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ABSTRACT

The paper proposes an end-to-end abnormal behavior detection network to detect
strenuous movements in slow moving crowds, such as running, bicycling, throw-
ing from a height. The algorithm forms continuous video frames into a frame
group and uses the frame-group feature extractor to obtain the spatio-temporal
information. The implicit vector based attention mechanism will work on the
extracted frame-group features to highlight the important features. We use fully
connected layers to transform the space and reduce the computation. Finally, the
group-pooling maps the processed frame-group features to the abnormal scores.
The network input is flexible to cope with the form of video streams, and the net-
work output is the abnormal score. The designed compound loss function will
help the model improve the classification performance. This paper arranges sev-
eral commonly used anomaly detection datasets and tests the algorithms on the
integrated dataset. The experimental results show that the proposed algorithm has
significant advantages in many objective metrics compared with other anomaly
detection algorithms.

1 INTRODUCTION

Nowadays anomaly detection is useful to maintain social security and conduct legal forensics. Due
to the ambiguous definition of abnormal events, it increases the difficulty of detection. For exam-
ple, the appearance of a vehicle on a road is normal, while it is abnormal when a vehicle is on the
sidewalk. So we make the goal clear in order to carry out consequent measures. Abnormal behavior
is defined as rapid movements in slow moving crowds, such as cycling, running, throwing from a
height, etc. Based on this definition, the commonly used datasets for anomaly detection are inte-
grated and relabeled. The new fusion dataset contains more scenes and anomaly types, so it is more
challenging for the anomaly detection. Subsequent experiments are performed on this new dataset.
The test results show that the algorithm proposed in this paper has great advantages in many metrics.

Figure 1: Proposed Anomaly Detection Network

The end-to-end anomaly detection network shown in Fig. 1 has the following contributions:

(1) The video group composed of consecutive multiple frames is the basic processing unit to extract
expressive features with the designed group feature extractor. On the one hand, the spatial-temporal
information could be retained comparing with single-image processing. On the other hand, the
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abnormality score of a single frame can be easily obtained without the access of the whole video,
which can copy with the situation where video streams are the input.

(2) The designed framework composed of group feature extractor and group score mapper can ef-
fectively obtain the abnormality score using the spatial-temporal information. Implicit vector-based
attention mechanism is used to weight the frame-group features. The more important the feature is,
the higher the weight is.

(3) The basic cross-entropy loss and the improved hinge loss are united to improve the performance
of the network. The latter devote to make the score of the abnormal frames greater than that of
normal frames.

The paper is organized as follows. Section 1 introduces the background of anomaly detection.
Section 2 introduces the related work on anomaly detection. Section 3 mainly introduces the details
of the proposed anomaly detection algorithm. Section 4 introduces the fusion dataset and then
analyzes the experimental results. Section 5 gives the summary of the whole paper.

2 RELATED WORK

The challenges of video semantic analysis lie in the extraction and representation of video features.
The video contains complex spatial texture information and time information. Multidimensional
data provides more information but meanwhile it contains a lot of redundant information. How to
extract low-redundant, comprehensive and representative video features is one of the research fo-
cuses. The manual extraction method of video features focuses on the extraction and analysis of
low-level visual features, such as guided gradient histograms Xiao et al. (2014), optical flow map-
s Reddy et al. (2011), spatio-temporal points of interest Dollár et al. (2005), texture models Xiao
et al. (2018), filtering models Zhang et al. (2018), etc. After obtaining the statistical information, the
visual dictionary Roshtkhari & Levine (2013) and other methods will be used to save the normal dis-
tribution, and then calculate the similarity criterion to determine whether the target is abnormal. Luo
& Wang (2019) explores the method of multi-stream manual features for video representation. It
constructs a three-dimensional video representation structure composed of spatio-temporal vector
and positional vector, and improves the encoding method to make the extracted video representation
structure more powerful in representation.

