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Abstract. Ordinal classification models assign higher penalties to pre-
dictions further away from the true class. As a result, they are appro-
priate for relevant diagnostic tasks like disease progression prediction or
medical image grading. The consensus for assessing their categorical pre-
dictions dictates the use of distance-sensitive metrics like the Quadratic-
Weighted Kappa score or the Expected Cost. However, there has been
little discussion regarding how to measure performance of probabilistic
predictions for ordinal classifiers. In conventional classification, common
measures for probabilistic predictions are Proper Scoring Rules (PSR)
like the Brier score, or Calibration Errors like the ECE, yet these are not
optimal choices for ordinal classification. A PSR named Ranked Proba-
bility Score (RPS), widely popular in the forecasting field, is more suit-
able for this task, but it has received no attention in the image analysis
community. This paper advocates the use of the RPS for image grading
tasks. In addition, we demonstrate a counter-intuitive and questionable
behavior of this score, and propose a simple fix for it. Comprehensive
experiments on four large-scale biomedical image grading problems over
three different datasets show that the RPS is a more suitable performance
metric for probabilistic ordinal predictions. Code to reproduce our ex-
periments can be found at github.com/agaldran/prob_ord_metrics.

Keywords: Ordinal Classification · Proper Scoring Rules · Model Cal-
ibration · Uncertainty Quantification

1 Introduction and Related Work

The output of predictive machine learning models is often presented as categor-
ical values, i.e. “hard” class membership decisions. Nonetheless, understanding
the faithfulness of the underlying probabilistic predictions giving rise to such
hard class decisions can be essential in some critical applications. Meaningful
probabilities enable not only high model accuracy, but also more reliable deci-
sions: a doctor may choose to order further diagnostic tests if a binary classifier
gives a p = 45% probability of disease, even if the hard prediction is “healthy” [2].
This is particularly true for ordinal classification problems, e.g. disease severity
staging [6,7] or medical image grading [14,21]. In these problems, predictions
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should be as close as possible to the actual category ; further away predictions
must incur in heavier penalties, as they have increasingly worse consequences.

There is a large body of research around performance metrics for medical
image analysis [20]. Most existing measures, like accuracy or the F1-score, focus
on assessing hard predictions in specific ways that capture different aspects of
a problem. In ordinal classification, the recommended metrics are Quadratic-
Weighted Kappa and the Expected Cost [5,16]. In recent years, measuring the
performance of “soft” probabilistic predictions has attracted an increasing re-
search interest [12,19]. For this purpose, the current consensus is to employ
Calibration Errors like the ECE and Proper Scoring Rules like the Brier score
[16]. We will show that other metrics can instead be a better choice for assessing
probabilistic predictions in the particular case of ordinal classification problems.

How to measure the correctness of probabilistic predictions is a decades-old
question, naturally connected to forecasting, i.e. predicting the future state of a
complex system [9]. A key aspect of forecasting is that, contrary to classifiers,
forecasters do not output hard decisions, but probability distributions over pos-
sible outcomes. Weather forecasts do not tell us whether it will rain tomorrow or
not, they give us a probability estimate about the likelihood of raining, leaving
to us the decision of taking or not an umbrella, considering the personal cost of
making such decision. The same applies for financial investments or sports bet-
ting, where it is also the final user who judges risks and makes decisions based on
probabilistic forecasts. In this context, Proper Scoring Rules (PSRs) have been
long used by the forecasting community to measure predictive performance [10].
PSRs are the focus of this paper, and will be formally defined in section 2.1.

Relation to Calibration: A popular approach to assess the quality of probabilistic
predictions is measuring calibration. A model is well calibrated if its probabilistic
predictions are aligned with its accuracy on average. PSRs and calibration are in-
tertwined concepts: PSRs can be decomposed into a calibration and a resolution
component [8]. Therefore, a model needs to be both calibrated and resolved (i.e.
having sharp, or concentrated probabilities) in order to have a good PSR value.
For example, if a disease appears in 60% of the population, and our model is just
“return p=0.6”, in the long run the model is correct 60% of the time, and it is
perfectly calibrated, as its confidence is fully aligned with its accuracy, despite
having zero predictive ability. If the model predicted in a “resolved” manner with
p = 0.99 the presence of the disease, but being correct only 70% of the time,
then it would be overconfident, which is a form of miscalibration. Only when the
model is simultaneously confident and correct can it attain a good PSR value.

