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Abstract

Conventional, classification-based AI-generated image detection methods cannot
explain why an image is considered real or AI-generated in a way a human expert
would, which reduces the trustworthiness and persuasiveness of these detection
tools for real-world applications. Leveraging Multimodal Large Language Models
(MLLMs) has recently become a trending solution to this issue. Further, to evaluate
the quality of generated explanations, a common approach is to adopt an "MLLM as
a judge" methodology to evaluate explanations generated by other MLLMs. How-
ever, how well those MLLMs perform when judging explanations for AI-generated
image detection generated by themselves or other MLLMs has not been well stud-
ied. We therefore propose XAIGID-RewardBench, the first benchmark designed
to evaluate the ability of current MLLMs to judge the quality of explanations about
whether an image is real or AI-generated. The benchmark consists of approxi-
mately 3,000 annotated triplets sourced from various image generation models and
MLLMs as policy models (detectors) to assess the capabilities of current MLLMs
as reward models (judges). Our results show that the current best reward model
scored 88.76% on this benchmark (while human inter-annotator agreement reaches
98.30%), demonstrating that a visible gap remains between the reasoning abilities
of today’s MLLMs and human-level performance. In addition, we provide an analy-
sis of common pitfalls that these models frequently encounter. Code and benchmark
are available at https://github.com/RewardBench/XAIGID-RewardBench.

1 Introduction

AI-generated and modified images are becoming increasingly prevalent, causing widespread damage
to information ecosystems and public trust. Thus, the development of autonomous systems to detect
such images is crucial. However, current methods typically provide a classification decision without
the kind of explanation or justification that a human expert can offer, which limits the persuasiveness
and trustworthiness of their outputs. To address this, an ideal model should not only perform binary
classification but also analyze the image comprehensively, leveraging logic, fine-grained details,
real-world knowledge, and even tool use to determine authenticity and articulate its reasoning with
supporting evidence.

Multimodal Large Language Models (MLLMs) offer a promising approach to generating such
nuanced explanations. By processing visual details, an MLLM can investigate an image’s authenticity
through a deductive process, much like a detective examining a crime scene. However, these
explanations generated by models are not always accurate; challenges such as hallucinations and
faulty reasoning remain significant obstacles. To mitigate these issues in a scalable way, a reward
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Figure 1: Overview of the XAIGID-RewardBench. With the capabilities of today’s MLLMs, an
AI-generated image detection response can include both a verdict and an explanation, providing much
more insight into the reasoning process. Furthermore, MLLMs are also now being used to judge the
quality of these explanations, but little work has been done to assess the quality of the MLLM judges
themselves. Therefore, we present a human-annotated benchmark to evaluate how well these reward
models (i.e., MLLM judges) score the explanations provided by MLLMs for AI-generated image
detection.

model "judge" can be implemented to evaluate the validity of a generated explanation, either during
training or inference.

This raises a critical research question: how is the judge itself validated? If such a judge is to
be reliable, its own performance must be rigorously benchmarked. To that end, we present the
Explainable AI-Generated Image Detection (XAIGID) RewardBench. This benchmark contains
approximately 3,000 triplets, each consisting of an image and two competing explanations of its
authenticity (Figure 1). It is designed to evaluate reward models (i.e., "judges") on their ability
to determine the better response. These annotations were carefully curated and manually verified,
adhering to a strict rubric to minimize bias. This benchmark can help identify which MLLMs are
most suited to act as reward models for judging explanations from AI-generated image detectors.

Our primary contributions are as follows:

1. We are the first to conduct a systematic study of current MLLMs as both policy models and
reward models within the context of explainable AI-generated image detection.

2. We introduce the first reward model benchmark designed to gauge MLLMs’ performance
on the novel task: Judging Explainable AI-Generated Image Detection.

3. We provide meaningful insights into the capabilities and common failure modes in explain-
able AI-generated image detection.