With the rapid development of deep learning, automatic feature extraction using neural networks has
become a research hotspot. Zhou et al. (2016) uses 3D convolutional networks to detect abnormal
events in surveillance video. In Sabokrou et al. (2017), the video frame is divided into several small
areas, and each small area is feed into a 3D self-encoding network combined with 3D convolution-
al neural network to extract features and detect anomaly. Medel (2016) proposes a long-short term
memory network based on convolution, which simultaneously extracts spatial and temporal infor-
mation. Xu et al. (2015) first uses stacked auto-encoders to learn and fuse the appearance and motion
characteristics of abnormal individuals, and then trains multiple single-classifiers to calculate the ab-
normal score. Ionescu et al. (2019) uses one-to-many classifiers instead of the single-classifiers after
obtaining multiple pseudo-anomaly classes from the trained normal behavior pattern. Hinami et al.
(2017) multiple attributes of the same target to extract features.

Due to the lack of anomalous videos and various types of anomaly, it is difficult to find a general
model that covers all anomalous events. The auto-encoding network Yuan et al. (2019) performs
anomaly detection based on the reconstruction error. Hasan et al. (2016) uses a convolutional neural
network to implement video anomaly detection. Since the convolutional layer operates on a two-
dimensional structure, time information will be lost. Chong & Tay (2017) designs a spatio-temporal
autoencoder that encodes video sequence with spatial convolution and Convolutional Long-Short
Term Memory (ConvLSTM) Shi et al. (2015) structure, and then uses the symmetric structure called
the decoder, convert the video encoding into the image sequence. The abnormal score can be ob-
tained from the calculation of the Euclidean distance between the decoded images and the origi-
nal images. An & Cho (2015) proposes a variational autoencoder (Variational Autoencoder, VAE),
which uses the results of video encoding to fit a distribution function. Jing & Yujin (2017) supple-
ments a gradient difference constraint on the basis of the sparse denoising auto-encoding network,
which is helpful to make the model more effective in detecting abnormal behavior.
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For specific tasks, the model trained according to the specific task can often get better results. In Sul-
tani et al. (2018), the video containing abnormal events is divided into several video segments to
form multiple video instances. A fully connected network is designed to map the video features
extracted by the C3D network Tran et al. (2015) into abnormal scores. The score of the abnormal
instance is higher than the score of the instances with only normal frames. The experiments in this
paper show that the network has achieved good results. But the detection process is disconnected. In
order to minimize the interference to the input data and obtain the final score directly and timely, we
designs an end-to-end network, which uses both positive and negative samples to make the model
more targeted.

3 PROPOSED METHOD

The paper proposes an end-to-end anomaly detection network, which operates on the frame-group
formed with consecutive frames to obtain the abnormality score. The whole framework is composed
of group feature extractor and group score mapper. The former performs on the raw frame-group
to obtain the spatial-temporal group-feature. The latter performs on the group-feature to obtain the
abnormality score.

3.1 THE GROUP-FEATURE EXTRACTOR

The frame-group is defined as a structure consisting of consecutive τ frames, which contains rich
spatial texture information and temporal change information. Fig. 2 shows the details of the group-
feature extractor, where In

(0,Spa,Tem)
t and Out

(0,Spa,Tem)
t represent the input and output matrixes

in time t respectively. Spa and Tem mean the input and output feature map in the spatial feature
extractor and the temporal feature extractor respectively.

Figure 2: The Group-Feature Extractor

Since the frame-group contains multiple continuous frames, in order not to destroy the time informa-
tion within consecutive frames, we use a trainable convolution kernel to extract spatial information
of each single-frame in the time dimension. Then batch normalization Ioffe & Szegedy (2015) is
used to prevent the gradient dispersion and accelerate the model convergence. Activation function
helps to make the model nonlinear. Two sets of ”convolution-regular-activation” structures are used
in the experiments. The first group uses 128 convolution kernels with size of 5× 5 and step size of
3, and the second one uses 64 convolution kernels with size of 3× 3 and step size of 2.

