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ABSTRACT

Point cloud registration is a challenging task when only partially visible data is
available. Recently, many learning-based methods have been proposed for this
problem and have achieved satisfactory performance. However, they rarely com-
bine multiple features and fail to pay attention to the key factor of registration:
alignment of attitude. Based on this phenomenon, we propose a dual-target point
cloud registration model, which combines multiple features learned from Point-
Net, DGCNN, and attention module. First, an initialization module is introduced
for coarse registration, in which a new target point cloud is added compared to
the original model. Second, we design a two-step attention-based representative
overlapping-point selection module, which uses both global and local features of
input point clouds. In the first step, overlapping scores are predicted using global
features. In the second step, a feature-matching matrix is obtained based on local
features and a self-attention module. Representative overlapping points are se-
lected based on the overlapping scores in the first step and the feature-matching
matrix in the second step. Finally, a weighted SVD algorithm is used to estimate
the transformation from the point cloud after initialization to the target point cloud.
Extensive experiments on ModelNet40 show our method achieves state-of-the-art
performance compared to other learning-based methods. The code is available at
https://github.com/Dual-target.

1 INTRODUCTION

Point cloud registration is a fundamental task in robot vision applications, such as automatic driv-
ing(Qin et al., 2020; Wang et al., 2023), 3D reconstruction(Wu et al., 2023a; Zhou & Tulsiani, 2023),
and robot localization (Yin et al., 2021; Feng et al., 2023). The problem becomes even harder when
there is no exact correspondence between input point clouds, owing to the non-overlapping points
and noise. To solve this problem, many algorithms have been proposed in recent years.

Iterative Closest Point (ICP)(Besl & McKay, 1992) is the most classical method for point cloud reg-
istration, which iteratively alternates between two sub-problems: finding the closest points and com-
puting optimal rigid transformation. Although ICP is straightforward to implement and can achieve
adequate results in some scenes, it can only converge to a local optimum near the initial position. To
solve the non-convexity of ICP, Go-ICP(Yang et al., 2016) was proposed, which bypasses the local
optimum using the branch-and-bound algorithm. However, its time cost is prohibitive. Worse still,
ICP and its derivative algorithms(Yang et al., 2016; Rusinkiewicz, 2019) fail in partial-to-partial
point cloud registration problem, because they obtain correspondences based on the closest points
between input point clouds and fail to notice the existence of noise and non-overlapping points. This
will lead to erroneous correspondences without doubt.

Recently, learning-based methods(Wang & Solomon, 2019b; Yuan et al., 2020; Qin et al., 2022;
Wu et al., 2023b) have shown promising results for solving this problem. PointNetLK(Aoki et al.,
2019) and DCP(Wang & Solomon, 2019a) use the PointNet, dynamic graph convolutional neural
network(DGCNN) or transformer to extract the features of input point clouds, showing good robust-
ness against noise. However, these algorithms still cannot perform well in partial-to-partial point
cloud registration problem, because a simple PointNet(Charles et al., 2017) or cross-attention mech-
anism network can hardly learn the features of non-overlapping points. Therefore, RPMNet(Yew &
Lee, 2020) and IDAM(Li et al., 2020) were proposed successively. However, they extract reliable
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features only when there are distinctive local geometric structures. Recently, ROPNet(Zhu et al.,
2021) selects representative overlapping points from the source point cloud, converting this problem
into a partial-to-complete point cloud registration problem. However, ROPNet ignores local fea-
tures and the combination of multi-level features. FINet(Xu et al., 2022) solves this problem from
a new perspective, by introducing multi-level feature interactions between the input point clouds.
Besides, DIFTChen et al. (2023) introduces point cloud structure extractor and point feature trans-
former module, measuring spatial consistency and estimating correspondence confidence based on
geometric matching, which improves the accuracy of correspondences. However, all of them fail to
pay attention to the key factor determining the accuracy of registration: alignment of attitude.

The difficulty in point cloud registration lies in aligning the point cloud attitude. So in this paper, we
deal with the problem from a new perspective, by introducing a dual-target point cloud registration
model. We have shown adding a new target point cloud obtained by rotation from the source point
cloud, can improve the accuracy of registration. The newly added target point cloud has the same at-
titude as the target point cloud. The spatial locations of source, target, and newly added point clouds
are shown in the figure of Point Cloud Pair in Fig. 1. Besides, global features(Charles et al., 2017)
capture the overall shape and distribution information of the point cloud, while local features(Wang
et al., 2019) include the specific structure and local details of the point cloud. Therefore, both global
features and local features are needed for point cloud registration.