2 Related Works

2.1 MLLMs for Explainable AIGC Detection

Early AI-generated content (AIGC) detectors emphasized binary decisions with limited interpretabil-
ity. Recent work has turned to MLLMs to couple detection with explanation and, in some cases,
grounding. LEGION [11] introduces SynthScars, pixel-level artifact masks with textual rationales,
and an MLLM pipeline that localizes artifacts and verbalizes why they indicate synthesis. FakeX-
plained [10] fine-tunes MLLMs to align rationales with evidence via detection, box-level grounding,
and coherent textual explanations. MLLM-DEFAKE [9] benchmarks off-the-shelf MLLMs against
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dedicated detectors and humans, proposing a reasoning-driven pipeline for explainable decisions.
ForenX [22] adds a "forensic prompt" and an explanation resource (ForgReason) to steer MLLMs
toward human-aligned forensic cues. FakeShield [27] further formalizes explainable image forgery
detection and localization for MLLMs, coupling authenticity decisions with pixel-level masks and
textual justifications. In parallel, RADAR [25] targets semantic fakes that violate world knowledge,
pairing bounding boxes with textual descriptions. For the video modality, ExDDV [7] provides 5.4K
real/deepfake clips with human text rationales and click supervision, showing that both textual and
spatial supervision benefit explainable VLMs. Complementing these advances, Forensics-Bench [26]
offers a comprehensive LVLM evaluation suite spanning multiple modalities and tasks (binary deci-
sions, localization, attribution), highlighting the performance gap that remains for current models.
Orthogonally, LVLM-DFD [29] improves generalization and explanation via a Knowledge-guided
Forgery Detector and a Forgery Prompt Learner that align forensic patterns with LVLM reasoning.
Altogether, these works establish that MLLMs can produce human-readable justifications and some-
times explicit evidence (boxes/masks); however, they only evaluate policy models, not the reliability
of reward models (judges) for evaluating explainable AIGC detection.

2.2 Reward Models and Benchmarks

Reinforcement learning has recently been explored for MLLMs in AIGC detection, but primarily
with rule-based reward functions. Veritas [23] trains an MLLM detector with Mixed Preference
Optimization and pattern-aware GRPO to shape planning/self-reflection during reasoning about
forgeries, improving OOD generalization on the HydraFake dataset. FakeXplained [10] uses GRPO-
style rewards on verdict correctness, grounding quality, and rationale format after SFT. For judging
explanations, previous work has either relied on direct human judgment or used a popular MLLM as
a judge, without systematically evaluating the MLLM judges themselves with a standardized reward-
model benchmark in the AI-generated image domain. General reward-model benchmarks exist:
RewardBench [13] and its update RewardBench 2 [16] assess textual reward models across instruction
following, reasoning, and safety; VL-RewardBench [14] and Multimodal RewardBench [28] extend
this evaluation to VLM judges across perception, hallucination detection, reasoning, knowledge,
and safety. These resources demonstrate broad trends for reward models but do not probe forensic
explanation quality or artifact-grounded reasoning on AI-generated images. To our knowledge, no
prior work provides a domain-specific reward-model benchmark for judging explainable AI-generated
image detection. XAIGID-RewardBench fills this gap by supplying human-verified, 4-way-annotated
triplets (image, two explanations) that directly measure how well MLLMs act as judges for explainable
AI-generated image detection.

3 XAIGID-RewardBench

We first document the entire creation process of our XAIGID-RewardBench, including image dataset
synthesis, response generation with MLLMs as AI-generated image detectors, and RewardBench
annotation. Then we formalize the novel task: Judging Explainable AI-Generated Image Detection.

3.1 Image Dataset

For real images, we used COCO-2017 [15]. We assume "real" images do not change dramatically
over time, so using a classic dataset is sufficient for providing non-AI-generated images. We sampled
500 random images from COCO-2017 and then cropped them to a square resolution.

To cover a diverse range of AI-generated images, we selected 10 representative image generation
models to generate 500 images as the other half of our image dataset. We selected 10 representative
image generation models, listed below, emphasizing recent SOTA models while also including several
classic ones.