After obtaining the spatial feature maps, ConvLSTM will further extract the spatial and temporal
information using gate structures. The implementation of hidden features is shown in Equation (1).
Where the hidden feature HidTemt is used to record the accumulated state information up to time
t. The symbol

⊗
represents the Hadamard product. σ and tanh represents the sigmoid and tanh

nonlinear activation functions respectively. Conv is the convolution operation. This paper uses two
cascading ConvLSTM layers to extract time flow information. The first layer uses 64 convolution
kernels with size of 3 × 3 and the second one uses 32 same kernels. We use the ”same padding” to
keep the size of input and output feature maps same.
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HidTemt = σ(Conv(OutTemt−1 , In
Tem
t ,HidTemt−1 ))

⊗
HidTemt−1

+ σ(Conv(OutTemt−1 , In
Tem
t ,HidTemt−1 )

⊗
tanh(Conv(Outt−1, In

Tem
t )) (1)

While the final output is shown in Equation (2):

OutTemt = σ(Conv(OutTemt−1 , In
Tem
t ,HidTemt ))

⊗
tanh(HidTemt ) (2)

In order to better extract the spatial and temporal information as well as high-level and low-level
features of frame-group, we use a multi-level feature fusion structure to merge multi-level features
of the frame-group. The output result of the multi-level feature fusion structure is regarded as the
final feature representation of the frame-group. In the experiment, the structure was implemented
using a 3D convolution Zhou et al. (2018) layer with size of 8× 1× 1.

3.2 THE GROUP-SCORE MAPPER

In the group-score mapper, the attention mechanism Ilse et al. (2018) is used to increase the decisive
influence of useful features and weaken the effects of irrelevant features on the results. The fully
connected network is used to make the encoding of the group-feature more expressive while reducing
feature dimensions. The group-level pooling is applied to map the refined group-feature to the
abnormality score of the video group. The specific process is shown in Fig. 3.

Figure 3: The map from group-features to group-scores

The implicit vector method based attention mechanism assigns different weights to different features
in order that the key features have a more important impact on the result and the interference of
noise can be suppressed. The trainable transformation matrix will be used to project the original
group feature into the implicit space, and then the weight vector will be obtained by an inverse
transformation matrix. Different from the attention mechanism aiming at multiple instances in Ilse
et al. (2018), this paper focus on the attention of the group-feature. To be specific, the implicit
vector is used to generate a weight vector of the original group, which has a dimension of 128 in the
experiment. Fgrp is the flattened Out0t with length =1444. T represents transposition operation.
V and W are the feature space transformation matrices. Ψnl is a non-linear transformation function.
Therefore we can define the coefficient χk of the kth element F

(k)
grp as Equation (3).

χk =
exp((WTΨnl(VFTgrp))k)∑K
i=1 exp((WTΨnl(VFTgrp))i)

, k ∈ [1,K] (3)

The weighted group feature F̃grp is as Equation (4).

F̃grp = (χ1F
(1)
grp, · · · , χkF(k)

grp), k ∈ [1,K] (4)
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The weighted group-feature next passes through two fully connected layers with Dropout operation
to reduce the feature dimensions and the computation and enhance the feature expressive ability.
The output dimensions of the two fully connected layers are 512, and theRelu activation function is
used. The Dropout parameter is set to 0.5, that is, 50% of the neural units are discarded randomly and
not participated in each iteration of training, which can reduce the risk of neural network overfitting.

Group-pooling is used to get the final group score. The trainable weight matrix followed by the
sigmoid function is used to map the refined group feature to the abnormality score. The positive
samples marked as 1 are the frame-groups containing anomalies, while negative samples contain
only normal. As the trainable weight matrix of the refined group feature F̃grp is marked Φ and the
sigmoid is marked σ the predicted group-score B̂(t) corresponding to the input (In0

t , · · · , In
0
t+τ ) is

defined as Equation (5).

B̂(t) = σ(F̃grp ·Φ) (5)

3.3 THE LOSS FUNCTION

The cross-entropy loss is the most commonly used loss in general logical classification problems,
which considers the maximum likelihood estimation B̂(i) of the ith true group-score B(i) from the
perspective of the information entropy. The two-class cross-entropy loss Loss

(i)
bc for a single sample

is shown in Equation (6).

