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ABSTRACT

Automated Program Repair (APR) plays a pivotal role in ensuring the quality
and reliability of software. However, most existing APR research focuses on
Java programs, primarily due to the well-established benchmark such as Defects4J.
Despite the significant prevalence of C/C++ vulnerabilities, the field lacks extensive
research on the automated repair of such vulnerabilities, primarily attributed to the
absence of high-quality open-source benchmarks in this domain.
To address the critical gap in available datasets for C/C++ program repair, this
paper introduces Defects4C, a comprehensive and high-quality executable bench-
mark designed to improve defect detection and repair. The dataset includes a vast
collection of bug-relevant commits (e.g., 9M in total), 248 high-quality buggy func-
tions and 102 vulnerable functions paired with test cases for reproduction. These
datasets can be used to evaluate repair techniques and to retrain learning-based
methods for improved performance. Using this expanded dataset, we evaluate the
performance of state-of-the-art LLM-based automated program repair techniques
in addressing C/C++ faults. Specifically, we conduct an extensive empirical study
with 24 leading LLMs. Our findings provide valuable insights into the capabilities
and limitations of existing APR approaches for C/C++ programs, underscoring the
necessity for novel APR techniques and the significance of Defects4C. This dataset
marks a significant advancement in the field, offering a robust and comprehensive
C/C++ dataset that is instrumental for future research on program repair.

1 INTRODUCTION

Software bugs pose potential security threats to software systems. Automating the detection and
repair of software bugs is crucial in software development and has attracted widespread attention from
academia and industry. Many repair works powered by various techniques have been proposed (Just
et al., 2014; Tufano et al., 2019), targeting to accurately and efficiently repair bugs in programs to
increase software developer productivity and reduce the debugging costs. Moreover, the advent of
large language models (LLMs) has demonstrated significant improvements over traditional repair
methods, offering superior performance in program repair tasks (Xia & Zhang, 2024).

To evaluate the effectiveness of the proposed automated program repair (APR) techniques, some
benchmarks in different programming languages are constructed and released (Tufano et al., 2019;
program repair.org, 2021) for users to evaluate. For instance, Defects4J (Just et al., 2014) has
confirmed its dominance as a standard benchmark where the majority of repair-related techniques
in Java programming language utilized it for comparison (An et al., 2023). BugsInpy (Widyasari
et al., 2020) is another collection of defects from real-world Python projects to evaluate the repair
performance in Python programming language.

It is noteworthy that, according to the report (mend, 2024), C is the language that has the most reported
vulnerabilities among all, accounting for more than 50% of all reported open source vulnerabilities
since 2019. Furthermore, the annual count of vulnerabilities in C significantly exceeds that of any
other programming language. Given the significant threat posed by vulnerabilities in the C language
to software systems, some efforts have been made to construct C / C++ defect benchmarks to evaluate
existing APR techniques (Orvalho et al., 2022; Tan et al., 2017; Böhme et al., 2017; Yi et al., 2017;
Le Goues et al., 2015; An et al., 2023; Gupta et al., 2017). However, challenges remain. Notably,
some of these benchmarks, such as DeepFix (Gupta et al., 2017) and Code4Bench (Majd et al., 2019),
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source their bugs from student assignments or competitive programming platforms like Codeforces,
resulting in simpler buggy functions that lack the complexity of real-world applications. Several
benchmarks based on real-world projects have been introduced (Böhme et al., 2017; Le Goues
et al., 2015; An et al., 2023; Long & Rinard, 2016), but they still have limitations. For instance,
DBGBench (Böhme et al., 2017) collects data from only two projects, leading to incomplete and
insufficient evaluation across diverse software ecosystems. ManyBugs (Le Goues et al., 2015) and
Prophet (Long & Rinard, 2016) include C/C++ programs in limited versions (e.g., only C99 and
C11 in ManyBugs) and have limited usability (e.g., requiring long compilation for every patch
test and lacking a user-friendly command-line interface), which complicates test validation and
usage (Lutellier et al., 2020). The latest benchmark, BUG-C++ (An et al., 2023), sources defect data
from GitHub commits but lacks human verification to confirm whether the identified issues are actual
bugs. Our preliminary studies reveal that some of these changes are unrelated to bugs and instead
involve functionality updates. In summary, there remains a pressing need for a high-quality C/C++
fault benchmark that meets the criteria of practicality, diversity, fidelity, and usability.

Automated program repair techniques, designed to automatically resolve software bugs, have evolved
significantly with the rise of large language models such as ChatGPT (OpenAI, 2022). Studies on
code understanding and generation highlight the remarkable capabilities of these LLMs in these
areas (Chen & Zaremba, 2021; Liu et al., 2023; Xia & Zhang, 2024). Recent research suggests
that LLM-based APR techniques outperform traditional approaches in both bug-fixing efficiency
and accuracy (program repair.org, 2021). However, most of these techniques are evaluated using
Defects4J (Just et al., 2014), which is favored for its collection of high-quality bugs (357 in Defects4J
1.0) and its user-friendly command-line interface that facilitates quick and convenient assessment
of model-generated repairs. Despite these advances, the lack of a similarly high-quality dataset for
C/C++ has left the effectiveness of LLM-based APR techniques in C/C++ programming largely
under-explored. This gap prevents researchers from fully understanding the capabilities of LLMs and
challenges in C/C++ program repair. Given the large number of bugs in C/C++ programs and their
unique characteristics, it is crucial to evaluate these techniques on C/C++ faults to fully uncover their
potential and drive further advancements in the field.

To address the identified challenges, we introduce a new high-quality C/C++ fault benchmark,
referred to as Defects4C, which consists of two major components: bug-relevant commits (De-
fects4C_bgcommit), and high-quality buggy functions that are further divided into general bug
functions (Defects4C_bug) and vulnerability functions (Defects4C_vul). Specifically, the commits
dataset Defects4C_bgcommit may include some false positives, making it suitable for model training
or fine-tuning, while the buggy functions (i.e., Defects4C_bug and Defects4C_vul) are rigorously
confirmed by human experts, ensuring their reliability for strict evaluation purposes.

Specifcially, we leveraged BigQuery to extract a large number of buggy commits (40M) from over
110K widely used GitHub C/C++ repositories using a set of predefined bug-related keywords. We
then filtered the commits based on availability (resulting in 9M bug-related commits) and whether the
changes were isolated to a single function (leading to 76K single-function buggy commits). A unit test
matching method was applied to identify corresponding test cases for each buggy function, leaving
representative 3,785 buggy commits collected from the top 100 projects with paired tests. To ensure
the quality of the dataset for evaluation, we implemented a three-stage human annotation process
conducted by three security experts. This process was crucial for eliminating false positives, i.e., cases
where commit messages contain bug-related keywords, but the code changes do not actually address
bugs or security issues. Our rigorous approach resulted in 248 confirmed bugs (Defects4C_bug) along
with their corresponding unit tests, allowing for bug reproduction and validation.

In addition, we expanded the diversity of the dataset by including a vulnerability dataset (De-
fects4C_vul). We first extracted C/C++-related Common Vulnerabilities and Exposures (CVEs) from
a publicly available database (CVEProject, 2021). To isolate vulnerable functions, we selected CVEs
that provided patched commit IDs, allowing us to retrieve the associated vulnerable and patched
functions from the commits. We then applied the unit test matching process to identify corresponding
test cases for each vulnerability, ultimately yielding 102 vulnerabilities with corresponding unit tests.

To understand the effectiveness of state-of-the-art LLM-based APR techniques in fixing C/C++ bugs
or vulnerabilities, we conducted an empirical study using our Defects4C benchmark. The study
focuses on evaluating the performance of LLM-based APR techniques, incorporating 24 state-of-
the-art LLMs. These models are evaluated in single-round and conversation-based program repair
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Table 1: Existing C/C++ benchmarks for program repair.

