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ABSTRACT

Reinforcement learning (RL) heavily depends on well-designed reward functions,
which can be challenging to create and may introduce biases, especially for com-
plex behaviors. Preference-based RL (PbRL) addresses this by using preference
feedback to construct a reward model that reflects human preferences, yet requir-
ing considerable human involvement. To alleviate this, several PbRL methods
aim to select queries that need minimal feedback. However, these methods do not
directly enhance the data coverage within the preference buffer. In this paper, to
emphasize the critical role of preference buffer coverage in determining the qual-
ity of the reward model, we first investigate and find that a reward model’s eval-
uative accuracy is the highest for trajectories within the preference buffer’s dis-
tribution and significantly decreases for out-of-distribution trajectories. Against
this phenomenon, we introduce the Proximal Policy Exploration (PPE) algo-
rithm, which consists of a proximal-policy extension method and a mixture distri-
bution query method. To achieve higher preference buffer coverage, the proximal-
policy extension method encourages active exploration of data within near-policy
regions that fall outside the preference buffer’s distribution. To balance the inclu-
sion of in-distribution and out-of-distribution data, the mixture distribution query
method proactively selects a mix of data from both outside and within the pref-
erence buffer’s distribution for querying. PPE not only expands the preference
buffer’s coverage but also ensures the reward model’s evaluative capability for in-
distribution data. Our comprehensive experiments demonstrate that PPE achieves
significant improvement in both preference feedback efficiency and RL sample
efficiency, underscoring the importance of preference buffer coverage in PbRL
tasks.

1 INTRODUCTION

In reinforcement learning (RL), the reward function is pivotal as it specifies the learning objectives
and guides agents toward desired behaviors. Traditional RL has made significant achievements in
complex domains such as gaming and robotics, largely due to the use of well-designed reward func-
tions (Mnih et al., 2015; Silver et al., 2017; Degrave et al., 2022). Yet, constructing these functions
presents significant challenges. The intricate process of designing suitable reward functions that ac-
curately encapsulate complex behaviors like cooking or summarizing books is both time-consuming
and prone to human cognitive biases (Wu et al., 2021; Hadfield-Menell et al., 2017; Abel et al., 2021;
Li et al., 2023; Sorg, 2011). Additionally, embedding social norms into these functions remains an
unresolved issue (Amodei et al., 2016).

An emerging alternative that addresses some of these challenges is preference-based reinforcement
learning (PbRL). This approach bypasses the need for meticulously engineered rewards by lever-
aging overseer preferences between pairs of agent behaviors, which is typically fathered from hu-
man (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021b;a; Park et al., 2022; Liang et al.,
2022; Shin et al., 2023; Tien et al., 2022). In PbRL, agents learn to optimize behaviors that align with
the demonstrated human preferences, offering a more intuitive and flexible method for performing
desired behaviors.
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Despite its advantages, PbRL typically requires extensive preference feedback, which can be labor-
intensive, time-consuming and sometimes infeasible to gather, potentially limiting its applicability
in real-world settings where rapid adaptation is essential (Lee et al., 2021a; Park et al., 2022; Liang
et al., 2022). To overcome these challenges, prior research has explored various strategies for im-
proving feedback efficiency. These strategies include selecting the most informative queries to im-
prove the quality of the learned reward function while minimizing the required teacher input (Lee
et al., 2021b; Biyik & Sadigh, 2018; Sadigh et al., 2017; Bıyık et al., 2020). Also, techniques such
as sampling based on ensemble disagreements, mutual information, or behavior entropy have been
employed to target behaviors to refine the overall reward model more effectively (Christiano et al.,
2017; Lee et al., 2021a; Shin et al., 2023; Biyik & Sadigh, 2018; Bıyık et al., 2020). Moreover, QPA
(Hu et al., 2023) ensures that both queries and policy learning progress concurrently, significantly
reducing feedback unrelated to the current policy, thereby enhancing feedback efficiency. However,
these methods overlook the investigation of the relationship between the preference buffer and the
effectiveness of the reward model. This oversight can lead the reward model to inaccurately eval-
uate data that is out of the preference buffer’s distribution, potentially leading to misguided policy
improvements.

To address this issue, we focus on enhancing the coverage of the preference buffer. Basically, our
findings revealed that the learned reward model provides more precise evaluations for trajectories
that fall within the preference buffer’s distribution. This insight led us to develop the Proximal Pol-
icy Exploration (PPE) algorithm. Firstly, we need to train an out-of-distribution (OOD) detection
mechanism to evaluate whether newly encountered data from the environment falls outside the pref-
erence buffer’s distribution. Using the OOD degree measurement of the current data, we employ the
proximal-policy extension method, which encourages the agent to explore data that, while beyond
the preference buffer’s distribution, still aligns closely with the current policy. Furthermore, we
have designed the mixture distribution query method, which not only actively queries data outside
the preference buffer’s distribution but also queries a portion of the in-distribution data. The aim
of this approach is to actively expand the preference buffer’s coverage while avoiding a reduction
in the reward model’s evaluation accuracy for in-distribution trajectories due to insufficient volume
of in-distribution data. By integrating these two methods, we are able to broaden the preference
buffer’s coverage and bolster the reliability of the reward model’s evaluations for the near-policy
distribution.

In summary, our contributions are threefold:

1. We introduce an OOD detection mechanism to ascertain whether data falls outside the pref-
erence buffer’s distribution, and formulate the behavior policy resolution as a constrained
optimization problem for exploring such data.

2. For this constrained optimization problem, we provide a closed-form approximation.
Through this, we introduce the proximal-policy extension method in PPE, an analytical
behavior policy that directly explores data outside the preference buffer’s distribution. This
approach actively enhances the coverage of the preference buffer.

3. We have found that the reliability of the reward model is heavily dependent on the data dis-
tribution; the reward model can only provide reliable assessments when there is sufficient
data within the evaluated distribution. To address this, we propose a mixture distribution
query method in PPE, which balances the volume of in-distribution and out-of-distribution
query data, ensuring accurate evaluations by the reward model across different regions.

2 PRELIMINARIES

Preference-based RL In PbRL, we consider an agent that interacts with an environment in dis-
crete time steps. At each time step t, the agent at state st selects an action at based on its policy.
Unlike traditional RL, where the environment returns a reward r(st, at) evaluating the agent’s be-
havior, PbRL employs preference feedback. Here, a teacher provides preferences between pairs of
agent behaviors, which the agent uses to learn proxy rewards that align with human preferences,
guiding the agent to adjust its policy (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021b;
Sutton, 2018; Leike et al., 2018).
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Formally, a behavior segment τ consists of a sequence of time-indexed observations and actions
{(st, at), . . . , (st+H , at+H)}. Given a pair of segments (τ0, τ1), the teacher gives their preference
feedback signal yp among these segments, identifying preferred behaviors or marking segments as
equally preferred or incomparable. The primary objective in PbRL is to train the agent to perform
behaviors aligned with human with minimal feedback.

The PbRL learning process involves two main steps: (1) Agent Learning: The agent interacts with
the environment to collect experiences and updates its policy using existing RL algorithms to maxi-
mize the sum of proxy rewards. (2) Reward Learning: The reward model r̂ψ is optimized based on
feedback received from the teacher, denoted as (τ0, τ1, yp) ∼ Dp. This cyclical process continually
refines both the policy and the reward model, detailed in Appendix A.