The two most widely adopted PSRs are the Brier and the Logarithmic Score
[1,11]. Unfortunately, none of these is appropriate for the assessment of ordinal
classification probabilities [3]. A third PSR, long used by forecasting researchers
in this scenario, the Ranked Probability Score (RPS, [4]), appears to have been
neglected so far in biomedical image grading applications. This paper first covers
the definition and basic properties of PSRs, and then motivates the use the RPS
for ordinal classifiers. We also illustrate a counter-intuitive behavior of the RPS,
and propose a simple modification to solve it. Our experiments cover two relevant
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biomedical image grading problems and illustrate how the RPS can better assess
probabilistic predictions of ordinal classification models.

2 Methods

2.1 Scoring Rules - Notation, Properties, Examples

We consider a K-class classification problem, and a classifier that takes an image
x and maps it into a vector of probabilities p ∈ [0, 1]K . Typically, p is the result
of applying a softmax operation on the output of a neural network. Suppose x
belongs to class y ∈ {1, ...,K}, and denote by y its one-hot representation. A
Scoring Rule (SR) S is any function taking the probabilistic prediction p and
the label y and producing a number S(p,y) ∈ R (a score). Here we consider
negatively oriented SRs, which assign lower values to better predictions.

Of course, the above is an extremely generic definition, to which we must
now attach additional properties in order to encode our understanding of what
better predictions means for a particular problem.

Property 1: A Scoring Rule (SR) is proper if its value is minimal when the
probabilistic prediction coincides with the ground-truth in expectation.

Example: The Brier Score [1] is defined as the sum of the squared differences
between probabilities and labels:

Brier(p,y) = ∥p− y∥22 =

K∑
i=1

(pi − yi)
2. (1)

Since its value is always non-negative, and it decreases to 0 when p = y, we
conclude that the Brier Score is indeed proper.

Property 2: A Proper Scoring Rule (PSR) is local if its value only depends on
the probability assigned to the correct category.

Example: The Brier Score is non-local, as its value depends on the probability
placed by the model on all classes. The Logarithmic Score [11], given by:

L(p,y) = − log(pc) (2)

where c is the correct category of x, rewards the model by placing as much
probability mass as possible in c, regardless of how the remaining probability is
distributed. It is, therefore, a local PSR. The Logarithmic Score is also known,
when taken on average over a dataset, as the Negative Log-Likelihood.

Property 3: A PSR is sensitive to distance if its value takes into account the
order of the categories, in such a way that probability placed in categories further
away from the correct class is more heavily penalized.
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Fig. 1: The RPS is sensitive to distance, suitable for assessing probabilistic pre-
dictions on biomedical image grading problems. It is the difference between the
cumulative probability distributions of the label and a probabilistic prediction.

Example: Both the Brier and the Logarithmic scores are insensitive to distance
(shuffling p and y won’t affect the score). Sensitivity to distance is essential for
assessing ordinal classifiers. Below we define the Ranked Probability Score (RPS)
[4,18], which has this property, and is therefore more suitable for our purposes.

2.2 The Ranked Probability Score for Ordinal Classification

Consider a test sample (x,y) in a 3-class classification problem, with label y and
two probabilistic predictions p1,p2:

y = [ 1, 0, 0 ], p1 = [
1

4
,
3

4
, 0 ], p2 = [

1

4
, 0,

3

4
] (3)

In this scenario, both the Brier and the Logarithmic scores produce the same
penalty for each prediction, whereas a user might prefer p1 over p2 due to the
latter assigning more probability to the second category. Indeed, if we use the
arg-max operator to generate a hard-decision for this sample, we will obtain a
prediction of class 2 and class 3 respectively, which could result in the second
model declaring a patient as severely unhealthy with serious consequences. In
this context, we would like to have a PSR that takes into account distance to
the true category, such as the Ranked Probability Score (RPS, [4]), given by:

RPS(p,y) =
1

K − 1

K−1∑
i=1

 i∑
j=1

(pj − yj)

2

=
1

K − 1
∥P−Y∥22. (4)

The RPS is the squared ℓ2 distance between the cumulative distributions Y of
the target label y and P of the probabilistic prediction p, discounting their last
component (as they are both always one) and normalizing so that it varies in
the unit interval. In the above example, the RPS would give for each prediction
a penalty of RPS(p1,y) = 1/8, RPS(p2,y) = 1/4, as shown in Figure 1.