Dataset Defects Projects Source Dataset Defects Projects Source

CodeHunt (Tillmann et al., 2014) 195K N/A Interview/Contest ITSP (Sykes & Franek, 2003) 661 N/A Assignment
Code4Bench (Majd et al., 2019) 25K N/A Interview/Contest C-Pack-IPAs (Orvalho et al., 2022) 513 N/A Assignment
Prutor/SARD (Das et al., 2016) 23K N/A Interview/Contest Bugs-C++ (An et al., 2023) 209 22 Real-World

SPoC (Kulal et al., 2019) 18K N/A Interview/Contest ManyBugs (Le Goues et al., 2015) 185 9 Real-World
CodeFlaws (Tan et al., 2017) 3.9K N/A Interview/Contest Prophet (Long & Rinard, 2016) 69 8 Real-World
DeepFix (Gupta et al., 2017) 6.9K N/A Assignment DBGBench (Böhme et al., 2017) 27 2 Real-World

IntroClass (Le Goues et al., 2015) 998 N/A Assignment Defects4C 350 41 Real-World

scenarios with various experimental settings. Our findings reveal a significant performance gap
in LLM-based APRs when addressing C/C++ faults compared to their success with the Defects4J
benchmark (Java). This discrepancy highlights the urgent need for APR techniques specifically
tailored for C/C++ fault repair. We further explored the effectiveness of fine-tuning in C/C++ program
repair, and while the results show some promise, they remain below acceptable levels. Our newly
developed Defects4C, with its high-quality and comprehensive dataset, is positioned to serve as a
valuable resource for future research in C/C++ program repair.

To sum up, we make the following contributions:

• We have developed and publicly released an executable C/C++ defect benchmark namely De-
fects4C, comprising 9M bug-relevant commits (Defects4C_bgcommit), 248 buggy functions (De-
fects4C_bug) and 102 vulnerable functions (Defects4C_vul), sourced from GitHub open-source
projects. It is accessible at the website1. A user-friendly command line interface for ease of use
accompanies each sample in this dataset.

• We conduct the first large-scale empirical study focused on assessing the capability of LLM-based
APR techniques in repairing C/C++ programs. We select 24 state-of-the-art LLMs with various
settings for a comprehensive evaluation. Our findings highlight a significant gap and limitations in
the current LLMs when fixing C/C++ bugs, especially in contrast to their performance on Java bugs.
These results underscore the urgent need for further research and development of C/C++-specific
repair techniques and the importance of our benchmark.

2 RELATED WORK

Existing C/C++ Defect Benchmark. Table 1 provides a summary of existing C/C++ benchmarks
for program repair, including our proposed dataset, Defects4C. To date, prevailing benchmarks for
C/C++ programs have mostly centred on student programming assignments such as DeepFix (Gupta
et al., 2017), C-Pack-IPAs (Orvalho et al., 2022), IntroClass (Le Goues et al., 2015) or online contests
such as Code4Bench (Majd et al., 2019), CodeHunt (Tillmann et al., 2014), Prutor/SARD (Das et al.,
2016), SPoC (Kulal et al., 2019), CodeFlaw (Tan et al., 2017). As the data source is from assignments
or contests, they are impractical with relatively low practical value in real-world program repair. To
construct a more practical benchmark, several works propose to construct it from real-world projects
such as ManyBugs (Le Goues et al., 2015), Prophet (Long & Rinard, 2016), DBGBench (Böhme
et al., 2017) and BUG-C++ (An et al., 2023). These benchmarks also suffer from various limitations.
For instance, ManyBugs and Prophet offer low usability and only support outdated versions of
C/C++ programs. DBGBench is limited in diversity, as it is collected from only two GitHub projects.
BUG-C++ lacks rigorous verification, as it mainly relies on bug-related keywords from commit
messages without confirming whether the collected issues are actual bugs.

LLM-based Program Repair. Large language models (i.e., LLMs) have exhibited powerful capabil-
ities to repair program defects (Jiang et al., 2023; Prenner et al., 2022; Sobania et al., 2023; Xia et al.,
2023). Compared with single-round repair, recent conversation-based program repair techniques (Xia
& Zhang, 2023; 2024) are proposed to improve the repair performance further. These techniques
target interaction with LLMs by feeding error messages as the input to guide LLMs in generating
more accurate output. Although various LLM-based techniques are proposed for program repair, they
are mainly based on Defects4J (Just et al., 2014), a widely used defect benchmark for Java programs.

1https://sites.google.com/view/anonymous-defects4c
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Defects4C_bgcommit (9M)

Figure 1: The pipeline of data collection process.

3 BENCHMARK CONSTRUCTION

3.1 RAW DATA COLLECTION

Commit Collection (40M) To extract buggy functions, we follow previous works (Zhou et al., 2021;
An et al., 2023) and collect GitHub commits related to bugs. We primarily use BigQuery to extract
commits from two types of projects: open-source, non-fork C/C++ repositories with redistributable
licenses, having 200+ stars, from January 2015 to August 2023 (sourced from the GH Archive (GH
Archive, 2023)), and the top 500 C/C++ projects ranked by GitHub stars (EvanLi, 2016). The 500
high-ranking projects were included to ensure that BigQuery did not miss such popular projects.
Based on the selected projects, we applied a keyword-based heuristic rule inspired by VRepair (Chen
et al., 2022) to filter out commits unrelated to bugs. We considered commits as plausible bug-related
if their messages contained keywords such as fix, solve, repair, bug, issue, problem, error, fault and
vulnerability. Using this method, we obtained 38M+ commits from these projects, with a total cost
of approximately $5,000 to gather the data via BigQuery.

To construct the vulnerability dataset, we selected CVEs related to C/C++ programming from the
CVEProject repository 2, which includes CVEs collected from 1999 to 2024. We only selected CVEs
that provided a single patched commit ID, resulting in a total of 14,488 commits. This choice was
made for two reasons: first, the CVEs with a commit ID allow us to retrieve the specific vulnerable
functions, and second, if a CVE had multiple commit IDs, it would be hard to confirm which commit
ID was used to address the vulnerability. Finally, we collected about 40M raw commits that are
related to bugs.

Commit Validation (9M) We recognize that the commits obtained through BigQuery or the CVE
website may become invalid over time due to factors such as repository ownership transfer, archiving,
or other reasons. Therefore, we filter out these invalid commits based on their availability. Addition-
ally, we implement a rigorous deduplication process to remove duplicate commits, resulting in a total
of 9M valid bug-relevant commits. From these commits, we can extract function pairs from before
and after the commits, which represent the buggy and patched versions, respectively. Although some
false positives remain due to the keyword-based filtering process, these commits are still valuable for
fine-tuning APR models, especially there is no an existing real-world bug repair dataset for retraining.
However, they are not suitable for evaluation due to the lack of rigorous bug verification.

Single Function Commit Filtering (76K) The collected commits may involve modifications across
multiple files, which are too complex for existing APR techniques. To reduce complexity, we retain
only those commits that involve changes to a single function. To ensure the extracted functions are
executable and verifiable, we further filter out commits that lack an associated test suite for validation.
Through this process, we identify 76K valid commits, including 249 vulnerability-relevant commits.

3.2 UNIT TEST MATCHING

Each commit is associated with a test suite containing multiple test cases, as established through the
commit validation and filtering process in Section 3.1. However, identifying which specific test case
verifies the current fix is necessary, as many test cases are designed to validate functionality changes
across the project’s entire history. While some straightforward identification methods exist, such
as in Java projects, where a function named abc is often tested by a test case named test_abc, this

2https://github.com/CVEProject/cvelist
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User Interface & Application Design (4.8%)
Web (16.7%)

Security & Cryptography (11.9%)

System Design & Architecture (11.9%)

Library (14.3%)

DataBase & SQL
 (19.0%)Utilities & Games (21.4%)

Figure 2: The category constitution of our Defects4C.

naming convention is not commonly found in C/C++ projects, making it impractical to apply. Hence,
we propose an unit test pair verification algorithm, which is based on a basic observation: for a
buggy/vulnerable fix, there typically exists some unit tests that pass on the corrected code version but
fails on the buggy/vulnerable version. Specifically, for a given test suite T = {t1, t2, ..., tn}, where
ti is the test case, a commit yielding two code versions: V0 (pre-commit) and V1 (post-commit),
representing the previous and post version of code after the commit, respectively. For each test case
in T , if ti passes V1 but fails to pass V0, we consider it the test case used to evaluate current fixing.
We consider the other cases as bug-unrelated test cases and filter them out. Finally, we can obtain
a subset T ′ from T where each test case is used to evaluate the buggy function. Following this
rigorous process, we further validate the 76K data obtained from Section 3.1 and get 3,785 commits
for Defects4C_bug and 102 commits for Defects4C_vul.

