallel Search Tool

System:
You are a helpful assistant.

Tools:
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:

<tools>
{

"type": "function",
"function":

{
"name": "Parallel Search",
"description": "Parallel Search Tool of

description",
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"parameters": "Parallel Search Tool of
parameters",

}
}

</tools>}

<tools>
{

"type": "function",
"function":

{
"name": "futuremind",
"description": "Futuremind Tool of

description",
"parameters": "Futuremind Tool of parameters",

}
}

</tools>}

For each function call, return a json object with function name and arguments within
<tools></tools> XML tags:

<tool_call>
{

"name": <function-name>,
"arguments": <args-json-object>

}
</tool_call>

user:
Question: {user question}
You FIRST think about the reasoning process as an internal monologue and then provide the
final answer. The reasoning process MUST BE enclosed within <think> </think> tags. The
final answer MUST BE put in <answer> </answer> tags. First, invoke the "futuremind" tool
to obtain a systematic thinking strategy and solution roadmap for the given Question (original
question text verbatim). After that, you may call the search tool multiple times as needed to
gather or verify information until you have sufficient material to answer. Once all necessary
information is confirmed, provide the final answer using concise, focused language without
unnecessary elaboration.

E.4 RELATED METHODS: ENHANCED TOOLCALL (TC) AND TOOLCALL-DRIVEN
FUTUREMIND (TC+FM)

Enhanced ToolCall (TC). Enhanced ToolCall (TC) is implemented on top of the ReAct framework,
following the Toolcall Template D. To support efficient information access, we employ the Parallel
Search Tool C.1, which enables parallel retrieval while constraining the reasoning process to a
maximum of 10 steps. This design ensures both efficiency and controllability. The reasoning process
follows the predefined instructions provided in E.2.

ToolCall-driven FutureMind (TC+FM). ToolCall-driven FutureMind (TC+FM) extends this
design by incorporating FutureMind (FM) Method into the enhanced ToolCall framework. For
more efficient and robust aggregation of retrieved evidence, we employ the Parallel Search Tool C.1
and FutureMindTool C.2, which enables parallel retrieval while constraining the reasoning process
to a maximum of 10 steps. This design further improve retrieval robustness while maintaining
controllable reasoning. The reasoning process follows the predefined instructions provided in E.3.
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E.5 MODULE OF FUTUREMIND: PROBLEM ANALYSIS-LOGICAL REASONING-STRATEGY
PLANNING-RETRIEVAL GUIDANCE

In this section, we first introduce the instructions utilized by each module, followed by a detailed
walkthrough using a concrete example. Specifically, we employ the query “A painter whose father
died of heart disease, who has an elder sister, and who had five children with his wife before their
marriage broke down. Later, he experienced three subsequent relationships. A literary work was later
written based on this person. What is the title of that work?” to illustrate the step-by-step execution
of each component within the FutureMind framework.

E.5.1 PROBLEM ANALYSIS MODULE

Problem Analysis Module Instructions

Name of Module: Problem Analysis
Instruction: Please first identify the core conflict, intrinsic attributes, and target outcomes of
the problem; extract key dimensions C1, C2, C3, C4, ... (e.g., causal relationships, constraints,
objective functions).

Problem Analysis Module Execution Example

1. Core Objectives
Precisely identify the painter who satisfies the specified biographical constraints and report
the single literary work (title and author) that is documented as based on that painter, together
with concise supporting evidence.

2. Intrinsic Attributes
Verifiable, atomic facts to check: (a) profession = painter; (b) father’s cause of death = heart
disease; (c) exactly one sister; (d) five children with his wife; (e) the marriage later dissolved;
(f) subsequently experienced three distinct significant romantic relationships; (g) existence of
a notable literary work explicitly linked to this person.

3. Target Outcomes
Output (1) the literary work’s title and author; (2) a compact evidence map ( 3 bullet points)
showing which of the above intrinsic attributes (by label) are corroborated by authoritative
sources linking the painter to the work.

4. Critical Conditions
Let the four critical conditions be defined as:

• C1 (Identity / Profession): "Painter" — restricts the candidate set to artists/painters.
• C2 (Family / Life Events): Father died of heart disease; has one sister; had five

children with his wife; the marriage later dissolved. These are distinctive and
searchable biographical facts.