Based on the above discussion, we design a dual-target point cloud registration model which in-
tegrates multiple features to solve the partial-to-partial point cloud registration problem. First, we
introduce a Res-PointNet module for initial transformation. Compared to PCRNet(Sarode et al.,
2019), our Res-PointNet can aggregate global features from multi-level. Second, we design an
Attention-based Representative Overlapping-Point Selection(AROPS) module which uses the trans-
formed point cloud completely. The AROPS module is divided into two parts, one uses the global
features based on PointNet and the other uses the local features based on DGCNN(Wang et al.,
2019). In the first part, a multiple information fusion module is used to predict overlapping scores
and select preliminary overlapping points, where the information includes the high dimensional
point features, the multi-level global features and corresponding structure information encoded by
a transformer module. In the second part, an Attention-based Mismatched-Point Removal(AMPR)
module is used to get the final representative overlapping points and the similarity matrix. Finally,
a weighted SVD algorithm is used to estimate the transformation from the point cloud after initial-
ization to the target point cloud. Combining the transformation in the initialization module and the
Attention-based Representative Overlapping-Point Selection module, the finally transformation can
be calculated. The pipeline of our model is shown in Fig. 1.

2 RELATED WORKS

Global Feature-based Methods. Since PointNet(Charles et al., 2017) was proposed, many reg-
istration models based on global features have emerged, and PointNetLK(Aoki et al., 2019) is the
pioneer among them. PointNetLK utilizes the Lucas & Kanade algorithm(Lucas & Kanade, 1981)
to handle the registration problem. PCRNet(Sarode et al., 2019) replaces the LK algorithm with
a MLP network and transforms the rigid transformation problem into a fitting problem. FINet(Xu
et al., 2022) introduces multi-level feature interactions between the input point clouds. However, it is
difficult for these methods that rely solely on global features to learn the features of non-overlapping
points. Besides, because they are based on PointNet(Charles et al., 2017), local features will in-
evitably be ignored.

Correspondence Matching-based Methods. ICP(Besl & McKay, 1992) is the most classical cor-
respondence matching-based method, which calculates correspondence based on the closest points.
However, due to the non-convexity of ICP, the algorithm can only converge to a local minimum
near the initial position. Although ICP’s variants including GoICP(Yang et al., 2016) and Sym-
metric ICP(Rusinkiewicz, 2019) alleviate this shortcoming to a certain extent, none of them notice
the partially visible data. Recently learning-based methods replace handcrafted descriptors with
MLP, GNN or attention mechanisms, showing promising results for solving partial-to-partial point
cloud registration problem. PRNet(Wang & Solomon, 2019b) and RPMNet(Yew & Lee, 2020) are
early works that pay attention to the partially visible data. They use Gumble-Softmax(Maddison
et al., 2016) and Sinkhorn normalization(Sinkhorn & Knopp, 1967) to improve the accuracy of
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Figure 1: Network architecture of our model, including the Initialization module(top) and the
Attention-based Representative Overlapping-Point Selection module(bottom). The blue, red, and
green point clouds in the figure of Point Cloud Pair are the source, target and newly added target
point clouds respectively.

feature-matching. OMNet(Xu et al., 2021) estimates overlapping masks for non-overlapping points.
Similarly, ROPNet(Zhu et al., 2021) predicts overlapping scores to select representative points.
OGMM(Mei et al., 2023) proposes a novel overlap-guided probabilistic registration approach, re-
formulating the problem as aligning two Gaussian mixtures. Nevertheless, all of them use a single
feature and ignore the key factor of registration.

Loss function. For learning-based methods, the choice of loss function will affect the quality of
their models. DCP(Wang & Solomon, 2019a) measures the deviation of (R, t) from the ground
truth. In OMNet(Xu et al., 2021) and FINet(Xu et al., 2022), R is replaced by the quaternion.
PCRNet(Sarode et al., 2019) uses a loss function called Earth Mover Distance(Rubner et al., 2000),
which minimizes the distance between the corresponding points of source and target point clouds
and is robust to outliers. ROPNet(Zhu et al., 2021) replaces Earth Mover Distance with a simple
function to calculate the absolute error between source and target point clouds. However, none of
them pay attention to the key of registration: alignment of attitude. We add a new target point cloud
obtained by rotation from the source point cloud to increase the weight of the rotation in the loss
function. It is proven in our paper that rotation-preference loss function is better than the original.

