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Abstract

Demographic parity is the most widely recognized measure of group fairness in machine
learning, which ensures equal treatment of different demographic groups. Numerous works aim
to achieve demographic parity by pursuing the commonly used metric ∆DP 1. Unfortunately,
in this paper, we reveal that the fairness metric ∆DP can not precisely measure the violation
of demographic parity, because it inherently has the following drawbacks: i) zero-value
∆DP does not guarantee zero violation of demographic parity, ii) ∆DP values can vary
with different classification thresholds. To this end, we propose two new fairness metrics,
Area Between Probability density function Curves (ABPC) and Area Between Cumulative
density function Curves (ABCC), to precisely measure the violation of demographic parity
in distribution level. The new fairness metrics directly measure the difference between
the distributions of the prediction probability for different demographic groups. Thus
our proposed new metrics enjoy: i) zero-value ABCC/ABPC guarantees zero violation of
demographic parity; ii) ABCC/ABPC guarantees demographic parity while the classification
threshold adjusted. We further re-evaluate the existing fair models with our proposed
fairness metrics and observe different fairness behaviors of those models under the new
metrics. The code is anonymously available at https://anonymous.4open.science/r/
fairness_metric-36EC.

1 Introduction

Machine learning has been extensively adopted in the various high-stake decision-making process, including
criminal justice (Heidensohn, 1986; Berk et al., 2021; Tolan et al., 2019), healthcare (Ahmad et al., 2020;
Cappelen & Norheim, 2006), college admission (Friedler et al., 2016), loan approval (Mukerjee et al., 2002;
Kozodoi et al., 2022), and job marketing (Johnson et al., 2009; Raghavan et al., 2020). Since such high-stake
decision-making could have a life-long effect on individuals, the fairness issue in these machine learning systems
has raised increasing concerns (Chai et al., 2022; Zhang et al., 2022). Lots of fairness definitions (Garg et al.,
2020; Mehrabi et al., 2021; Verma & Rubin, 2018; Saxena et al., 2019; Zafar et al., 2017; Mehrabi et al., 2020;
Dwork et al., 2012; Hardt et al., 2016; Kleinberg et al., 2016) (e.g., demographic parity, equalized opportunity)
are proposed to solve different types of fairness issues. In this paper, we focus on the measurement of
demographic parity, ∆DP , a commonly-used metric to evaluate the violation of demographic parity in the
classification task (Menon & Williamson, 2018; Ustun et al., 2019; Kamishima et al., 2012).

To develop effective fair models, a faithful metric is critical to guide the development of a fair machine
learning system since an “irrational" fairness metric may mislead the development of fair models and even
lead to opposite conclusions. Despite the extensive efforts to develop various fairness metrics, one critical
and fundamental question is still unclear: Are the existing metrics really reasonable to quantify
demographic parity violation?

In this paper, we rethink the rationale of ∆DP and investigate its limitations on measuring the violation of
demographic parity. There are two commonly used implementations of ∆DP 2, including ∆DPc (i.e., the

1∆DP includes ∆DPb and ∆DPc in this paper, the details are presented in Section 2.1.
2We would like to claim that these two kinds of ∆DP are widely used to evaluate demographic parity in the current literature.
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Figure 1: The distribution of the predictive probability of male and female groups on the ACS-Income dataset.
∆DP measures Model 1 and Model 3 correctly. However, it fails to assess (×) Model 2 since it obtains a
“fair” assessment on an “unfair” model. Our proposed metrics, ABPC and ABCC, can assess all the models
precisely. Experimental results on more datasets are presented in Section 6.2.

difference of the mean of the predictive probabilities between different groups, used in papers (Chuang &
Mroueh, 2020; Zemel et al., 2013)) and ∆DPb (i.e., the difference of the proportion of positive prediction
between different groups, used in papers (Dai & Wang, 2021; Creager et al., 2019; Edwards & Storkey, 2015;
Kamishima et al., 2012)). We argue that ∆DP , as a metric, has the following drawbacks: First, zero-value
∆DP does not guarantee zero violation of demographic parity. One fundamental requirement for the
demographic parity metric is that the zero-value metric must be equivalent to the achievement of demographic
parity, and vice versa. However, zero-value ∆DP does not indicate the establishment of demographic parity
since ∆DP is a necessary but insufficient condition for demographic parity. An illustration of ACS-Income
data is shown in Figure 1 to demonstrate that ∆DP fails to assess the violation of demographic parity since
it reaches (nearly) zero on an unfair model (the middle subfigure in Figure 1). Second, the value of
∆DP does not accurately quantify the violation of demographic parity and the level of fairness.
Different values of the same metric should represent different levels of unfairness, which is still true even in a
monotonously transformed space. ∆DP does not satisfy this property, resulting in it being unable to compare
the level of fairness based on its value solely. Third, ∆DPb value is highly correlated to the selection
of the threshold for the classification task. To make a decision based on predictive probability, one
predefined threshold is needed. If the threshold for downstream tasks changes, the proportion of positive
predictions of different groups will change accordingly, resulting in a change in ∆DPb (Corbett-Davies et al.,
2017; Menon & Williamson, 2017; Pleiss et al., 2017; Canetti et al., 2019). The selection of the threshold
highly affects the value of ∆DPb (validated by Figures 2 and 7)(Chen & Wu, 2020; Barata et al.). However,
threshold tuning is needed in practice. For example, in the AI-assisted college admissions process, if we use a
classifier to help to evaluate applicants, the threshold for decision-making should be adjusted if the number
of admissions changes. One specific ∆DPb = 0 can not guarantee demographic parity under the on-the-fly
threshold change.

In view of the drawbacks of fairness metrics ∆DP for demographic parity, we first propose two criteria to
theoretically guide the development of the metric on demographic parity: 1) Sufficiency: zero-value fairness
metric must be a necessary and sufficient condition to achieve demographic parity. 2) Fidelity: The metric
should accurately reflect the degree of unfairness, and the difference of such a metric indicates the fairness
gap in terms of demographic parity. To bridge the gap between the criteria and the current demographic
parity metric, we propose two distribution-level metrics, namely Area Between Probability density function
Curves (ABPC) and Area Between Cumulative density function Curves (ABCC), to retire ∆DPc and ∆DPb,
respectively. The advantage is that such independence can be guaranteed over any threshold, while ∆DP
can only guarantee independence over a specific threshold.

The proposed metrics satisfy all (or partial) two criteria to guarantee the correctness of measuring demographic
parity and address the limitations of the existing metrics, as well as estimation tractability from limited data
samples. Moreover, we also re-evaluate the mainstream fair models with our proposed metrics. Our main
contributions are as follows:

• We theoretically and experimentally reveal that the existing metric ∆DP for demographic parity can
not precisely measure the violation of demographic parity, because it inherently has the fundamental
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drawbacks: i) zero-value ∆DP does not guarantee zero bias, ii) ∆DP value does not accurately quantify
the violation of demographic parity and iii) ∆DP value is different for varying thresholds.

• Motivated by the above observations, we formally established two criteria that a desirable metric on
demographic parity should satisfy. This provides a guideline to assess other fairness metrics.

• We further propose two distribution-level metrics, Area Between Probability density function Curves
(ABPC) and Area Between Cumulative density function Curves (ABCC), to resolve the limitations of ∆DP ,
which are theoretically and empirically capable of measuring the violation of demographic parity.

• We re-evaluate the mainstream fair models with our proposed metrics, ABPC and ABCC, and re-assess
their fairness performance on real-world datasets. Experimental results show that the inherent tension
between fairness and accuracy are more strong, which has been underestimated before.

2 Preliminaries

Notation. Without loss of generalization, we consider the binary classification task with binary sensitive
attributes in this paper. We denote the dataset as D = {(xi, yi, si)}N

i=1, where n represents the number of
samples, xi ∈ Rd is the features excluding sensitive attribute, yi ∈ {0, 1} is the label of the downstream
task, and the si ∈ {0, 1} is the sensitive attributes of i-th sample. The index set of groups with sensitive
attributes are defined as S0 = {i : si = 0} with N0 number of samples, and S1 = {i : si = 1} with N1 number
of samples. The predictive probability is denoted as ỹ ∈ [0, 1] by the machine learning model f : Rd → [0, 1].
The binary prediction is denoted as ŷ ∈ {0, 1}, where ŷ = 1≥t[ỹ], and 1≥t(·) represents the indicator function
of whether is larger than threshold t. X denotes the random variable that takes values xi. Y denotes the
random variable that takes values y. S denotes the random variable that takes values s. Ŷ denotes the
random variable that takes values ŷ. We use f0/1(·) and F0/1(·) to denote the probability and cumulative
distribution of the predictive value ỹ over the group with sensitive attribute s = 0/1, respectively.