Loss
(i)
bc = −B(i) log B̂(i) − (1−B(i)) log(1− B̂(i)) (6)

The aim of the proposed algorithm is to predict high abnormality score when the video group con-
tains at least one abnormal frame. Therefore we hope that the abnormality score of video group
containing abnormal frames is higher than that of group with normal frames only, that is to say that
the loss function should preferably increase the category gap so the network has a certain fault toler-
ance ability when dealing with a small amount of noise input. Thus we propose the improved hinge
loss. The used two-class hinge loss function for a single-sample is shown in Equation (7).

Loss
(i)
bh = max(0, 1−B(i) · B̂(i) + (1−B(i)) · B̂(i)) (7)

With N as the total number of samples, the final loss is:

Loss =
1

N
(

N∑
i=1

Loss
(i)
bc +

N∑
i=1

Loss
(i)
bc ) (8)

4 EXPERIMENTS

4.1 THE DATASETS

The proposed anomaly detection network uses the videos taken with the fixed-angle surveillant cam-
eras, to detect anomalous events, including running, cycling, throwing objects, etc. The commonly
used anomaly detection datasets are Avenue, UMN and UCSD.

The Avenue dataset Lu et al. (2013) contains the video segments captured on CUHK Campus Av-
enue, and the anomaly is when at least one runs, walks in the opposite direction, or hangs out. The
UMN dataset Mehran et al. (2009) contains different indoor and outdoor scenes with crowd burst.
In indoor scenes, the overall sight is dark due to insufficient light. The UCSD dataset Mahadevan
et al. (2010) has the anomaly include cycling, carts, and turf crossings. The viewing angle of Ped1
is perpendicular to the camera plane, while the two planes are parallel in Ped2.

Above datasets only contain abnormal videos in testing set, while both positive and negative samples
are required for the proposed network training. Thus we merge and filter these testing videos to
choose 40 videos with single abnormal event in each one as the new training set, and the remains
as the new testing set. It is worth mentioning that the anomalies, such as walking in the wrong
direction and turf crossings, are treated as normal since they are not belong to the strenuous motion
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in the crowd. The details of the new dataset are shown in Table 1. Compared with the original
dataset, the new dataset encounters more challenges: (1) More scenarios. There are six different
indoor and outdoor scenes, with different camera positions and angles. (2) More types of abnormal
events. The new dataset contains single-person and group abnormal events. Subsequent experiments
and comparisons were performed on this dataset.

Table 1: The distribution of the new dataset
Avenue UMN UCSD

Videos 8 6 26
Train Set Total Frames 6528 4360 5050

Abnorm. Frames 727 721 2915
Videos 8 5 20

Test Set Total Frames 6087 3379 3560
Abnorm. Frames 1103 658 2750

4.2 EXPERIMENTS

The training and testing codes are run under the centos7 system, using Intel i5-8600K @ 3.60GHz
six-core CPU. The network is built using keras framework with tensorflow as the backend, supposed
by python, opencv, h5py, etc.

4.2.1 THE MODELS IN TRAINING STAGE

The proposed algorithm uses sequential τ = 8 frames to generate a single video group, and the
sliding stride is 1. The output group score is taken as the abnormal score of the first frame of the
group. Due to the discontinuity of different video files, the last τ − 1 frames of each video file
were discarded when the training set was generated, so the resulting training set contained 15, 618
video frame-groups. The Adam optimizer was used during training, and the learning rate was set
to 0.0001; the batch-size was set to 32; each epoch contained 15, 618 sets of inputs during training.
Fig. 4 shows the performance of models in training stage.

(a) Loss and Accuracy (b) ROC (c) AUC

Figure 4: The models in training stage

Fig. 4 (a) shows changes of parameters during training stage. The train loss represents the value of
the compound loss function introduced in Section 3.3. The train accuracy is the ratio of the number
of correctly classified samples to the total number of samples. We end the training stage when the
train loss stays basically unchanged in 5 iterations. The accuracy rate basically does not change
after the 12th epoch, so the best model occur after the 12th epoch.