3.3 HUMAN ANNOTATION

Given the potential for false positives in the bug-related commits, we conducted a conservative
and rigorous human annotation process to reproduce, confirm and classify the bugs, ensuring a
high-quality evaluation dataset for APR techniques. Specifically, following prior studies (Quan et al.,
2022; Shi et al., 2022), we divided the collected commits from Section 3.2 (3,785 and 102) into two
equal parts and applied a three-round annotation process. In the first round, half of the dataset was
assigned to two security experts for independent confirmation and classification of bugs, following
the CWE bug types, with a focus on the root cause and fixed logic. The experts then discussed their
classifications and determined which bugs should be included in the dataset, with any disagreements
resolved by an arbitrator. To assess the consistency of their classifications, we used Cohen’s Kappa (k)
coefficient (Hsu & Field, 2003), which measures inter-rater reliability, where higher values indicate
greater agreement.

In the first round, the inter-rater reliability (k) was 0.48. After establishing a preliminary taxonomy,
the experts manually annotated the remaining half of the dataset in the second round, improving the k
coefficient to 0.60. In the third round, the experts performed a resampling exercise, reviewing 50%
of the reported bugs twice to verify the results, achieving a k value of 0.88, which indicates almost
perfect agreement (Landis & Koch, 1977).

Through this human annotation process, we identified several issues with the commits. Some commits,
despite containing bug-related keywords, only added features or modified output formats without
fixing actual bugs. Others had vague commit messages (e.g., “fix bug”) that did not logically align
with the code changes, or were reverted in later iterations, making them unreliable bug fixes. After
completing the annotation process, we identified 248 commits for Defects4C_bug and 102 commits
for Defects4C_vul. Notably, we did not filter any vulnerability commits, as they were sourced from
the high-quality CVE repository. In total, we obtained 350 high-quality faults that are reproducible
and suitable for evaluation by APR techniques.

4 STATISTICS OF Defects4C

Finally, Defects4C comprises 9M bug-related commits for Defects4C_bgcommit, 248 commits for
Defects4C_bug, and 102 commits for Defects4C_vul. Among these, Defects4C_bgcommit includes
76K single-function commits with potential test suites, and 3.8K commits with executable tests.

We also conducted a statistical analysis of the evaluation data, specifically Defects4C_bug and
Defects4C_vul. Firstly, we manually classify the application categories of the data, which is presented
in Figure 2. We can find that the error code is from diverse application scenarios. We further
analyse the types of errors in these data, presented in Table 2, enumerating the specific taxonomy
and statistical summary within each category. For a software bug fix, the location where the code
has been modified often correlates with the root cause that triggers the bug (Hirsch & Hofer, 2020;
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Mahbub et al., 2023). Therefore, we first categorize the dataset into four primary categories based
on the logical location of the code changes during the bug fixes, which are defined as Signature,
Sanitizer, Memory Error, and Logic Organization, respectively. For each primary
category, we further divide the classifications into subcategories and align them closely with the
root causes of the bugs, where the CWEs served as the standard reference for the detailed taxonomy.
Please refer to Appendix A.2 for more introduction to these categories.

Table 2: The number of bugs and vulnerabilities for
different categories.

Category Error Type Bugs Vulnerabilities

Signature

Incorrect Function Usage 19 3
Fault Input Type 12 2

Incorrect Function Return Value 19 3
Incorrect Variable Usage 25 3

Sanitizer Control Expression Error 66 6

Memory Error
Null Pointer Dereference 6 6

Uncontrolled Resource Consumption 9 5
Memory Overflow 5 61

Logic Organization Improper Condition Organization 67 11
Wrong Function Call Sequence 20 2

Furthermore, in line with prior works (Xia
et al., 2023; Xia & Zhang, 2024), we also
classify the characteristics of the data in De-
fects4C from the perspective of their code fix
locations into three categories, namely Line,
Hunk, and Function. Specifically, Line repre-
sents the bugs where the fixing code is com-
pleted within a single line, Hunk denotes the
fixes with multi-lines and continuous code
modifications, and Function shows the fixes in-
volve multiple modifications at several places
within a single function. We further provide
the error distribution across different C/C++
projects in Appendix A.1. Lastly, we conduct a lot of engineering work to make a user-friendly
command line interface (i.e., CLI) to ensure each bug and vulnerability can be reproduced easily. We
provide the details in Appendix A.3.

5 EVALUATION SETUP

Large language models have demonstrated significant effectiveness in APR (Xia et al., 2023; Xia &
Zhang, 2023; 2024). Therefore, we further evaluate their performance on C/C++ repair tasks using
our Defects4C dataset. In particular, we first assess the performance of existing methods that rely on
pre-trained LLMs using our evaluation datasets Defects4C_bug and Defects4C_vul. Additionally, we
fine-tune the LLMs using Defects4C_bgcommit to explore whether this improves their performance.

5.1 SETTINGS FOR PRE-TRAINED MODELS

In this setting, we directly utilize LLMs without fine-tuning for assessment. In particular, we select
a large number of state-of-the-art LLMs (24) to evaluate their performance. The assessment is
categorized into single-round and conversation-based repair.

Single-round repair refers to the model generating a patched program once based on the given prompt,
without receiving feedback or undergoing multiple iterations of verification and re-generation. Similar
to EvalPlus (Liu et al., 2023), we use the unbiased pass@k (Chen & Zaremba, 2021) to assess the
LLM-synthesised code’s repair performance accurately. We conduct random sampling to generate
100 program repairs for each of two temperature settings (0.2, 0.8) and greedy-search decoding.
For random sampling, we present the best-performing pass@k for each k ∈ {1, 10, 100} and its
corresponding temperature denoted by T ∗

k . For greedy decoding, which only generates one output,
we evaluate its pass rate as pass@k∗ = 1. GPT-4 is only evaluated under greedy decoding due to the
time and cost constraints.

Conversation-based repair, as described by Xia et al. (Xia & Zhang, 2024), involves invoking the
model multiple times. In each iteration, the error feedback from the compiler in the previous
round is incorporated into the prompt provided to the LLMs, helping to generate more accurate
outputs in the current round. It is costly to use pass@k as the evaluation metric in this setting
because pass@k requires generating a massive amount of model outputs. Hence, we follow Xia et
al. (Xia & Zhang, 2024) to report the number of successful repairs in Defects4C. Specifically, we
select the best-performing models from different model series within the single-round repair used
to evaluate the conversation-based repair due to the cost. The temperature is set to 1.0 following
the configuration (Xia & Zhang, 2024). We add another greedy decoding strategy to evaluate the
effect of different decoding strategies in the conversation-based repair. Our default setting for the
maximum number of repair attempts is 10, and the maximum conversation length in each attempt is
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SMU Classification: Restricted

       Single Function 

The following function contains 
bugs:
```
[Original Buggy Function] 
```
The error message from test case is:
[Error Message] 

Please fix bugs in the function and 
tell me the complete fixed function.

Single Hunk
The following function contains a buggy 
hunk that has been masked:
```
[Masked Buggy Function] 
```
This was the original buggy hunk which was 
masked by the infill location:
```
[Masked Code Snippet] 
```
The error message from test case is:
[Error Message] 
Please provide the correct hunk following 
error message at the infill location.

Single Line
The following function contains a buggy line that has 
been masked:
```
[Masked Buggy Function] 
```
This was the original buggy line which was masked by 
the infill location:
```
[Masked Code Snippet] 
```
The error message from test case is:
[Error Message] 
Please provide the correct line following error message at 
the infill location.

[Original Buggy Function] =
static inline int s_base64_get_decoded_value(char to_decode, uint8_t *value, 
int8_t allow_sentinal) {
…
return AWS_OP_ERR;}
[Error Message] = 
***FAILURE***  Expected error but no error occurred; rv=0, 
aws_last_error=0000 (expected 0007):

[Masked Buggy Function] =
>>> [ INFILL ] <<<
…
return AWS_OP_ERR;
}
[Masked Code Snippet] =  
s_base64_get_decoded_value(char to_decode, uint8_t *value, 
int8_t allow_sentinal) {

①

④

③②

⑤

Figure 3: Prompt design for different types of defects.