2.1 Demographic Parity and Violation Measurement

The main idea behind demographic parity is that the prediction of the machine learning model should not be
correlated to the sensitive attributes. Demographic parity can be achieved if and only if the predictive
probabilities are independent of the sensitive attributes.

To measure the violation of demographic parity, several metrics are proposed to evaluate the demographic
parity. The widely used metrics are ∆DPcontinuous (short for ∆DPc), which is calculated by the predictive
probabilities (continuous), and ∆DP t

binary (short for ∆DP t
b ), which is calculated by the binary prediction

(binary) with respect to a threshold t. Here we present their formal definitions.

∆DP t
b (Dai & Wang, 2021; Creager et al., 2019; Edwards & Storkey, 2015; Kamishima et al., 2012) is the

difference between the proportion of the positive prediction between different groups, which uses the difference
of the average of the binary prediction between different groups as follows:

∆DP t
b =

∣∣∣∣∣
∑

n∈S0
ŷt

n

N0
−

∑
n∈S1

ŷt
n

N1

∣∣∣∣∣ , (1)

where the ŷt
n ≜ 1≥t[ỹn] is the binary prediction of the downstream task based on pre-defined threshold t, N is

the number of the instances, and N0/1 is the number of the samples in the group with sensitive attribute 0/1.

∆DPc (Chuang & Mroueh, 2020; Zemel et al., 2013) measures the difference of the average of the predictive
probability between different demographic groups as follows:

∆DPc =
∣∣∣∣
∑

n∈S0
ỹn

N0
−

∑
n∈S1

ỹn

N1

∣∣∣∣ , (2)

where the ỹ is the prediction probability of the downstream task, N is the total number of the instances,
Ns=0/1 is the total number of the samples in the group with sensitive attribute 0/1. The key condition
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for ∆DPc is that the average predictive probability ỹ among the same sensitive attribute group is a good
approximation of the true conditional probability P(Ŷ = 1|S = 0) or P(Ŷ = 1|S = 1).

The relation between ∆DPc and ∆DP t
b . In the existing literature, ∆DPc and ∆DP t

b are both commonly
used, where the former mainly focuses on the fairness over original predictive probability and the latter on
fairness over the final decision making. Although these two metrics are adopted for different objectives, there
is an intrinsic relation between both as shown in Theorem 2.1 (Please see Appendix A for more details.).

Theorem 2.1 The fairness measurement over original predictive probability ∆DPc is upper bounded by the
mean fairness measurement over binary prediction ∆DP t

b with uniform-distribution threshold t, i.e., ∆DPc ≤∫ 1
0 ∆DP t

b dt.. Additionally, there must exist a certain threshold t∗ so that the two fairness measurements are
equivalent, i.e., ∆DPc = ∆DP t∗

b .

3 Why does ∆DP Fail?

In this section, we demonstrate that ∆DP is problematic in measuring the violation of demographic parity.
We provide theoretical evidence of measurement failure of ∆DP . In addition, we also empirically demonstrate
that ∆DP cannot measure demographic parity properly.

3.1 Theoretical Analysis

Argument 1: ∆DP = 0 is only a necessary but insufficient condition for demographic parity
to hold. ∆DP , relying on the difference between the average prediction or probability, are not sufficiently
reliable to quantify model prediction bias. According to characteristic function in probability theory (Sasvári,
2000), the same probability function is equivalent to the same r-th origin moment for any r. However, ∆DP
only adopts average prediction (1-th origin moment) to define the metric. In other words, machine learning
models can still be biased even if such metrics are zero. The insufficiency to guarantee demographic parity
damages the authority of fairness measurement. In summary, ∆DP t

c = 0 and ∆DPb = 0 are necessary but
insufficient conditions for demographic parity, which requires that the prediction should be independent of
the sensitive attributes. We conclude that ∆DP t

c = 0 and ∆DPb = 0 are necessary but insufficient conditions
for demographic parity, which requires that the prediction should be independent of the sensitive attributes 3.

Argument 2: Threshold Rules harm the measurement accuracy of ∆DP t
b . In practice, the

decision-making systems typically first predict a probability ỹ for positive class and then obtain the binary
prediction with a predefined threshold t, denoted as 1≥t[ỹ]. For example, let t = 0.5, if ỹ ≥ 0.5 then the
prediction is 1 else the prediction will be 0. This decision-making process is named Threshold Rules (Mitchell
et al., 2021; Corbett-Davies & Goel, 2018). The establishment of ∆DP t

b (Equation (1)) depends on the
predefined threshold t since the binary predictions ŷ are determined by the threshold t. However, the so-called
threshold rules could harm the measurement accuracy of ∆DPb. Changing the threshold for decision-making
may lead to the changing demographic parity violation. The changing ∆DP t

b highlights the fundamental
drawbacks of the metric of demographic parity.

3.2 Empirical Investigation

In this section, we empirically explore why ∆DP fails to measure the violation of demographic parity. We
train one multilayer perceptron (Biased MLP) and the other MLP with fairness constraint (Debiased MLP)
on UCI Adult and ACS-Employment dataset. Then we adopt Kernel Density Estimation (KDE) to estimate
the PDFs of the predictive probability ỹ on the test dataset and also present the empirical CDFs. The results
on ACS-Employment are presented in Figure 2, and the results on the Adult dataset are in Appendix G.
From the experimental results, we have the following findings:

Finding 1: The predictive probability distribution violates demographic parity. On both Adult
and ACS-Employment datasets, the PDFs (Top-Left subfigure in Figure 2) are different among different
groups, indicating the prediction is related to the sensitive attributes. The difference between the PDFs

3Please see more details in Appendix B.
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Figure 2: The estimated PDFs and empirical CDFs of the predictive probability over different groups (i.e.,
male, female) on the ACS-Employment dataset. Left: Biased MLP model. Right: Debiased MLP model with
∆DPc as regularization. The PDFs and CDFs of biased MLP are obviously different, illustrating that the
machine learning model is biased to gender. Debiased MLP achieves a much lower ∆DPc than the biased
MLP, however, the PDFs of different groups are different even though the “mean" of them are almost the
same. The bottom figures show that ∆DP t

b is the difference between the CDF lines while the threshold
t = 0.5. We also provide the same set of results on Adult data in Appendix G.

reflects the degree of the violation of demographic parity. Similarly, the difference between CDFs (Bottom-Left
subfigure in Figure 2 ) also indicates the violation of demographic parity, and the area between the CDFs
reflects the degree of fairness as well.

Finding 2: ∆DP t
b only measures the difference of the probability with a specific threshold t. The

CDFs (Middle-Left subfigure in Figures 2) vary among different groups, indicating the disparity of predictive
probability distribution. Even with the debiased MLP, the CDFs (Middle-Right figures in Figure 2) still
vary. Typically, the practitioners make decisions using 0.5 as a threshold for binary classification. Thus, the
∆DP t

b is the difference of CDFs when t = 0.5, making the ∆DP t
b an unreliable measurement for violation of

demographic parity.

Finding 3: ∆DP t
b = 0 with specific threshold t can not guarantee the demographic parity. On

both Adult and ACS-Employment datasets, the PDFs (Top-Right subfigure in Figure 2) are different among
different groups but with the (nearly) same mean prediction, making ∆DPb ≈ 0. This finding indicates
that the ∆DP t

b is a threshold-dependent metric, the value of which will be different if we choose different
thresholds in downstream tasks.

4 Criteria for Fairness Measurement

Tell me how you measure me and I will tell you how I will behave. If you measure me in an
illogical way. . . do not complain about illogical behavior. . .

— Eliyahu Goldratt

In this section, we provide a systematic understanding of fairness measurement from scratch, i.e., the criteria
of fairness measurement design and intrinsic rationales. Given a dataset D = {(xi, yi, si)}n

i=1 and well-trained
model ỹ = f(x), the fairness measurement can be determined as Bias(D, f).

Criterion 1 (Sufficiency): One metric should be necessary and sufficient to measure the
demographic parity. The fairness measurement is adopted to characterize the derivation of the model
from the “ideal" unbiased one, therefore, the prediction value is independent with sensitive attributes if and
only if the fairness metric is zero.
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Criterion 2 (Fidelity): One metric should be invariant with respect to monotone transformations
of the distributions. Different values of the fairness metric should represent different levels of fairness.
As mentioned in the introduction, for example, if we change the scale on the predictive probability of one
model, the fairness metric should be consistent in the original and scaled space. This property is referred to
as invariance over invertible transformation. Thus we can compare the degree of fairness by comparing the
values of ∆DP . Inspired by this, we formally provide the following definition of invariance:

Definition 4.1 (Invariance) For any invertible transformation T : [0, 1] → [0, 1], the fairness measurement
Bias(D, f) satisfies measurement invariance condition if for any dataset D and machine learning model f(·),
Bias(D, T ◦ f) = Bias(D, f) always holds.