Among many interesting properties, one can show that the RPS is proper
[17], and reduces to the Brier score for K = 2. Despite the RPS dating back
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more than 50 years [4], and enjoying great popularity in the weather forecasting
community, it appears to be much less known in the image analysis and computer
vision areas, where we could not find any trace of it. The first goal of this paper
is to bring to the attention of computer vision researchers this tool for measuring
the performance of probabilistic predictions in ordinal classification.

2.3 The Squared Absolute RPS

Our second goal in this paper is to identify and then fix certain failure modes
of the RPS that might lead to counter-intuitive behaviors. First, in disease grad-
ing and other ordinal classification problems it is customary to assign penalties
to mistakes that grow quadratically with the distance to the correct category.
This is the reason why most works utilize the Quadratic-Weighted Kappa Score
(QWK) instead of the linearly weighted version of this metric. However, the
RPS increases the penalty linearly, as can be quickly seen with a simple 3-class
problem and an example (x1,y1) of class 1 (y1 = [ 1, 0, 0 ]):

RPS([ 1, 0, 0 ],y1) = 0, RPS([ 0, 1, 0 ],y1) = 1/2. RPS([ 0, 0, 1 ],y1) = 1. (5)

Also, the RPS has a hidden preference for symmetric predictions. To see this, con-
sider a second example (x2,y2) in which the correct category is now the middle
one (y2 = [ 0, 1, 0 ]), and two probabilistic predictions: psym = [ 3/10, 4/10, 3/10 ],
pasym = [ 1/10, 5/10, 9/10 ]. In principle, there is no reason to prefer psym over
pasym, unless certain prior/domain knowledge tells us that symmetry is a desir-
able property. In this particular case, pasym is actually more confident on the
correct class than psym, which is however the preferred prediction for the RPS:

RPS([ 0.30, 0.40, 0.30 ],y2) = 0.09 < 0.1025 = RPS([ 0.45, 0.50, 0.05 ],y2). (6)

Fig. 2: The Ranked Probability Score displays some counter-intuitive behavior
that the proposed sa-RPS can fix. Here, p2 places more probability on the correct
class but p1 is preferred due to its symmetry.
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In order to address these aspects of the conventional RPS, we propose to imple-
ment instead the Squared Absolute RPS (sa-RPS), given by:

sa-RPS(p,y) =
1

K − 1

 K∑
i=1

∣∣∣∣∣∣
i∑

j=1

(pj − yj)

∣∣∣∣∣∣

2

(7)

Replacing the inner square in eq. (4) by an absolute value, we manage to break
the preference for symmetry of the RPS, and squaring the overall result we build
a metric that still varies in [0,1] but gives a quadratic penalty to further away
predictions. This is illustrated in Fig. 2 above.

2.4 Evaluating Evaluation Metrics

Our third goal is to demonstrate how the (sa-)RPS is useful for evaluating
probabilistic ordinal predictions. In the next section we will show some illustra-
tive examples that qualitatively demonstrate its superiority over the Brier and
logarithmic score. However, it is hard to quantitatively make the case for one
performance metric over another, since metrics themselves are what quantify
modeling success. We proceed as follows: we first train a neural network to solve
a biomedical image grading problem. We generate probabilistic predictions on
the test set and apply distance sensitive metrics to (arg-maxed) hard predictions
(QWK and EC, as recommended in [16]), verifying model convergence.

Here it is important to stress that, contrary to conventional metrics (like ac-
curacy, QWK, or ECE) PSRs can act on an individual datum, without averaging
over sets of samples. We exploit this property to design the following experiment:
we sort the probabilistic predictions of the test set according to a score S, and
then progressively remove samples that are of worst quality according to S. We
take the arg-max on the remaining probabilistic predictions and compute QWK
and EC. If S prefers better ordinal predictions, we must see a performance in-
crease on that subset. We repeat this process, each time removing more of the
worse samples, and graph the evolution of QWK and EC for different scores S:
a better score should result in a faster QWK/EC-improving trend.

Lastly, in order to derive a single number to measure performance, we com-
pute the area under the remaining samples vs QWK/EC curve, which we call
Area under the Retained Samples Curve (AURSC). In summary:

What we expect to see:
As we remove test set samples considered as worse classified by RPS, we
expect to more quickly improve QWK/EC on the resulting subsets. We
measure this with the Area under the Retained Samples Curve (AURSC)
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3 Experimental Results

We now give a description of the data we used for experimentation, analyze
performance for each considered problem, and close with a discussion of results.