3 METHOD

In our model, the transformation from the source point cloud to the target point cloud is divided
into two steps. The first step is an initialization model for coarse registration. The second step is an
accurate transformation from the point cloud after initialization to the target point cloud.
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3.1 INITIALIZATION

As shown in ROPNet(Zhu et al., 2021), an initial transformation is favored by predicting overlapping
points. Considering the model complexity, the initialization module should be as simple as possible,
but still be effective. PCRNet(Sarode et al., 2019) uses a PointNet style network to extract global
features of the input point clouds and regresses a quaternion and a translation vector. However,
PCRNet regresses the transformation using the high-level global features only and loses sight of the
low-level features, which are also exactly what point cloud registration needs. To combine high-
level and low-level global features, we introduce a module called Res-PointNet which concatenates
the output of each convolution block in the MLPs, except for the medium-level convolution block.
The combination of high-level and low-level features is formulated as:

FX = cat (h1(X0), h2 (X1) , h3 (X2) , h5 (X4)) ,

FY = cat (h1(Y0), h2 (Y1) , h3 (Y2) , h5 (Y4)) ,
(1)

where FX and FY respectively denote the combination of high-level and low-level features of the
source point cloud X and target point cloud Y . The symbol cat(·) represents concatenation. Oper-
ators hi is the ith convolution block. The symbols Xi and Yi are the outputs of the ith convolution
block. Here, the outputs of fourth convolution block are not used. Follow PointNet, a symmetric
function max-pooling max(·) is used to get global features F gX and F gY . The initial transformation
is formulated as:

v = hθ (cat (F
g
X , F gY )) , (2)

where hθ denotes the transformation decoder, which is a simple fully connected layer. The output
v is a 7-dimensional vector whose first four values denote the quaternion and the last three values
represent a translation vector. Therefore, the transformed source point cloud X∗ after initial trans-
formation can be formulated as X∗ = X ·R1 +t1, and the transformation to the newly added target
point cloud is formulated as X ′ = X · R1, where R1 is obtained in terms of the quaternion.

3.2 ATTENTION-BASED REPRESENTATIVE OVERLAPPING-POINT SELECTION

The Attention-based Representative Overlapping-Point Selection(AROPS) module is established
on the point cloud after the initial transformation. To achieve this method, we first design a
Transformer-based Overlapping-Score Prediction(TOSP) module, which combines multiple features
to calculate overlapping scores and selects overlapping points preliminarily. Besides, an Attention-
based Mismatched-Point Removal(AMPR) module is used to remove mismatched points with wrong
correspondences from these overlapping points we have selected based on overlapping scores. Fi-
nally, the transformation from the point cloud after initialization to the target point cloud can be
estimated by a weighted SVD algorithm(Papadopoulo & Lourakis, 2000).

3.2.1 TRANSFORMER-BASED OVERLAPPING-SCORE PREDICTION

There are some non-overlapping points between the input point clouds in the task of partial-to-
partial point cloud registration. In our model, a module called Transformer-based Overlapping-
Score Prediction(TOSP) is designed to predict overlapping scores and remove these non-overlapping
points from the transformed source point cloud X∗.

Transformer. Since transformer(Vaswani et al., 2017; Han et al., 2023) was proposed, it has been
widely used in various deep learning tasks. The main feature of transformer is that it uses the
multi-head self-attention mechanism to capture long-distance dependencies in sequences, which
convolution block cannot do. Besides, in the field of 3D point cloud processing, transformer can
capture the internal geometry and correlation information of the input point cloudsGuo et al. (2021);
Engel et al. (2021); Qin et al. (2023). Inspired by the success of BERT(Devlin et al., 2019) and
DCP(Wang & Solomon, 2019a), a module called inter-transformer is used to learn the correlation
between source and target point clouds by self-attention and conditional attention mechanism.

To reduce network parameters, we share convolution kernel parameters with the Res-PointNet used
in the initialization module. Take FX∗ and FY to be the embedding generated by the Res-PointNet.
The inter-transformer module is dedicated to learning a mapping : Φ : RN×C × RN×C → RN×C ,
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where C is the output dimension of the Res-PointNet module. Then the new embedding of the
transformed source and target point clouds is formulated as:

φX∗ = Φ(FX∗ , FY ) ,

φY = Φ(FY , FX∗) ,
(3)

where φX∗ and φY are new embedding of the transformed source and target point clouds. Consid-
ering the embedding FX∗ and FY will be used later, so there is no a residual network as DCP(Wang
& Solomon, 2019a). The inter-transformer module is the same as the attention module in DCP,
which is composed by several stacked encoder-decoder layers. The aim of these encoder layers is to
encode FX∗ or FY to an embedding space. The aim of these decoder layers is to encode FY or FX∗

and relate the embedding of FY or FX∗ to the other embedding encoded in the encoder layers.

Information Fusion. We introduce an information fusion module to predict overlapping scores
based on global features and corresponding structure information obtained by the transformer mod-
ule. For a more accurate prediction for overlapping scores, this module is used after initialization.
In our model, the task of predicting overlapping scores is a binary classification problem. The over-
lapping scores can be calculated by :

SX∗ = hψ (cat (FX∗ , r (F gX∗) , r (F
g
Y ) , r (F

g
X∗ − F gY ) , φX∗)) ,

SY = hψ (cat (FY , r (F
g
Y ) , r (F

g
X∗) , r (F

g
Y − F gX∗) , φY )) ,

(4)

where hψ denotes the overlapping decoder that is a PointNet style network with a soft-max func-
tion. And r(·) is a function of expanding dimensions by repeating features. The SX∗ , SY are the
overlapping scores of X∗ and Y . Through this module, non-overlapping points will be removed
and a new transformed source point cloud X∗

ro1 is obtained. The overlapping decoder hψ contains
5 Conv1d(2048,2048,512,256,2) with Relu and group normalization except the last block.