Image Generation Models. The generation models used in this study include Stable Diffusion
1.5 [21], Stable Diffusion 3.5 [5], Imagen 3 [2], Imagen 4 [6], Glide [17], GPT-Image-1 [18], Recraft
V3 [20], Flux.1 Schnell, Flux.1 Dev [12], and Bagel [4].

We generated 500 images in total, 50 per model. To ensure the topic distribution of generated images
was similar to that of the real images, we used Qwen 2.5 3B to generate basic, unbiased, and detailed
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                                                              Real

This image appears to be a genuine
photograph, not an AI-generated
image. Here are the reasons for this
assessment:
1.  Image Quality and Artifacts: ...
2.  Natural Physics: ...
3.  Lack of AI Hallmarks: ...
Overall, the image has the authentic
look and feel of an action shot taken
by a person with a camera.

Fake

The airline title on the fuselage reads
“DOTTA,” a nonsensical misspelling that
commonly appears in AI-generated
images where real trademarks (e.g.,
“DELTA”) get distorted. The lettering on
the engine and fuselage is also warped
and inconsistent. In addition, some
structural details—such as the slightly
rubbery winglets and landing-gear
geometry—look imprecise compared with
an authentic photograph.
These tell-tale artifacts point to the
picture being AI-generated rather than an
untouched real photo.

Sample Triplet

Figure 2: A visual depiction of the input (a triplet) for MLLM judges. Both responses come from
SOTA MLLMs as AI-generated image detectors, yet they disagree with each other. An MLLM judge
must deduce which one is more convincing given all 3 pieces of information (One image and two
detection responses from detectors). MLLM judges currently still cannot achieve human performance
on the stated task.

captions of the real images. From there, we partitioned the 500 captions into ten groups of 50. Each
group of captions was then used to generate 50 images with one of the ten generation models. This
approach allows for pairing real images with generated images derived from similar descriptions,
making the detection task more diverse and challenging.

3.2 Policy Models’ Detection Response with Explanation

We utilized several state-of-the-art MLLMs as AI-generated image detectors to generate responses.
In total, we employed seven different models to provide a diverse pool of answers: Qwen-VL 2.5
3B, Qwen-VL 2.5 7B [1], Gemini 2.5 Flash, Gemini 2.5 Pro [3], OpenAI o3 [19], GPT-4o [8], and
Gemma-3n-4B [24].

Each model was given the image and asked to determine the image’s authenticity, followed by an
explanation. We used the following prompt:

Is the following image real or fake in terms of AI generation? Give a single-word answer (’real’ or
’fake’) to start your response. Then, provide a more detailed explanation.1

Results. We calculated the accuracy of these models against our dataset to gauge their raw compe-
tence at detecting AI-generated images (Table 1, 2).

Pairing. We then created 3 triplets per image for a total of 3,000 initial triplets. Pairing was
conducted randomly in a round-robin fashion to ensure equal distribution. The triplets were then
scrambled and sent for annotation (Figure 2).

3.3 RewardBench Annotation

Objectively deciding which response is better can be challenging for annotators. They may be
affected by many personal biases, even subtle hidden ones. To combat this, we established a general
rubric derived from our own qualitative analysis of MLLM responses. More details are provided in
Section A.

1Due to API safety policies, some responses from o3 and GPT-4o were refused, but the vast majority of
responses yielded long, rich answers, all at least one paragraph long and often multiple paragraphs.
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Table 1: Accuracy of MLLMs as policy models (AI-generated image detectors). Performance
on detecting AI-generated images is high among proprietary models, and both o3 and GPT-4o
exhibit high accuracy and capability on this task. A stronger MLLM generally performs better on
AI-generated image detection tasks. However, Qwen 2.5 3B outperforms its 7B counterpart; we
hypothesize this is because the 7B model’s increased capability leads to overconfidence. While the
3B model correctly identifies real images, its performance on fake images is close to random chance.
Conversely, the 7B model exhibits more complex reasoning, but this often leads it to be confidently
incorrect.