3.1 Datasets and Architecture

Our experiments are on two different medical image grading tasks: 1) the TMED-
v2 dataset ([13], link) contains 17,270 images from 577 patients, with an aortic
stenosis (AS) diagnostic label from three categories (none, early AS, or signifi-
cant AS). The authors provide an official train/test distribution of the data that
we use here. 2) Eyepacs (link) contains retinal images and labels for grading
Diabetic Retinopathy (DR) stage into five categories, ranging from healthy to
proliferative DR. Ithas 35,126 images for training and 53,576 in the test set.

We train a ConvNeXt [15], minimizing the CE loss with the adam algorithm
for 10 epochs starting with a learning rate of l = 1e-4, decaying to zero over the
training. We report average Area under the Retained Samples Curve (AURSC)
for 50 bootstrap iterations in each dataset below, and also plot the evolution of
performance as we remove more samples considered to be worse by four PSRs:
the Brier score, the Logarithmic score (Neg-Log), RPS and sa-RPS.

3.2 How is RPS useful? Qualitative Error Analysis

The obvious application of RPS would be to train better ordinal classification
models. But beyond this, RPS also enables improved, fine-grained error analysis.
Let us see this through a simple experiment. Since PSRs assess samples individu-
ally, we can sort our test set using RPS, NLL, and Brier score. The worst-scored
items are what the model considers the wrongest probabilistic predictions. The
result of sorting predictions on the Eyepacs test set with the Brier, Neg-Log and
RPS rules is show on Fig. 3. We can see that the prediction identified as worst by
the RPS does indeed violate more heavily the order of categories, placing more
probability on class 5 for a sample of class 1. On the other hand, for the same
test set and predictions, the Brier score finds worst a prediction with 99% of the
probability on class 3 and a label of class 5, and the Neg-Log score identifies a
sample of class 1 for which the model wrongly predicts class 2.

Fig. 3: For the same test set and predictions, the RPS finds wrong samples that
are more incorrect from the point of view of ordinal classification.

1       2        3       4       51       2        3       4       51       2        3       4       5

https://tmed.cs.tufts.edu/tmed_v2.html
https://www.kaggle.com/c/diabetic-retinopathy-detection
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3.3 Quantitative Experimental Analysis

Quantitative results of the experiment described in section 2.4, computing AURSC
values for all PSRs, are shown in Table 2, with dispersion measures obtained from
50 bootstraped performance measurements.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.46 ± 0.35 3.76 ± 0.21 17.36 ± 0.04 2.84 ± 0.07

Neg-Log 13.56 ± 0.35 3.62 ± 0.2 17.44 ± 0.04 2.67 ± 0.07

RPS 14.76 ± 0.28 2.68 ± 0.14 17.81 ± 0.03 1.99 ± 0.04

sa-RPS 14.95 ± 0.25 2.53 ± 0.12 17.86 ± 0.03 1.88± 0.04

Table 1: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a ConvNeXt, for each PSR; best and second best values are marked.

We see that for the considered ordinal classification problems, distance-
sensitive scores consistently outperform the Brier and Neg-Log scores. Also,
the Square-Absolute Ranked Probability Score always outperforms the conven-
tional Ranked Probability Score. It is worth stressing that when observing boot-
strapped performance intervals, neither the Brier nor the Logarithmic scores
manage to overlap the SA-RPS interval in any of the two datasets, and in the
Eyepacs dataset not even the best RPS result reaches the performance of worst
SA-RPS result.

For a visual analysis, Fig. 4 shows the full Sample Retention Curves from
which AURSC-QWK values in Table 1 were computed. These curves show how
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Fig. 4: We sort probabilistic predictions in each test set using several PSRs:
Brier, Neg-Log, RPS, sa-RPS. We progressively discard worse-scored samples,
improving the metric of interest (only QWK shown). Removing worse samples
according to RPS and sa-RPS leads to better QWK, implying that they both
capture better ordinal classification performance at the probabilistic level.
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PSRs can indeed take a single probabilistic prediction and return a score that
is correlated to QWK, which is computed over sets of samples. This is because
as we remove samples according to any PSR, performance in the remaining test
set improves in all cases. The curves in Fig. 4 also tell a more complete story of
how the two distance-sensitive scores outperform the Brier and Neg-Log scores,
particularly for TMED and Eyepacs. Just by removing a 5%-6% of samples with
worse (higher) RPS, we manage to improve QWL and EC to a greater extent.