OOD Detection Neural networks are known for making confident predictions, even when encoun-
tering out-of-distribution (OOD) samples (Nguyen et al., 2015; Goodfellow et al., 2014; Lakshmi-
narayanan et al., 2017). A common approach for OOD detection involves fitting a generative model
to the dataset, which assigns high probability to in-distribution samples and low probability to OOD
ones. Although effective for simple, unimodal data, these methods can become computationally
intensive when dealing with more complex and multimodal data. An alternative approach trains
classifiers to act as more sophisticated OOD detectors (Lee et al., 2018).

In this study, we focus on Morse neural networks (Dherin et al., 2023), which train a generative
model to produce an unnormalized density that equals to 1 at the dataset modes. We utilize this
model to generate a metric that assesses the extent to which current data deviates from the preference
buffer distribution. A Morse neural network produces an unnormalized density M(x) ∈ [0, 1] on an
embedding space Re, attaining a value of 1 at mode submanifolds and decreasing towards 0 when
moving away from the mode (Dherin et al., 2023). The rate at which the value decreases is controlled
by a Morse Kernel. More details about the Morse neural network can be found in Appendix B.

3 METHOD

In this chapter, we delve into the importance of preference buffer coverage for the reward model in
our study and discuss strategies to actively expand this coverage.

3.1 WHY COVERAGE IS IMPORTANT? — A MOTIVATING EXAMPLE

We designed an experiment to observe the relationship between the effectiveness of the reward
model and the coverage of transitions in the preference buffer used to train the reward model.

As shown in Figure 1, we set up an environment in a grid world where the robot can move in four
directions: up, down, left, and right. Each cell in the grid world has an associated ground truth
reward, which corresponds to a ground truth return for the robot’s trajectory. It should be noted that
Figure 1a serves as a schematic representation; in reality, the grid world is structured as a 9x9 grid.
Additionally, the horizontal axes in Figures 1b and 1c represent the side lengths of the respective
region, while the horizontal axis in Figure 1d represents the number of feedbacks.

We further designated two areas within the grid world as the training region and the evaluation
region, as illustrated in Figure 1a . First, we uniformly sampled 1,000 trajectory pairs of length 3 in
the training region. Based on the relative sizes of their ground truth returns, we assigned preference
labels to these trajectory pairs and stored them in a preference buffer. Next, we trained a reward
model using the data from the preference buffer with a Bradley-Terry loss. Finally, we evaluated all
trajectories of length 6 in the evaluation region using the learned reward model to determine their
merit. The correlation between the proxy returns computed by the reward model and the ground truth
returns was assessed using the Spearman correlation coefficient to further analyze the effectiveness
of the reward model.

Results displayed in Figure 1c indicate that a larger training region enhances the ability of the re-
ward model, learned from the corresponding preference buffer, to effectively evaluate the merits of
trajectories. This phenomenon is intuitive yet underscores the critical importance of increasing the
coverage of the preference buffer over the transition space. Consider the policy optimization pro-
cess: if the preference buffer does not comprehensively cover the transition distribution associated
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with the current policy, the proxy rewards generated by the reward model may be unreliable, render-
ing the direction of policy optimization meaningless. Only with extensive coverage of the preference
buffer can the reward model learned from it reliably evaluate a broader area. Based on this insight,
it is essential to include the coverage of the preference buffer as an optimization objective within the
pipeline of PbRL. Figure 1b demonstrates that the variance in outputs from ensemble reward mod-
els, given the same transition input, does not enable distinction of whether the transition belongs to
the training region. Therefore, RUNE, proposed by Liang et al. (2022) cannot actively expand the
preference buffer’s coverage. Figure 1d shows that with the same training region, the more feedback
used, the higher the evaluation accuracy of the trained reward model. This indicates that we cannot
solely focus on exploring and collecting data outside the preference buffer distribution. It is also
necessary to ensure that the new queries include a sufficient amount of in-distribution data. This
balance is crucial to prevent the reward model from inaccurately evaluating regions it has already
explored.

(a) (b) (c) (d)

Figure 1: Observe the reward model’s effectiveness in a random walk task with a grid world. (a).
Training the reward model with preference data generated from trajectory pairs within the training
region marked by the red frame, and assessing the correlation between the proxy and ground truth
returns across all trajectories in the evaluation region denoted by the green frame; (b). The variance
in the proxy rewards associated with transitions inside and outside of the training region changes in
the size of the training region; (c). The Spearman correlation coefficient between proxy returns and
ground truth returns for all trajectories in various evaluation regions, using reward models trained
with preference data from different training regions; (d). The Spearman correlation coefficient varies
with the number of feedbacks used to train the reward model in different training regions.

Consequently, to train a reliable reward model, it is essential not only for the agent to actively explore
OOD data to expand the preference buffer coverage but also to ensure that there is a sufficient amount
of in-distribution data within the preference buffer.

3.2 HOW TO EXPAND COVERAGE OF PREFERENCE BUFFER? — PROXIMAL POLICY
EXPLORATION

Based on the observations in Section 3.1, we propose the PPE algorithm, which includes two core
modules: the proximal-policy extension method to enhance preference buffer coverage, and the
mixture distribution query method to balance the inclusion of in-distribution and out-of-distribution
data. By leveraging transition uncertainty estimation, PPE combines these methods to develop a
more reliable reward model within the current policy distribution.

Leveraging Morse Neural Network for Transition Uncertainty Estimation Drawing inspira-
tion from the work of Srinivasan & Knottenbelt (2024), we propose fϕ as a perturbation model that
generates an action â = fϕ(s, a). This implies that â = a only when the pair (s, a) originates
from the preference buffer Dp. Simultaneously, the preference buffer Dp is composed of tuples
(τ0, τ1, yp), where each segment τ is a sequence of state-action pairs {(st, at), . . . , (st+H , at+H)}.
Based on this, we design the Morse Neural Network such that Mϕ(si, aj) = 0 is valid only when
{si, aj} ∈ Dp. In particular, we utilize a Radial Basis Function (RBF) kernel (Seeger, 2004) to
shape the Morse Network, as illustrated in Eq.(1).

Mϕ(s, a) = 1−KRBF (fϕ(s, a), a), where KRBF (z1, z2) = e−
λ2

2 ∥z1−z2∥2

. (1)

Subsequently, we optimize this Morse Neural Network by minimizing the KL divergence between
unnormalized measures (Amari, 2016), as detailed in Dherin et al. (2023). This can be expressed
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as DKL(Dp(s, a)∥1−Mϕ(s, a)). Hence, in terms of ϕ, this implies minimizing the loss depicted in
Eq.(2). Additional details can be found in Appendix C.

L(ϕ) =
1

N

∑
s,a∼Dp

λ2

2
∥fϕ(s, a)− a∥2 + 1

M

∑
au∼Uniform(A)

exp−
λ2

2 ∥fϕ(s,au)−au∥2

 (2)

Here, au signifies an action sampled from a uniform distribution over the corresponding action
space, denoted as Uniform(A). Furthermore, M represents the number of samples drawn from
Uniform(A), while N refers to the number of sampled (s, a) pairs from Dp. The parameter λ is
used to control the sensitivity of the Morse Neural Network to OOD transitions.