• C3 (Romantic History): Later experienced three significant romantic relationships
(multiple partners), with possible implications of relocation or cross-cultural life
(common in comparable cases, though not explicitly stated).

• C4 (Literary Adaptation Clue): A literary work was written based on this person —
the target is the work’s title (and its author), and the work is presumably well-known.

E.5.2 LOGICAL REASONING MODULE

Logical Reasoning Module Instructions

Name of Module: Logical Reasoning
Instruction: Apply first principles to reverse-engineer the underlying logic, determine critical
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conditional elements (denoted K1, K2, K3, K4), and order them by importance or logical
sequence.

Logical Reasoning Module Execution Example

Use first-principles decomposition to organize the constraints and decide the most efficient
solving sequence.

• K1: Had five children with his wife and the marriage ultimately broke down. Very
specific life events that exclude most painters.

• K2: Subsequently had multiple (approximately three) significant romantic relation-
ships. Together with K1 this narrows the candidate set substantially.

• K3: Father died of heart disease (additional temporal/place details increase discrim-
inative power). Serves as auxiliary confirmation.

• K4: Explicitly identified as the prototype or clear inspiration for a notable literary
work — provides the final verification link.

First search for individuals satisfying K1; verify K2 and K3 in parallel; finally confirm the
linkage to a notable literary work (K4) to identify the unique match.

E.5.3 STRATEGY PLANNING MODULE

Strategy Planning Module Instructions

Name of Module: Strategy Planning
Instruction: Thinking Strategies (Select one or more as appropriate).

Strategy A: Forward Stepwise Reasoning (Progressive Filtering)
• Sequentially filter from basic to decisive conditions:
a. Retrieve the set A meeting base condition K1;
b. From A, filter the subset B meeting secondary condition K2;
c. From B, filter the subset C meeting key condition K3;
d. Within C, verify candidates satisfying decisive condition K4.

Strategy B: Backward Constraint Focusing (Reverse Narrowing)
• Reverse-derive from stringent constraints to base compatibility:
a. Prioritize retrieving set A satisfying the strictest constraint (e.g., K3) to narrow scope
quickly;
b. From A, filter set B meeting critical feature condition (e.g., K4);
c. From B, verify set C satisfying prerequisite condition (e.g., K2);
d. Within C, confirm final candidates compatible with baseline condition (e.g., K1).

Strategy C: Parallel Intersection Reasoning (Parallel Filtering)
• Treat conditions as independent dimensions in parallel:
a. Retrieve sets A, B, C, D each satisfying conditions K1, K2, K3, K4 respectively;
b. Compute intersection (A ∩ B ∩ C ∩ D) to extract solutions meeting all conditions
simultaneously.

Choose the strategy (or combination) based on problem characteristics, data
availability, and efficiency requirements.
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Strategy Planning Module Execution Example

Selected Strategy: Strategy B — Backward Constraint Focusing (recommended)
Rationale: The “literary adaptation” condition (K4) is the strongest and most selective
constraint. Since only a small number of painters are explicitly used as prototypes for
notable literary works, starting from this constraint yields the fastest and most discriminative
narrowing of the search space.

Strategy B: Backward Constraint Focusing (Reverse Narrowing)
• Reverse-derive from the most stringent constraint (K4):
a. Begin with K4: retrieve or enumerate well-known literary works explicitly based on, or
inspired by, real painters.
b. For each identified literary work, extract the painters documented or claimed as prototypes.
c. For each candidate painter, verify biographical compatibility with K1 (profession), K2

(family/life events), and K3 (romantic history).
d. Remove any candidate failing one or more conditions; if no candidate remains, return to
step (a) and expand the set of literary works.
e. The painter who satisfies K1–K3 and matches K4 constitutes the final solution.

Apply Strategy B exclusively. Start from the strongest constraint (literary adaptation), identify
candidate works and their prototypes, then filter by K1–K3 to obtain the unique match.

E.5.4 RETRIEVAL GUIDANCE MODULE

Retrieval Guidance Module Instructions

Name of Module: Retrieval Guidance
Instruction: Thinking Strategies (Select one or more as appropriate).