4 Conclusion and Future Work

We have shown that Proper Scoring Rules are useful tools for diagnosing proba-
bilistic predictions, but the standard Brier and Logarithmic scores should not be
preferred in ordinal classification problems like medical image grading. Instead,
the Ranked Probability Score, popular in the forecasting community, should be
favoured. We have also proposed sa-RPS, an extension of the RPS that can bet-
ter handle some pathological cases. Future work will involve using the RPS to
learn ordinal classifiers, and investigating its impact in calibration problems.

Acknowledgments

This work was supported by a Marie Skłodowska-Curie Fellowship (No 892297).

References

1. Brier, G.W.: Verification of Forecasts Expressed in Terms of Probability.
Monthly Weather Review 78(1), 1–3 (Jan 1950). https://doi.org/10.1175/1520-
0493(1950)078<0001:VOFEIT>2.0.CO;2, publisher: American Meteorological So-
ciety Section: Monthly Weather Review 2, 3

2. Cahan, A., Gilon, D., Manor, O., Paltiel, O.: Probabilistic reasoning
and clinical decision-making: do doctors overestimate diagnostic probabil-
ities? QJM: An International Journal of Medicine 96(10), 763–769 (Oct
2003). https://doi.org/10.1093/qjmed/hcg122, https://doi.org/10.1093/qjmed/
hcg122 1

3. Constantinou, A.C., Fenton, N.E.: Solving the Problem of Inadequate Scoring
Rules for Assessing Probabilistic Football Forecast Models. Journal of Quantita-
tive Analysis in Sports 8(1) (Mar 2012). https://doi.org/10.1515/1559-0410.1418,
publisher: De Gruyter 2

4. Epstein, E.S.: A Scoring System for Probability Forecasts of Ranked Categories.
Journal of Applied Meteorology and Climatology 8(6), 985–987 (Dec 1969).
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2 2, 4, 5

5. Ferrer, L.: Analysis and Comparison of Classification Metrics (Nov 2022).
https://doi.org/10.48550/arXiv.2209.05355, http://arxiv.org/abs/2209.05355,
arXiv:2209.05355 [cs] 2

6. Galdran, A., Chelbi, J., Kobi, R., Dolz, J., Lombaert, H., ben Ayed, I., Chakor,
H.: Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Reti-
nal Fundus Images with Deep Neural Networks. Translational Vision Science &
Technology 9(2), 34 (Jun 2020). https://doi.org/10.1167/tvst.9.2.34 1

https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
https://doi.org/10.1093/qjmed/hcg122
https://doi.org/10.1093/qjmed/hcg122
https://doi.org/10.1093/qjmed/hcg122
https://doi.org/10.1515/1559-0410.1418
https://doi.org/10.1175/1520-0450(1969)008<0985:ASSFPF>2.0.CO;2
https://doi.org/10.48550/arXiv.2209.05355
http://arxiv.org/abs/2209.05355
https://doi.org/10.1167/tvst.9.2.34


10 A. Galdran

7. Galdran, A., Dolz, J., Chakor, H., Lombaert, H., Ben Ayed, I.: Cost-Sensitive Reg-
ularization for Diabetic Retinopathy Grading from Eye Fundus Images. In: Medical
Image Computing and Computer Assisted Intervention – MICCAI 2020. pp. 665–
674. Lecture Notes in Computer Science, Springer International Publishing, Cham
(2020). https://doi.org/10.1007/978-3-030-59722-1_64 1

8. Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and
sharpness. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 69(2), 243–268 (2007). https://doi.org/10.1111/j.1467-9868.2007.00587.x,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
9868.2007.00587.x 2

9. Gneiting, T., Katzfuss, M.: Probabilistic Forecasting. Annual Review of Statis-
tics and Its Application 1(1), 125–151 (2014). https://doi.org/10.1146/annurev-
statistics-062713-085831 2

10. Gneiting, T., Raftery, A.E.: Strictly Proper Scoring Rules, Prediction, and Esti-
mation. Journal of the American Statistical Association 102(477), 359–378 (Mar
2007). https://doi.org/10.1198/016214506000001437 2