3.2.2 ATTENTION-BASED MISMATCHED-POINT REMOVAL

After removing these non-overlapping points, there are still some points in the point cloud X∗
ro1

with a wrong correspondence to the points in the point cloud Y . Therefore, a mismatched-
point removal module is used to remove these points in X∗

ro1 with wrong correspondences to
points in Y . Mismatched points are removed based on the point cloud X∗

ro1, however, the
features are extracted based on the transformed point cloud X∗ with non-overlapping points.

Figure 2: Architecture of the Attention layer.

Point-Feature Augmentation. To enrich point
features, a Point-Feature Augmentation module is
used following ROPNet(Zhu et al., 2021). For each
point x∗ ∈ R3 in the transformed point cloud X∗,
its k-nearest neighbor points Mk ∈ Rk×3 are se-
lected. Besides, the spatial coordinate of each point
and the Point-Pair-Feature(PPF)(Drost et al., 2010)
are concatenated to it together. The Point-Pair-
Feature(PPF) contains the normal information of
the point cloud and is represented by symbol FP
in our paper. Therefore, the augmented feature
FLmi

∈ R10 of the point x∗
i is formulated as :

FLmi
= cat(mi,mi − x, FPi ). (5)

Local features can capture the geometric structure and local details of the point cloud, which is
beneficial for improving the robustness in point cloud processing(Qi et al., 2017; Liu et al., 2019;
Lin et al., 2023). Therefore, before self-attention, a Dynamic Graph Convolutional Neural Net-
work(DGCNN)(Wang et al., 2019) is used with group normalization(Wu & He, 2018) instead of
batch normalization(Ioffe & Szegedy, 2015) to encode the embedding FLmi

to a high-dimensional
space. The output FLX∗ is formulated as :

FLX∗ = max
1≤i≤k

(
µθ

(
FLmi

))
, (6)

where max
1≤i≤k

(·) denotes a max-pooling function, and µθ(·) is a convolution layer which is made up

of several 2d-convolution blocks. The same operation applies to the target point cloud Y .
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Self-Attention. After Point-Feature Augmentation with DGCNN, the embedding has learned the
local-feature representation for the point clouds. However, the global dependencies of the point
clouds are also needed. Therefore, several self-attention blocks are used, which can learn the dis-
tance, relative position, and correlation degree between points, and capture the long-distance corre-
lation among points in the point cloud. The network architecture of our self-attention layer is shown
in Fig. 2. In contrast to FLX∗ and FLY , FL

′

X∗ and FL
′

Y are the outputs of DGCNN without ReLU in
the last convolution block. Given the augmented feature FLX∗ for the transformed point cloud X∗,
the self-attention layers can be formulated as:

Qi = FL,iX∗ ·WQ
i , Ki = FL,iX∗ ·WK

i , Vi = FL,iX∗ ·WV
i ,

FL,i+1
X∗ = norm

(
softmax

(
Qi ·KT

i

))
· Vi.

(7)

There are several self-attention blocks, where i is the index of the self-attention block. The input
FL,iX∗ of ith self-attention block is the output of the previous one. Up to here, the embedding has
learned the relative position and correlation degree between points. However, local features may
be forgotten after these self-attention blocks. Therefore, the augmented features FL

′

X∗ and FL
′

Y are
concatenated to the output of each self-attention block, where the augmented features FL

′

X∗ and FL
′

Y
are the embedding of DGCNN without ReLU in the last conv-2d block. The final embedding of
the transformed source and target point clouds can be represented as F tX∗ ∈ RN×5CP and F tY ∈
RN×5CP , CP is the dimension of the output of each attention block, which is 256 in our paper.