Keyword Guidance
Derive core entities, attributes, and relationships from the problem analysis (e.g., “AI +
ethical risks + regulatory policy”).

Resource Guidance
List authoritative sources relevant to the domain: academic databases, industry reports,
government or standards bodies, etc. (e.g., PubMed, IEEE Xplore, World Bank Data).

Sequence Guidance
Design the retrieval sequence by priority or logic (e.g., first industry standards, then empirical
studies, finally policy documents).

Query Guidance
Formulate layered/combined search expressions supporting iterative filtering:
e.g., ("AI ethical risks" AND "regulatory policy") OR ("autonomous driving safety standards"
AND "EU regulations"), or retrieve with keyword A first, then refine results with keyword B.

Screening Guidance
Define preliminary inclusion/exclusion criteria and relevance assessment to support deeper
analysis later.

Retrieval Guidance Module Execution Example

1. Keyword Design (Hierarchical)
• Level 1 (Directly locate works/prototypes): “novel based on painter”, “fiction

inspired by painter”
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• Level 2 (Combine with biographical details): “painter five children divorced wife”,
“father died of heart disease painter”, “painter with sister”

• Level 3 (Verify person and work combinations): “<Work Title> prototype”,
“<Painter Name> depicted as <Work Title>”

2. Resource Selection (Priority)
• Authoritative biographies and academic publications (artist biographies, art history

books)
• Literary studies and annotations (research articles on novel prototypes, author

memoirs)
• Recognized encyclopedias and databases (e.g., Wikipedia for preliminary screening,

with professional biographies as final reference)
• Cultural and historical journals, author studies, and book reviews (to verify claims

of works based on real persons)
3. Retrieval Sequence (Recommended)

• First retrieve well-known novels or works based on painters to generate candidate
works meeting the key literary adaptation condition

• Examine annotations, author notes, and academic reviews of these works to identify
the associated prototype painters

• Retrieve biographies of candidate painters to verify biographical details such as
number of children, marital status, father’s cause of death, and romantic history

• Cross-validate with independent authoritative sources for final confirmation
4. Query Examples (Facilitating Iterative Filtering)

• “novel inspired by painter” OR “fiction based on painter”
• “painter AND five children AND divorced wife”
• “’<Work Title>’ prototype <Painter Name>” (used to verify known candidates)

5. Screening Criteria (Preliminary Inclusion / Exclusion)
• Inclusion: Reliable sources such as biographies, academic papers, authoritative

book reviews, and author statements; multiple independent sources citing the same
prototype and facts

• Exclusion: Unverified blogs or secondhand claims without sources; circular refer-
ences lacking original evidence; candidates with biographical details contradicting
key facts (e.g., children count, marital status)

F INSTRUCTION TEMPLATES

F.1 INSTRUCTIONS FOR EVALUATION

In this work, we use LLM-as-Judges (GPT-4o-mini) to evaluate multi-hop question answering (QA)
benchmarks: 2WikiMultihopQA, Bamboogle, MuSiQue, and FRAMES. The specific instructions are
as follows.

Instruction for Judge

Given a Question and its Golden Answer, verify whether the Predicted Answer is
correct. The prediction is correct if it fully aligns with the meaning and key informa-
tion of the Golden Answer. Respond with True if the prediction is correct and False otherwise.

[Question:] {user question}
[Golden Answer] {reference answer}
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[Predicted Answer] {assistant’s answer}

F.2 INSTRUCTION FOR NAIVE GENERATION

Instruction for Naive Generation

Please answer the below questions.You should think step by step to solve it.The final answer
MUST BE put in <answer> </answer> tags.

[Question:] {user question}

F.3 INSTRUCTION FOR STANDARD RAG

Instruction for Standard RAG

You are a knowledgeable assistant that utilizes the provided documents to answer the user’s
question accurately.

Guidelines:
- Analyze the provided documents to extract relevant information. Synthesize the information
to formulate a coherent and accurate answer.
- Ensure that your response directly addresses the user’s question using the information from
the documents.

