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Restoring Hebrew Diacritics Without a Dictionary
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Abstract

We demonstrate that it is feasible to diacritize
Hebrew script without any human-curated re-
sources other than plain diacritized text. We
present NAKDIMON, a two-layer character-
level LSTM, that performs on par with
much more complicated curation-dependent
systems, across a diverse array of modern He-
brew sources.

1 Introduction

The vast majority of modern Hebrew texts are writ-
ten in a letter-only version of the Hebrew script,
one which omits the diacritics present in the full di-
acritized, or dotted variant.1 Since most vowels are
encoded via diacritics, the pronunciation of words
in the text is left underspecified, and a considerable
mass of tokens becomes ambiguous. This ambigu-
ity forces readers and learners to infer the intended
reading using syntactic and semantic context, as
well as common sense (Bentin and Frost, 1987;
Abu-Rabia, 2001). In NLP systems, recovering
such signals is difficult, and indeed their perfor-
mance on Hebrew tasks is adversely affected by
the presence of undotted text (Shacham and Wint-
ner, 2007; Goldberg and Elhadad, 2010; Tsarfaty
et al., 2019). As an example, the sentence in Ta-
ble 1 (a) will be resolved by a typical reader as (b)
in most reasonable contexts, knowing that the word
“softly” may characterize landings. In contrast, an
automatic system processing Hebrew text may not
be as sensitive to this kind of grammatical knowl-
edge and instead interpret the undotted token as the
more frequent word in (c), harming downstream
performance.

One possible way to overcome this problem is
by adding diacritics to undotted text, or dotting, im-
plemented using data-driven algorithms trained on

1Also known as pointed text, or via the Hebrew term for
the diacritic marks, nikkud/niqqud.

(a)
ברכות! נחת המטוס

hamatos naxat ????
‘The plane landed (unspecified)’

(b)
בְּר¯כּוּת! Éחַת הַמָּטוֹס

hamatos naxat b-rakut
‘The plane landed softly’

(c)
בְּר´כוֹת! Éחַת הַמָּטוֹס

hamatos naxat braxot
‘The plane landed congratulations’

Table 1: An example of an undotted Hebrew text (a)
(written right to left) which can be interpreted in at least
two different ways (b,c), dotted and pronounced differ-
ently, but only (b) makes grammatical sense.

dotted text. Obtaining such data is not trivial, even
given correct pronunciation: the standard Tiberian
diacritic system contains several sets of identically-
vocalized forms, so while most Hebrew speakers
easily read dotted text, they are unable to produce it.
Moreover, the process of manually adding diacrit-
ics in either handwritten script or through digital
input devices is mechanically cumbersome. Thus,
the overwhelming majority of modern Hebrew text
is undotted, and manually dotting it requires exper-
tise. The resulting scarcity of available dotted text
in modern Hebrew contrasts with Biblical and Rab-
binical texts which, while dotted, manifest a very
different language register. This state of affairs al-
lows individuals and companies to offer dotting as
paid services, either by experts or automatically,
e.g. the Morfix engine by Melingo.2

Existing computational approaches to dotting
are manifested as complex, multi-resourced sys-
tems which perform morphological analysis on the
undotted text and look undotted words up in hand-
crafted dictionaries as part of the dotting process.
Dicta’s Nakdan (Shmidman et al., 2020), the cur-

2https://nakdan.morfix.co.il/

https://nakdan.morfix.co.il/
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rent state-of-the-art, applies such methods in ad-
dition to applying multiple neural networks over
different levels of the text, requiring manual anno-
tation not only for dotting but also for morphology.
Among the resources it uses are a diacritized corpus
of 3M tokens and a POS-tagged corpus of 300K
tokens. Training the model takes several weeks.3

In this work, we set out to simplify the dotting
task as much as possible to standard modules. Our
system, NAKDIMON, accepts the undotted char-
acter sequence as its input, consults no external
resources or lexical components, and produces di-
acritics for each character, resulting in dotted text
whose quality is comparable to that of the commer-
cial Morfix, on both character-level and word-level
accuracy. To our knowledge, this is the first at-
tempt at a “light” model for Hebrew dotting since
early HMM-based systems (Kontorovich, 2001;
Gal, 2002). In experiments over existing and
novel datasets, we show that our system is particu-
larly useful in the main use case of modern dotting,
which is to convey the desired pronunciation to
a reader, and that the errors it makes should be
more easily detectable by non-professionals than
Dicta’s.4