11. Good, I.J.: Rational Decisions. Journal of the Royal Statistical Society: Se-
ries B (Methodological) 14(1), 107–114 (1952). https://doi.org/10.1111/j.2517-
6161.1952.tb00104.x 2, 3

12. Gruber, S.G., Buettner, F.: Better Uncertainty Calibration via Proper Scores
for Classification and Beyond (Oct 2022), https://openreview.net/forum?id=
PikKk2lF6P 2

13. Huang, Z., Long, G., Wessler, B., Hughes, M.C.: TMED 2: A Dataset for Semi-
Supervised Classification of Echocardiograms. In: Unpublished Technical Report
(2022), https://tmed.cs.tufts.edu/papers/HuangEtAl_TMED2_DataPerf_2022.
pdf 7

14. Jaroensri, R., et al.: Deep learning models for histologic grading of breast cancer
and association with disease prognosis. npj Breast Cancer 8(1), 1–12 (Oct 2022).
https://doi.org/10.1038/s41523-022-00478-y 1

15. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A ConvNet for
the 2020s. pp. 11976–11986 (2022) 7

16. Maier-Hein, L., et al.: Metrics reloaded: Pitfalls and recommendations for image
analysis validation (Feb 2023). https://doi.org/10.48550/arXiv.2206.01653, http:
//arxiv.org/abs/2206.01653, arXiv:2206.01653 [cs] 2, 6

17. Murphy, A.H.: On the “Ranked Probability Score”. Journal of Applied Meteo-
rology and Climatology 8(6), 988–989 (Dec 1969). https://doi.org/10.1175/1520-
0450(1969)008<0988:OTPS>2.0.CO;2 4

18. Murphy, A.H.: A Note on the Ranked Probability Score. Journal of Applied Meteo-
rology and Climatology 10(1), 155–156 (Feb 1971). https://doi.org/10.1175/1520-
0450(1971)010<0155:ANOTRP>2.0.CO;2 4

19. Perez-Lebel, A., Morvan, M.L., Varoquaux, G.: Beyond calibration: es-
timating the grouping loss of modern neural networks (Jan 2023).
https://doi.org/10.48550/arXiv.2210.16315, http://arxiv.org/abs/2210.16315,
arXiv:2210.16315 [cs, stat] 2

20. Reinke, A., et al.: Understanding metric-related pitfalls in image analysis validation
(Feb 2023). https://doi.org/10.48550/arXiv.2302.01790 2

21. Silva-Rodríguez, J., Colomer, A., Sales, M.A., Molina, R., Naranjo, V.: Go-
ing deeper through the Gleason scoring scale: An automatic end-to-end sys-
tem for histology prostate grading and cribriform pattern detection. Com-
puter Methods and Programs in Biomedicine 195, 105637 (Oct 2020).
https://doi.org/10.1016/j.cmpb.2020.105637 1

https://doi.org/10.1007/978-3-030-59722-1_64
https://doi.org/10.1111/j.1467-9868.2007.00587.x
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1146/annurev-statistics-062713-085831
https://doi.org/10.1198/016214506000001437
https://doi.org/10.1111/j.2517-6161.1952.tb00104.x
https://doi.org/10.1111/j.2517-6161.1952.tb00104.x
https://openreview.net/forum?id=PikKk2lF6P
https://openreview.net/forum?id=PikKk2lF6P
https://tmed.cs.tufts.edu/papers/HuangEtAl_TMED2_DataPerf_2022.pdf
https://tmed.cs.tufts.edu/papers/HuangEtAl_TMED2_DataPerf_2022.pdf
https://doi.org/10.1038/s41523-022-00478-y
https://doi.org/10.48550/arXiv.2206.01653
http://arxiv.org/abs/2206.01653
http://arxiv.org/abs/2206.01653
https://doi.org/10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1969)008<0988:OTPS>2.0.CO;2
https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1971)010<0155:ANOTRP>2.0.CO;2
https://doi.org/10.48550/arXiv.2210.16315
http://arxiv.org/abs/2210.16315
https://doi.org/10.48550/arXiv.2302.01790
https://doi.org/10.1016/j.cmpb.2020.105637