Policy Model Overall Acc Real Image Acc Fake Image Acc
Proprietary
GPT-4o 92.28% 94.18% 90.38%
o3 88.87% 99.80% 77.96%
Gemini-2.5 Pro 78.90% 99.60% 58.20%
Gemini-2.5 Flash 75.48% 98.60% 52.40%

Open Source
Qwen 2.5 3B 71.70% 96.80% 46.60%
Gemma 3n E4B-it 56.80% 98.20% 15.40%
Qwen 2.5 7B 52.10% 98.60% 5.60%

Table 2: Policy model accuracy on detecting images from various generation models. The accuracies
show that images from the Imagen 3 and Imagen 4 models were the most difficult to detect.

Policy Model SD 1.5 Imagen 3 Bagel Dev Imagen 4 Recraft Schnell SD 3.5 GPT-Image-1 Glide

Proprietary
GPT-4o 100.00% 68.00% 98.00% 96.00% 94.00% 56.00% 98.00% 98.00% 96.00% 100.00%
o3 100.00% 40.82% 96.00% 90.00% 72.00% 20.00% 92.00% 90.00% 78.00% 100.00%
Gemini-2.5Pro 98.00% 24.00% 88.00% 70.00% 24.00% 12.00% 54.00% 62.00% 66.00% 84.00%
Gemini-2.5 Flash 92.00% 18.00% 88.00% 62.00% 18.00% 12.00% 36.00% 46.00% 58.00% 94.00%

Open Source
Qwen 2.5 3B 32.00% 28.00% 80.00% 64.00% 56.00% 2.00% 46.00% 38.00% 54.00% 66.00%
Gemma 3n E4B-it 16.00% 14.00% 24.00% 8.00% 14.00% 0.00% 8.00% 4.00% 22.00% 44.00%
Qwen 2.5 7B 10.00% 0.00% 14.00% 4.00% 2.00% 0.00% 4.00% 2.00% 4.00% 16.00%

Annotation. To perform annotation, annotators were given the target image and the two responses.
They were also presented with the original prompt to understand what the model was responding to.
Lastly, they were allowed to make one of four selections to annotate:

• "First": To denote that the first response was superior.

• "Second": To denote that the second response was superior.

• "Tie": Both responses were equally good in quality and not completely bad.

• "Both Bad": Both responses provided unsatisfactory explanations.

Filtering. When multiple annotators label the same triplet, conflicts can arise. Conflicts can be
resolved by majority vote. If ties are encountered, they can be resolved manually. Additionally, any
annotations where too little time was spent (e.g., annotations completed in an unusually short time)
can also be filtered out.

In a side experiment, we also evaluated which models generated the most favorable responses. The
table below reveals the models’ performance, ranked using an Elo system. Each model started at
1200 Elo to begin (Table 3). 2

We also analyzed the choice distribution to check for potential annotation bias, such as choosing
Response 1 solely because it appeared first. Our data shows that our annotations were unbiased by
the relative positions of the responses (Figure 3).

Inter-human agreement. Disparities in human preferences are natural. To maximize the effec-
tiveness of the rubric, we conducted an experiment where two annotators were given a previously

2Ties were excluded when calculating Elo ratings.
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Table 3: Elo ratings of policy models (based on human judges). Both Gemini models showed high
performance as policy models, while the open-source models lagged behind in the Elo ranking.
The longer, richer responses, most of the time, were much better than the short, brief, and shallow
responses from the open-source policy models.

Rank Policy Model Elo Rating Games Wins Losses Win Rate
1 Gemini 2.5 Pro 1836.0 859 810 49 0.943
2 Gemini 2.5 Flash 1702.2 846 758 88 0.896
3 o3 1261.5 753 397 356 0.527
4 GPT-4o 941.1 731 242 489 0.331
5 Qwen 2.5 3B 929.3 694 145 549 0.209
6 Qwen 2.5 7B 902.0 684 150 534 0.219
7 Gemma 3n E4B 827.9 689 126 563 0.183

Response 1
40.7%

Response 2
38.6%

Tie
15.7%

Both Bad
5.1%

Figure 3: Distribution of annotator choices. While Response 1 was picked 2.1% more often, the
difference is not significant. This indicates that there was no significant position bias in the human
annotation.

unseen batch and asked to annotate all 100 triplets. After doing so, we compared their annotations to
evaluate the rubric’s effectiveness in aligning human preferences.