Representative Overlapping-Point Selection. These representative overlapping points are se-
lected through a two-step process followed ROPNet(Zhu et al., 2021). In the first step, non-
overlapping points are removed and then N1 overlapping points are left as the first batch overlapping
point cloud X∗

ro1 ∈ RN1×3 on the basis of overlapping scores SX∗ . In the second step, we further
remove mismatched points to obtain the final N2 points as the representative overlapping point cloud
X∗
ro2 ∈ RN2×3. The second step can be formulated as:

X∗
ro2 = X∗

ro1

[
argmax

top-prob

(
max
j

(
F tX∗

ro1
· F tY T

)
ij

)]
, (8)

where top-prob means selecting a certain number of indexes based on the probability distribution
of similarity scores calculated by the similarity matrix Hro1 = F tX∗

ro1
· F tY T . So far the finally

representative overlapping points are obtained. Considering the final similarity matrix Hro2 =
F tX∗

ro2
· F tY T , we can match the corresponding points in Y for each point xiro2 in the representative

source point cloud X∗
ro2 as follows:

J = argmax
top −k

H∗
ro2,i, wij =

{
H∗
ro2,ij j ∈ J

0 j /∈ J , yi =
wi,:∑
j wi,j

· Y. (9)

Where J denotes the indices of Y which have top − k maximum similarity scores for x∗
ro2. The

corresponding point pairs (xro2,i, yj) can be obtained based on the formula above. Based on the
weight SX∗,i , a weighted SVD algorithm will be used to estimate the transformation R2 and t2
from X∗ to Y . Finally, the transformation from source point cloud to target point cloud can be
formulated as: R = R2 · R1 and t = R2 · t1 + t2. We set top-k to 3 and 1 for training and testing.

3.3 DATA PRE-PROCESSING

The points of source and target point clouds are constant using the manner in RPMNet(Yew & Lee,
2020) for generating partial data. However, The number of points in the point cloud obtained by
each lidar scan is not equal. To create a more realistic situation, a random-parameter is introduced
to generate partial data in our paper. The random-parameter is denoted as Nkeep = random(w −
φ,w + φ) , where w is the parameter for generating partial data in RPMNet and φ is a random
factor. However, there are some modules in which the number of points in source and target point
clouds needs to remain the same, including our Transformer-based Overlapping-Score Prediction
module. Methods of down-sampling may remove these overlapping points from the source or target
point cloud. Pu-Net(Yu et al., 2018) proposes a method of up-sampling, which can transform the
sparse point cloud into a dense point cloud. However, newly added points in Pu-Net will change the
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Table 1: Results on ModelNet40, red indicates the best results and blue is the second-best among all
methods.

Method Error R Error t RMSE(R) MAE(R) RMSE(t) MAE(t)

(a
)U

ns
ee

n
Sh

ap
es

DCP(Wang & Solomon, 2019a) 8.693 0.1174 6.501 4.547 0.0767 0.0584
RPMNet(Yew & Lee, 2020) 1.175 0.0155 1.078 0.620 0.0174 0.0072

IDAM(Li et al., 2020) 7.052 0.0864 7.469 4.937 0.0893 0.0615
RGM(Fu et al., 2021) 3.147 0.0312 3.782 1.785 0.0386 0.0178

OMNet(Xu et al., 2021) 1.118 0.0198 1.384 0.542 0.0226 0.0093
ROPNet(Zhu et al., 2021) 0.852 0.0087 0.859 0.451 0.0085 0.0042

FINet(Xu et al., 2022) 0.591 0.0110 1.267 0.269 0.0168 0.0048
RORNet(Wu et al., 2023c) 2.035 0.0386 2.408 1.555 0.0425 0.0314
OGMM(Mei et al., 2023) 1.209 0.0171 1.603 0.614 0.0265 0.0075
DIFT(Chen et al., 2023) 0.472 0.0058 0.493 0.253 0.0072 0.0024

Ours 0.392 0.0042 0.421 0.210 0.0053 0.0020

(b
)U

ns
ee

n
C

at
eg

or
ie

s

DCP(Wang & Solomon, 2019a) 11.778 0.1402 8.556 6.134 0.0892 0.0701
RPMNet(Yew & Lee, 2020) 1.333 0.0161 1.427 0.709 0.0161 0.0077

IDAM(Li et al., 2020) 7.625 0.0881 8.152 5.193 0.0974 0.0680
RGM(Fu et al., 2021) 4.291 0.0468 5.045 2.176 0.0503 0.0223

OMNet(Xu et al., 2021) 3.206 0.0383 4.014 1.619 0.0406 0.0179
ROPNet(Zhu et al., 2021) 1.042 0.0117 1.145 0.561 0.0145 0.0055

FINet(Xu et al., 2022) 2.572 0.0311 3.918 1.286 0.0404 0.0142
RORNet(Wu et al., 2023c) 2.742 0.0401 3.210 1.595 0.0452 0.0366
OGMM(Mei et al., 2023) 1.915 0.0220 2.123 0.960 0.0308 0.0099
DIFT(Chen et al., 2023) 0.643 0.0081 0.684 0.344 0.0121 0.0036

Ours 0.489 0.0060 0.579 0.260 0.0088 0.0028

(c
)G

au
ss

ia
n

N
oi

se

DCP (Wang & Solomon, 2019a) 12.341 0.1440 8.859 6.430 0.0912 0.0720
RPMNet(Yew & Lee, 2020) 1.394 0.0175 1.336 0.741 0.0188 0.0083