The ROC (Receiver operating characteristic) curve and its corresponding area (AUC) Mahade-
van et al. (2010) Saligrama & Chen (2012) are the two commonly used metrics in classification
algorithms. We select models every 5 epochs for performance testing and then narrow the scope
according to the test results to find the model that performs best on the testing set. Thus we draw
the Fig. 4 (b) and (c). TPR indicates the probability of correct prediction in all positive samples, and
FPR indicates the probability of incorrect prediction in negative samples. Therefore the EER can be
defined as the average of the incorrect prediction in both positive and negative samples. The ideal
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target is TPR = 1 and FPR = 0, so the closer the ROC curve is to the (0, 1) point, the better. Table 2
recorded the AUC and EER of the models to make the metrics more specific and easier to compare
the performance.

Table 2: The AUC and EER of different models
Iteration of the model 3 4 5 6 7 8 9 10

AUC 0.808 0.789 0.819 0.816 0.794 0.801 0.796 0.777
EER 0.244 0.271 0.235 0.246 0.257 0.242 0.255 0.270

Iteration of the model 15 20 25 30 35 40 45
AUC 0.736 0.769 0.754 0.752 0.751 0.740 0.730
EER 0.321 0.298 0.301 0.305 0.307 0.310 0.320

Though the models before 10th epoch have higher AUC values, they are in a large fluctuation state
from Fig. 4 (c). The extreme point after 12th epoch is at 20th epoch. Thus the model at 20th epoch
is used as the representative model of the proposed algorithm in this paper to compare with other
algorithms.

4.2.2 THE COMPARISON WITH OTHER ALGORITHMS

(1) Metrics in AUC and EER

We test the AUC and EER of the spatio-temporal autoencoder (ENC), variational encoder (VAE),
multiple instance ranking framework (MIR) and the proposed algorithm (GRP) using the fused
dataset introduced in Section 4.1, see Table 3. The GRP has the best performance with the highest
AUC and the lowest EER, followed by the ENC. While the VAE based on implicit distribution
prediction performs the worst due to the introduction of too much noise.

Table 3: The AUC and EER of different models
algorithms AUC EER

ENC Chong & Tay (2017) 0.645 0.380
VAE An & Cho (2015) 0.269 0.706

MIR Sultani et al. (2018) 0.555 0.513
GRP w.o/Atten(proposed) 0.754 0.292
GRP w/Atten(proposed) 0.769 0.298

In order to make the comparison more intuitive, we draw the ROC curves of each algorithm, as
shown in Fig. 5. VAE generates fewer and more concentrated abnormal scores, the candidate values
of the category segmentation threshold are relatively less and the data has poor separability, resulting
in a higher binary classification error rate and a concave state of the ROC curve. In contrast, the GRP
considers more scene information and reflects it on the abnormal score, so the obtained abnormal
score set performs better under the established rules.

(2)Metrics in frame-level and segment-level

The AUC is used in the situation where the testing set includes both positive and negative samples,
which may not be satisfied in real scenes. Thus we refer to the metric accuracy, which indicates
the ability of the algorithm to classify the samples. The accuracy is the proportion of correct
detection in all the samples. Due to the similarity of the appearance under different actions, it is
difficult to judge the border of the abnormal event, which will greatly affect the frame-level metrics.
Therefore, the segment-level metric is supplemented, labeled as abnormal segment hit rate (ASH).
For a segment containing abnormal events named as abnormal segment, a frame-level detection rate
of not less than 60% is judged as detecting the abnormal segment. Define the abnormal segment
according to the following two principles. (1) Two anomalous frames are counted as two abnormal
segments when the distance between two anomalous frames exceeds 20 frames. (2) The division of
an abnormal segment is not based on semantics, and consecutive adjacent anomalous frames belong
to the same abnormal segment, even if two types of abnormal events occur in the two frames.
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(a) ROC (b) Accuracy (c) ASH

Figure 5: The ROC curve frame-level and segment-level metrics of different algorithms