3. Consequently, we conduct 30 repair attempts for each buggy function until an output that passes
all test cases is generated. For more details about the conversation repair, please refer to Appendix B.

The experiments are conducted on a server with 8 RTX A6000 GPUs. The batch size is 16, and the
maximum input sequence length is 2048 for all experiments. Please refer to Appendix A.3 for more
experimental configurations.

5.2 SETTINGS FOR FINE-TUNING

The majority of LLM-based APR research relies on pre-trained models, primarily due to the lack
of datasets capable of supporting large-scale fine-tuning for repair tasks. However, our dataset
Defects4C_bgcommit addresses this limitation. Therefore, we further conducted a study to evaluate
repair performance with fine-tuning. Specifically, we selected single-function commits paired with
test suites from Defects4C_bgcommit as the fine-tuning dataset and evaluated the performance
of the fine-tuned models on Defects4C_bug and Defects4C_vul. Following the approach used in
Magicoder (Wei et al., 2023), we performed decontamination to exclude any samples that are identical
to, or share similar buggy or patched code snippets with, those in Defects4C_bug and Defects4C_vul
to prevent data leakage. This was achieved by employing UniXcoder (Guo et al., 2022) to embed code
snippets and filtering out samples with a cosine similarity score higher than 0.95 when compared to
samples in Defects4C_bug and Defects4C_vul. In addition, after filtering the input length greater than
2048, we retained 20,591 samples from Defects4C_bgcommit across 1.1K projects for fine-tuning.

Due to resource constraints, we selected two popular base models, CodeLlama-7B-base and DeepSeek-
coder-6.7B-base, for fine-tuning. We applied parameter-efficient fine-tuning using LoRA (Hu et al.,
2021) with a rank of 8. The models were fine-tuned for 3 epochs with a learning rate of 2e-5. All
experiments were conducted on 8 RTX A6000 GPUs, with a batch size of 8 per GPU.

5.3 PROMPT DESIGN

To interact with LLMs, we need to design appropriate prompts for experiments. Based on the three
types of bugs/vulnerabilities, i.e., fixed in a single line, hunk, or function, as described in Section 4, we
created corresponding prompts. These are illustrated in Figure 3, where parts 1, 2, and 3 correspond
to function-level, hunk-level, and line-level bugs, respectively. In particular, for the prompt of single
function bugs, we design the corresponding prompt to require the model to generate the complete
function. Hence, the placeholder Original Buggy Function is a function, for example the
placeholder Error Message in part 4 denotes the error information provided by the compiler
based on the patch of last iteration. For the prompt of the single hunk and single line bugs, as the error
statements are continuous, we mask them in the original function by the symbol >>>[INFILL]<<<
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Table 3: Evaluating LLMs on Defects4C for single-round repair, where k∗ = 1 marks pass@1 done
with greedy-search decoding and pass@k results with its corresponding temperature.

Model Size T=0.2 T=0.8
k*=1 k = 1 k = 10 k = 100 k = 1 k = 10 k = 100

GPT-4 N/A 9.0 - - - - -

GPT-35-Turbo N/A 8.5 7.9 13.5 19.5 7.1 20.0 38.9

CodeLlama-Instruct
7B 2.5 3.3 11.1 24.9 4.8 20.5 45.7
13B 5.3 4.0 14.2 25.7 3.8 18.1 40.4
34B 4.0 3.6 12.1 25.7 3.2 14.7 35.9

CodeLlama-Python
7B 0.0 0.1 1.2 4.5 0.8 6.2 22.5
13B 0.0 0.3 1.8 4.5 1.7 11.2 32.2
34B 0.0 0.3 2.2 6.9 1.2 8.8 29.8

CodeLlama-Base 7B 0.0 0.0 0.0 0.0 0.2 2.1 14.3

deepseek-coder-base 6.7B 0.4 0.3 1.0 3.7 0.9 6.8 25.7
33B 0.0 0.0 0.0 0.0 0.7 5.7 26.1

deepseek-coder-instruct 6.7B 1.2 2.4 10.7 25.7 2.2 13.4 33.9

Gemma
7B 0.0 0.4 3.0 11.0 0.8 6.6 26.9
7B-Instruct 0.0 0.8 5.1 14.7 0.9 6.1 22.9
Code7B 0.0 0.0 0.0 0.0 0.0 0.2 1.2

Magicoder-S-DS 6.7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Mixtral-8x7B-Instruct 7B 0.0 0.0 0.0 0.0 0.0 0.0 0.0

phi-2 2.7B 0.0 0.0 0.0 0.0 0.4 3.7 19.9

Phind-CodeLlama 34B 6.1 5.4 18.6 34.7 4.8 20.6 38.4

WizardCoder-Python
7B 0.0 0.2 1.1 3.7 0.4 3.4 18.8
13B 0.0 0.7 4.2 11.8 1.4 11.0 35.5
34B 4.4 5.2 13.0 21.2 5.5 23.0 45.1

WizardCoder 15B 1.0 1.1 4.9 11.3 1.7 10.4 28.9
33B 0.0 0.0 0.0 0.0 0.2 1.9 10.3

Table 4: Evaluating LLMs on Defects4C for conversation-based repair where Pass denotes the number
of bugs or vulnerabilities that the model can successfully repair, Avg.tries denotes the average tries of
the successful repair. Due to the limited budget, the maximum number of repair attempts is set to 2
for GPT-4, and the remaining models are set to 10 by default.

Model Decoding
Defects4C_bug

Pass/Sum
Defects4C_vul

Pass/SumSignature Sanitizer Memory Error Logic Signature Sanitizer Memory Error Logic
Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries Pass/Total Avg.tries

GPT-4 T=1.0 0/75 0.0 4/66 2.0 1/20 1.0 0/87 0.0 5/248 1/11 2.0 0/6 0 4/72 1.5 0/13 0.0 5/102
greedy 3/75 2.0 1/66 1.0 1/20 2.0 0/87 0.0 5/248 1/11 2.0 0/6 0.0 3/72 1.3 0/13 0.0 4/102

GPT-35-Turbo T=1.0 8/75 1.7 13/66 2.4 3/20 3.7 3/87 2.7 27/248 0/11 0.0 1/6 10.0 0/72 0.0 0/13 0.0 1/102
greedy 7/75 2.0 4/66 3.0 5/20 2.8 2/87 1.0 18/248 0/11 0.0 2/6 4.5 2/72 8.5 0/13 0.0 4/102

CodeLlama-Instruct-7B T=1.0 9/75 2.8 11/66 2.9 3/20 3.0 4/87 6.3 27/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102
greedy 3/75 6.0 8/66 4.6 4/20 4.7 1/87 1.0 16/248 0/11 0.0 0/6 0.0 0/72 0.0 1/13 9.0 1/102

WizardCoder-Python-34B T=1.0 0/75 0.0 0/66 0.0 0/20 0.0 1/87 1.0 1/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102
greedy 0/75 0.0 0/66 0.0 0/20 0.0 0/87 0.0 0/248 1/11 8.0 0/6 0.0 0/72 0.0 0/13 0.0 1/102

Gemma-Instruct-7B T=1.0 0/75 0.0 1/66 1.0 0/20 0.0 0/87 0.0 1/248 0/11 0.0 0/6 0.0 1/72 3.0 0/13 0.0 1/102
greedy 1/75 8.0 0/66 0.0 0/20 0.0 0/87 0.0 1/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102

Phind-CodeLlama-34B T=1.0 9/75 4.9 4/66 6.7 1/20 8.0 4/87 4.7 18/248 0/11 0.0 2/6 1.0 5/72 4.8 0/13 0.0 7/102
greedy 0/75 0.0 2/66 1.0 4/20 1.0 1/87 8.0 7/248 0/11 0.0 1/6 1.0 1/72 1.0 0/13 0.0 2/102

deepseek-coder-33b-base T=1.0 4/75 1.5 0/66 0.0 2/20 1.0 0/87 0.0 6/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102
greedy 0/75 0.0 0/66 0.0 0/20 0.0 6/87 8.2 6/248 0/11 0.0 0/6 0.0 0/72 0.0 0/13 0.0 0/102

and provide these error statements by the placeholder Masked Code Snippet for the model to
generate masked statements. An example is shown in part 5.