IDAM(Li et al., 2020) 8.786 0.1032 9.854 5.673 0.1154 0.0797
RGM(Fu et al., 2021) 5.378 0.0578 5.763 2.810 0.0591 0.0280

OMNet(Xu et al., 2021) 3.834 0.0476 4.356 1.924 0.0486 0.0223
ROPNet(Zhu et al., 2021) 1.326 0.0145 1.328 0.709 0.0165 0.0070

FINet(Xu et al., 2022) 2.984 0.0336 3.841 1.532 0.0379 0.0158
RORNet(Wu et al., 2023c) 3.043 0.0588 3.585 1.604 0.0639 0.0424
OGMM(Mei et al., 2023) 2.363 0.0279 2.172 1.220 0.0341 0.0125
DIFT(Chen et al., 2023) 1.845 0.0198 2.135 1.076 0.0212 0.0095

Ours 0.804 0.0091 1.023 0.434 0.0107 0.0044

original spatial distribution of the point cloud and cause correspondences that does not exist before.
It is a principle in point cloud registration that newly added points cannot be used as corresponding
points between the source and target point clouds. Therefore, a simple method is used in our paper:

• Random Point: The newly added points to source or target point cloud are selected from
the same point cloud randomly. The new points have the same spatial coordinates as the
original points in the point cloud, and will not change the spatial distribution of the point
cloud, nor will they become corresponding points between source and target point clouds.

A certain amount of random points are added to the point cloud with fewer points. The random-
parameter for generating partial data is used only in the test process.

3.4 LOSS FUNCTIONS

We adopt the loss which calculates the distance between the transformed point cloud and ground
truth, and there are three in our model, including the initial transformation to ground truth, transfor-
mation to the newly added target point cloud and the final transformation to ground truth. For pre-
dicting overlapping scores, we adopt the cross-entropy loss function(Richard & Lippmann, 1991).

Lgt
init =

∥∥∥X ·RT1 −X ·RgtT
∥∥∥
1
+

∥∥t1 − tgt
∥∥
1
, Lnew

init =
∥∥∥X ·RT1 −X ·RgtT

∥∥∥
1

Lol =
1

2N

∑
i

∑
j

(
SgtX∗

)
ij
· log (SX∗)ij +

1

2M

∑
i

∑
j

(
SgtY

)
ij
· log (SY )ij ,

Lfinally =
∥∥∥X ·RT −X ·RgtT

∥∥∥
1
+ ∥t− tgt∥1,

(10)

where the Rgt, tgt denote the ground truth of rotation matrix and translation vector.
SgtX∗ , S

gt
Y represent the ground truth of overlapping scores calculated as ROPNet. The finally loss

can be calculated as:

Ltotal = αLgt
init + βLnew

init + γLfinally + δLol, (11)

where α, β, γ, δ are set to 1 , 1, 1, 0.1 respectively.
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4 EXPERIMENTS

In this section, we comprehensively evaluate our model on ModelNet40(Zhirong Wu et al., 2015),
including the accuracy of registration and time consumption(Appendix A). We also prove that fo-
cusing on the rotation part is beneficial for point cloud registration.

4.1 DATASET

ModelNet40(Zhirong Wu et al., 2015) has been widely used for point cloud registration in recent
years. With the in-depth study of semantic SLAM(Liao et al., 2022; Liu et al., 2022; Qian et al.,
2022; Hu et al., 2022), the point cloud registration of semantic information is receiving more and
more attention. There are 12311 CAD models in ModelNet40, one part for training, with 9843
models and the other is used for testing, with 2468 models. There are 40 categories in ModelNet40,
including 8 symmetric categories, which are not suitable for registration. Therefore, these symmetric
categories are removed in the test set as OMNet(Xu et al., 2021) and FINet(Xu et al., 2022). The
partial point cloud is generated using the manner of RPMNet(Yew & Lee, 2020) and 30% of the
points are removed. The random factor φ is set to 0.05. We randomly generate three angles within
[0, 45] and translations within [−0.5, 0.5] on the x, y and z axis respectively.

Table 2: Ablation Studies

Initialization TOSP AFMR Error R Error t
(1) ✓ ✓ ✓ 0.804 0.009
(2) ✓ ✓ 2.915 0.031
(3) ✓ ✓ 3.211 0.036

Implementation Details. We train for 1240 epochs using Adam(Kingma & Ba, 2017) with an
initial learning rate of 0.0001. The learning rate is changed with the schedule of cosine anneal-
ing(Loshchilov & Hutter, 2017). A non-iterative manner is chosen in the training process, however,
we iterate the attention-based mismatched-point removal module 4 times in testing process. To se-
lect representative points, N1 is set to 448 and top-prob is set to 0.6 in the training process, and 0.4
for testing. In the Point-Feature Augmentation module, the number of neighbor points is set to 64.