Our results show that the human annotators agreed on 68.0% of the annotations and 98.3% on
annotations where both annotators decided on a clear winner (considering only annotations without
"Tie" or "Both Bad").

Overall, these statistics show that our rubric was effective at aligning the annotations in a vast majority
of cases. The reason for the large disparity between 4-way agreement and clear-winner agreement
could be that annotators have differing thresholds for "high-quality" vs. "low-quality." In a case where
both responses in a triplet may be "low-quality," one annotator might mark the triplet as "Both Bad,"
while another might decide that one is slightly better than the other. Regardless, a 98.3% agreement
for annotations with a hard preference shows that annotators were still able to agree in most cases on
which response was better.

3.4 Task: Judging Explainable AI-Generated Image Detection

The goal of the task is to evaluate how well MLLMs, acting as reward models, can judge explanations
generated by MLLMs as detectors in AI-generated image detection.

Let G denote a set of image generation models. Each G ∈ G induces a distribution over images
given a caption c and randomness z, written I = G(c, z). Let Ireal be a set of photographs sampled
from a real-image distribution, and let Igen = {G(c, z) : G ∈ G } be generated images. We define
I = Ireal ∪ Igen and a ground-truth authenticity label l : I → {0, 1} where l(I) = 1 for real and
l(I) = 0 for AI-generated.

A policy model (MLLM detector) π ∈ Π, given a policy prompt pp maps an image to a structured
response

r = π(I, pp) = (y, e), y ∈ {0, 1}, e ∈ E ,
where y is the one-word verdict and e is a free-form explanation. Detector (policy) accuracy is

Accdet(π) =
1

|I|
∣∣{ I ∈ I : y(π(I, pp)) = l(I) }

∣∣.
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For reward modeling (judging), a triplet t consists of a single image and two competing policy
responses to the same prompt pp: t = (I, ra, rb) with ra = (ya, ea) and rb = (yb, eb). A judge
(MLLM as a reward model) J ∈ J prompted with pj : Between the two responses, the original
prompt, and the image, which response is better? outputs a 4-way preference

J(t, pp, pj) ∈ Y, Y = {First,Second,Tie,BothBad},

indicating whether the first response is better, the second is better, both are comparably good, or both
are unsatisfactory.

A human judge H provides labels in the same space Y and produces the ground-truth preference

H(t, pp, pj) ∈ Y.

Let T be the set of annotated triplets with ground-truth labels Ht. The judge’s 4-way accuracy is

Acc(4)(J) =
1

|T |
∣∣{ t ∈ T : Jt = Ht }

∣∣.
For a 2-way accuracy on the subset T2 = { t ∈ T : Ht ∈ {First,Second} }:

Acc(2)(J) =
1

|T2|
∣∣{ t ∈ T2 : Jt = Ht }

∣∣.
4 Experiment and Analysis

We performed experiments based on our newly created benchmark. This allowed us to evaluate how
current state-of-the-art MLLMs perform as judges when evaluating explainable AI-generated image
detection.

4.1 Experimental Setup

We reused all seven policy models that we used to generate initial responses as judges. They were
utilized as described in Section 3.4. Each model was presented with all annotated triplets, asked to
respond with their preference among the four options followed by an elaboration, and then scored
based on their alignment with human preferences.

4.2 Results

To evaluate each model’s performance as a judge, we calculated the accuracy it achieved when
compared with human annotations. The results are presented in Table 4.

These accuracies shine a light on the ability of today’s SOTA models to act as reward models for
AI-generated images. While these models are able to identify high-quality responses to an extent,
their ability to perform this judge role still has room for improvement. No model achieved an accuracy
over 90% on this benchmark, which reveals the gap between human and current MLLM judges
(Table 4).