[Question:] {user question}
[Documents:] {documents}

F.4 INSTRUCTION FOR SEARCH-O1

Instruction for Search-o1

You are a reasoning assistant with the ability to perform web searches to help you answer the
user’s question accurately. You have special tools:
To perform a search: write <|begin_search_query|> your query here <|end_search_query|>.
Then, the system will search and analyze relevant web pages, then provide you with helpful
information in the format <|begin_search_result|> ...search results... <|end_search_result|>.
You can repeat the search process multiple times if necessary. The maximum number of
search attempts is limited to {MAX_SEARCH_LIMIT}.
Once you have all the information you need, continue your reasoning.
Example:
Question: “...”
Assistant thinking steps:
- I might need to look up details about ...
Assistant:
<|begin_search_query|>...<|end_search_query|>
(System returns processed information from relevant web pages)
Assistant continues reasoning with the new information...
Remember:
- Use <|begin_search_query|> to request a web search and end with <|end_search_query|>.
- When done searching, continue your reasoning.
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G FORMULA DESCRIPTION

G.1 FORMULA EXPLANATION OF ACCE

Formula:

ACCE =

{
1 ∃g ∈ G, norm(pred) ⊇ norm(g)

0 otherwise

where pred is the predicted answer; G = {g1, . . . , gk} is the gold answer set; norm(·) denotes a
normalization procedure that handles paraphrasing, punctuation, and related surface variations; and
the relation A ⊇ B indicates that A fully covers the core semantics of B. Hence, ACCE = 1 when
the normalized prediction semantically covers at least one normalized gold answer, and 0 otherwise.

H OVERALL TOKEN CONSUMPTION AND API COST OF GPT-4O-MINI AND
GOOGLE SEARCH API

H.1 COST ANALYSIS OF LARGE MODEL EVALUATION

For the GPT-4o-mini model, the total number of tokens consumed during the scoring process can be
divided into three main components: the initial scoring prompt F.1, the question, the golden predicted
answer, and the GPT-4o-mini model’s output (True/False).

We statistically analyzed the input token usage across different datasets, as shown in Table 8. Across
the four datasets (2WikiMQA, Bamboogle, Frames, and MuSiQue), the total input token count
amounts to approximately 772,000 tokens, while the total output token count is around 2,000 tokens.

Given the official pricing of GPT-4o-mini — $0.15 per million input tokens and $0.60 per million
output tokens — the total API cost for one complete experimental setting across all datasets is
estimated to be approximately $0.117. In total, we conducted 84 such experimental runs, resulting in
an overall evaluation cost of approximately $9.828 for the GPT-4o-mini scoring process.

Table 8: Overall token consumption of GPT-4o-mini across different datasets in a single experimental
setting. All values are reported in units of 10,000 tokens (w).

Dataset Tokens Consumed (w)
2WikiMQA 16.5 w
Bamboogle 3.7 w
Frames 38.0 w
MuSiQue 19.0 w

Total 77.2 w

H.2 COST ANALYSIS OF SEARCH TOOL INVOCATION

This cost estimation focuses exclusively on the direct expenses incurred by the Enhanced ToolCall
method and the ToolCall-driven FutureMind method. For both approaches, the majority of the cost
originates from API calls made by the parallel Search Tool. According to the official pricing of the
Custom Google Search JSON API, the cost is set at $5 per 1,000 queries.

Across the four datasets (2WikiMQA, Bamboogle, Frames, and MuSiQue), both the Enhanced ToolCall
and ToolCall-driven FutureMind methods perform approximately 4.2k search engine queries on
average. Therefore, the estimated cost for executing all experiments across the four datasets with
either method is roughly $21. Considering the total number of experimental runs, the cumulative
search-related expenditure is estimated to be approximately $1,365.

In addition, we provide a concrete example to illustrate this estimation. In this case, the student
model is Qwen2.5-3B, and the teacher models are Qwen2.5-72B, Qwen2.5-32B, Qwen2.5-14B, and
Qwen2.5-7B, respectively. The detailed statistics are presented in Table 9, which reports the total
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Table 9: Total number of search queries across datasets for each teacher–student model pair under
Baseline and FutureMind settings.