For single-round repair, we directly feed the prompts to the model. For conversation-based repair,
the designed prompts serve as the initial input to the LLMs. After the model generates an output,
the compiler evaluates it. If the output fails to pass the verification, the newly produced compilation
error is appended to the prompt template to construct a new prompt for the next round of repair.
For fine-tuning, we use the prompt without the compilation error, which is the same prompt as the
single-round repair for the train.

6 EXPERIMENTAL RESULTS

6.1 SINGLE-ROUND REPAIR

The experimental results of different LLMs on Defects4C for single-round repair are presented in
Table 3. Generally, we can observe that setting the temperature to 0.8 usually performs better than
the temperature to 0.2, which indicates the improvement of the diversity in model output usually
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Table 5: The repair performance compared with Defects4J. #Avg.tries represents the average number
of attempts required, calculated as the ratio of successful repairs (Pass) to the total attempts (Total).

Model Func Hunk Line #Avg.tries#Pass/Total Rate #Pass/Total Rate #Pass/Total Rate

Defects4J (Xia & Zhang, 2024) - 29.80 - 51.30 - 71.30 -

GPT4 T=1 1/46 2.17 2/179 1.12 7/125 5.60 2.86
greedy 0/46 0.00 7/179 3.91 2/125 1.60 2.57

GPT-3.5-Turbo T=1 0/46 0.00 11/179 6.15 17/125 13.60 8.00
greedy 0/46 0.00 9/179 5.03 13/125 10.40 6.29

CodeLlama-Instruct-7B T=1 0/46 0.00 10/179 5.59 17/125 13.60 7.71
greedy 0/46 0.00 10/179 5.59 7/125 5.60 4.86

WizardCoder-Python-34B T=1 0/46 0.00 1/179 0.56 0/125 0.00 0.29
greedy 0/46 0.00 1/179 0.56 0/125 0.00 0.29

Gemma-Instruct-7B T=1 0/46 0.00 1/179 0.56 1/125 0.80 0.57
greedy 0/46 0.00 1/179 0.56 0/125 0.00 0.29

Phind-CodeLlama-34B T=1 2/46 4.35 12/179 6.70 11/125 8.80 7.14
greedy 0/46 0.00 3/179 1.68 6/125 4.80 2.57

deepseek-coder-33b-base T=1 0/46 0.00 4/179 2.23 2/125 1.60 1.71
greedy 0/46 0.00 6/179 3.35 0/125 0.00 1.71

contributes to better program repair. We can also find that as the number of k increases, the success
rate of repairs also improves. It is reasonable because increasing the number of generated outputs
enhances the probability of correctly generating repair code.

Further analysis of different variants of the same model reveals that increasing model size does not
necessarily lead to better repair accuracy. For instance, when the size of CodeLlama-Python increases
from 7B to 13B, pass@100 improves from 22.4 to 32.2. However, with CodeLlama-Python 34B,
pass@100 drops to 29.8. Similar trends are observed in WizardCoder-15B/33B and CodeLlama-
Instruct. In contrast, some models, like deepseek-coder and WizardCoder-Python, show the opposite
trend. This suggests that increasing model size does not guarantee improved performance; it is still
dependent on the specific model and task. Moreover, several open-source models, such as Magicoder,
perform poorly on Defects4C, despite excelling on popular datasets like HumanEval (Chen &
Zaremba, 2021). Interestingly, the performance gap between open-source and closed-source models
on Defects4C is less pronounced compared to their performance on other datasets (Chen & Zaremba,
2021; Liu et al., 2023). This indicates that Defects4C, collected from real-world projects, presents a
more challenging testbed, further underscoring the value of the dataset.

6.2 CONVERSATION-BASED REPAIR

We then selected the best-performing models from Table 3 to conduct experiments on conversation-
based repair, with the results presented in Table 4. Overall, we found that LLMs perform better at
repairing Defects4C_bug than Defects4C_vul. For instance, LLMs were able to successfully repair
27 bugs, compared to only 7 vulnerabilities. We speculate that this difference may be due to the
increased complexity of vulnerabilities, which makes them more challenging for LLMs to address.
However, the results show that LLMs were able to repair only 27 out of 248 bugs and 7 out of 102
vulnerabilities. This low performance highlights the significant room for improvement in LLMs’
ability to repair C/C++ defects.

Additionally, we observed that for Defects4C_bug, GPT-4 successfully repaired 5 bugs, which is
lower than GPT-3.5’s performance (i.e., 27 bugs). However, for Defects4C_vul, GPT-4 handled 5
vulnerabilities, outperforming GPT-3.5, which repaired only 4. It’s important to note that we limited
the maximum number of repair attempts for GPT-4 to 2 due to budget constraints, while other models
had up to 10 attempts. We believe that GPT-4 could achieve higher repair accuracy with more repair
attempts. Furthermore, we found that setting the model’s temperature to 1.0 generally resulted in
better repair accuracy compared to using greedy search decoding. Lastly, apart from GPT-4 and
GPT-3.5, open-source models performed poorly even in conversation-based repair. For example,
WizardCoder and Gemma were able to repair only 1 bug or vulnerability in both Defects4C_bug
and Defects4C_vul. This suggests that while these open-source models may excel in certain tasks or
datasets, their generalizability remains limited.
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Table 6: Comparative Results of LLMs With and Without Fine-Tuning.

Model Finetune Greedy T=0.2 T=0.8
k = 1 k = 10 k = 100 k = 1 k = 10 k = 100

CodeLlama-7B-Base ✗ 0.00 0.00 0.00 0.00 0.22 2.10 14.29
✓ 0.41 0.25 0.92 2.86 0.44 3.72 20.41

CodeLlama-7B-Instruct ✗ 2.45 3.31 11.07 24.90 4.81 20.51 45.71
✓ 4.08 4.26 9.30 17.14 4.92 20.99 46.94

Deepseek-Coder-6.7B-Base ✗ 0.41 0.33 0.96 3.67 0.87 6.83 25.71
✓ 0.41 0.19 0.45 0.82 0.24 1.58 5.31

Deepseek-Coder-6.7B-Instruct ✗ 1.22 2.42 10.65 25.71 2.16 13.36 33.88
✓ 3.27 3.74 10.49 20.82 3.87 18.41 41.22

Performance Comparison with APR on Defects4J. We further compare the performance with exist-
ing state-of-the-art APR on Defects4J. Specifically, we select the conversation-based ChatRepair (Xia
& Zhang, 2024) and directly report the repair success rate on Defects4J in the categories of Line,
Hunk and Function from their original paper. ChatRepair is the first work that adopts GPT-3.5 in a
conversational manner for bug fixing. The comparison results are presented in Table 5, where the
first row is the state-of-the-art repair performance from ChatRapir (Xia & Zhang, 2024) on Defects4J.
Compared with the repair success rate on Defects4J, the performance in repairing C/C++ bugs and
vulnerabilities is significantly lower, underscoring the inherent challenges in fixing C/C++ faults and
the pressing need for more specific repair methods. We also present a case study in Appendix C,
showcasing examples of both successful and failed repairs by LLMs.

6.3 FINETUNING-BASED REPAIR

The fine-tuned results are presented in Table 6. The second column, Finetune, indicates whether the
model has been fine-tuned with Defects4C_bgcommit, where ✗ represents results from the pre-trained
model (listed here for comparison purposes), and ✓ represents results with LoRA-based fine-tuning.
Overall, we observe that fine-tuning does not always lead to improved performance and, in some
cases, can even reduce performance.

For various versions of CodeLlama, fine-tuning generally enhances repair capabilities. However, for
Deepseek, performance inconsistency increases. Specifically, fine-tuning decreases repair perfor-
mance in the base version of Deepseek, whereas in the instruct version, fine-tuning improves repair
accuracy, particularly when the temperature is set to 0.8. Additionally, the results show that setting
the temperature to 0.8 typically yields better repair performance compared to a temperature of 0.2 or
using greedy decoding during fine-tuning.

These experimental findings suggest that while fine-tuning shows some promise, it may not always
be effective when applied directly. This highlights the need for more advanced fine-tuning methods
to further improve C/C++ program repair.