Expanding Preference Buffer Coverage via Proximal-Policy Extension Method Observations
from Figure 1c suggest that expanding the coverage of the preference buffer can enhance the abil-
ity of the trained reward model in evaluating the quality of trajectories. Particularly during the RL
training process, Only when the trained reward model has a strong ability to evaluate the quality of
trajectories within the proximal policy distribution can the risk of misguidance in policy improve-
ment be reduced. Therefore, expanding the coverage of the preference buffer for the proximal policy
distribution can further optimize policy improvement in PbRL.

Drawing on this insight, we have designed the proximal-policy extension method, to actively en-
courage the agent to explore data that falls outside the preference buffer distribution but within the
vicinity of the current policy’s distribution. The behavior policy πE used for exploration, is de-
signed such that the state-action pairs (s, a) it generates when interacting with the environment can
support the distribution produced by the current target policy πT . Formally, the behavior policy
πE = N (µE ,ΣE) is defined as the solution to the constrained optimization problem in Eq.(3).

max
µ,Σ

E
a∼N (µ,Σ)

[Mϕ(s, a)],

s.t. DKL(N (µ,Σ)|N (µT ,ΣT )) ≤ ϵ.
(3)

Since we need to calculate the constrained optimization problem described in Eq.(3) in each inter-
action process, using readily available solvers would result in a significant consumption of compu-
tational resources. Therefore, we tighten the constraint conditions to obtain a closed-form approx-
imate solution as shown in Proposition 1. This approach greatly reduces the computational cost of
solving the constrained optimization problem, while achieving our desired objective of encouraging
exploration of data out of the preference buffer distribution near the current policy distribution. The
detailed derivation is presented in Appendix D.

Proposition 1 The behavior policy for exploration resulting from Eq.(3) has the form πE =
N (µE ,ΣE), where

µE = µT +

√
2ϵ · ΣT [∇aMϕ(s, a)]a=µT√

[∇aMϕ(s, a)]Ta=µT
ΣT [∇aMϕ(s, a)]a=µT

, and ΣE = ΣT . (4)

Mixture Distribution Query Selection In the previous section, we introduced an exploration
method that enables the agent to explore a broader range of transitions that are out of the preference
buffer but near the current policy distribution. These newly discovered transitions are stored in the
replay buffer. Therefore, it becomes essential to have a query selection method that can select those
segments that are out of the preference buffer and store them in the preference buffer.

Additionally, as inspired by the phenomenon demonstrated in Figure 1d, if we merely select those
segments outside the preference buffer’s distribution and store them in the preference buffer, it im-
plies that the volume of data in the in-distribution region will not undergo substantial expansion.
As a result, the evaluation capability of the trained reward model in the in-distribution region may
become less reliable due to the lack of sufficient data in this area.

Taking all these factors into account, we propose the mixture distribution query method. This method
aims to actively select out-of-distribution data to increase the preference buffer coverage, while
also selecting some in-distribution data for query. This method not only proactively increases the
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coverage of the preference buffer but also boosts the volume of in-distribution data, thereby ensuring
the evaluation capability of the reward model in the in-distribution region.

Specifically, for all τ ∈ Dcp, we can express the degree of a segment of trajectory τ being out of the
preference buffer distribution according to Eq.(5), where Dcp represents the data to be queried. A
higher value indicates that the data is more likely to be in-distribution.

Mϕ(τ) =
1

|τ |
∑

(s,a)∈τ

Mϕ(s, a) (5)

The size of Dcp is not large, typically |Dcp| ≪ |D|, especially when combined with the policy-
aligned query technique proposed in QPA (Hu et al., 2023), the quantity of Dcp is further reduced.
Under this premise, we can redistribute the sampling probability for τ ∈ Dcp.

As shown in Eq.(6), we designed two probability density functions P in(·) and P out(·) according
to the degree of in-distribution and out-of-distribution, respectively representing the probability of
sampling τ according to the degree of in-distribution and out-of-distribution. We use a mixture ratio
κ ∈ [0, 1] to control the proportion of samples drawn from each distribution. A larger κ indicates a
higher proportion of samples are drawn from P out(·).

P in(τ) =
1−Mϕ(τ)∑

τ ′∈Dcp [1−Mϕ(τ ′)]

P out(τ) =
Mϕ(τ)∑

τ ′∈Dcp Mϕ(τ ′)

(6)

It’s worth noting that, as mentioned in the preceding paragraph, we need to calculate Mϕ(s, a)
for each newly encountered (s, a) when using proximal-policy extension method. Therefore, by
maintaining {Mϕ(s, a)|(s, a) ∈ Dcp} and updating it regularly, we can avoid recalculating Mϕ(s, a)
when using the mixture distribution query, thus saving a significant amount of overhead. The specific
procedure is illustrated in Algorithm 1.

Algorithm 1: Mixture Distribution Query
Input: τ ∈ Dcp, Mϕ(τ), query size b and mixture ratio κ.
Output: {τ0, τ1}bi=1

1 for i = 1 to κb do
2 τ0, τ1 ∼ P out(τ) // sample τ outside the distribution of Dp

3 for i = 1 to (1− κ)b do
4 τ0, τ1 ∼ P in(τ) // sample τ inside the distribution of Dp

5 return {τ0, τ1}bi=1

Proximal Policy Exploration Algorithm In summary, the proximal-policy extension method and
the mixture distribution query method complement each other. The use of the mixture distribution
query method can mitigate potential issues that might arise from solely using the proximal-policy
extension method. The combination of these two methods forms our PPE algorithm, with the algo-
rithmic process detailed in Algorithm 2.

In Algorithm 2, Dm = {(s, a,Mϕ(s, a))|(s, a) ∈ Dcp}. The parts highlighted in brown represent
the additions made by our algorithm compared to the basic algorithm framework.

Improvements in different algorithms typically focus on various stages: the data storage stage (Line
5, QPA (Hu et al., 2023)) , the data selection for querying stage (Line 7, QPA, B-Pref (Hu et al.,
2023; Lee et al., 2021b)) , the reward model update stage (Line 12, SURF, PEBBLE (Park et al.,
2022; Lee et al., 2021a)) , and the agent update stage (Line 17, RUNE, QPA (Liang et al., 2022; Hu
et al., 2023)). Our approach, however, primarily enhances the data exploration stage, offering the ad-
vantage of excellent compatibility with existing methods. Although we use the mixture distribution
query method for data selection, it does not conflict with existing query methods. We can apply the
mixture distribution query method as a post-processing step on the results of existing query methods
to select suitable data for querying. This further demonstrates the compatibility of our approach.

6
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In practical applications, PPE can be implemented as an algorithmic plugin within an existing frame-
work. This integration enhances the policy exploration process without requiring extensive modifi-
cations to the current framework.