2 Dotting as Sequence Labeling

The input to the dotting task consists of a sequence
of characters, each of which is assigned at most one
of each of three separate diacritic categories: one
category for the dot distinguishing shin (שׁ!) from
sin ,(שׂ!) two consonants sharing a base character
;ש! another for the presence of dagesh/mappiq, a
central dot affecting pronunciation of some con-
sonants, e.g. פּ! /p/ from פ|! /f/, but also present
elsewhere; and one for all other diacritic marks,
which mostly determine vocalization, e.g. ד´! /da/
vs. ד»! /de/. Diacritics of different categories may
co-occur on single letters, e.g. !µ�, or may be absent
altogether.

Full script Hebrew script written without inten-
tion of dotting typically employs a compensatory
variant known colloquially as full script (ktiv male,
מלא! ,(כתיב which adds instances of the letters י!
and ו! in some places where they can aid pronuncia-
tion, but are incompatible with the rules for dotted
script. In our formulation of dotting as a sequence
tagging problem, and in collecting our test set from
raw text, these added letters may conflict with the

3Private communication.
4The system is a available at www.nakdimon.org

dotting standard. For the sake of input integrity,
and unlike some other systems, we opt not to re-
move these characters, but instead employ a dotting
policy consistent with full script.

New test set Shmidman et al. (2020) provide a
benchmark dataset for dotting modern Hebrew doc-
uments. However, it is relatively small and non-
diverse: all 22 documents in the dataset originate in
a single source, Hebrew Wikipedia articles. There-
fore, we created a new test set5 from a larger variety
of texts, including high-quality Wikipedia articles
and edited news stories, as well as user-generated
blog posts. This set consists of ten documents from
each of eleven sources (5x Dicta’s test set), and
totals 20,476 word tokens, roughly 3.5x Dicta’s.

3 Character-LSTM Dotter

NAKDIMON embeds the input characters
and passes them through a two-layer Bi-
LSTM (Hochreiter and Schmidhuber, 1997). The
LSTM output is fed into a single linear layer,
which then feeds three linear layers, one for each
diacritic category. Each character then receives a
prediction for each category independently, and
decoding is performed greedily with no additional
search techniques.6 In training, we sum the
cross-entropy loss from all categories. Trivial
decisions, such as the label for the shin/sin diacritic
for any non-!ש letter, are masked.

Training corpora Dotted modern Hebrew text
is scarce, since speakers usually read and write
undotted text, with the occasional diacritic for
disambiguation when context does not suffice.
As we are unaware of legally-obtainable dotted
modern corpora, we use a combination of dot-
ted pre-modern texts and semi-automatically dot-
ted modern sources to train NAKDIMON. The
PRE-MODERN portion is obtained from two main
sources: A combination of late pre-modern text
from Project Ben-Yehuda, mostly texts from the
late 19th century and the early 20th century;7 and
rabbinical texts from the medieval period, the most
important of which is Mishneh Torah.8 This por-
tion contains roughly 2.6 million Hebrew tokens,

5Provided as supplementary material.
6We experimented with a CRF layer in preliminary phases

and did not find a substantial benefit.
7Obtained from the Ben-Yehuda Project https://

benyehuda.org/.
8Obtained from Project Mamre https://www.

mechon-mamre.org/.

www.nakdimon.org
https://benyehuda.org/
https://benyehuda.org/
https://www.mechon-mamre.org/
https://www.mechon-mamre.org/
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Genre Sources # Docs # Tokens

Wiki Dicta test set 22 5,862
News Yanshuf 78 11,323

† Literary Books, forums 129 73,770
* Official gov.il 2 7,619
* News / Mag Online outlets 84 55,467
* User-gen. Blogs, forums 58 57,672
* Wiki he.wikipedia 40 62,723

Total 413 274,436

Table 2: Data sources for our MODERN Hebrew train-
ing set. Rows marked with * were automatically dotted
via the Dicta API and corrected manually. Rows with †
were dotted at low quality, requiring manual correction.
The rest were available with professional dotting.

most of which are dotted, with a varying level of ac-
curacy, varying dotting styles, and varying degree
of similarity to modern Hebrew.