7 CONCLUSION AND FUTURE WORK

In this paper, we introduced Defects4C, a comprehensive and high-quality C/C++ defect benchmark
that significantly advances the evaluation and fine-tuning of LLM-based automated program repair
techniques. Our dataset addresses a major gap in the field by providing a large-scale resource
specifically designed for C/C++ faults. Through extensive experiments on pre-trained models and fine-
tuned models, we uncovered several key findings. Specifcially, our evaluation of pre-trained LLMs
revealed a notable performance gap when handling C/C++ faults compared to their effectiveness in
Java-based benchmarks such as Defects4J. The preliminary results further show that direct fine-tuning
is not always effective. While the results show some promise, they still fall short of acceptable levels.

Our work opens several avenues for future research based on our dataset. One promising direction is
to improve the prompts provided to LLMs for repair tasks. Researchers could leverage static analysis
tools or other C/C++-specific techniques to provide more detailed feedback (e.g., memory safety,
undefined behavior, or specific compilation errors) in the prompt, enabling the model to generate
higher-quality repairs. Another line of future work lies in improving the fine-tuning process itself. For
example, we could select high-quality data from Defects4C_bgcommit, employ data augmentation or
add more dynamic execution information for further boosting model performance.
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Table 7: The error distribution across different projects.

Project Name Bugs/vulnerabilities Line Hunk Function Test Cases (avg.)

ARMmbed/mbedtls 1 0 0 1 1.0
awslabs/aws-c-common 1 1 0 0 2.0
bblanchon/ArduinoJson 1 0 1 0 2.0

CauldronDevelopmentLLC/cbang 1 0 1 0 20.0
curl/curl 1 0 1 0 2.0

DaveGamble/cJSON 1 0 0 1 2.0
dlundquist/sniproxy 1 1 0 0 3.0

DynamoRIO/dynamorio 1 0 0 1 2.0
mdadams/jasper 1 0 1 0 1.0

mongodb/mongo-c-driver 1 0 1 0 1.0
OpenIDC/cjose 1 1 0 0 7.0

PCRE2Project/pcre 1 0 1 0 1.0
SOCI/soci 1 1 0 0 9.0

redis/hiredis 1 1 0 0 1.0
redis/redis 1 1 0 0 2.0

VirusTotal/yara 1 0 0 1 1.0
webmproject/libvpx 1 1 0 0 2.0
wez/atomicparsley 1 0 1 0 1.0

Yeraze/ytnef 1 1 0 0 1.0
yhirose/cpp-peglib 1 0 1 0 2.0

lua/lua 2 1 1 0 2.5
skypjack/entt 2 1 1 0 4.0

uncrustify/uncrustify 2 1 1 0 2.0
uriparser/uriparser 2 2 0 0 3.0

jqlang/jq 2 0 2 0 1.0
CLIUtils/CLI11 3 1 2 0 4.3

facebook/rocksdb 3 3 0 0 3.7
libevent/libevent 3 0 2 1 1.3

nanomsg/nng 3 0 3 0 1.0
libgd/libgd 4 1 2 1 2.8
sqlite/sqlite 4 2 1 1 2.0

zeromq/libzmq 4 1 1 2 5.0
apache/arrow 9 6 3 0 9.1

nginx/njs 10 4 5 1 2.5
KhronosGroup/SPIRV-Tools 12 7 4 1 2.3

fmtlib/fmt 14 8 6 0 2.1
CESNET/libyang 15 10 4 1 3.8

php/php-src 18 4 10 4 2.4
danmar/cppcheck 32 25 6 1 1.8

the-tcpdump-group/tcpdump 43 20 8 15 2.9
llvm/llvm-project 143 20 109 14 2.7

Total 350 125 179 46 3.1

A MORE DETAILS OF Defects4C

We provide more details of our Defects4C as follows.

A.1 ERROR DISTRIBUTION

The number of erroneous functions each project has is presented in Table 7. We also present the
average test cases on Defects4C. The average test cases of Defects4C: 3.1, are higher than Defects4J:
2.4.

A.2 DETAILS OF ERROR CATEGORIES

Note that the categories are mainly inspired from OctoPack (Muennighoff et al., 2023) and Magi-
coder (Wei et al., 2023). The 7 categories are designed specific to the collected bugs, which cover the
vast majority of different applications and most of them are consistent with Magicoder. A detailed
introduction of each error category from Table 2 is presented as follows:

Signature. 75 bugs and 11 vulnerabilities are categorised as Signature, whose modifications only
involve code elements within a single line of code i.e., LoC, for instance, wrong function name or
variable. These errors are often relatively easy to fix yet usually require a certain level of contextual
understanding to modify and correctly use the appropriate calling function or variable. This cate-
gory is further divided into four subcategories based on their root causes, which are Incorrect
Function Usage, Fault Input Type, Incorrect Function Return Value and
Incorrect Variable Usage, respectively. We provide a detailed introduction to these sub-
categories.
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• Incorrect Function Usage. This bug category frequently entails the misuse of functions,
encompassing both third-party library functions and internal methods within code objects. Reme-
dying these bugs typically involves substituting the fault function call with the correct one. Such
corrections demand a comprehensive understanding of the overall software project, as well as a
deep semantic grasp of the logic underlying the employed methods.

• Fault Input Type. In statically typed languages, the accurate specification of variables
and return value is crucial. Bugs in this category frequently arise from incorrect variable type
assignments within the code, resulting in unforeseen errors.

• Incorrect Function Return Value. During our analysis, it was observed that a signifi-
cant number of bugs stem from improper settings of return values in specific condition structures
or function calls. Rectifying these bugs typically necessitates altering the return value to align with
the correct code logic. This correction process demands not only an understanding of the code’s
context but also a comprehensive semantic comprehension of the pertinent functions or conditional
logic.

• Incorrect Variable Usage. These bugs bear a resemblance to the Incorrect
Function Usage bugs; however, they primarily involve the improper use of variables in-
stead of functions. The erroneously used variable might appear independently in a code statement
or within a function call. Consequently, these bugs, compared to bugs in the first subcategory, are
often more complex and challenging to rectify due to their increased flexibility in occurrence.

For bugs categorized in Signature, while generally simpler to rectify, necessitate a substantial level
of contextual understanding for accurate modification, particularly in selecting and utilizing the
appropriate calling functions or variables.

Sanitizer. This category refers to bugs or vulnerabilities whose fix locations only involve the
conditional logic within a LoC, such as changes in the value domain within an if condition. The
modifications for fixing these bugs are generally minimal (e.g., changing the conditional check from <
to ≤). However, these bugs can often lead the software into incorrect operational logic under specific
input conditions. Our analysis identified 66 Sanitizer bugs and 6 vulnerabilities, which can be
categorized under the root cause of Control Expression Error. The root cause of these bugs
can be classified as Control Expression Error. The modifications required to fix these types of bugs
are usually minimal. However, such bugs can lead to incorrect operational logic in the software under
certain input conditions. For instance, in the cppcheck project’s CheckCondition::alwaysTrueFalse
method (Danmar/cppcheck, 2007), a bug was identified where the if condition erroneously employed
the logical AND operator instead of the logical OR operator. This error resulted in the generation of
false positive results.

Memory Error. We categorize the bugs/vulnerabilities that would trigger the fault behaviours of
memory as a separate category, as in memory-unsafe languages like C and C++, there are many
bugs related to memory that can lead to serious consequences (e.g., CVE-2018-8301 (Corporation,
2018) corrupt memory usage leading to remote command execution). In Defects4C, we identified
20 memory-related bugs and 72 vulnerabilities and summarized them into three subcategories,
namely Null Pointer Dereference, Uncontrolled Resource Consumption, and
Memory Overflow.

• Null Pointer Dereference. These vulnerabilities could refer to CWE-476 (NULL Pointer
Dereference, 2005), which occurs in the software when a pointer is used without properly checking
if its value is NULL, leading to program crashes or other undefined behaviours.

• Uncontrolled Resource Consumption. These vulnerabilities correspond to CWE-
400 (Uncontrolled Resource Consumption, 2005), which can lead to resource exhaustion, thereby
impacting the system’s performance or stability. Notably, 45.0% of the memory-related bugs fall
into this category.

• Memory Overflow. These types of bugs mainly relate to memory overflow vulnerabilities
(e.g., CWE-122 (Heap-based Buffer Overflow, 2005), CWE-121 (Stack-based Buffer Overflow,
2005), etc.). Such bugs often involve the leakage of sensitive memory information and pose serious
security risks.