5 The Proposed Metrics

Following these criteria, in this section, we propose two metrics to measure the violation of demographic
parity, namely Area Between PDF Curves (ABPC) and Area Between CDF Curves (ABCC), and prove that
both ABPC and ABCC satisfy (or partially satisfy) the desired criteria.

5.1 ABPC and ABCC Metrics

In this section, we formally define two distribution-level metrics to measure the violation of demographic
parity. ABPC is defined as the total variation distance (TV ) between probability density functions with
different sensitive attribute groups as follows:

ABPC = TV (f0(x), f1(x)) =
∫ 1

0
|f0(x) − f1(x)| dx, (3)

where f0(x) and f1(x) are the PDFs of the predictive probability of different demographic groups. Similarly,
ABCC is defined as the total variation between prediction cumulative density functions with different sensitive
attribute groups as follows:

ABCC = TV (F0(x), F1(x)) =
∫ 1

0
|F0(x) − F1(x)| dx, (4)

where F0(x) and F1(x) are the CDF of the predictive probability of demographic groups.

Note that the proposed metrics can be easily extended to the multi-value sensitive attribute setting. Suppose
the sensitive attribute has m values, then we compute the ABPC of each pair of groups with different sensitive
attributes and then average them. ABCC for multi-value sensitive attributes with m values can also be
computed in a similar way. Since the m is small in practice, the computational complexity is acceptable.

5.2 Theoretical Properties of ABPC and ABCC

In this section, we analyze the properties of ABPC and ABCC, as well as their relation.

The proposed ABPC has the following desired properties: 1) ABPC = 0 holds if and only if demographic
parity establishes. 2) ABPC is invariant to invertible transformation. 3) ABPC has a range of [0, 2]. Relation
to ∆DPc: The proposed fairness metric ABPC upper bounds ∆DPc, i.e., ABPC ≥ ∆DPc, which conquers the
drawback of ∆DPc on insufficient condition of demographic parity. Please see Appendix D for more details.

The proposed ABCC has the following desired properties: 1) ABCC = 0 if and only if demographic parity
establishes. 2)ABCC is continuous over model prediction. 3) ABCC has a range [0, 1]. Relation to ∆DPt

b:
The ABCC generalizes ∆DP t

b . ∆DP t
b is the difference of positive prediction proportion over different groups

with respect to threshold rule t, thus ∆DP t
b = |F0(t) − F1(t)|. Considering the definition of ABCC =∫ 1

0 |F0(x) − F1(x)| dx, we have ABCC =
∫ 1

0 ∆DP t
b dt. This indicates that ABCC is the average of the ∆DP t

b

over all possible threshold t.

Relation between ABPC and ABCC. Hereby we show the relation between ABPC and ABCC that they
are both Wasserstein distance between the prediction PDFs of two groups, but with different transport cost
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functions (See Appendix E for more details). The proposed fairness metric ABPC is Wasserstein distance
with cost function c0(x, y) = 2 · 1(x ̸= y), defined as Wc0(f0(x), f1(y)). The proposed fairness metric ABCC
is Wasserstein distance with l1 cost c(x, y) = |x − y| between the prediction PDFs with different sensitive
attributes. In other words, ABPC and ABCC can be interpreted as Wasserstein distance between the PDFs
for different sensitive attribute groups with different transport cost functions.

5.3 Estimating ABPC and ABCC

In real-world scenarios, the fairness measurement is based on the PDFs and CDFs of predictive probability,
which can be estimated from finite data samples. Hereby we present the estimation methods for both ABPC
and ABCC and present the theoretical and empirical analysis for the estimation.

For the proposed ABPC, the PDFs can be estimated via kernel density estimation (KDE) given predictive
probability {ỹn, n ∈ Si} for each sensitive attribute group s = i. The basic idea for PDF estimation is
that the prediction value for each sample represents a local PDF component (kernel function) and the
overall mixed local PDF is the estimated PDF. Given the smoothing kernel function K(x) (e.g., Gaussian
kernel) satisfying normalization condition

∫
K(x)dx = 1, and bandwidth h, then the estimated PDF is

f̃i(x) = 1
|Si|h

∑
n∈Si

K( x−ỹn

h ), for i = 1, 2. Subsequently, ABPC can be estimated via Eq. (3).

For the proposed ABCC, we directly adopt the empirical distribution function (Shorack & Wellner, 2009) as
estimated CDF, which measures the fraction of samples’ predictions that are less or equal to the specified
threshold. Formally, given predictive probability {ỹn, n ∈ Si}, the empirical distribution function F̂i for
sensitive attribute s = i is given by F̂i(x) = 1

Ni

∑
n∈Si

1≤x(ỹn), where i = 0, 1. Hence, based on the definition
of proposed metrics, we have ˆABPC =

∫ 1
0 |f̂0(x) − f̂1(x)|dx and ˆABCC =

∫ 1
0 |F̂0(x) − F̂1(x)|dx. Firstly, we

provide the following definition to measure estimation tractability with finite data samples as follows:

Definition 5.1 ((N, ϵ)-tractability) Given the dataset D with N data samples, underlying yet unknown
data distribution PD, and well-trained machine learning model f(·), the fairness measurement satisfies (N, ϵ)-
tractability if for any dataset D and machine learning model f(·), the mean square estimation error condition
ED[|Bias(D, f) − Bias(PD, f)|2] ≤ ϵ holds.

Subsequently, we provide theoretical analysis on the estimation error for estimated metrics, ˆABPC and ˆABCC,
as follows (more details in Appendix F):

Lemma 5.2 (Estimation Tractability) Suppose we adopt KDE to estimate the prediction probability
density function and directly calculate the estimated fairness metrics ˆABPC and ˆABCC, such fairness metrics
estimation satisfies (N, O(N− 4

5 ))-tractability and (N, O(N−1))-tractability, where N represents the number
of data samples. Furthermore, for the number of samples N = O(δ− 5

4 ϵ− 5
2 ) and N = O(δ−1ϵ−2) for ˆABPC

and ˆABCC, with probability at least 1 − δ, |Bias(D, f) − Bias(PD, f)| < ϵ.

Lemma 5.2 demonstrates the reliability of our proposed metric with the finite data samples using the proposed
estimation method. Recall demographic parity requires independent prediction with respect to sensitive
attributes, such independence should be guaranteed at the distribution level. However, we only observe
limited data samples, instead of the prediction distribution. Hence, the fairness measurement must be reliably
estimated from limited observed data samples. The estimation error convergence provides a dispensable
foundation for fairness measurement and model comparison in terms of fairness in practice.

5.4 Comparison with Related Work

We comprehensively analyze the existing demographic parity metrics and provide their inherent relations
and differences. In other words, our work is metric-centric and provides insights to identify the promising
properties, namely sufficiency, and fidelity, of fairness metrics. We highlight the differences with works (Jiang
et al., 2020; 2022) in terms of fairness metric and estimation tractability.

• Difference with Jiang et al. (2020): For fairness metric, the motivation and justification are highly
different. In this work, we start with the proposed two criteria (i.e., sufficiency, fidelity), and then
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Figure 3: Relative estimation error
for ABPC, ABCC, and mutual informa-
tion. Top: The synthetic data is from
N (0.3, 0.1) and N (0.4, 0.1). Bottom:
The synthetic data is from N (0.2, 0.1)
and N (0.4, 0.1).

Figure 4: Bias density visualization. Top: The source and target
distributions and bias density visualization for vanilla MLP model.
Bottom: The source and target distributions and bias density
visualization for adversarial debiasing. The fair model represents
the diagonal optimal transport plan, i.e., the source and target
distribution is aligned everywhere.

design fairness metrics as the distance of probability density function (PDF) and cumulative distribution
function (CDF). Furthermore, we analyze that the proposed fairness metrics are actually some version
of Wasserstein distance. Instead, (Jiang et al., 2020) directly starts with Wasserstein distance to enforce
strong demographic parity. For metric justifications, we mainly focus on the analysis of whether the
proposed two criteria hold or not. Instead, (Jiang et al., 2020) provides an in-depth analysis of Wasserstein
distance and demonstrates several equivalent formats in Section 3.1. On top of the analysis, Wasserstein
penalized logistic regression method and post-processing method are proposed to achieve fair prediction.