Algorithm 2: Proximal Policy Exploration
Input: Query frequency K, feedback size once query b, mixture ratio κ and morse buffer Dm

1 Unsupervised pretraining // Lee et al. (2021b)
2 for each iteration do
3 a ∼ πE(·|s) // Sample action via proximal-policy extension, Eq.(4)
4 {s, a,Mϕ(s, a)} ∪ Dm // Store the OOD metric of transition
5 Store new transition (s, a)
6 if iteration%K == 0 then

7
{τ0, τ1}(1−κ)bi=1 ∼ P in(τ)

{τ0, τ1}κbi=b+1 ∼ P out(τ)

}
// Mixture distribution query, Algorithm1

8 Query for preference {y}bi=1

9 Store preference Dp ←− Dp ∪ {τ0, τ1, y}bi=1
10 for each gradient step do
11 Sample a minibatch preference B ← {τ0, τ1, y}hi=1 ∼ Dp
12 Training the reward model
13 Optimize loss of Mϕ in Eq.(2) w.r.t. ϕ using B
14 Relabel the reward in D // Lee et al. (2021b)
15 Relabel the OOD metric via Mϕ(·) for (s, a) ∈ Dcp

16 for each gradient step do
17 Optimize πT via SAC method

4 EXPERIMENTS

Our method, as outlined in Section 3.2, is designed to be orthogonal and highly compatible with
existing strategies. Notably, our mixed distributed query technique does not interfere with the policy
alignment query employed in the QPA method. This compatibility allows us to seamlessly integrate
PPE into the QPA algorithm for subsequent experiments. To simplify our discussion, we will directly
refer to this integrated approach as PPE henceforth.

We conducted an evaluation of our method using the MetaWorld (Yu et al., 2020) and DMControl
(Tassa et al., 2018) benchmarks. For a comprehensive comparison, we selected several baselines,
including PEBBLE (Lee et al., 2021a), SURF (Park et al., 2022), RUNE (Liang et al., 2022), and
the previous state-of-the-art method, QPA (Hu et al., 2023). In our experiments, we used five dif-
ferent seeds to compute the average performance. The shaded areas in the plots represent the 95%
confidence intervals. For a complete understanding of our experimental details, please refer to Ap-
pendix I. Moreover, we also made use of the official code repositories provided in the papers of the
corresponding baseline algorithms for a fair comparison.

4.1 BENCHMARK TASK PERFORMANCE

Locomotion tasks in DMControl suite. We selected six complex tasks from DMControl, namely
Walker-walk, Walker-run, Cheetah-run, Humanoid-stand, Quadruped-walk, and Quadruped-run, to
evaluate the performance of the PPE method. The dashed black line in our results represents the
time step at which feedback collection was terminated.

Our method demonstrated superior performance across these tasks, as evidenced by the learning
curve of PPE, which typically exhibited the steepest slope before the termination of feedback col-
lection. This indicates that PPE can more effectively select and utilize feedback within a constrained
quantity. Consequently, this validates our proposition that expanding the preference buffer coverage
enhances the reward model’s evaluation capabilities and makes policy updates more reliable.

7
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(a) Walker-walk (feedback=1e2) (b) Walker-run (feedback=1e2) (c) Cheetah-run (feedback=1e2)

(d) Humanoid-stand (feedback=1e4) (e) Quadruped-walk (feedback=1e3) (f) Quadruped-run (feedback=1e3)

Figure 2: Learning curves for DMControl tasks, measured by the ground truth reward. The dashed
black line marks the final feedback collection step.

Robotic Manipulation Tasks in MetaWorld We conducted experiments on three complex ma-
nipulation tasks in MetaWorld: Hammer, Sweep-into, and Drawer-open. The learning curves for
these tasks are presented in Figure 3. Similar to prior works (Christiano et al., 2017; Lee et al.,
2021b; Park et al., 2022; Liang et al., 2022; Hu et al., 2023), we employed the ground truth success
rate as a metric to quantify the performance of these methods.

Our results further demonstrate that PPE effectively enhances the feedback efficiency across a di-
verse range of complex tasks. However, we observed that while RUNE (Liang et al., 2022) did
not perform well on DMControl tasks, it achieved performance second only to PPE on MetaWorld
tasks. Additionally, we found that the performance variance of PbRL algorithms increases in the
MetaWorld environment compared to DMControl. This phenomenon has also been observed in
other PbRL literature (Lee et al., 2021b; Park et al., 2022; Hu et al., 2023; Liang et al., 2022). For a
more detailed comparison, we provide additional numerical results in Appendix E.

(a) Hammer (feedback=1e4) (b) Sweep-into (feedback=1e4) (c) Drawer-open (feedback=4e3)

Figure 3: Learning curves for robotic manipulation tasks in MetaWorld, measured by the ground
truth success rate. The dashed black line indicates the final feedback collection step.

8
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4.2 ABLATION STUDY

To further investigate the impact of each component in PPE, we conducted additional ablation ex-
periments on the Walker-walk task. These experiments aim to provide empirical evidence for the
parameter selection of PPE.

To assess the roles of the proximal-policy extension method (EXT) and the mixture distribution
query method (MDQ) within PPE, we incrementally applied these methods to the backbone algo-
rithm QPA. As shown in Figure 4a, using either EXT or MDQ alone does not result in significant
improvements. As described in Section 3.2, EXT and MDQ complement each other. Using only
EXT increases the amount of out-of-preference buffer distribution data in the replay buffer without
directly enhancing the coverage of the preference buffer. Conversely, using only MDQ fails to in-
troduce sufficient out-of-preference buffer distribution data into the preference buffer due to the lack
of active exploration, thus not effectively strengthening the reward model. Therefore, the superior
performance of PPE arises from the mutual compensation of the shortcomings of EXT and MDQ.

(a) Impact of each technique in PPE (b) Impact of Mixture Ratio κ (c) Impact of boundaries to explore ϵ

Figure 4: Various ablation studies on the Walker-walk task, with the dashed black line indicating the
final feedback collection step.

Next, we examine the effect of the mixture ratio κ in MDQ using the complete PPE, which deter-
mines the balance of in-distribution and out-of-distribution data in the preference buffer. As Figure
4b shows, optimal performance is achieved at κ = 0.5. This result confirms that indiscriminate
addition of out-of-distribution data to the preference buffer can overextend distribution boundaries,
undermining the reward model’s effectiveness that relies not just on preference buffer coverage,
but also on data volume where policy evaluation is needed. Furthermore, exclusively sampling
in-distribution data could hinder the reward model’s adaptability to new distribution of trajectories
following policy updates.

Additionally, we conducted ablation experiments on the KL constraint ϵ, mentioned in Eq.(1). This
parameter represents the exploration boundary of EXT for out-of-distribution data. As discussed in
Appendix D, theoretically, using EXT requires that the behavior policy and target policy do not differ
significantly. This implies that if ϵ is too large, performance cannot be theoretically guaranteed.
Conversely, if ϵ is too small, EXT loses its exploratory significance. Experimental results, shown in
Figure 4c, confirm this property: both excessively large and small values of ϵ negatively impact the
results. Therefore, we recommend setting ϵ to 0.01.

5 RELATED WORK

Human-in-the-loop Reinforcement Learning Human-in-the-loop reinforcement learning (RL)
uses human preferences to train RL agents, allowing humans to specify desired behaviors through
comparative judgments (Akrour et al., 2011; Pilarski et al., 2011; Christiano et al., 2017; Stiennon
et al., 2020; Wu et al., 2021). However, acquiring these preferences is costly and requires high
feedback efficiency (Lee et al., 2021a; Park et al., 2022; Liang et al., 2022; Liu et al., 2024b).

Query Selection Schemes in PbRL Query selection schemes are crucial in preference-based RL
(PbRL) for improving feedback efficiency. Previous research has used metrics like entropy (Biyik
& Sadigh, 2018; Ibarz et al., 2018; Lee et al., 2021a), L2 distance in feature space (Bıyık et al.,

9
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2020), and ensemble disagreement of the reward model (Christiano et al., 2017; Ibarz et al., 2018;
Lee et al., 2021a; Park et al., 2022; Liang et al., 2022) to evaluate query quality. These metrics guide
sampling strategies such as greedy sampling (Biyik & Sadigh, 2018), the K-medoids algorithm
(Biyik & Sadigh, 2018; Rdusseeun & Kaufman, 1987), and Poisson disk sampling (Bridson, 2007;
Bıyık et al., 2020) to identify the most “informative” queries.