Fig. 5 shows the metrics of different algorithms on the testing set using the threshold selected every
0.01 between 0 and 1. accuracy is the proportion of samples that are detected correctly. The
maximum accuracy of the GRP is the best of all algorithms, followed by the ENC. While when
the threshold is low, the ASH of ENC is indeed higher than GRP, but it should be noted that each
network model has a different focus on abnormality scores, that is the threshold to classify a score as
anomaly is different. It can be found that the optimal thresholds of the two networks are basically in
the high threshold area, where the ASH of GRP is greater than that of ENC, which is the reason why
GRP is superior in other metrics. It is worth noting that the ASH of VAE is ladder-shaped and is
relatively less affected by the threshold, which means that the score set of VAE is relatively sparse.

(3)Metrics in the detection effect

From the above metrics, the proposed algorithm and the spatio-temporal autoencoder are the two
algorithms with the best performance in the comparison algorithms. Therefore, only the effects of
these two algorithms are listed in the following video detection effect examples. Fig. 6 shows the
specific score curve of the video. Fig. 6(a) is from the UMN dataset with a sudden burst of the
crowds. The scores of the GRP are lower than that of the ENC in normal segments and higher in
abnormal segments. Fig. 6(b) is from the UCSD dataset with a bumper car running. Although the
GRP generates a high abnormal score at the end of the normal segment, it can detect most of the
abnormal frames in the abnormal segment. So the overall effect is better than that of the ENC.
Fig. 6(c) is from the Avenue dataset with a parabolic at high altitude. The GRP and the ENC both
show a peak when the abnormal event occurs, but the peak time of GRP is slightly delayed. As a
whole, the trend of the score curve of GRP and ENC is roughly the same.

(a) UMN (b) UCSD (c) Avenue

Figure 6: The detection result of different algorithms

The threshold corresponding to the maximum point of the accuracy in Fig. 5 is used as the hyper-
parameter of the algorithm to determine whether an abnormal event occurs in each frame. The
threshold of spatio-temporal autoencoder is 0.68, and its corresponding accuracy is 0.725; the
threshold of our algorithm is 0.6, and its corresponding accuracy is 0.746. We use Fβ score to
evaluate the performance of the algorithms under the specified threshold. The definition of Fβ score
is shown in Equation (9).
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Fβ = (1 + β2) · pre · rec
β2 · pre+ rec

, β ∈ N (9)

Where pre represents the proportion of correctly detected samples in all the detected positive sam-
ples, and rec represents the proportion of correctly detected positive samples in all positive samples.
Fβ score is the harmonic value of pre and rec with the weight of β. When β = 1, namely F1 score,
it means that precision and recall are equally important. Fig. 7 calculates the confusion matrix and
F1 score of the two algorithms at their respective thresholds.

(a) The proposed algorithm (b) The spatio-temporal autoencoder

Figure 7: The confusion matrix of different algorithms

The numbers in Fig. 7 indicate the number of frames in the corresponding case. It can be seen from
Fig. 7 that the GRP detects more abnormal frames with a higher number of both correct and wrong
detection than that of the ENC. Hence, the calculation of F1 score is necessary. The F1 score of the
GRP is 0.577, while that of the ENC is 0.463. Therefore, when precision and recall are considered
together with a same weight, the performance of the GRP is slightly better than that of the ENC.

5 CONCLUSION

This paper proposes an end-to-end anomaly detection network, which can be used to detect strenuous
movements in slow moving crowds, such as running, bicycling, throwing from a height. We arrange
the multiple images of continuous video frames in a sequence called a frame group as the input of the
proposed network to capture the spatio-temporal information. Then the attention mechanism is used
to weight the extracted features to highlight the important information and weaken the interference
of irrelevant information on the detection results, and fully connected layers to transform space and
reduce the dimensions of the features. Finally, group-level pooling is used to map video group-level
features to anomalous scores ranging from 0 to 1. The higher the score is, the more probability
the frame has abnormal behaviors. More results and source code reported in this paper can be
downloaded from website https://github.com/xiaojs18/Anomaly-Detection/tree/main/fgan.
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