Logic Organization. Among 87/13 bugs/vulnerabilities involving multiple LoC modifications, we
found that these bugs are often related to the handling and organization of code logic. They can
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be categorized into two subcategories: Improper Condition Organization and Wrong
Function Call Sequence.

• Improper Condition Organization. There are 67/11 bugs/vulnerabilities classified
into this subcategory, which can correspond to CWE-391 (Unchecked Error Condition, 2005).
These bugs often involve improper wrappings of condition logic. For instance, in the
xml_print_opaq_open method of the libyang project (CESNET/LibYang, 2017b), the lack of
namespace checking when calling the xml_print_ns_opaq function would lead to the fault printed
namespace result. The corresponding bug fix logic often involves adding/removing a nested struc-
ture of conditional code (e.g., an if-else pair) within the existing code block to guide the code
towards the correct logic.

• Wrong Function Call Sequence. The root cause of this bug category could align with
CWE-691 (Insufficient Control Flow Management, 2007). Such bugs typically arise from in-
correct code-calling logic. Consequently, the bug fixes of these bugs involve relocating one
or more complete code blocks to different locations, without altering the content within these
blocks (LLVM/LLVM-project, 2020).

A.3 EXPERIMENTS CONFIGURATION

Docker and Compiler Configuration. All project within our system is furnished with the same
Docker file, thereby establishing a uniform execution environment, and there is no need to estab-
lish an individual for each bug which is time exhausted. All bugs can be reproduced within this
Docker container, as our project’s initial purpose is to make reproducing and compiling as quick
as possible to obtain the final test results, especially for LLM-based massive compilation tasks like
passrate@100. Both Docker configurations are build for Ubuntu 20.04-x86_64, accommodating
either clang-16 or GCC-9 as the designated compilers. Specifically, projects such as awslabs/aws-c-
common, DynamoRIO/dynamorio, llvm/llvm-project, skypjack/entt, KhronosGroup/SPIRV-Tools, and
facebook/rocksdb are compiled with GCC-9.

Compilation Flags and Dependency Management. Compilation flags are derived from the
CI script or CMakefile.txt from each project’s GitHub. In terms of compilation variables, like
-DARROW_BUILD_SHARED=on, uniformity is rigorously kept between the buggy-commit and
patch-commit stages of a bug, ensuring replicated and stability. Dependencies are split into system-
level and user-defined. System-level libraries are installed during the Docker image building phase or
will be integrated into the Docker image upon publishing. User-defined libraries are installed once
during the project’s initial phase and do not need to be reinstalled during subsequent compilations. It
is noteworthy that each identified bug can have specific library requirements if require a specified
dependency or compilation flag, with more details provided in each project’s meta file, such as the
project.json file.

Unit Test Reporting. The build tool used across the Defects4C_bug and Defects4C_vul projects is
CMake version 2.6, with Ninja employed for building, and ctest used to generate JUnit-style Unit Test
reports. Test cases are extracted from these reports by navigating to any leaf node labeled "testcase."
Test error messages are taken from the test report, while most compilation errors are gathered from
the CMake error report. Note that some projects use the native Unix build tool, such as configure
or autogen; please refer to each project’s repository for details on how to build, execute, and report.
For example, the project llvm/llvm-project equipped with its own test frameworks, we follow its
respective test pipelines, such as llvm-lit. For the lots of projects, the testing process is executed
through the ctest CLI interface.

Computer Resource. Specifically, for the cpu task, like compilation, we conducted our experiments
using a machine equipped with an 80-core Intel Xeon E5 Processor, 256GB of memory. All
experiments related to GPT were conducted using the OpenAI official API, i.e., GPT-3.5-turbo-0125
and the gpt-4-turbo-preview at March 2024. For experiments involving open-source models such as
WizardCoder, CodeLlama etc., the opensource framework vLLM (Kwon et al., 2023) was utilized.
These models were deployed on eight NVIDIA RTX A6000 GPUs.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B MORE DETAILS OF CONVERSATION-BASED REPAIR SETUP
For the conversation-based repair, we delineate the details of our experimental settings. Here, we
introduce two hyperparameters, m and n, representing the maximum number of repair attempts
and the maximum conversation length in each attempt, with values of m and n being set as 10 and
3, respectively. Specifically, one repair attempt consists of three continuous conversations. The
aim is not only to resolve failures but also to evolve its performance automatically by iteratively
investigating failure points during the same attempt phase.

The following illustrates a conversation-based prompt, given a buggy function Fn and its error
message Mn represent the nth conversation in one attempt. At the beginning of this attempt, the
F0 and M0 are extracted from Defects4C concatenated to construct the prompt. At the patch’s
verification phase, for example, the first conversation phase, the LLM outputs a patch and evaluates
with corresponding Unit Test cases getting an Error Message M1; if it can pass all the test cases, this
patch is considered plausible, then the conversation stops, and the repair process ends, otherwise, this
patch is invalid, and we will updated prompt format with its error message M1 and updated buggy
function F1, to build a new prompt for the continuous conversation. Following this rationale, after
three iterations of conversation, the repair will reset to the initial prompt and start a new attempt loop.

C CASE STUDY
In this section, we will choose four representative instances of bugs to serve as case studies for
conversation-based repair tasks implemented on the two models, including GPT-3.5-Turbo (GPT-
3.5) and Phind-CodeLlama-34B (Phind34B). These instances encompass scenarios wherein both
models are effecting repairs, only one model demonstrates efficacy, and neither model exhibits repair
capability.

Successful repair by both GPT-3.5 and Phind34B. To describe this kind of bug, we take the bug
(CESNET/LibYang, 2017a) in the function lyjson-number as an example, as shown in Table 8.
This bug falls into the Sanitizer category. To fix it, the expression to the right of the < operand must
be changed from exponent to (exponent - minus). Both GPT-3.5 and Phind34B understand
the buggy semantics and successfully output plausible patches to correct the bug. For Phind34B, the
patch it generates is identical to the one provided by the developers. However, the patch generated
by GPT-3.5, (exponent - 1), is also semantically equivalent because, at the beginning of the
function, the variable minus is initialized to 1 and is never modified afterward. As a result, both
patches are semantically equivalent and allow the function to pass all the test cases.

Listing 1 File src/json.c
uint8_t minus = 0;
if (in[offset] == '-') { minus = 1; }
...
num_len = exponent + e_val;

- } else if ((size_t)labs(e_val) < exponent) {
+ } else if ((size_t)labs(e_val) < (exponent - minus)) {
num_len = exponent + 1;
dp_position = exponent + e_val;

Model Patch Status

Bug - } else if ((size_t)labs(e_val) < exponent) { Fail
Developer +} else if ((size_t)labs(e_val) < (exponent - minus)) { Pass

Phind34B(a1) +} else if ((size_t)labs(e_val) < exponent) { Fail
Phind34B(a7) +} else if ((size_t)labs(e_val) < (exponent - minus)) { Pass

GPT-3.5(a1) +} else if ((size_t)labs(e_val) < exponent) { Fail
GPT-3.5(a3) +} else if ((size_t)labs(e_val) < exponent - 1) { Pass

Table 8: The showcase of the bug’s patch from different models with the first and last attempt is
summarized. Here, am represents the number of the mth attempt. The Status column denotes the
outcome of patch verification as assessed through the associated Unit Test. The developer row stands
for the post-commit, emphasizing real-world patches that successfully pass this Unit Test. Listing 1
illustrates the differences between the bug and the developer’s patch across two commits.
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Successful repair by only GPT-3.5. We select a bug (Common, 2016a) from project aws-c-common,
as illustrated by Table 9, which can only be repaired by GPT-3.5 but not Phind34B. This bug belongs
to Signature: Fault Input Type, in order to correct it, the type of the first parameter in function
s_base64_get_decoded_value should be modified from char to unsigned char. In
this case, GPT-3.5 can generate as same patch as the developers provide but Phind34B fails to output
a plausible patch. Moreover, Phind34B is not able to comprehend the root cause that triggers the bug
even if we have provided the information of fault localization. With this hint, Phind34B still insists
the bug is triggered by the other elements and modifies code snippets somewhere else.