However, Hu et al. (2023) argued that these methods offer limited benefits to policy learning. They
identified the issue of Query-policy Misalignment in PbRL and proposed the query-policy align
method to address it. Our mixture distribution query method complements existing approaches and
can be seamlessly integrated with them. In the experiments, we combined our method with Hu et al.
(2023)’s method to further improve the query selection scheme.

Exploration in Reinforcement Learning The trade-off between exploitation and exploration is
critical in reinforcement learning (RL) (Sutton, 2018; Hao et al., 2024). Exploration algorithms
are designed to encourage RL agents to visit a wide range of states. Notable methods include
uncertainty-driven exploration approaches (Bellemare et al., 2016; Tang et al., 2017; Ciosek et al.,
2019; Bai et al., 2021; Liu et al., 2024a), intrinsic-reward driven approaches (Ostrovski et al., 2017;
Houthooft et al., 2016; Pathak et al., 2017; Bai et al., 2023), and others (Hazan et al., 2019; Liu &
Abbeel, 2021). In PbRL, Liang et al. (2022) introduced an intrinsic reward to drive exploration by
leveraging reward model disagreements, aligning exploration with human preferences. Our work
also focuses on PbRL exploration, aiming to collect diverse data for the preference buffer to build a
more reliable reward model. Unlike Liang et al. (2022), we emphasize the importance of preference
buffer coverage for constructing a reward model.

6 CONCLUSION AND DISCUSSION

This paper highlights the critical role of preference buffer coverage in the evaluative accuracy of
reward models. Our findings indicate that a reward model’s accuracy is the highest for trajecto-
ries within the preference buffer’s distribution and significantly decreases for out-of-distribution
trajectories. We introduce PPE algorithm, which actively expands the preference buffer coverage
to enhance the reliability of the reward model, comprising two complementary components: the
proximal-policy extension method and the mixture distribution query method. These components
synergistically work to expand the preference buffer coverage while balancing the inclusion of both
in-distribution and out-of-distribution data. PPE provides a more reliable reward model, thereby
reducing the potential of misleading policy improvements. PPE has demonstrated substantial gains
in feedback and sample efficiency through extensive evaluations on the DMControl and MetaWorld
benchmarks. These results underscore the importance of actively expanding preference buffer cov-
erage in PbRL research.

In this study, our main focus is on enhancing the reward model’s quality by actively expanding the
preference buffer’s coverage. However, our current query method does not consider the variations
in information between different pairs of agent behaviors. As we advance our research, we plan to
investigate advanced methods to boost feedback efficiency. We believe that considering factors such
as data similarity and clustering traits can further refine and optimize our query method.
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A THE PROCESS OF REWARD MODEL TRAINING IN PBRL

Using a preference dataset Dp, the reward model r̂ψ learns to assign higher proxy returns Ĝψ =∑
t r̂ψ(st, at) to preferred trajectories. Employing the Bradley-Terry model (Bradley & Terry,

1952), the probability that one trajectory is preferred over another is computed as:

Pψ(τ
1 ≻ τ0) =

exp
(∑

t r̂ψ(s
1
t , a

1
t )
)∑

i∈{0,1} exp
(∑

t r̂ψ(s
i
t, a

i
t)
) . (7)

The probability estimate Pψ is used to minimize the cross-entropy between the predicted and true
preference labels:

LCE = −E(τ0,τ1,yp)∼Dp

[
I{yp = (τ0 ≻ τ1)} logPψ(τ0 ≻ τ1) + I{yp = (τ1 ≻ τ0)} logPψ(τ1 ≻ τ0)

]
.

(8)

After optimizing the reward function r̂ψ from human preferences, PbRL algorithms enable training
of RL agents with standard RL algorithms, treating the proxy rewards from r̂ψ as if they were ground
truth rewards from the environment.

B INFORMATION ABOUT MORSE NEURAL NETWORK

Definition 1 (Morse Kernel) A Morse Kernel is a positive definite kernel K. When applied in a
space Z = Rk, the kernel K(z1, z2) takes values in the interval [0, 1] and satisfies K(z1, z2) = 1 if
and only if z1 = z2.

All kernels of the form K(z1, z2) = e−D(z1,z2), where D(·, ·) is a divergence (Amari, 2016), are
considered Morse Kernels. In this study, we utilize the Radial Basis Function (RBF) Kernel,

KRBF (z1, z2) = e−
λ2

2 ∥z1−z2∥2

, (9)

where λ is a scale parameter of the kernel (Seeger, 2004).

Consider a neural network that maps from a feature space X to a latent space Z via a function
fϕ : X → Z, with parameters ϕ. Here, X ∈ Rd and Z ∈ Rk. A Morse Kernel can be used to
impose structure on the latent space.

Definition 2 (Morse Neural Network) A Morse neural network is defined as a function fϕ : X →
Z combined with a Morse Kernel K(z, t), where z ⊂ Z is a target chosen as a hyperparameter of
the model. The Morse neural network is expressed as Mϕ(x) = 1−K(fϕ(x), t).

According to Definition 1, Mϕ(x) takes values in the interval [0, 1]. When Mϕ(x) = 0, x corre-
sponds to a mode that aligns with the level set of the submanifold of the Morse neural network.
Additionally, 1 − Mϕ(x) represents the certainty that the sample x is from the training dataset,
making Mϕ(x) a measure of the epistemic uncertainty of x.

The function − log[1−Mϕ(x)] quantifies a squared distance, d(·, ·), between fϕ(x) and the nearest
mode in the latent space at m:

d(z) = min
m∈M

d(z,m), (10)

where M is the set of all modes. This provides information about the topology of the submanifold
and satisfies the Morse–Bott non-degeneracy condition (Basu & Prasad, 2023).

The Morse neural network exhibits the following properties:

1. Mϕ(x) ∈ [0, 1];
2. Mϕ(x) = 0 at its mode submanifolds;
3. − log[1 −Mϕ(x)] ≥ 0 represents a squared distance that satisfies the Morse–Bott non-

degeneracy condition on the mode submanifolds;
4. Since Mϕ(x) is an exponentiated squared distance, the function is distance-aware, meaning

that as fϕ(x)→ t, [1−Mϕ(x)]→ 1.
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C DERIVATION OF THE LOSS FUNCTION FOR MORSE NEURAL NETWORK
IN PBRL

We achieve the measurement of whether the current data is outside the distribution of Dp using
the Morse Neural Network by minimizing the KL divergence DKL(Dp(s, a)∥1−Mϕ(s, a)). The
detailed derivation process is as follows:

min
ϕ

E
s,a∼Dp

[
log

Dp(s, a)
1−Mϕ(s, a)

]
+ E
s∼Dp

[
1

|A|

∫
a∈A

1−Mϕ(s, a)−Dp(s, a)da
]
.

→min
ϕ

E
s,a∼Dp

[
− log [1−Mϕ(s, a)] + E

au∼Uniform(A)
[1−Mϕ(s, a)]

]
.