The MODERN portion contains manually col-
lected text in modern Hebrew, mostly from undot-
ted sources, which we dot using Dicta and follow
up by manually fixing errors, either using Dicta’s
API or via automated scripts which catch common
mistakes. We use the same technique and style for
dotting this corpus as we do for our test corpus
(§2), but the documents were collected in differ-
ent ways. We made an effort to collect a diverse
set of sources: news, opinion columns, paragraphs
from books, short stories, blog posts and forums ex-
pressing different domains and voices, Wikipedia
articles, governmental publications, and more. As
our dotting guidelines aim for readability and faith-
fulness to modern writing conventions, we were
able to create a corpus large enough with limited
expertise in dotting. Our modern corpus contains
roughly 0.3 million Hebrew tokens, and is much
more consistent and similar to the expectation of
a native Hebrew speaker than the PRE-MODERN

corpus. The sources and statistics of this dataset
are presented in Table 2.

4 Experiments

In order to report compatible findings with those in
previous work, we present results on both the Dicta
test, adapted to full script, and on our new test set.
We report the following metrics: decision accu-
racy (DEC), which is computed over the entire set
of individual possible decisions: dagesh/mappiq
for letters that allow it, sin/shin dot for the let-
ter ,ש! and all other diacritics for letters that allow
them; character accuracy (CHA) is the portion of
characters in the text that end up in their intended

final form (which may be the result of two or three
decisions, e.g. dagesh + vowel); word accuracy
(WOR) is the portion of words with no diacritiza-
tion mistakes; and vocalization accuracy (VOC)
is the portion of words where any dotting errors do
not cause incorrect pronunciation.9

We train NAKDIMON over PRE-MODERN fol-
lowed by five epochs over the MODERN corpus.
We pre-process the input by removing all but He-
brew characters, spaces and punctuation; digits are
converted to a dedicated symbol, as are Latin char-
acters. We strip all existing diacritic marks. We
split the documents into chunks of at most 80 char-
acters bounded at whitespace, ignoring sentence
boundaries. We optimize using Adam (Kingma
and Ba, 2014), and implement a cyclical learning
rate schedule (Smith, 2017) which we found to be
more useful than a constant learning rate. Based
on tuning experiments (§4.3), we set the character
embedding dimension and the LSTM’s hidden di-
mension to d = h = 400, and apply a dropout rate
of 0.1.

Following Shmidman et al. (2020), we compare
against Dicta, Snopi,10 and Morfix (Kamir et al.,
2002).

4.1 Dicta Test Set

We present results for the Dicta test set in the left
half of Table 3. In order to provide fair compari-
son and to preempt overfitting on this test data, we
ran this test in a preliminary setup on a variant of
NAKDIMON which was not tuned or otherwise un-
fairly trained. This system, which we call NAKDI-
MON0, differs from our final variant in two main
aspects: it is not trained on the Dicta portion of our
training corpus (§3); and it employs a residual con-
nection between the two character Bi-LSTM layers.
Testing on the Dicta test set required some mini-
mal evaluation adaptations resulting from encoding
constraints,11 and so we copy the results reported
in the original paper as well as our replication.

We see that the untuned NAKDIMON0 performs
on par with the proprietary Morfix, which uses
word-level dictionary data, and does not perform
far below the complex, labor-intensive Dicta on the
character level.

9These are: the sin/shin dot, vowel distinctions across the
a/e/i/o/u/null sets, and dagesh in the /ב! פ|!/כ|! characters. We
do not distinguish between kamatz gadol/kamatz katan, and
schwa is assumed to always be null.

10http://www.nakdan.com/Nakdan.aspx
11For example, we do not distinguish between kamatz katan

and kamatz gadol.

http://www.nakdan.com/Nakdan.aspx
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Dicta – reported Dicta – reproduced New test set (§2)
System CHA WOR DEC CHA WOR VOC DEC CHA WOR VOC

Snopi 78.96 66.41 87.81 79.92 66.57 70.35 91.14 85.45 74.73 77.17
Morfix 90.32 80.90 94.91 91.29 82.24 86.48 97.25 95.35 89.43 91.64
Dicta 95.12 88.23 97.48 95.67 89.25 91.03 98.94 98.23 95.83 95.93
NAKDIMON0 95.78 92.59 79.00 83.01 97.05 94.87 85.70 88.30
NAKDIMON 97.37 95.41 87.21 89.32

Table 3: Document-level macro % accuracy on the test set from Shmidman et al. (2020) and on our new test set.