Listing 2 File source/encoding.c
- static inline int s_base64_get_decoded_value(char to_decode, ...) {
+ static inline int s_base64_get_decoded_value(unsigned char to_decode,

...) {↪→
uint8_t decode_value = BASE64_DECODING_TABLE[(size_t)to_decode];
if (decode_value != 0xDD && (decode_value != BASE64_SENTIANAL_VALUE

|| allow_sentinal)) {↪→

*value = decode_value;
return AWS_OP_SUCCESS;

}
return AWS_OP_ERR;

}

Model Patch Status

Bug +static inline int s_base64_get_decoded_value( char to_decode,...) { Fail
Developer +static inline int s_base64_get_decoded_value(unsigned char to_decode, ...) { Pass

Phind34B(a1) N/A Fail
Phind34B(a10) +static inline int s_base64_get_decoded_value (char to_decode, ...) { Fail

GPT-3.5(a1) +static inline int s_base64_get_decoded_value(char to_decode,...) { Fail
GPT-3.5(a2) +static inline int s_base64_get_decoded_value(unsigned char to_decode, ...) { Pass

Table 9: The showcase for only one model demonstrates efficacy, N/A represents no patch can be
retrieved from LLM output, and the function name and signatures are omitted for space limit. The
Listing 2 shows two commits’ differences.

Successful repair by only Phind34B. We select a bug (Common, 2016b) from the project
apache/arrow, as illustrated in Table 10, which can be repaired by Phind34B only. This bug
falls under the Signature: Incorrect Function Usage category. To correct it, the type of the first
parameter in the function min\_args should be modified from 1 to 0. In this case, Phind34B
generates the same patch as the developers at its second round, but GPT-3.5 fails to output a plausible
patch. Additionally, GPT-3.5 incorrectly identifies other elements as the cause and modifies code
snippets elsewhere, even after 10 rounds of prompting

Listing 3 File cpp/src/arrow/compute/function.h
static Arity Ternary() { return Arity(3, false); }
/// \brief A function taking a variable number of arguments

- static Arity VarArgs(int min_args = 1) { return Arity(min_args, true);
}↪→

+ /// \param[in] min_args the minimum number of arguments required when
+ /// invoking the function
+ static Arity VarArgs(int min_args = 0) { return Arity(min_args, true);

}↪→
explicit Arity(int num_args, bool is_varargs = false)

: num_args(num_args), is_varargs(is_varargs) {}

Failed repair by GPT-3.5 and Phind34B. Given the low successful repair rate of LLMs on
the Defects4C, this kind of bug constitutes a substantial proportion of the dataset. In this sec-
tion, we select bugs that are unable to be repaired in either GPT-3.5 or Phind34B, we take
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Model Patch Status

Bug -static Arity VarArgs(int min_args = 1)... { Fail
Developer +static Arity VarArgs(int min_args = 0)... { Pass

Phind34B(a1) +static Arity VarArgs(int min_args)... { Fail
Phind34B(a2) +static Arity VarArgs(int min_args = 0)... { Pass

GPT-3.5(a1) -static Arity VarArgs(int min_args = 1)... { Fail
GPT-3.5(a10) -static Arity VarArgs(int min_args = 1)... { Fail

Table 10: The showcase for only one model demonstrates efficacy and the function name and
signatures are omitted for space limit. The Listing 3 shows two commits’ differences.

this bug (Nanomsg/nng, 2018), selected from project nng, as an example in Table 11. This
bug exists in function nni_chunk_insert, belonging to category Memory Error: Uncon-
trolled Resource Consumption, in which the identifier ch->ch_ptr should be substituted by
ch->ch_buf. Actually, both Phind34B and GPT-3.5 have made many attempts to repair the
bug, but none of the patches work. Below are several patches that have been generated with a
high frequency of occurrence: 1. The third parameter in callee function memmove is replaced
by ch->ch_len - len. 2.The third parameter in callee function memmove is replaced by
ch->ch_len - (ch->ch_ptr - ch->ch_buf)). However, both of them are far away
from the correct patch provided by developers. But we find an interesting patch that only appears
once among all the patches generated by GPT-3.5 under T set as 1, this patch tells adding an additional
code line ch->ch_ptr = ch->ch_buf; behind the callee function memmove. As we can see,
the keyword ch->ch_buf has appeared, and is also assigned to ch->ch_ptr, it’s a partially
correct patch. We think if the number of maximum repair attempts increases, this bug might be
repaired, and more bugs that Phind34B/GPT-3.5 can generate partially correct patches will also be
successfully repaired.
Listing 4 File src/core/message.c
static int nni_chunk_insert(nni_chunk *ch, ...)
{

...
ch->ch_ptr -= len;

} else if ((ch->ch_len + len) <= ch->ch_cap) {
- memmove(ch->ch_ptr + len, ch->ch_ptr, ch->ch_len);
+ memmove(ch->ch_buf + len, ch->ch_ptr, ch->ch_len);
} else if ((rv = nni_chunk_grow(ch, 0, len)) == 0) {

ch->ch_ptr -= len;
}

...
return (0);
}

Model Patch Status

Bug -memmove(ch->ch_ptr + len, ch->ch_ptr, ch->ch_len); Fail
Developer +memmove(ch->ch_buf + len, ch->ch_ptr, ch->ch_len); Pass

Phind34B(a1)

+memmove(ch->ch_ptr + len, ch->ch_ptr, ch->ch_len);

Fail
+ ch->ch_ptr -= len;
+ } else if ((rv = nni_chunk_grow(ch, 0, len)) == 0) {
+ ch->ch_ptr -= len;
+ }

Phind34B(a10) N/A Fail

GPT-3.5(a1) +memmove(ch->ch_ptr + len, ch->ch_ptr, ch->ch_len); Fail
GPT-3.5(a10) +memmove(ch->ch_ptr + len, ch->ch_ptr, ch->ch_len); Fail

Table 11: The showcase for none of the models can be efficacy, N/A represents no patch that can
retrieve from LLM output, and the Listing 4 shows the difference between the bug and the developer
(real-world)’s patch across two commits.
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D MODEL LIST

For our evaluation, we utilized the GPT-3.5-turbo and GPT-4 models as of March 26, 2024.
The HuggingFace URLs for the evaluated models are detailed in Table 12.

Table 12: Models and HuggingFace URLs

Model Name HuggingFace URL

CodeLlama Instruct (7B) https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
CodeLlama Instruct (13B) https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf
CodeLlama Instruct (34B) https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
CodeLlama Python (7B) https://huggingface.co/codellama/CodeLlama-7b-Python-hf
CodeLlama Python (13B) https://huggingface.co/codellama/CodeLlama-13b-Python-hf
CodeLlama Python (34B) https://huggingface.co/codellama/CodeLlama-34b-Python-hf
CodeLlama Base (7B) https://huggingface.co/codellama/CodeLlama-7b-hf
DeepSeek Base (6.7B) https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
DeepSeek Base (33B) https://huggingface.co/deepseek-ai/deepseek-coder-33b-base
DeepSeek Instruct (6.7B) https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct
DeepSeek Instruct (33B) https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
Gemma (7B) https://huggingface.co/google/gemma-7b
Gemma (7B-Instruct) https://huggingface.co/google/gemma-7b-it
Gemma (Code7B) https://huggingface.co/TechxGenus/CodeGemma-7b
Magicoder-S-DS (6.7B) https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
Mistral-8x7B-Instruct (8X7B) https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1/
Phi-2 (2.7B) https://huggingface.co/microsoft/phi-2
Phind-CodeLlama (34B) https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
WizardCoder-Python (7B) https://huggingface.co/WizardLM/WizardCoder-Python-7B-V1.0
WizardCoder-Python (13B) https://huggingface.co/WizardLM/WizardCoder-Python-13B-V1.0
WizardCoder-Python (34B) https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0
WizardCoder (15B) https://huggingface.co/WizardLM/WizardCoder-15B-V1.0
WizardCoder (33B) https://huggingface.co/WizardLM/WizardCoder-33B-V1.1

E SOURCE CODE

The Defects4C source code and instructions can be obtained from the website3, which includes the
source code for Defects4C, the source code for experiments, and the data generated by inference with
VLLM, allowing for easy reproduction of results.

3https://sites.google.com/view/anonymous-defects4c
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