4.2 EVALUATION ON MODELNET40

Baseline Algorithms. We compare our model to some state-of-the-art models: DCP,
RPMNet, IDAM, RGM, OMNet, ROPNet, FINet, RORNet, OGMM, DIFT. The re-
sults of OMNet and FINet are chosen from FINet(Xu et al., 2022). We eval-
uate the registration in terms of the anisotropic rotation and translation errors:
root mean squared error(RMSE), mean absolute error(MAE) and isotropic errors.

Table 3: Results of rotation-preference

α/β Error R Error t

(a) 1 1.05 0.0082
1.5 0.91 0.0073

(b) 1 2.69 0.0188
1.5 2.42 0.0176

(a) Unseen shapes (b) Unseen categories

Figure 3: Results of rotation-preference.

Unseen shapes. We first evaluate our
model on the same categories, using 40
categories in the training set, and exclud-
ing 8 symmetric categories from the test
set. We sample twice for the source and
target point clouds. Table 1(a) shows the
results where our model achieves state-of-
the-art performance. Considering ICP and
some of its variants cannot deal with the
partially visible data, therefore, their re-
sults are not reported.

Unseen categories. We evaluate our
model on different categories to test the
generalization ability of our model. The
first 20 categories are used for training,
and the last 18 asymmetric categories are
used for testing. Table 1(b) shows the
results where all of these learning-based
models achieve worse performance, be-
cause there are features these models have
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not seen before and this is exactly the downside of learning-based methods. However, our model
still achieves the best performance among all methods, because our model combines global features
using PointNet and local features using DGCNN in different modules. Our model not only learns
the overall shape of the objects, but also learns the local geometric structure of the objects.

Gaussian Noise. We evaluate the robustness to noise of our model on the basis of the experiment
Unseen categories. The noise is sampled from N(0, 0.012) and clipped to [−0.05, 0.05]. As shown
in Table 1(c), our model exhibits the best robustness, because of the choice of the weighted SVD
algorithm based on overlapping scores. To evaluate the registration accuracy of our model at a large
angle vividly, we set the three rotation angles to the maximum, and the registration results are shown
in Fig. 4. More registration results are shown in Appendix B.

(a)

error R=1.21°
error t=0.0089

(b)

error R=0.21°
error t=0.0030

(c)

error R=0.52°
error t=0.0097

(d)

error R=1.35°
error t=0.0078

(e)

error R=0.39°
error t=0.0037

(f)

error R=0.47°
error t=0.0072

(g)

error R=0.79°
error t=0.0079

Figure 4: Example results on ModelNet40. The green point cloud is the source point cloud, the red
is the target point cloud, and the blue is the transformed source point cloud.

4.3 ABLATION STUDIES

Initialization. We remove the initialization module to test the role of the initial transformation.
As shown in Table 2, a good initial position is helpful for predicting overlapping points.

Overlapping-Score. In ablation studies, we evaluate the role of Transformer-based Overlapping-
Score Prediction(TOSP) module. Comparing row 1 with 3 in Table 2, adding this module brings a
great improvement to our model.

4.4 ROTATION PREFERENCE

The aim of point cloud registration is to minimize the error of transformation from source point
cloud to target point cloud. However, what determines the transformation accuracy is the error of
the attitude between source and target point clouds. Furthermore, a smaller attitude error does not
result in a larger translation error if models have been trained enough. We evaluate the effect of the
rotation-preference model under two widely used loss functions:

Loss1 =α ·
∥∥RT ·Rgt − I

∥∥2 + β ·
∥∥t− tgt

∥∥2 ,
Loss2 =

∥∥∥X ·RT −X ·RgtT
∥∥∥
1
+ β · ∥t− tgt∥1 + (α− 1) ·

∥∥∥X ·RT −X ·RgtT
∥∥∥
1
.

(12)

Implementation Details. We use the model in PCRNet(Sarode et al., 2019), and train for 400
epochs using Adam with an initial learning rate of 0.0001. The learning rate is changed with the
schedule of multi-step decay and the model is iterated 2 times. Given the simplicity of the model,
we do not consider the partially visible data.

Results. As shown in Fig. 3, as the degree of rotation weight increases, the rotation error decreases
continuously and only fluctuates in one case. A smaller rotation error does not result in a larger
translation error, as shown in Table 3.

5 CONCLUSION

We design a dual-target model for partial-to-partial point cloud registration, which combines multi-
ple features learned from PointNet, DGCNN, and attention module. By introducing a newly added
target point cloud for registration, we verify that the rotation-preference loss function is beneficial
for registration. We extensively use skip-connection and combine global features and local features,
demonstrating that multi-level, multi-categories features are required in point cloud registration.
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A APPENDIX

Considering that point cloud registration requires high real-time performance, so in this appendix,
we evaluate the time consumption of our model. Besides, experiments with even smaller overlapping
rates also show that our model only needs a few accurate overlapping points to achieve good results.