Figure 1: WOR error rate on validation set as a function
of training set size vs. SOTA (Dicta), over five runs.
Other metrics show similar trends.

4.2 New Test Set

We provide results on the new test set (§2) in the
right half of Table 3. The improvement of our tuned
NAKDIMON over NAKDIMON0 is clear. NAKDI-
MON outperforms Morfix on character-level met-
rics but not on word-level metrics, mostly due to the
fact that Morfix ignores certain words altogether,
incurring errors on multiple characters. We note the
substantial improvement our model achieves on the
VOC metric compared to the WOR metric: 16.5%
of word-level errors are attributable to vocalization-
agnostic dotting, compared to only 2.4% for Dicta
and 9.7% for Snopi (but 20.9% for Morfix). Con-
sidering that the central use case for dotting modern
Hebrew text is to facilitate pronunciation to learn-
ers and for reading, and that undotted homograph
ambiguity typically comes with pronunciation dif-
ferences, we believe this measure to be no less
important than WOR.

4.3 Development Experiments

While developing NAKDIMON, we performed sev-
eral evaluations over a held-out validation set of
40 documents with 27,681 tokens, on which Dicta
performs at 91.56% WOR accuracy. We show in
Figure 1 the favorable effect of training NAKDI-

MON over an increasing amount of MODERN text
(§3), which closes more than half of the error gap
from Dicta. We tried to further improve NAKDI-
MON by initializing its parameters from a language
model trained to predict masked characters in a
large undotted Wikipedia corpus (440MB of text,
30% masks), but this setup provided only a negligi-
ble 0.07% improvement.

Error analysis A look at 20 cases which Dicta
got right but NAKDIMON got wrong, and 20 of
the opposite condition, reveals clear yet expected
patterns: Dicta’s errors mostly constitute selection
of the wrong in-vocabulary word in a context, or
a wrong inflection of a verb. NAKDIMON tends
to create unreadable vocalization sequences, as it
does not consult a dictionary and is decoded greed-
ily. These types of errors are more friendly to the
typical use cases of a dotting system, as they are
likely to stand out to a reader. Other recurring error
types include named entities and errors at sentence
boundaries, which likely stem from lack of context.

5 Related Work

As noted in the introduction, works on diacritiz-
ing Hebrew are not common and all include word-
level features. In Arabic, diacritization serves a
comparable purpose to that in Hebrew but not ex-
clusively: most diacritic marks differentiate letters
from each other (which only the sin/shin dot does
in Hebrew), while vocalization marks are in a one-
to-one relationship with their phonetic realizations.
Recent work in neural-based Arabic diacritization
includes a dictionary-less system (Belinkov and
Glass, 2015) which uses a 3-layer Bi-LSTM with a
sliding window of size 5. Similarly, Abandah et al.
(2015) also use a Bi-LSTM, but replace the slid-
ing windows with a one-to-one architecture (one
diacritic for each letter) and a one-to-many architec-
ture (allowing any number of diacritics per charac-
ter). The former, which performed best, is similar
to this work except for our separation of diacriti-
zation categories. Finally, Mubarak et al. (2019)
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has tackled Arabic diacritization as a sequence-to-
sequence problem, tasking the model with repro-
ducing the characters as well as the marks.

6 Conclusion

Learning directly from plain diacritized text can go
a long way, even with relatively limited resources.
NAKDIMON demonstrates that a simple architec-
ture for diacritizing Hebrew text as a sequence tag-
ging problem can achieve performance on par with
much more complex systems. We also introduce
and release a corpus of dotted Hebrew text, as well
as a source-balanced test set. In the future, we wish
to evaluate the utility of dotting as a feature for
downstream tasks, taking advantage of the fact that
our simplified model can be easily integrated in an
end-to-end Hebrew processing system.
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