4.3 Analysis

Beyond just analyzing qualitative results, we found multiple factors that can play a role in an
explanation’s quality. This is crucial for the development of both policy and reward models, and these
findings can also provide better insight on how to construct a more thorough rubric or standard for
judging explainable AI-generated image detection.

Even one mistake should qualify an image as AI-generated. Frequently, a model correctly
identifies anomalies within an image (Figure 7). However, the model assumes that because the rest of
the image looks fine, the image is probably real and that the anomaly was just a "hiccup." In reality,
authentic images do not have such "hiccups." It only takes one piece of evidence to show that an
image is fake.
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Table 4: Performance of MLLMs as Reward Models (Judges). All proprietary models and Gemma
performed reasonably well on this benchmark. Gemma’s strong performance may be related to
its origin as a model from the Gemini family. The two Qwen models are much weaker and thus
performed much worse on the benchmark. The ’2-Way Acc’ column considers only cases where the
human annotator marked a clear winner. The goal was to see if models could identify the correct
winner in unambiguous cases. This is because ties create "gray areas" which make it harder to classify,
but the task is more straightforward when a clear winner exists.

Reward Model (MLLM as a Judge) 4-Way Acc (%) 2-Way Acc (%)
Proprietary
Gemini 2.5 Pro 68.35 88.76
Gemini 2.5 Flash 68.92 87.26
GPT-4o 60.62 85.59
o3 64.74 82.17

Open Source
Gemma 3n e4b 66.88 84.54
Qwen 2.5 7B 29.37 82.28
Qwen 2.5 3B 31.35 77.12

Real

The image depicts a real urban street
scene with clear markings for a bicycle
lane, traffic lights, and buildings lining
the street. The presence of vehicles,
pedestrians, and typical city
infrastructure confirms that this is a
real photograph. There are no signs of
digital manipulation or artificial
elements that would suggest it is fake.

(a) Example of a response making an irrelevant point.
While the mention of the city and the road is true, there
is no actual argument being made. An AI-generated
image can also have vehicles and pedestrians.

Real

The image appears to be a real photograph.
Here's why:
...
4.  Plausible Objects: The furniture, windows,
and the gaming controller (resembling a
Nintendo Wii remote, though perhaps a
generic or third-party version) are all coherent
and realistically rendered. The controller even
has a cord clearly visible and attached, which
AI often struggles to render convincingly or
accurately connect.
...

(b) Example of a model generalizing details and miss-
ing key artifacts. While the controller’s shape looks
realistic, the model overlooks its details, failing to no-
tice the missing buttons.

Figure 4: Some failure cases of MLLM policy models.

Simply stating a detail doesn’t provide any convincing argument. Models occasionally state
something true about the image (Figure 4a). While their statement about the image is true, it does
not prove anything. Something needs to be stated about the mentioned detail, or why the existence
of that detail proves that an image is real or fake. This shortcoming highlights the gap between the
ability of current SOTA models to identify and then reason.

Models tend to generalize details in media. Instead of looking into an area that might cause
suspicion, a model might just skip over it and say it "looks realistic" (Figure 4b). By doing so, they
miss the key anomaly that proves why an image is fake. Humans still hold the ability to look at an
image, identify which areas might be suspicious, and then further scrutinize that region for clues.
A current known issue is that models commonly hallucinate details. A more pertinent issue is that
models are not identifying everything that they should be.

Longer responses are not equivalent to better answers. During annotation, we instructed anno-
tators to look beyond just length and pursue responses that held real, meaningful arguments. For
example, Gemini is known to present larger, more detailed arguments, and while these responses are
usually better, this is not always the case. Hallucination, meaningless points (Figure 2), and poor
analysis of details can sometimes occur in long responses. In fact, a shorter response that correctly
spots all the anomalies is better. A shorter response that accomplishes more is preferable to a long
response that accomplishes the same level of reasoning.
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4.4 Ablation Study

Modern real-world image generalization. As stated earlier, our real image dataset is compiled
from COCO 2017. The motivation behind this decision was that it was a readily available dataset
with a large variety of "real" images. However, a concern was that the dataset was outdated. Our
assumption was that real images do not change that much over time. To test this hypothesis, we took
100 real-world images ourselves with a variety of backgrounds, scenes, and angles. We then had the
models respond to the same original prompt and compared the accuracy they achieved on guessing
the image’s authenticity.