Time Evaluation. The task of point cloud registration has relatively high real-time requirements.
There are many methods which run their models in a iterative manner. Although they achieve good
performance, they also cause a lot of time consumption. Therefore, we also evaluate our model in
a non-iterative manner. Table 4 shows that although the results running in non-iterative manner is
worse than the iterative results, it is still better than other models. Besides, the non-iterative manner
saves a lot of time.

Table 4: Unseen Shapes

Method Error R Error t time(ms)

Unseen Categories ICP 26.112 0.2001 26.7
Ours 0.489 0.0060 50.3

Ours-v2 0.774 0.0098 30.3

Unseen Shapes ICP 26.544 0.2045 21.4
Ours 0.392 0.0042 47.8

Ours-v2 0.503 0.0055 28.2

We evaluate our model on GTX4090, ours-v2 denotes the results with non-iterative manner. We run
ICP on cpu of Intel 12400. Considering that the operating environment is different, this is only for
reference.

Overlapping Rate. The core idea of our model is to select some trustworthy overlapping points
for accurate registration. Therefore, what determines the registration error is not the number of
overlapping points, but whether the chosen overlapping points are trustworthy. Our model only
needs a few overlapping points to achieve accurate registration. Experiments with even smaller
overlapping rates are shown in Table 5. Partially visible data is generated using the manner of
RPMNetYew & Lee (2020). And the Pkeep is the proportion of retained point clouds in RPMNet.
N1 is the number of overlapping points selected in the TOSP module. Although the error continues
to increase as the point cloud retention ratio decreases, the results of our model are still acceptable.

Table 5: Method

N1 Error R Error t RMSE(R) MAE(R) RMSE(t) MAE(t)

pkeep = 0.70 448 0.804 0.0091 0.023 0.434 0.0107 0.0044
pkeep = 0.65 416 0.938 0.0107 0.975 0.502 0.0120 0.0052
pkeep = 0.60 354 1.402 0.0152 1.866 0.756 0.0164 0.0073
pkeep = 0.55 352 2.802 0.0223 2.778 1.275 0.0222 0.0108
pkeep = 0.50 320 3.485 0.0373 5.958 1.893 0.0469 0.0176
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B APPENDIX

More results on ModelNet40 of Unseen Categories, The rotation angles of the x,y, and z axes are set
to a maximum of 45 degrees.

person

error R=0.30°
error t=0.0060

error R=1.71°
error t=0.0232

error R=1.10°
error t=0.0146

error R=1.29°
error t=0.0131

error R=0.61°
error t=0.0090

laptop

error R=0.88°
error t=0.0057

error R=0.39°
error t=0.0070

error R=2.13°
error t=0.0181

error R=1.76°
error t=0.0216

error R=1.39°
error t=0.0157

piano

error R=0.71°
error t=0.010

error R=0.51°
error t=0.0040

error R=0.73°
error t=0.0092

error R=0.69°
error t=0.0078

error R=0.62°
error t=0.0043

plants

error R=1.61°
error t=0.0061

error R=1.02°
error t=0.0071

error R=0.34°
error t=0.0052

error R=1.36°
error t=0.0112

error R=1.89°
error t=0.0283
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radio

error R=0.80°
error t=0.0069

error R=1.28°
error t=0.0171

error R=1.00°
error t=0.0095

error R=0.93°
error t=0.0099

error R=4.94°
error t=0.0416

stairs

error R=2.49°
error t=0.0099

error R=0.57°
error t=0.0073

error R=1.90°
error t=0.0026

error R=1.84°
error t=0.0206

error R=2.82°
error t=0.0332

stool

error R=1.31°
error t=0.0112

error R=0.59°
error t=0.0049

error R=1.41°
error t=0.0152

error R=0.32°
error t=0.0081

error R=1.89°
error t=0.0142

table

error R=0.36°
error t=0.0059

error R=0.71°
error t=0.0102

error R=0.88°
error t=0.0093

error R=1.56°
error t=0.0092

error R=0.93°
error t=0.0130

toilet

error R=0.55°
error t=0.0076

error R=0.84°
error t=0.0056

error R=0.52°
error t=0.0052

error R=0.84°
error t=0.0089

error R=1.62°
error t=0.0178

15


	Introduction
	Related Works
	Method
	Initialization
	Attention-based Representative Overlapping-Point Selection
	Transformer-based Overlapping-Score Prediction
	Attention-based Mismatched-Point Removal

	Data Pre-Processing
	Loss Functions

	Experiments
	Dataset
	Evaluation on ModelNet40
	Ablation Studies
	Rotation Preference

	Conclusion
	Appendix
	Appendix