• Difference with Jiang et al. (2022): The results on estimation tractability is similar with (Jiang et al.,
2022). However, we clarify that the target metrics are highly different. Jiang et al. (2022) propose GDP to
measure the bias for continuous sensitive attributes via the difference of average prediction across different
sensitive attributes. Instead, we only focus on the proposed two fairness metrics for binary sensitive
attributes by measuring the distribution distance. Our result shows that the proposed metrics have the
same estimation tractability as that in GDP. The main reason is that the estimation method of our paper
and Jiang et al. (2022) are both derived from non-parametric estimation theory (Sampson & Guttorp,
1992). These results demonstrate the proposed metrics can be reliable estimations in practice.

5.5 Experimental Evaluation

We empirically evaluate the estimation tractability of our proposed fairness metrics and visualize the bias
density. First, we show the relative estimation error of our proposed metrics is lower than that of mutual
information (MI) in the experiments with synthetic data. Subsequently, we visualize the bias density for
vanilla MLP and adversarial debiasing method in ACS-Income dataset.

5.5.1 Estimation Tractability on Synthetic Data

We test the relative estimation error of proposed ABPC and ABCC compared with mutual information, which
precisely measures the dependence between two random variables. For data generation, we first generate
Gaussian mixture distribution, with different means and variances for different groups. Then we use the
sigmoid function to map all data into [0, 1]. For metric estimation, we adopt KDE and empirical CDF
to estimate the ground-truth PDF and CDF, and then directly calculate estimated metrics via numerical
integration. The relative estimation error is defined as estimated metric deviation by ground-truth metrics.
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Figure 3 shows the relative estimation error of different fairness metrics w.r.t. sample numbers for the
synthetic data with different parameters. We observe that the relative estimation error for ABCC and mutual
information are the lowest and largest for different numbers of data samples, respectively. In other words,
our proposed metrics embrace higher estimation tractability with finite data samples.

5.5.2 Bias Density Visualization

Section 5.2 shows that ABCC is the 1th-Wasserstein distance of two PDFs of different groups (Please see
Appendix I for more details). In other words, ABCC can be decomposed into the integration of bias density over
prediction domains via calculating the optimal transport plan. Suppose γ∗(x, y) is the optimal transportation
plan between these two PDFs. For ABCC, we can define the bias density as ρ(x, y) ≜ |x − y|γ∗(x, y) since
ABCC satisfies ABCC =

∫
ρ(x, y)dxdy. In other words, the bias can be decomposed across the prediction

value domain for these two sensitive attribute groups. We visualize the bias density of the vanilla method and
adversarial debiasing on ACS-Income dataset. Figure 4 shows the estimated PDFs for two groups (source
and target distribution) and visualizes the bias density. For the top subfigure, the source distribution is
higher than the target distribution at around 0.5 and 0.9 prediction values. The bias density shows that this
excess part at the source distribution should be moved toward the target distribution at around 0.2 and 0.6
prediction values. For the bottom subfigure, these two distributions are extremely close and thus lead to a
low fairness metric. The optimal transport plan is close to the diagonal line, demonstrating that most parts
of the source distribution keep the original value.

6 Re-evaluating Existing Fair Models

In this section, we conduct experiments on various datasets to re-evaluate the commonly-used fair models.

6.1 Experimental Setting

Debiasing Methods. We consider the vanilla MLP model (MLP) and widely used debiasing methods,
including regularization (REG), and adversarial debiasing (ADV). MLP (Multilayer Perceptron) is the
vanilla multilayer perceptron to minimize the empirical risk of downstream tasks. Thus MLP tends to bias
the underprivileged group, making it a biased model. In our experiments, we adopt a 4-layer fully-connected
network and utilize ReLU (Nair & Hinton, 2010) as the activation function. The same network architecture
is also adopted as the classification network for other baselines. ADV (Adversarial Debiasing) (Louppe
et al., 2017) jointly trains a classification network and an adversarial network. The adversarial network
takes the output of the classifier as its input and is trained to distinguish which sensitive attribute group
the output comes from. We train the classifier to provide correct predictions for the input data while
training the adversarial network not to distinguish groups from the output of this classifier simultaneously.
REG (Regularization) is a kind of in-process method that adds a fairness-related regularization term to
the objective function (Chuang & Mroueh, 2020; Kamishima et al., 2012). This kind of method improves
the fairness of the model with the regularization term simultaneously optimized during training. In our
experiments, REG takes ∆DPc as the regularization term. The objective function is defined as Lce + λLdp,
where Lce is the cross-entropy loss for downstream task and Ldp is fairness constraint (Equation (2)).

Dataset. We consider the following datasets in our experiment. including tabular dataset and image dataset
(See more experimental results in Appendix H). UCI Adult (Dua & Graff, 2017) contains clean information
about 45, 222 individuals from the 1994 US Census. One instance is described with 15 attributes. The
task is to predict whether the income of a person is higher than $50k given attributes about the person.
We considered gender and race as sensitive attributes. ACS-Income (Ding et al., 2021) derives from the
American Community Survey (ACS) Public Use Microdata Sample (PUMS). Like UCI Adult, the task on
this dataset is to predict whether an individual’s income is above $50k. The dataset contains 1, 664, 500 data
points. We choose gender and race as sensitive attributes. ACS-Employment (Ding et al., 2021) also derives
from the ACS PUMS. This task is to predict whether an individual is employed. The number of data in this
dataset is 3, 236, 107. In this dataset, gender is used as the sensitive attribute. KDD Census (Dua & Graff,
2017) contains 284, 556 clean instances with 41 attributes. The task of this dataset is also to predict whether
the individual’s income is above $50k. The sensitive attributes are gender and race.
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Table 1: The fairness performance on the tabular dataset for existing fair models and we consider race and
gender as sensitive attributes. ↑ represents the accuracy improvement compared to MLP. A higher accuracy
metric indicates better performance. ↓ represents the improvement of fairness compared to MLP. A lower
fairness metric indicates better fairness. The results are based on 10 runs for all methods.

Methods Accuracy Fairness
Acc(%) ↑ AP(%) ↑ ∆DP t

b (%) ↓ ∆DPc(%) ↓ ABPC(%) ↓ ABCC(%) ↓

A
du

lt

Race
MLP 85.54±0.19 — 77.33±0.27 — 19.27±0.59 — 20.03±0.44 — 64.65±1.07 — 20.03±0.44 —
REG 85.31±0.12 -0.27% 75.55±0.15 -2.30% 14.18±0.67 26.41% 0.81±0.52 95.96% 62.21±2.53 3.77% 10.79±0.53 46.13%
ADV 80.03±1.78 -6.44% 61.82±4.84 -20.06% 3.89±1.94 79.81% 1.62±1.41 91.91% 21.26±3.75 67.12% 2.60±1.06 87.02%

Gender
MLP 85.52±0.12 — 77.33±0.27 — 21.84±0.59 — 25.93±0.60 — 98.62±0.93 — 25.93±0.60 —
REG 85.03±0.22 -0.57% 73.55±0.65 -4.89% 15.58±0.69 28.66% 1.30±1.05 94.99% 80.62±4.62 18.25% 12.86±0.30 50.40%
ADV 76.34±0.61 -10.73% 69.38±2.89 -10.28% 0.31±0.69 98.58% 0.56±0.72 97.84% 87.92±43.22 10.85% 0.56±0.72 97.84%

K
D

D
C

en
su

s

Race
MLP 94.94±0.04 — 99.50±0.00 — 2.64±0.11 — 3.73±0.08 — 18.91±0.58 — 3.73±0.08 —
REG 94.81±0.05 -0.14% 99.42±0.01 -0.08% 1.61±0.21 39.02% 0.78±0.27 79.09% 10.19±1.43 46.11% 0.83±0.26 77.75%
ADV 93.72±0.29 -1.29% 99.13±0.16 -0.37% 0.14±0.18 94.70% 0.32±0.28 91.42% 11.11±9.25 41.25% 0.34±0.27 90.88%

Gender
MLP 94.84±0.05 — 99.45±0.00 — 4.75±0.36 — 5.99±0.30 — 40.96±0.99 — 5.99±0.30 —
REG 94.45±0.06 -0.41% 99.31±0.03 -0.14% 1.38±0.20 70.95% 0.86±0.23 85.64% 8.57±0.19 79.08% 1.04±0.14 82.64%
ADV 93.66±0.17 -1.24% 98.62±0.24 -0.83% 0.35±0.27 92.63% 0.36±0.26 93.99% 5.11±2.69 87.52% 0.45±0.22 92.49%