→min
ϕ

1

N

∑
s,a∼Dp

− logKRBF (fϕ(s, a), a) +
1

M

∑
au∼Uniform(A)

KRBF (fϕ(s, au), au)

 .

→min
ϕ

1

N

∑
s,a∼Dp

λ2

2
∥fϕ(s, a)− a∥2 + 1

M

∑
au∼Uniform(A)

exp−
λ2

2 ∥fϕ(s,au)−au∥2

 .

(11)

D PROOF OF PROPOSTION 1

Consider the formula for the KL divergence between two high-dimensional Gaussian distributions:

DKL(N (µ,Σ),N (µT ,ΣT )) =
1

2

[
(µ− µT )

TΣ−1
T (µ− µT )− log det(Σ−1

T Σ) + tr(Σ−1
T Σ)− n

]
.

(12)

When DKL(N (µ,Σ),N (µT ,ΣT )) ≤ ϵ is employed as a constraint, the solution to the optimization
problem argmax

µ,Σ
Ea∼N (µ,Σ)[Mϕ(s, a)] is typically achieved through iterative means. However,

considering our objective for the calculated µ,Σ to more effectively explore data from the out-
of-preference buffer distribution within the proximal policy region, and the real-time requirement
for problem-solving with each agent-environment interaction, we propose a more efficient closed-
form approximation to the original problem by appropriately tightening the constraint, as shown in
Proposition 1.

We introducing Σ = ΣT , and the tightened constraint can be expressed as:

DKL(N (µ,ΣT ),N (µT ,ΣT )) ≤ ϵ.

→1

2

[
(µ− µT )

TΣ−1
T (µ− µT )− log det(Σ−1

T ΣT ) + tr(Σ−1
T ΣT )− n

]
≤ ϵ.

→1

2

[
(µ− µT )

TΣ−1
T (µ− µT )

]
≤ ϵ.

(13)

Substituting this into Eq.(3), we derive a simplified optimization problem:

max
µ

E
a∼N (µ,ΣT )

[Mϕ(s, a)],

s.t.(µ− µT )
TΣ−1

T (µ− µT ) ≤ 2ϵ.
(14)

To address the problem in Eq.(14), we construct the following Lagrangian function:

L = Mϕ(s, a)− ξ((µ− µT )
TΣ−1

T (µ− µT )− 2ϵ). (15)

Deriving with respect to µ yields:

∇µL = ∇aMϕ(s, a)|a=µ − ξΣ−1
T (µ− µT ). (16)

Setting∇µL = 0, we find:

µ = µT +
1

ξ
ΣT ∇aMϕ(s, a)|a=µ . (17)
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By applying the KKT conditions, we deduce:

(µ− µT )
TΣ−1

T (µ− µT )− 2ϵ = 0.

ξ > 0.
(18)

Further, via plugging Eq.(17) in Eq.(18), we can solve to obtain:

1

ξ2

(
ΣT ∇aMϕ(s, a)|a=µ

)T
Σ−1
T

(
ΣT ∇aMϕ(s, a)|a=µ

)
= 2ϵ, ξ > 0.

→ξ2 =
[∇aMϕ(s, a)]

T
a=µΣT [∇aMϕ(s, a)]a=µ

2ϵ
, ξ > 0.

→ξ =

√
[∇aMϕ(s, a)]

T
a=µ ΣT [∇aMϕ(s, a)]a=µ

2ϵ
.

(19)

Through Eq.(19), we find that ξ is a function of µ. However, Eq.(17) is a differential equa-
tion, which is challenging to solve directly for µ. Therefore, we perform a Taylor expansion on
[∇aMϕ(s, a)]a=µ:

∇aMϕ(s, a)|a=µ ≈ ∇aMϕ(s, a)|a=µT
+ ∇2

aMϕ(s, a)
∣∣
a=µT

(µ− µT ). (20)

This implies that when µ is sufficiently close to µT , we can approximate:

∇aMϕ(s, a)|a=µ ≈ ∇aMϕ(s, a)|a=µT
. (21)

Since our goal is to increase the density of proximal policy data in the preference buffer, thereby
enhancing the reward model’s evaluation capability under the current policy distribution, this ap-
proximation does not conflict with our objective and is indeed very fitting.

Thus, further, we can deduce:

µ ≈ µT +

√
2ϵ · ΣT [∇aMϕ(s, a)]a=µT√

[∇aMϕ(s, a)]Ta=µT
ΣT [∇aMϕ(s, a)]a=µT

. (22)

Therefore, the exploration behavior policy N (µE ,ΣE) can be expressed as

µE = µT +

√
2ϵ · ΣT [∇aMϕ(s, a)]a=µT√

[∇aMϕ(s, a)]Ta=µT
ΣT [∇aMϕ(s, a)]a=µT

, and ΣE = ΣT . (23)

E ADDITIONAL EXPERIMENTS

Task PEBBLE SURF RUNE QPA PPE

Walker-walk 1e2 453.43 ± 159.43 661.01 ± 91.72 414.62 ± 182.16 796.08 ± 147.94 908.09 ± 55.30

Walker-run 1e2 188.21 ± 79.86 237.65 ± 116.85 251.48 ± 104.98 416.52 ± 222.01 520.18 ± 101.72

Quadruped-walk 1e3 369.51 ± 134.22 488.71 ± 283.49 440.30 ± 296.02 567.80 ± 291.57 660.07 ± 175.58

Quadruped-run 1e3 314.91 ± 120.87 287.37 ± 101.75 231.85 ± 60.14 382.03 ± 123.60 433.42 ± 116.58

Cheetah-run 1e2 545.77 ± 130.00 556.78 ± 59.323 508.60 ± 186.06 578.89 ± 133.14 644.91 ± 30.37

Humanoid-stand 1e4 306.08 ± 171.92 377.51 ± 20.35 351.10 ± 197.75 455.81 ± 25.99 577.12 ± 30.93

Drawer-open 4e3 20.00 ± 44.72 40.09 ± 54.89 48.45 ± 47.95 40.09 ± 54.89 69.81 ± 43.41

Sweep-into 1e4 62.58 ± 57.44 40.06 ± 50.80 99.62 ± 0.56 80.67 ± 27.00 96.47 ± 8.47

Hammer 1e4 41.31 ± 53.57 85.23 ± 26.18 91.86 ± 17.77 78.75 ± 44.04 96.27 ± 5.19

Table 1: Performance of benchmark experiments

Performance of Benchmark Tasks We recorded the performance of different algorithms—QPA,
PEBBLE, SURF, RUNE, and PPE—on DMControl and MetaWorld in Table 1. Each value repre-
sents the mean and variance calculated from the last five evaluations under different seeds for the
same algorithm.
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Exploration Methods Across Different Backbones As shown in Tables 2 and 3, we applied PPE
and RUNE to QPA and PEBBLE, respectively. This approach not only verifies the compatibility of
PPE but also highlights the performance differences of various exploration methods across different
backbones.