Dataset Qwen-72B → 3B Qwen-32B → 3B Qwen-14B → 3B Qwen-7B → 3B

TC TC+FM TC TC+FM TC TC+FM TC TC+FM

Wiki 1032 1297 1028 1120 987 1322 1005 1259
Bamboogle 208 235 203 184 196 286 202 214
Frames 2030 1923 2000 1210 1693 2031 2016 1492
Musique 1056 1217 1032 821 1021 821 1040 997

Total 4326 4672 4263 3335 3897 4460 4263 3962

number of search queries across datasets for each teacher–student model pair under both the Enhanced
ToolCall(TC) and ToolCall-driven FutureMind(TC+FM) settings.

I DISCUSSION: FUTUREMIND’S FLEXIBILITY IN CORRECTING THE LOGICAL
PATH

This section discusses how FutureMind exhibits flexibility in correcting and refining the logical
reasoning path. This capability represents one of the core design goals of FutureMind: to enable
dynamically adaptive reasoning that balances structured planning with real-time flexibility.

Rather than functioning as a one-shot, fixed-plan generator, FutureMind is designed as a dynamically
callable tool (clarified in Appendix E.3) that can be invoked iteratively as needed. This design
preserves structured planning capabilities while maintaining flexibility in reasoning, thereby enabling
more adaptive inference strategies. Its core mechanisms include:

• On-demand triggering. FutureMind can be called on demand when the student model
detects issues such as an excessively large candidate space, high retrieval noise, or invalid
intermediate states. In these situations, FutureMind provides refined or alternative reasoning
strategies to guide subsequent exploration.

• Strategy diversity with decentralized control. FutureMind provides dynamic and diverse
reasoning strategies, while the ultimate selection and adjustment of the reasoning path are
made by the student model based on real-time retrieval results and available computational
budget, preserving flexibility.

Overall, this interaction forms a closed adaptive loop of execution bottleneck → on-demand
invocation → strategy optimization, mirroring the iterative problem-solving logic of human experts.

Illustrative Example. The following case demonstrates this mechanism through a knowledge-
intensive reasoning example: Who is the poet that was a friend of the author of One Hundred Years
of Solitude and also won a Nobel Prize?

• First FutureMind call. During the initial exploration, the model recognized that retrieving
"friends" could lead to a large number of redundant candidates. It therefore made the first
FutureMind call and obtained a forward stepwise reasoning strategy: Identify the author
→ Retrieve well-known literary associates → Filter for poets → Verify Nobel laureateship.

• Second FutureMind call. During execution, even after narrowing the set of "associates",
dozens of candidates remained, indicating high downstream reasoning difficulty. The
model triggered a second FutureMind call and received a recommended backward con-
straint–focusing strategy: List Nobel Prize–winning poets → Filter candidates with docu-
mented associations to García Márquez → Confirm friendship via credible sources.

• After receiving this guidance, the model refined the second step to "filter candidates with
publicly verifiable interaction records with García Márquez" and proceeded. It first identified
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Pablo Neruda (1971 Nobel Prize in Literature, poet) as the core candidate and confirmed
their long-term friendship via Márquez’s essay García Márquez on Pablo Neruda. Verifi-
cation through literary archives ultimately yielded the correct answer Neruda.

J CASE STUDY

We present a case study to illustrate the full pipeline of the proposed FutureMind method 2. The
case is drawn from the MuSiQue benchmark, which poses a question that the Qwen2.5-7B-Instruct
model alone can hardly answer correctly. We then demonstrate how the proposed ToolCall-driven
FutureMind employs Qwen2.5-14B-Instruct as a teacher model to guide Qwen2.5-7B-Instruct in
solving the problem, and provide the full reasoning trajectory leading to the final answer.

Case Trajectory in MuSiQue

Question: When was the Palau de la Generalitat built in the city in which died the man
called Martin of the region of Spain where Berdejo is located?

Step 1
<think>
I’m not fully familiar with this question, so I’ll first call the FutureMind tool to get a
systematic thinking pattern and roadmap.
</think>

<tool_call>
{"name": "FutureMind", "arguments": {"query": ["When was the Palau de la Generalitat
built in the city in which died the man called Martin of the region of Spain where Berdejo is
located?"]}}
</tool_call>

<tool_response>
1. Problem Analysis - Identify the construction date of the Palau de la Generalitat in the city
where Martin of the region of Spain, where Berdejo is located, died.