A
C

S-
I Race

. MLP 81.80±0.10 — 84.83±0.15 — 9.57±0.24 7.47±0.12 — 16.82±0.34 — 7.47±0.12 —
REG 81.15±0.18 -0.79% 83.92±0.12 -1.07% 3.11±0.43 67.50% 1.66±0.37 77.78% 9.19±0.52 45.36% 2.48±0.18 66.80%
ADV 77.72±0.28 -4.99% 79.06±0.39 -6.80% 0.45±0.50 95.30% 0.26±0.26 96.52% 2.78±0.74 83.47% 0.38±0.19 94.91%

Gender
MLP 81.78±0.09 — 84.65±0.16 — 9.14±0.16 — 7.97±0.11 — 14.74±0.59 — 7.97±0.11 —
REG 80.93±0.05 -1.04% 83.61±0.17 -1.23% 2.10±0.22 77.02% 1.60±0.20 79.92% 3.69±0.42 74.97% 1.60±0.20 79.92%
ADV 78.42±0.85 -4.11% 79.62±0.42 -5.94% 0.32±0.20 96.50% 0.24±0.14 96.99% 2.54±0.72 82.77% 0.48±0.10 93.98%

A
C

S-
E

Gender
MLP 81.78±0.04 — 85.26±0.05 — 5.49±0.79 — 6.73±0.47 — 42.18±0.70 — 7.12±0.44 —
REG 81.57±0.06 -0.26% 84.51±0.13 -0.88% 1.02±0.65 81.42% 0.39±0.33 94.21% 22.40±1.06 46.89% 3.30±0.12 53.65%
ADV 77.71±3.59 -4.98% 81.39±0.36 -4.54% 1.15±0.74 79.05% 0.82±0.77 87.82% 3.67±0.15 91.30% 0.97±0.62 86.38%

Model 1 (unfair) Model 2 (unfair)

∆𝐷𝑃!= 0.1887
ABPC	= 0.6961 ABCC= 0.1998

Model 3 (fair)

∆𝐷𝑃"= 0.1998 ∆𝐷𝑃!= 0.1554
ABPC= 0.6387 ABCC= 0.1137

∆𝐷𝑃"= 0.0174 ∆𝐷𝑃!= 0.0315
ABPC= 0.1331 ABCC= 0.0271

∆𝐷𝑃"= 0.0264×

Figure 5: The distribution of the predictive probability of male and female groups on the Adult dataset.

Evaluation Metric. The fairness metrics are ∆DPc, ∆DPb, ABPC and ABCC. The evaluation metrics for
model accuracy are: 1) Acc: the accuracy is the fraction of correct predictions; 2) AP: the average precision
(AP) is defined as AP =

∑
n(Rn − Rn−1)Pn where Pn and Rn−1 are the precision and recall at the n-th

threshold. The value is between 0 and 1, and higher is better.

6.2 Will ABPC and ABCC Measure the Violation of Demographic Precisely?

We empirically validate the effectiveness of the proposed metrics in this section. We train three different
models and plot the distribution of the predictive probability for different groups, and we report the fairness
metrics ∆DP t

b and ∆DPc, ABPC and ABCC for them in Figures 1 and 5. Figures 1 and 5 show the predictive
probability distribution of three machine models. The Models 1, 2, and 3 are unfair, unfair, and fair,
respectively, since the distributions of Model 2 for different groups are the same while others are not. One
can see that ∆DP can measure the unfair model (Model 1) and fair model (Model 3) correctly since it has a
larger ∆DP value for Model 1 than Model 3. However, it fails to assess Model 2 (unfair) since it obtains a
relatively low value on an unfair model. Our proposed metrics ABPC and ABCC can assess all the models
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Figure 6: The accuracy and fairness trade-off on the tabular dataset. The Pareto frontiers show the accuracy-
fairness trade-off of different fair models.

correctly. The wrong fairness assessment on Model 2 demonstrates the ∆DP is problematic in measuring the
violation of demographic parity.

6.3 How the Existing Fair Models Performs with ABPC and ABCC?

We conduct experiments on the aforementioned four datasets and baselines. Since there is no universal best
model that optimizes both fairness and accuracy objectives, we trained all the models with a fixed number
of epochs and reported the performance on the test dataset. We train MLP and REG for 10 epochs and
train ADV for 40 epochs. We use ten different dataset splits and report the mean and standard deviation of
Acc and AP. We report the prediction performance and the fairness performance of the downstream task in
Table 1. We have the following Observations:

Obs. 1: REG method always achieves a lower ∆DPc but a relatively high ∆DP t
b . Since the REG

directly optimizes the ∆DPc, REG always obtains a lower ∆DPc. However, REG achieves much higher
ABPC and ABCC than other methods.

Obs. 2: ADV is a better fair model to achieve demographic parity. In terms of the proposed
metrics, the ADV gains 6 better ABPC among 8 cases and 8 better ABCC among 8 cases, showing that ADV
achieves the best fairness performance.

Obs. 3: The inherent tension between fairness and accuracy is underestimated. It is the prevailing
wisdom that a model’s fairness and its accuracy are in tension with one another. Although the REG does
not harm the model accuracy dramatically, it can not achieve ideal fairness. In contrast, the ADV achieves
better fairness but harms the model accuracy dramatically. This observation demonstrates that if we tend to
achieve fair decision-making, we have to sacrifice more accuracy.

6.4 How Accuracy and Fairness Trade-off with the Proposed Metrics?

In this section, we provide the “Pareto front” to investigate the tension between the model accuracy (Acc) and
fairness (ABCC) shown in Figure 6. For REG, we set different values of the trade-off hyperparameter λ ∈ [0, 1]
to control the accuracy-fairness trade-off and λ ∈ [10, 180] for ADV. We have the following Observations:

Obs. 1: REG tends to gain a better accuracy performance while ADV tends to gain a better
fairness performance. The Pareto front of REG is higher than that of ADV, indicating that REG obtains
a better accuracy performance. In contrast, the Pareto front of ADV is lower than that of REG, but it
can reach a lower ABCC area, indicating that REG obtains a better fairness performance. The results show
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that our proposed metrics can better evaluate the performance of fair models and provide new standards to
analyze model debiasing.

Obs. 2: The inherent tension between fairness and accuracy is underestimated. The REG
method cannot achieve a lower ABCC, which may limit its application to real-world tasks. Although the
ADV can achieve a much lower ABCC, the accuracy drop is too high. In other words, ADV sacrifices too
much performance in pursuit of fairness. The area (indicated as ) points out the potential direction of the
fair model development.

7 Related Work

In this section, we present related works about fairness and metrics for demographic parity.

Fairness. Algorithmic fairness is legally mandatory in various high-stake real-world applications. The
various fairness definitions have been proposed and categorised into individual fairness (Yurochkin et al.,
2019; Mukherjee et al., 2020; Yurochkin & Sun, 2020; Kang et al., 2020; Mukherjee et al., 2022), group
fairness (Hardt et al., 2016; Verma & Rubin, 2018; Li et al., 2020), and counterfactual fairness (Kusner et al.,
2017; Agarwal et al., 2021; Zuo et al., 2022). In this paper, we focus on demographic parity, a widely studied
group fairness. The metric for group fairness measures the disparity between subgroups defined by sensitive
attributes (e.g., gender and race). For example, demographic parity (Dwork et al., 2012) aims to render the
independence of the prediction and sensitive attribute, and ∆DP measuring the average prediction disparity
among different groups is widely adopted as the fairness metrics for demographic metrics. Several works
leverage other measurements (i.e., Wasserstein distance, AUC) for bias mitigation or measurement (Chzhen
et al., 2020; Miroshnikov et al., 2020; 2021; Kallus & Zhou, 2019; Barata et al.). Robust fairness is also well
studied (Mehrotra & Vishnoi, 2022; Ma et al., 2022; Chai & Wang, 2022; An et al., 2022; Giguere et al.,
2022), such as under distribution shift and with limited sensitive attributes.

Metrics for Demographic Parity. Metrics for the violation of demographic parity are proposed to evaluate
the demographic parity. The widely used metrics are ∆DPcontinuous (short for ∆DPc), which is calculated
by the predictive probabilities (continuous), and ∆DP t

binary (short for ∆DP t
b ), which is calculated by the

binary prediction (binary) with respect to a threshold t. Here we present their formal definitions. ∆DP t
b (Dai

& Wang, 2021; Creager et al., 2019; Edwards & Storkey, 2015; Kamishima et al., 2012) is the difference
between the proportion of the positive prediction between different groups, which uses the difference of the
average of the binary prediction between different groups. ∆DPc (Chuang & Mroueh, 2020; Zemel et al.,
2013) measures the difference in the mean of the predictive probability, which uses the difference in the
average of the predictive probability between different groups. In addition, the metric based on Wasserstein
distance for demographic parity also is proposed in (Jiang et al., 2020). The authors (Jiang et al., 2020)
directly propose strong demographic parity on predictive probability using Wasserstein distance. Instead, in
this paper, we start with the proposed two criteria (i.e., sufficiency, and fidelity), and then design fairness
metrics as the distance of probability density function (PDF) and cumulative distribution function (CDF).
Furthermore, we analyze that the proposed fairness metrics are actually some version of Wasserstein distance.
The fairness metric for continuous sensitive attributes with Kernel Density Estimation (KDE) has also been
proposed in works (Mary et al., 2019; Grari et al., 2020; Jiang et al., 2022).