Task PEBBLE PEBBLE+RUNE PEBBLE+PPE

Walker-walk 1e2 453.43 ± 159.43 414.62 ± 182.16 499.73 ± 82.75

Walker-run 1e2 188.21 ± 79.86 251.48 ± 104.98 257.64 ± 58.59

Quadruped-walk 1e3 369.51 ± 134.22 440.30 ± 296.02 451.06 ± 223.27

Quadruped-run 1e3 314.91 ± 120.87 231.85 ± 60.14 373.09 ± 149.10

Cheetah-run 1e2 545.77 ± 130.00 508.60 ± 186.06 569.54 ± 84.27

Humanoid-stand 1e4 306.08 ± 171.92 351.10 ± 197.75 357.13 ± 76.15

Table 2: The Performance of Different Exploration Methods on PEBBLE

Task QPA QPA+RUNE QPA+PPE

Walker-walk 1e2 796.08 ± 147.94 704.39 ± 133.45 908.09 ± 55.30

Walker-run 1e2 416.52 ± 222.01 429.66 ± 173.62 520.18 ± 101.72

Quadruped-walk 1e3 567.80 ± 291.57 593.61 ± 295.84 660.07 ± 175.58

Quadruped-run 1e3 382.03 ± 123.60 367.71 ± 108.01 433.42 ± 116.58

Cheetah-run 1e2 578.89 ± 133.14 689.52 ± 49.39 644.91 ± 30.37

Humanoid-stand 1e4 455.81 ± 25.99 419.74± 27.38 577.12 ± 30.93

Table 3: The Performance of Different Exploration Methods on QPA

Ablation Study on κ Under the Walker-walk experiment setting with 100 feedback instances, we
investigated the impact of the mixture ratio κ on the experimental results, as shown in Table 4. Based
on these results, we set the mixture ratio κ to 0.5 for all subsequent experiments.

κ Episode Return κ Episode Return κ Episode Return

0.0 722.33± 256.97 0.4 756.41± 215.27 0.8 696.62± 243.53

0.1 795.26± 174.23 0.5 908.09± 55.30 0.9 744.50± 173.46

0.2 688.53± 212.85 0.6 714.03± 230.37 1.0 616.22± 106.39

0.3 710.22± 187.74 0.7 834.91± 103.28

Table 4: Impact of Mixture Ratio κ on Walker-walk performance with 100 feedback instances

Ablation Study on the Various Components of PPE We denote the proximal-policy extension
method as EXT and the mixture distribution query method as MDQ. The specific details are recorded
in Table 5.
Ablation Study on KL Constraint ϵ In Table 6, we present the impact of different KL constraints
ϵ on the performance

F ABOUT OOD DETECTION COMPUTATIONAL COST

F.1 DISCUSSION ON fϕ

Firstly, In our study, we utilized a neural network with a 3x256 architecture to learn the function fϕ
required for the Morse network, as described in Eq.(4).

Secondly, we do not rely on the specific outputs of the Morse network to determine whether data
is OOD. Instead, we only utilize the gradient ∇aMϕ(s, a) and use it as a basis for sampling data
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Algo Episode Return Algo Episode Return

QPA 796.08± 147.94 QPA+PPE(EXP:w,MDQ:w) 908.09± 55.30

QPA+PPE(EXP:w,MDQ:w/o) 689.33± 194.50 QPA+PPE(EXP:w/o,MDQ:w) 685.03± 346.27

Table 5: Impact of various components of PPE on Walker-walk performance with 100 feedback
instances

KL Constraint ϵ Episode Return KL Constraint ϵ Episode Return

1e-4 806.67± 137.13 1e-2 908.09± 55.30

1e-1 745.54± 163.10 1e0 638.53± 202.73

1e1 783.26± 163.70 1e2 635.46± 214.01

Table 6: Impact of various KL Constraint ϵ on Walker-walk performance with 100 feedback in-
stances

in the ’Mixture Distribution Query’. These applications do not demand high precision in the Morse
network’s outputs; they only require a relative distinction in magnitude between in-distribution and
out-of-distribution data.

Lastly, Given that our dataset is not very large, especially when QPA is used as the backbone with
a dataset size of only ’10 × episode length’, which does not impose significant stress on the neural
network.

Considering computational costs, we only train the Morse network for an additional 200 iterations
after completing after per query. It is noteworthy that in many tasks, QPA and SURF involve training
the reward model thousands of times after per query. Therefore, our use of the Morse network
effectively meets our needs without incurring substantial additional computational overhead.

F.2 EXPERIMENTS RESULTS OF COMPUTATIONAL COST

We averaged the time required for QPA and QPA+PPE to train the reward model (and the Morse
network) after five query phases on the walker walk task, all conducted on the same machine.

Method Average Time (seconds)

QPA 45.29

QPA+PPE 50.42

Table 7: Average time comparison between QPA and QPA+PPE.

While PPE does introduce additional computational overhead, training the Morse network, like the
reward model, is only necessary after each query. The total number of queries varies by task. For
instance, in the ’walker walk’ task, we followed the QPA setup, requiring a total of 100 prefer-
ence feedbacks, with each query obtaining 10 preference feedbacks. Therefore, the overall training
process does not significantly increase computational cost.

G MORE DETAILS ABOUT THE MOTIVATING EXAMPLE IN SECTION 3.1

G.1 MEANING OF REGION 1− 9

In Section 3.1, ”region 1-9” refers to square regions depicted in Figure 1a, with the lower-left corner
as the origin. The grid is labeled from 0 to 9 on both the horizontal and vertical axes, increasing
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from left to right and from bottom to top, respectively. For example, ”region 3” denotes a grid area
bounded by the segments from 0 to 3 on both axes.

G.2 THE EVALUATION REGION FOR USED IN FIGURE 1D

The evaluation region used is the same as the training region. This figure is intended to explore how
varying the amount of preference feedback affects the performance of the reward model when both
the evaluation and training regions are fixed.

H COVERAGE VISUALIZATION

We collected 100 feedback instances during the learning process of the Walker walk task using the
QPA and QPA+PPE methods. The state and action spaces of these (s, a) pairs were clustered into 10
and 20 groups, respectively, using KMeans. We then used heatmaps to illustrate how the coverage
of the preference buffer changes as feedback increases.

Figure 5: Distribution of actions in different discrete states after clustering. The horizontal axis
represents the 20 clustered actions, and the vertical axis represents the 10 clustered states. The first
and second rows show the changes in coverage of the preference buffer during training for the QPA
and QPA+PPE methods, respectively.

Figure 6: Changes in coverage of the 10×20 clustered (s, a) space for the preference buffer corre-
sponding to the QPA and QPA+PPE methods under the same seed.
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Figures 5 and 6 demonstrate that as the number of queries increases, the use of PQPA+PPE clearly
enhances coverage compared to QPA.

I IMPLEMENTATION DETAILS

I.1 FUNDAMENTAL PROCESS OF PBRL

An overview of the components in a typical PbRL setup can be provided as below:

a). Data collection

b). Data selection and preference labeling

c). Learning the reward model using preference labels (τ0, τ1, yp)

d). Optimizing πT with the learned reward model via reinforcement learning methods

I.2 ABOUT BUFFERS

I.2.1 FUNCTIONS OF VARIOUS BUFFERS

• Dcp stores potential segments τ that might be selected during the ”data selection and pref-
erence labeling” phase. Specifically, when selecting (τ0, τ1) for preference labeling, these
segments are drawn from Dcp.

• D is the replay buffer, a fundamental concept in reinforcement learning, storing
(st, at, r̂t, st+1) instead of the ground truth rt . It is used during the policy optimization
phase with the learned reward model.

• Dp stores preference feedbacks (τ0, τ1, yp) for learninig the reward model.

• Dm stores an additional one-dimensional data Mϕ(s, a) for each (s, a) inDcp, as shown in
Eq. 5. It is used to compute to assess the OOD degree of τ .