2. Logical Reasoning - Key conditional elements
K1 (correct identification of Martin and his region in Spain)
K2 (connection between Martin and the city of death)
K3 (location of Berdejo in Spain)
K4 (construction date of the Palau de la Generalitat in the identified city)

3. Strategy Planning - Selected strategy A (Forward Stepwise Reasoning)
a. Retrieve information on Martin of the region in Spain where Berdejo is located (K1)
b. From the information, identify the city where Martin died (K2)
c. Verify the connection between Berdejo and the identified region in Spain (K3)
d. Within the identified city, find the construction date of the Palau de la Generalitat (K4)

4. Retrieval Guidance
Keywords: Martin of [region in Spain], Berdejo, Palau de la Generalitat, construction

date
Resources: Wikipedia, Encyclopedia Britannica, Spanish historical archives, local

government websites of the identified region and city
Sequence: Historical biographies → regional information → local historical records

→ architectural or government websites
Query: “Martin of [region in Spain] biography“; “Berdejo location in Spain“; “Palau

de la Generalitat construction date“ in the identified city
Screening: Exclude non-relevant biographies or historical records; limit to sources

with verifiable information on the construction date.
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</tool_response>

Step 2
<think>
To answer the question, the goal is to identify the construction date of the Palau de la
Generalitat in the city where Martin, from the region in Spain where Berdejo is located, died.
The key steps are: 1. First, gather information about Martin and the region where Berdejo is
located. This will allow the identification of the city where Martin died. 2. Then, validate the
connection between Berdejo’s location and the identified region in Spain. 3. After identifying
the city where Martin died, find the construction date of the Palau de la Generalitat in that
city. The selected strategy is Forward Stepwise Reasoning, and the reasoning involves
retrieving historical and regional data followed by architectural information for the Palau de
la Generalitat. The next step is to search for relevant data using the following queries.
</think>

<tool_call>
{"name": "google_search", "arguments": {"query": ["Martin of [region in Spain] biography",
"Berdejo location in Spain", "Palau de la Generalitat construction date"]}}
</tool_call>

<tool_response>
Martin (born 1356, Gerona, Catalonia [Spain]—died May 31, 1410, Barcelona)
was the king of Aragon from 1395 and of Sicily (as Martin II from 1409)
(https://www.britannica.com/biography/Martin-king-of-Aragon-and-Sicily)
From March 2 to 14, 2024, the Palau de la Generalitat de Valencia opens its
doors and invites you to explore this historic building that houses the Presidency
(https://www.visitvalencia.com/en/events-valencia/palau-de-la-generalitat-opens-its-doors-
celebrate-fallas)
...
</tool_response>

Step 3
<think>
The search results reveal the following: 1. Several individuals named Martin exist in different
regions of Spain, but Martin I of Aragon (1392–1409) seems the most relevant. However,
further information about his death location is needed. 2. Berdejo is a town in the Zaragoza
province of Aragon, Spain. 3. The Palau de la Generalitat in Barcelona dates back to the 15th
century. Given the lack of a direct link between Martin I and Berdejo, we will refine the
search to focus on identifying the city where Martin I died, and its potential connection to
Berdejo. The next search query will be: Martin I of Aragon death place.
</think>

<tool_call>
{"name": "google_search", "arguments": {"query": ["Martin I of Aragon death place"]}}
</tool_call>

<tool_response>
Matino is the son of King Martin I of Aragon. In the 1390, Matino married the Sicilian
Queen and cousin Maria and became co-king. After Matino’s death in 1409, his father
became King of Sicily, known as Matino (https://www.wikiwand.com/zh-cn/articles)
...
</tool_response>

Step 4
<think>
Martin I of Aragon died in Barcelona on May 31, 1410. The question asks for the construction
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date of the Palau de la Generalitat in Barcelona, where Martin died, and relates it to Berdejo,
located in Zaragoza, Aragon. Since Berdejo is in a different region (Aragon) and the Palau de
la Generalitat is in Barcelona (Catalonia), we need to focus on the construction of the Palau
de la Generalitat in Barcelona. This was completed in the 15th century, and since Martin I
died in 1410, the building was already constructed by then.
</think>

<answer>The Palau de la Generalitat in Barcelona, Spain, was built in the 15th century, long
before Martin I of Aragon died in 1410. <answer> ✓
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