The average accuracy for COCO 2017 images was 98.99%, while the accuracy for our new images
was 98.29%. While COCO 2017 was slightly easier, the difference is negligible. This small margin
shows that COCO 2017 is a sufficient real-image dataset.

Human against policy models. In addition to our Elo calculations among MLLMs as policy models,
we wanted to see how a human response would fare against MLLMs in providing explanations in
detecting AI-generated images. We had annotators write 100 new human responses. We then paired
each human response with responses from three other random AI models to create a new batch of
300 triplets. After conducting the human judging process again, we provided the new Elo results in
Table 5.

Table 5: Elo ratings of policy models including a human baseline. As shown, the human is able to
compete with other SOTA MLLMs in response generation but surprisingly loses to both Gemini
models. This may be attributed to the fact that Gemini can generate more comprehensive responses
while human-generated responses are shorter and with fewer details. This indicates that MLLMs can
be more practical as policy models (not as reward models yet) than humans to generate explanations in
AI-generated image detection, as they are good at generating detailed and comprehensive explanations
which are more appealing to human judges.

Rank Policy Model Elo Rating Games Wins Losses Win Rate
Proprietary Models

1 Gemini 2.5 Pro 1474.7 36 34 2 0.944
2 Gemini 2.5 Flash 1386.2 38 31 7 0.816
4 o3 1218.8 16 9 7 0.562
5 GPT-4o 1191.9 26 12 14 0.462

Open Source Models
6 Qwen 2.5 3B 1083.0 19 4 15 0.211
7 Qwen 2.5 7B 1002.5 27 3 24 0.111
8 Gemma 3n 1002.1 26 3 23 0.115

Human Reference
3 Human 1240.9 188 92 96 0.489

5 Conclusion

In this paper, we presented the first systematic study of MLLMs as both policy (AI-generated image
detectors) and especially reward models (judges) for the tasks related to explainable AI-generated
image detection, with an emphasis on judging explanations for AI-generated image detection. Our
work delivers three key contributions. First and foremost, we introduce XAIGID-RewardBench,
the first benchmark designed to evaluate MLLM reward models (judges) in this novel task: Judging
Explainable AI-Generated Image Detection, composed of approximately 3,000 human-annotated
preference triplets. Second, through this benchmark, we quantitatively demonstrate a visible gap in
current model capabilities, with our top-performing reward model reaching only 88.76% accuracy
(while human inter-annotator agreement reaches 98.30%). Third, we provide meaningful insights
into common failure modes, identifying critical flaws in model reasoning such as generalizing over
clear artifacts and failing to connect evidence to a logical conclusion. Collectively, our contributions
provide a foundational benchmark and a clear analysis to guide the community in developing
more accurate, reliable, and trustworthy systems for detecting and explaining AI-generated images,
including judging explainable AI-generated image detection.
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A Additional Information for Benchmark Annotation

Rubric:

• Hallucination: Any extraneous details?
• Details: Did it get all the important details(distortions)?
• Logic: Did it correctly formulate an argument(regardless of wrong/right)?
• Relevance: Do the points that the LLM make actually help its argument?
• Counterargument: Did it shut down any opposing points?
• Weighing: Did it correctly weigh why the image might be real or fake(Lots of points may

be thrown out, but there needs to be a tying thread to unify all the points in favor of its
argument)

• Contradiction: Does the model contradict itself?
• Insight: Are the arguments shallow or unrefined?