I.2.2 MEMORY USAGE

• D is essential for all off-policy reinforcement learning algorithms as a replay buffer.

• Dcp and Dp are necessary for existing online PbRL methods.

• Dm only requires storing an additional one-dimensional value Mϕ(s, a) for each (s, a) in
Dcp, which is a minor addition performed in Algorithm 2, line 4

Therefore, PPE does not require significantly more memory compared to previous online PbRL
methods.

I.3 ORIGIN OF THE CODE FOR BASELINE ALGORITHMS

To ensure fairness in our experiments, we used the original source code provided by the authors of
each baseline algorithm. Specifically, the sources are as follows:

• PEBBLE, SURF:
https://openreview.net/attachment?id=TfhfZLQ2EJO&name=
supplementary_material

• RUNE:https://github.com/rll-research/rune

• QPA:https://github.com/huxiao09/QPA

• B-Pref: https://github.com/rll-research/BPref

The only modification we made was to unify the logging format during training. We changed QPA’s
logging from using wandb to the storage format used by the B-Pref framework, which is also used
by PEBBLE, SURF, and RUNE.
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I.4 HUMAN INVOLVEMENT

In stage b, algorithms typically select (τ0, τ1) pairs, which are then submitted for human preference
labeling. In most PbRL implementations, scripts are typically used to simulate human preference
labeling. Our paper follows the same setup.

The Mixture Distribution Query is used only in stage b to select , as shown in Algorithm 1. These
selected pairs are then submitted for human preference labeling (Algorithm 2, line 8). This is the
only stage that requires human involvement.

This process is consistent with what is described in PEBBLE (Algorithm 2, line 11), QPA [5] (Al-
gorithm 1, line 6), and RUNE (Algorithm 1, line 9).

I.5 HOW WERE PREFERENCES ELICITED?

We used the same approach as PEBBLE, SURF, RUNE, and QPA, utilizing the B-pref framework
Shin et al. (2023) to script access to the ground truth reward, thereby simulating human preference
labels.

I.6 HOW TO OBTAIN GENUINE HUMAN PREFERENCES ONLINE

Collecting Human Feedback

import imageio as iio

def get_label(self, sa_t_1, sa_t_2, physics_seg1, physics_seg2):

frame_height, frame_width, channels = physics_seg1[0,0].shape

# Create a video writer
output_width = frame_width * 2 # The merged width is twice the original.
output_height = frame_height
fps = 30 # Set the frame rate.

# Save video
human_labels = np.zeros(sa_t_1.shape[0])
for seg_index in range(physics_seg1.shape[0]):

# render the pairs of segments and save the video
# Create a video writer using imageio
with iio.get_writer(f’output.mp4’, fps=fps) as writer:

# Iterate over all frames.
for frame0, frame1 in zip(physics_seg1[seg_index], physics_seg2[seg_index]):

# Horizontally merge frames
combined_frame = np.hstack((frame0, frame1))
# Write to the video file
writer.append_data(combined_frame)

labeling = True
# provide labeling instruction and query human for preferences
while(labeling):

print("\n")
print("---------------------------------------------------")
print("Feedback number:", seg_index)
# preference:
# 0: segment 0 is better
# 1: segment 1 is better
while True:

# check if it is 0/1/number type preference
try:

rational_label = input("Preference: 0 or 1 or other number")
rational_label = int(rational_label)
break

except:
print("Wrong label type. Please enter 0/1/other number.")

print("---------------------------------------------------")
human_labels[seg_index] = rational_label
labeling = False

#remove the hard-to-judge pairs of segments
cancel = np.where((human_labels != 0) & (human_labels != 1))[0]
human_labels = np.delete(human_labels, cancel, axis=0)
sa_t_1 = np.delete(sa_t_1, cancel, axis=0)
sa_t_2 = np.delete(sa_t_2, cancel, axis=0)
print("valid query number:", len(human_labels))
return sa_t_1, sa_t_2, human_labels.reshape(-1,1)

We achieve authentic interaction with humans in the process of obtaining human preferences through
the code above. This involves presenting two sets of behavior segment videos to humans and request-
ing preference labels from them. The specific interaction interface is shown in Figure 7.
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Figure 7: Through this interface, humans can provide preference labels for the agent’s behavior.

I.7 PARAMETER FOR ALGORITHMS

Our method does not introduce many additional parameters, as shown in Table 8. In this work, ϵ
represents the KL divergence constraint between the behavior policy and the target policy in Eq.(3),
which determines the exploration boundary in our approach. The parameter λ controls the sensitivity
of the Morse Neural Network. Lastly, κ, mentioned in Algorithm 2, is the mixture ratio that controls
the proportion of samples drawn from each distribution.

Hyper-parameter Value Hyper-parameter Value

KL constraint ϵ 1e-2 Parameter for OOD
detection λ

5

Mixture ratio κ 0.5

Table 8: The hyperparameters of PPE

Additionally, we followed the parameter settings from the baseline papers (Hu et al., 2023; Lee et al.,
2021b; Park et al., 2022; Liang et al., 2022; Lee et al., 2021a). The specific parameter configurations
are detailed in Tables 9, 10, 11, and 12.

Hyper-parameter Value Hyper-parameter Value

Discount 0.99 Init temperature 0.1
Alpha learning rate 1e-4 Batch size 1024
Critic target update freq 2 Critic EMA 5e-3

Critic learning rate

5e-4 (Walker walk,
Cheetah run,
Walker run)

1e-4 (Other tasks)

Actor learning rate

5e-4 (Walker walk,
Cheetah run,
Walker run)

1e-4 (Other tasks)
Critic hidden dim 1024 Actor hidden dim 1024
Critic hidden layer 2 Actor hidden layer 2
Critic activation function ReLU Actor activation function ReLU
Optimizer Adam

Table 9: The hyperparameters of SAC

Hyper-parameter Value Hyper-parameter Value

Size of policy-aligned
buffer N 10 Data augmentation ratio

τ
20

Hybrid experience replay
sample ratio ω

0.5 Min/Max length of
subsampled snippets [35, 45]

Table 10: The hyperparameters of QPA
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Hyper-parameter Value Hyper-parameter Value

Unlabeled batch ratio 4 Threshold 0.99

Loss weight 1 Min/Max length of
cropped segment [45, 55]

Segment length before
cropping 60

Table 11: The hyperparameters of SURF

Hyper-parameter Value Hyper-parameter Value

Length of segment 50 Unsupervised
pre-training steps 9000

Size of query selection
buffer 100

Table 12: The hyperparameters of PEBBLE

I.8 PARAMETER FOR TASKS

Determining the number of feedback instances for each task, the interval between queries, and the
quantity of feedback per query can be quite challenging. We have summarized the experimental
settings from the QPA (Hu et al., 2023) and SURF (Park et al., 2022) papers in Table 13. The
experiments in our paper strictly adhere to the settings outlined in this table.

Hyper-parameter Total feedback Frequency of feedback Queries number per
session

Walker-walk 100 20000 10
Walker-run 100 20000 10
Cheetah-run 100 20000 10
Quadruped-walk 1000 30000 100
Quadruped-run 1000 30000 100
Humanoid-stand 10000 5000 50
Drawer-open 4000 5000 20
Sweep-into 10000 5000 50
Hammer 10000 5000 50

Table 13: The hyperparameters of tasks
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