8 Conclusion

In this paper, we rethink the rationale of the widely adopted fairness metric ∆DP and propose two metrics
for demographic parity with sufficiency and fidelity. Specifically, we first point out that the existing fairness
metric is not the necessary and sufficient condition for demographic parity. We proposed two fundamental
criteria for fairness measurement design. Further, we proposed two fairness metrics, namely ABPC and ABCC,
which satisfy the proposed criteria with theoretical and experimental justification. Finally, we re-evaluate the
three standard baselines on tabular and image datasets considering all fairness metrics of demographic parity.
We believe the proposed metrics would contribute to the fairness of academic and industrial communities by
properly evaluating the performance of fair models and suggesting a way to model development.

12



Under review as submission to TMLR

References
Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework for fair and stable

graph representation learning. In UAI 2021: Uncertainty in Artificial Intelligence, 2021.

Muhammad Aurangzeb Ahmad, Arpit Patel, Carly Eckert, Vikas Kumar, and Ankur Teredesai. Fairness in
machine learning for healthcare. In Proceedings of the 26th ACM SIGKDD, pp. 3529–3530, 2020.

Bang An, Zora Che, Mucong Ding, and Furong Huang. Transferring fairness under distribution shifts via fair
consistency regularization. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
zp_Cp38qJE0.

C Ballantine and J Roberts. A simple proof of rolle’s theorem for finite fields. The American mathematical
monthly, 109(1):72–74, 2002.

António Pereira Barata, Frank W Takes, H Jaap van den Herik, and Cor J Veenman. Fair tree classifier
using strong demographic parity.

Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. Fairness in criminal justice
risk assessments: The state of the art. Sociological Methods & Research, 50(1):3–44, 2021.

Ran Canetti, Aloni Cohen, Nishanth Dikkala, Govind Ramnarayan, Sarah Scheffler, and Adam Smith. From
soft classifiers to hard decisions: How fair can we be? In Proceedings of the conference on fairness,
accountability, and transparency, pp. 309–318, 2019.

Alexander W Cappelen and Ole Frithjof Norheim. Responsibility, fairness and rationing in health care. Health
policy, 76(3):312–319, 2006.

Junyi Chai and Xiaoqian Wang. Self-supervised fair representation learning without demographics. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=7TGpLKADODE.

Junyi Chai, Taeuk Jang, and Xiaoqian Wang. Fairness without demographics through knowledge distillation.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022. URL https://openreview.net/forum?id=8gjwWnN5pfy.

Mingliang Chen and Min Wu. Towards threshold invariant fair classification. In Conference on Uncertainty
in Artificial Intelligence, pp. 560–569. PMLR, 2020.

Ching-Yao Chuang and Youssef Mroueh. Fair mixup: Fairness via interpolation. In ICLR, 2020.

Evgenii Chzhen, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil. Fair regression
with wasserstein barycenters. Advances in Neural Information Processing Systems, 33:7321–7331, 2020.

Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical review of fair
machine learning. arXiv preprint arXiv:1808.00023, 2018.

Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic decision making
and the cost of fairness. In Proceedings of the 23rd acm sigkdd international conference on knowledge
discovery and data mining, pp. 797–806, 2017.

Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi, and
Richard Zemel. Flexibly fair representation learning by disentanglement. In ICML, pp. 1436–1445. PMLR,
2019.

Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural networks with limited
sensitive attribute information. In Proceedings of the 14th ACM WSDM, pp. 680–688, 2021.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring adult: New datasets for fair machine
learning. NeurIPS, 2021.

13

https://openreview.net/forum?id=zp_Cp38qJE0
https://openreview.net/forum?id=zp_Cp38qJE0
https://openreview.net/forum?id=7TGpLKADODE
https://openreview.net/forum?id=8gjwWnN5pfy


Under review as submission to TMLR

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/
ml.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226,
2012.

Harrison Edwards and Amos Storkey. Censoring representations with an adversary. arXiv preprint
arXiv:1511.05897, 2015.

Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the (im) possibility of fairness.
arXiv preprint arXiv:1609.07236, 2016.

Pratyush Garg, John Villasenor, and Virginia Foggo. Fairness metrics: A comparative analysis. In 2020
IEEE International Conference on Big Data (Big Data), pp. 3662–3666. IEEE, 2020.

Stephen Giguere, Blossom Metevier, Yuriy Brun, Philip S. Thomas, Scott Niekum, and Bruno Castro da Silva.
Fairness guarantees under demographic shift. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=wbPObLm6ueA.

Vincent Grari, Sylvain Lamprier, and Marcin Detyniecki. Fairness-aware neural rényi minimization for
continuous features. In IJCAI, 2020.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. NeurIPS, 29,
2016.

Frances Heidensohn. Models of justice: Portia or persephone? some thoughts on equality, fairness and gender
in the field of criminal justice. International journal of the sociology of law, 14(3/4):287–98, 1986.

Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, and Silvia Chiappa. Wasserstein fair classification.
In Uncertainty in Artificial Intelligence, pp. 862–872. PMLR, 2020.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Fan Yang, Mostafavi Ali, and Hu Xia. Generalized demographic
parity for group fairness. In ICLR, 2022.

Jeff Johnson, Donald M Truxillo, Berrin Erdogan, Talya N Bauer, and Leslie Hammer. Perceptions of overall
fairness: are effects on job performance moderated by leader-member exchange? Human Performance, 22
(5), 2009.

Nathan Kallus and Angela Zhou. The fairness of risk scores beyond classification: Bipartite ranking and the
xauc metric. Advances in neural information processing systems, 32, 2019.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with prejudice
remover regularizer. In Joint European conference on machine learning and knowledge discovery in databases.
Springer, 2012.

Jian Kang, Jingrui He, Ross Maciejewski, and Hanghang Tong. Inform: Individual fairness on graph mining.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 379–389, 2020.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determination of
risk scores. arXiv preprint arXiv:1609.05807, 2016.

Nikita Kozodoi, Johannes Jacob, and Stefan Lessmann. Fairness in credit scoring: Assessment, implementation
and profit implications. European Journal of Operational Research, 297(3):1083–1094, 2022.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. NeurIPS, 30, 2017.

Peizhao Li, Yifei Wang, Han Zhao, Pengyu Hong, and Hongfu Liu. On dyadic fairness: Exploring and
mitigating bias in graph connections. In International Conference on Learning Representations, 2020.

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://openreview.net/forum?id=wbPObLm6ueA


Under review as submission to TMLR

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of ICCV, December 2015.

Gilles Louppe, Michael Kagan, and Kyle Cranmer. Learning to pivot with adversarial networks. NeurIPS,
30, 2017.

Xinsong Ma, Zekai Wang, and Weiwei Liu. On the tradeoff between robustness and fairness. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=LqGA2JMLwBw.

Jérémie Mary, Clément Calauzenes, and Noureddine El Karoui. Fairness-aware learning for continuous
attributes and treatments. In ICML. PMLR, 2019.

Ninareh Mehrabi, Yuzhong Huang, and Fred Morstatter. Statistical equity: A fairness classification objective.
arXiv preprint arXiv:2005.07293, 2020.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey on bias
and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35, 2021.

Anay Mehrotra and Nisheeth K Vishnoi. Fair ranking with noisy protected attributes. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=mTra5BIUyRV.

Aditya Krishna Menon and Robert C Williamson. The cost of fairness in classification. arXiv preprint
arXiv:1705.09055, 2017.

Aditya Krishna Menon and Robert C Williamson. The cost of fairness in binary classification. In Conference
on Fairness, accountability and transparency, pp. 107–118. PMLR, 2018.

Alexey Miroshnikov, Konstandinos Kotsiopoulos, Ryan Franks, and Arjun Ravi Kannan. Wasserstein-based
fairness interpretability framework for machine learning models. arXiv preprint arXiv:2011.03156, 2020.

Alexey Miroshnikov, Konstandinos Kotsiopoulos, Ryan Franks, and Arjun Ravi Kannan. Model-agnostic
bias mitigation methods with regressor distribution control for wasserstein-based fairness metrics. arXiv
preprint arXiv:2111.11259, 2021.