B Setup of Annotation Tool

Human annotators might be prone to bias, such as choosing longer answers simply because of their
length or judging a response purely based on its final answer rather than its thought process. Our
goal is to maximize the MLLM’s useful reasoning steps and minimize nonsensical output. To ensure
minimal bias in annotation, several countermeasures were taken. First, a hidden stopwatch recorded
the time spent on each annotation as metadata. If the recorded time was under fifteen seconds, the
annotation was filtered out. Second, cropping the images helps hide the image’s true nature. Some
annotators may be inclined to select the response that agrees with their own initial assessment. Thus,
cropping the images helps encourage annotators to truly think about the model’s response (Figure 5).

Back Next

Both BadTieSecondFirst

Response
1

Rubric

Original Question
(for context)

Response
2

Figure 5: A conceptual illustration of our annotation tool. The image and response sources are hidden
to remove bias. Annotators are also encouraged to look past the initial one-word verdict and focus
more on the explanation given by MLLM detectors.

C AI-Generated Image Examples

We show some examples of generated images from our benchmark in Figure 6.

D More Response Example

We provide additional examples of policy model responses in Figure 7, 4a, and 4b.

E Limitations and Future Work

While this benchmark provides a crucial tool for the community, our reliance on human preference as
the "ground truth" for explanation quality has its own limitations. However, at present, no absolutely
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Figure 6: A collage of several AI-generated images from our benchmark. Some of these images were
challenging to identify, even for human eyes.

Real.
 
This is a real photograph not a fake or AI-generated image. Here's a breakdown of why:  

Lighting and Shadows: ...
Physics and Poses: ...
Image Details: ...
The Odd Sign: The one element that might cause suspicion is the text on the "No
Parking" sign which reads "PARKING SKNE OEAROKY." This is gibberish. However
rather than indicating the entire image is fake it's most likely that the text on the sign
was digitally altered in post-production. ...

In conclusion the image captures a real moment with real people in a real location. 

The nonsensical text on the sign is very likely a minor digital alteration to an
otherwise authentic photograph.

Figure 7: Example of a model downplaying a critical artifact. The distorted text on the street sign is a
dead giveaway that the image is generated. While the rest of the image is very consistent, a mistake
like this is undeniable. Still, the model tries to argue that one slip-up is acceptable.

objective metric exists for evaluating explanations in AI-generated image detection, considering the
complex nature of the task itself. Therefore, human judgment remains the only viable gold standard.
We did our best to make this process rigorous by using a detailed rubric, and our high inter-annotator
agreement confirms a consistent signal. Future work, however, could achieve even greater robustness
by dramatically increasing the scale of the dataset and employing a larger, more diverse pool of
annotators to build a stronger consensus on challenging or ambiguous cases.

Similarly, our initial focus on static images was a pragmatic choice to ensure depth and quality before
tackling more complex data types. A key direction for future work is to build upon this foundation
to create benchmarks for more modalities, such as AI-generated videos, synthesized audio, and
even generated 3D assets, each presenting unique forensic challenges. This expansion is critical for
developing comprehensive and versatile detection systems.

Ultimately, the goal is to detect AI-generated content and explain the detection process in a trustworthy
way. The path forward lies in moving beyond using MLLMs on their own and toward building MLLM-
powered agents that can actively reason and leverage external tools. These agents could dynamically
use forensic tools and construct evidence-based narratives, mirroring a human expert’s workflow. The
central challenge will be to develop reward models that can guide this complex reasoning and action
process, a necessary step to close the gap between current models and the dynamic, trustworthy
analysis required for real-world applications.

13


	Introduction
	Related Works
	MLLMs for Explainable AIGC Detection
	Reward Models and Benchmarks

	XAIGID-RewardBench
	Image Dataset
	Policy Models' Detection Response with Explanation
	RewardBench Annotation
	Task: Judging Explainable AI-Generated Image Detection

	Experiment and Analysis
	Experimental Setup
	Results
	Analysis
	Ablation Study

	Conclusion
	Additional Information for Benchmark Annotation
	Setup of Annotation Tool
	AI-Generated Image Examples
	More Response Example
	Limitations and Future Work