Shira Mitchell, Eric Potash, Solon Barocas, Alexander D’Amour, and Kristian Lum. Algorithmic fairness:
Choices, assumptions, and definitions. Annual Review of Statistics and Its Application, 8:141–163, 2021.

Amitabha Mukerjee, Rita Biswas, Kalyanmoy Deb, and Amrit P Mathur. Multi–objective evolutionary
algorithms for the risk–return trade–off in bank loan management. International Transactions in operational
research, 9(5):583–597, 2002.

Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun. Two simple ways to learn
individual fairness metrics from data. In ICML, 2020.

Debarghya Mukherjee, Felix Petersen, Mikhail Yurochkin, and Yuekai Sun. Domain adaptation meets
individual fairness. and they get along. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=XSNfXG9HBAu.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In ICML,
2010.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness and
calibration. Advances in neural information processing systems, 30, 2017.

Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. Mitigating bias in algorithmic hiring:
Evaluating claims and practices. In Proceedings of the 2020 conference on fairness, accountability, and
transparency, pp. 469–481, 2020.

15

https://openreview.net/forum?id=LqGA2JMLwBw
https://openreview.net/forum?id=mTra5BIUyRV
https://openreview.net/forum?id=XSNfXG9HBAu
https://openreview.net/forum?id=XSNfXG9HBAu


Under review as submission to TMLR

Ludger Rüschendorf. The wasserstein distance and approximation theorems. Probability Theory and Related
Fields, 70(1):117–129, 1985.

Paul D Sampson and Peter Guttorp. Nonparametric estimation of nonstationary spatial covariance structure.
Journal of the American Statistical Association, 1992.

Zoltán Sasvári. Characteristic functions and moment sequences: positive definiteness in probability. Nova
Publishers, 2000.

Nripsuta Ani Saxena, Karen Huang, Evan DeFilippis, Goran Radanovic, David C Parkes, and Yang Liu.
How do fairness definitions fare? examining public attitudes towards algorithmic definitions of fairness. In
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 99–106, 2019.

Galen R Shorack and Jon A Wellner. Empirical processes with applications to statistics. SIAM, 2009.

Songül Tolan, Marius Miron, Emilia Gómez, and Carlos Castillo. Why machine learning may lead to
unfairness: Evidence from risk assessment for juvenile justice in catalonia. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence and Law, pp. 83–92, 2019.

Berk Ustun, Yang Liu, and David Parkes. Fairness without harm: Decoupled classifiers with preference
guarantees. In International Conference on Machine Learning, pp. 6373–6382. PMLR, 2019.

Sahil Verma and Julia Rubin. Fairness definitions explained. In 2018 ieee/acm international workshop on
software fairness (fairware), pp. 1–7. IEEE, 2018.

Mikhail Yurochkin and Yuekai Sun. Sensei: Sensitive set invariance for enforcing individual fairness. arXiv
preprint arXiv:2006.14168, 2020.

Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with sensitive
subspace robustness. arXiv preprint arXiv:1907.00020, 2019.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fairness
constraints: Mechanisms for fair classification. In Artificial Intelligence and Statistics, pp. 962–970. PMLR,
2017.

Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representations. In
ICML, pp. 325–333. PMLR, 2013.

Guanhua Zhang, Yihua Zhang, Yang Zhang, Wenqi Fan, Qing Li, Sijia Liu, and Shiyu Chang. Fairness
reprogramming. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=Nay_rOB-dZv.

Aoqi Zuo, Susan Wei, Tongliang Liu, Bo Han, Kun Zhang, and Mingming Gong. Counterfactual fairness
with partially known causal graph. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=9aLbntHz1Uq.

16

https://openreview.net/forum?id=Nay_rOB-dZv
https://openreview.net/forum?id=9aLbntHz1Uq
https://openreview.net/forum?id=9aLbntHz1Uq


Under review as submission to TMLR

A Proof of Theorem 2.1

Firstly, we provide the relation between binary prediction ŷt and the original predictive probability ỹ, i.e.,
the original predictive probability ỹ is the mean of binary prediction ŷt with uniform-distribution threshold t:∫ 1

0
ŷt

ndt =
∫ 1

0
1≥t[ỹn]dt =

∫ ỹn

0
dt = ỹn, (5)

Furthermore, we can derive the relation between these two fairness measurements based on the definition of
∆DPc and ∆DP t

b in Equation (1) and Equation (2):∫ 1

0
∆DP t

b dt =
∫ 1

0

∣∣∣∣∣
∑

n∈S0
ŷt

n

N0
−

∑
n∈S1

ŷt
n

N1

∣∣∣∣∣ dt

≥

∣∣∣∣∣
∫ 1

0
∑

n∈S0
ŷn

N0
−

∑
n∈S1

ŷn

N1
dt

∣∣∣∣∣
=

∣∣∣∣∣ ∑
n∈S0

∫ 1
0 ŷndt

N0
−

∑
n∈S1

∫ 1
0 ŷndt

N1

∣∣∣∣∣
=

∣∣∣∣
∑

n∈S0
ỹn

N0
−

∑
n∈S1

ỹn

N1

∣∣∣∣ = ∆DPc. (6)

Note that if we set threshold as t = 0, it is easy to obtain that ∆DP 0
b =

∣∣∣∣∑
n∈S0

ŷ0
n

N0
−

∑
n∈S1

ŷ0
n

N1

∣∣∣∣ = 0 ≤ ∆DPc.

Additionally, according to Rolle’s theorem (Ballantine & Roberts, 2002) and Equation (6), there exist certain
threshold t0 so that the following equation holds

∆DP t0
b =

∫ 1

0
∆DP t

b dt ≥ ∆DPc, (7)

Considering the continuity of fairness measurement ∆DP t
b over threshold t, there exists threshold t∗ ∈ [0, t0]

so that ∆DP t∗

b = ∆DPc holds, which completes the proof.

B More Discussion on Insufficiency of ∆DP

Proposition B.1 ∆DP t
c = 0 and ∆DPb = 0 are necessary but insufficient conditions for demographic parity,

which requires that the prediction should be independent of the sensitive attributes.

If the predictive values satisfy demographic parity, that is the predictive probability should be independent of
the sensitive attributes. Obviously, the distributions of the predictive probability of different groups follow
the identical distribution, thus, the mean of the predictive probability of different groups should be the same.
In practice, if the number of instances is large enough, ∆DPb = 0 and ∆t

b = 0 for any threshold hold. On the
contrary, ∆DPc = 0 or ∆DP t

b = 0 for a certain threshold will not guarantee that the predictive probability of
different groups follows the identical distribution. Thus we obtain that ∆DPc = 0 or ∆t

b = 0 are a necessary
but not sufficient conditions for demographic parity. This proposition illustrates that zero-value fairness
measurements ∆DP t

b = 0 and ∆DPc = 0 can not guarantee that the model prediction and sensitive attributes
are independent.

C Proof of Properties of ABPC and of ABCC

Firstly, it is easy to check the continuity condition since the PDF and CDF estimation are continuous over
model prediction, and our proposed bias metrics ABPC and ABCC are also continuous w.r.t. the PDF and
CDF estimation. As for the invariance over invertible transformation T , supposed the PDF f0(x) and f1(x)
represent the PDF of model prediction for different groups, and the transformed prediction PDF is f̂0(z)
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and f̂1(z) with z = T (x), note that the transformation T is invertible, according to probability theory, the
relation between f0(x) and f̂0(z) satisfies f0(x)dx = f̂0(z)z. Therefore, we have

ABPCz =
∫ 1

0
|f̂0(z) − f̂1(z)|dz =

∫ 1

0
|f0(x) − f1(x)|dx = ABPCx;

Lastly, we consider the necessary and sufficient conditions on demographic parity. It is easy to obtain that
demographic parity represents the independent prediction w.r.t. sensitive attributes. Hence, ABPC and ABCC
are zero, and vice versa.

D The Relation between ABPC and ∆DPc

Based on the definition of ABPC, we have

ABPC =
∫ 1

0
|f0(x) − f1(x)|dx (8)

≥
∫ 1

0
|xf0(x) − xf1(x)|dx

≥
∣∣∣ ∫ 1

0
xf0(x)dx −

∫ 1

0
xf1(x)dx

∣∣∣ (9)

= ∆DPc.

i.e., the bias metric ABPC is rigorously larger than ∆DPc, which conquers the drawback of the insufficient
condition of demographic parity.

E The Relation between ABPC and ABCC

Based on the definition of Wasserstein distance with cost function c0(x, y) = 2 · 1(x ̸= y), we have

1
2Wc0(f0(x), f1(x))

= inf
γ∈Γ(f0(x),f1(x))

∫
[0,1]2

1(x ̸= y)γ(x, y)dxdy

= inf
γ∈Γ(f0(x),f1(x))

∫
[0,1]2

(
1 − 1(x = y)

)
γ(x, y)dxdy

= 1 −
∫ 1

0
min{f0(x), f1(x)}dx

= 1
2

∫ 1

0
|f0(x) − f1(x)|dx (10)

= 1
2ABPC.

According to work (Shorack & Wellner, 2009), when the PDF of prediction has a limited expectation, we
take the following equation:

ABCC =
∫ 1

0
|F0(x) − F1(x)|dx

=
∫ 1

0
|F −1

0 (t) − F −1
1 (t)|dt (11)

= W1
(
f0(x), f1(x)

)
.

where F −1
0 (t) represents the inverse function of the original CDF F0(x). Therefore, the proposed two metrics

ABPC and ABCC are both the distance for these two PDFs for different groups except the distance metrics.
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F Proof of Estimation Tractability on ABPC and ABCC

According to the non-parametric estimation theory (Sampson & Guttorp, 1992; Jiang et al., 2022), the
estimation error for PDF satisfies Errorpdf = Ex[||f(x) − f̂(x)||2] = O(N− 4

5 ) for kernel density estimator.
Hence, for bias metric ABPC estimation error, we have

ErrorABPC = ED
[
|ABPC − ˆABPC|2

]
= Ex

[
|
∫ 1

0
|f0(x) − f1(x)|dx −

∫ 1

0
|f̂0(x) − f̂1(x)|dx|2

]
(a)
≤ Ex

[
|
∫ 1

0
|f0(x) − f̂0(x)|dx +

∫ 1

0
|f1(x) − f̂1(x)|dx|2

]
= 2

[(
Ex[

∫ 1

0
|f0(x) − f̂0(x)|dx]

)2 +
(
Ex[

∫ 1

0
|f1(x) − f̂1(x)|dx]

)2
]

(b)
≤ 2

[
Ex[

∫ 1

0
|f0(x) − f̂0(x)|2dx] + Ex[

∫ 1

0
|f1(x) − f̂1(x)|2dx]

]
= O(N− 4

5 ).

where inequality (a) holds due to absolute inequality, and inequality (b) holds based on Cauchy-Schwarz
inequality for the integration version. For the number of samples N = O(δ− 5

4 ϵ− 5
2 ), we have

P(|ABPC − ˆABPC| < ϵ) = 1 − P(|ABPC − ˆABPC|2 ≥ ϵ2)
(c)
≥ 1 −

ED
[
|ABPC − ˆABPC|2

]
ϵ2 (12)

= 1 − δ,

where inequality (c) holds due to Markov chain inequality. In other words, for the sufficient number of
samples N = O(δ− 5

4 ϵ− 5
2 ), |ABPC − ˆABPC| < ϵ holds with at least probability 1 − δ.

Similarly, for CDF estimation, based on the central limit theorem,
√

n(F̂ (x) − F (x)) has asymptotically
normal distribution, i.e., Errorcdf = Ex[||F (x) − F̂ (x)||2] = O(N−1). Therefore, similar to the derivation of
PDF, we can obtain ErrorABPC = O(N−1). For the number of samples N = O(δ−1ϵ−2), we can also find
that |ABCC − ˆABCC| < ϵ holds with at least probability 1 − δ.

G Experimental Examination on Adult Dataset

In this appendix, we provide an experimental examination of the Adult dataset in Figure 7, which is the
same as Figure 2. We can observe that the PDF and CDF of biased MLP are obviously different, illustrating
that the machine learning model is biased to gender. Debiased MLP achieves a much lower ∆DPc than the
biased MLP, however, the PDFs of different groups are different even though the “mean" of them are almost
the same. The bottom figures show that ∆DP t

b is the difference between the CDF lines while the threshold
t = 0.5. The results are also in line with the finding in Section 3.2.

H Re-evaluate the Fairness on Image Data

In this appendix, we conduct an experiment on the CelebA image dataset to re-evaluate the performance of
the fair model in Table 2. The CelebA face attributes dataset (Liu et al., 2015) contains over 200,000 face
images, where each image has 40 human-labeled attributes. Among the attributes, we select Attractive as a
binary classification task and consider gender as the sensitive attribute. The results are presented in Table 2.
The results obtain a similar finding with the tabular dataset, demonstrating that 1): REG method always
achieves a lower ∆DPc but a relatively high ∆DP t

b . 2): ADV is a more promising fair model to achieve
demographic parity. 3): The inherent tension between fairness and accuracy is underestimated.
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Figure 7: The empirical PDF and CDF of the predictive probability over different groups (i.e., male, female)
on Adult dataset. Left: Biased MLP model. Right: Debiased MLP model with ∆DPc as regularization.

Table 2: The fairness performance on image dataset. ↑ represents the accuracy improvement compared
to MLP. A higher accuracy metric indicates better performance. ↓ represents the improvement of fairness
compared to MLP. A lower fairness metric indicates better fairness.

Accuracy Fairness
Acc(%) ↑ AP(%) ↑ ∆DP t

b (%) ↓ ∆DPc(%) ↓ ABPC(%) ↓ ABCC(%) ↓

A
ge

MLP 79.12 — 88.06 — 44.17 — 44.11 — 46.70 — 44.11 —
REG 66.28 -16.22 86.08 -2.24 2.10 99.95 14.02 68.21 65.69 -40.66 17.21 60.98
ADV 59.48 24.82 63.93 27.40. 12.31 72.13 12.15 72.46 16.73 64.18 12.15 72.46

G
en

de
r MLP 79.12 — 88.06 — 42.21 — 41.87 — 43.61 — 41.87 —

REG 77.82 -1.64 72.63 -17.52 30.03 28.86 02.00 95.22 19.36 55.61 22.42 46.45
ADV 65.25 -17.53 71.20 -19.15 01.91 95.48 01.91 95.44 04.00 90.83 01.91 95.44

I Wasserstein Distance Introduction

The Wasserstein distance (Rüschendorf, 1985) has already been adopted in machine learning due to the power
of measuring the difference between two distributions. In the fairness community, the transport problem
measures the difference in predictive probability for different groups. Formally, suppose the predictive
probability distributions for different groups are f0(x) and f1(x), and the cost function moving from x
to y is c(x, y), the transportation problem is given by γ∗(x, y) = arg inf

γ∈Γ(f0,f1)

∫
c(x, y)γ(x, y)dxdy, where

distribution set Γ(f0, f1) =
{

γ > 0,
∫

γ(x, y)dy = f0(x),
∫

γ(x, y)dx = f1(y)
}

is the collection of all possible
transportation plan, i.e., joint distribution with margin distribution f0 and f1. The optimal transportation
plan always exists and is defined as γ∗(x, y).

The pth Wasserstein distance is a special case of the optimal transport problem with cost function c(x, y) =
|x − y|p. The formal definition is given by

Wp(f0, f1) =
(

inf
γ∈Γ(f0,f1)

∫
|x − y|pγ(x, y)dxdy

) 1
p

. (13)
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Algorithm 1 Python-style Pseudocode of ABPC

def ABPC( y_pred, y_gt, z_values, bw_method = "scott",
sample_n = 5000 ):

y_pred = y_pred.ravel()
y_gt = y_gt.ravel()
z_values = z_values.ravel()

y_pre_1 = y_pred[z_values == 1]
y_pre_0 = y_pred[z_values == 0]

# KDE PDF
kde0 = gaussian_kde(y_pre_0, bw_method = bw_method)
kde1 = gaussian_kde(y_pre_1, bw_method = bw_method)

# integration
x = np.linspace(0, 1, sample_n)
kde1_x = kde1(x)
kde0_x = kde0(x)
abpc = np.trapz(np.abs(kde0_x - kde1_x), x)

return abpc

Algorithm 2 Python-style Pseudocode of ABCC

def ABCC( y_pred, y_gt, z_values, sample_n = 10000 ):

y_pred = y_pred.ravel()
y_gt = y_gt.ravel()
z_values = z_values.ravel()

y_pre_1 = y_pred[z_values == 1]
y_pre_0 = y_pred[z_values == 0]

# empirical CDF
ecdf0 = ECDF(y_pre_0)
ecdf1 = ECDF(y_pre_1)

# integration
x = np.linspace(0, 1, sample_n)
ecdf0_x = ecdf0(x)
ecdf1_x = ecdf1(x)
abcc = np.trapz(np.abs(ecdf0_x - ecdf1_x), x)

return abcc

J Python Code for the Proposed Metrics

In this appendix, we provide the python code for our proposed two metrics, ABPC and ABCC. The provided
codes show that our proposed metrics are practical and easy to compute.
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