Performance Metrics for Probabilistic Ordinal Classifiers 11

Appendix A Further Experimental Results

In the main paper we reported results without dispersion measures due space
constraints. Below we show expanded tables with standard deviation, and we in-
clude several more architectures (plus ConvNeXt in Tab. 2, here also with disper-
sion measures). Specifically, we include results obtained wtih a Swin-Transformer
(Tab. 3), a Densnet121 (Tab. 4), a Resnet50 (Tab. 5), a Resnet18 (Tab. 7, and
a Mobilent V2 (Tab. 8). In general, we observe similar trends as in the main
paper. For all six considered neural networks, distance-sensitive PSRs always
achieve greater performance than the Brier and the Logarithmic scores, and
also the Square-Absolute Ranked Probability Score always outperforms the con-
ventional Ranked Probability Score. It is worth stressing that when observing
bootstrapped performance intervals, the neither the Brier nor the Logarithmic
scores manage to overlap the SA-RPS interval in any of the two datasets, and
in the Eyepacs dataset not even the best RPS result reaches the performance of
worst SA-RPS result.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.46 ± 0.35 3.76 ± 0.21 17.36 ± 0.04 2.84 ± 0.07

Neg-Log 13.56 ± 0.35 3.62 ± 0.2 17.44 ± 0.04 2.67 ± 0.07

RPS 14.76 ± 0.28 2.68 ± 0.14 17.81 ± 0.03 1.99 ± 0.04

sa-RPS 14.95 ± 0.25 2.53 ± 0.12 17.86 ± 0.03 1.88± 0.04

Table 2: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a ConvNeXt, for each PSR; best and second best values are marked.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.60 ± 0.39 3.56 ± 0.25 17.33 ± 0.04 2.84 ± 0.07

Neg-Log 13.71 ± 0.39 3.43 ± 0.25 17.40 ± 0.04 2.68 ± 0.06

RPS 14.59 ± 0.30 2.75 ± 0.18 17.77 ± 0.03 2.02 ± 0.05

sa-RPS 14.79 ± 0.26 2.58 ± 0.15 17.82 ± 0.03 1.91 ± 0.04

Table 3: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a Swin-T, for each PSR; best and second best values are marked.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.25 ± 0.35 3.76 ± 0.2 17.16 ± 0.05 3.07 ± 0.08

Neg-Log 13.31 ± 0.34 3.66 ± 0.2 17.23 ± 0.05 2.91 ± 0.07

RPS 14.43 ± 0.28 2.81 ± 0.15 17.67 ± 0.03 2.15 ± 0.05

sa-RPS 14.70 ± 0.23 2.59 ± 0.11 17.72 ± 0.03 2.02± 0.04

Table 4: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a DenseNet, for each PSR; best and second best values are marked.
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TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.14 ± 0.44 3.93 ± 0.27 16.91 ± 0.05 3.5 ± 0.08

Neg-Log 13.24 ± 0.43 3.80 ± 0.26 16.97 ± 0.05 3.34 ± 0.07

RPS 14.32 ± 0.34 2.98 ± 0.19 17.50 ± 0.03 2.41 ± 0.04

sa-RPS 14.46 ± 0.30 2.84 ± 0.16 17.54 ± 0.03 2.30 ± 0.04

Table 5: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a ResNet50, for each PSR; best and second best values are marked.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.41 ± 0.41 3.61 ± 0.23 16.87 ± 0.05 3.59 ± 0.08

Neg-Log 13.47 ± 0.41 3.51 ± 0.22 16.93 ± 0.05 3.44 ± 0.08

RPS 14.49 ± 0.33 2.73 ± 0.16 17.48 ± 0.04 2.46 ± 0.05

sa-RPS 14.82 ± 0.29 2.47 ± 0.13 17.54 ± 0.03 2.31 ± 0.05

Table 6: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a ResNet34, for each PSR; best and second best values are marked.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 13.12 ± 0.33 4.33 ± 0.23 16.74 ± 0.06 3.66 ± 0.08

Neg-Log 13.14 ± 0.34 4.25 ± 0.24 16.83 ± 0.05 3.45 ± 0.08

RPS 14.41 ± 0.27 3.21 ± 0.17 17.36 ± 0.04 2.55 ± 0.05

sa-RPS 14.73 ± 0.23 2.93 ± 0.14 17.41 ± 0.04 2.42 ± 0.05

Table 7: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a ResNet18, for each PSR; best and second best values are marked.

TMED Eyepacs

AURSC-QWK↑ AURSC-EC↓ AURSC-QWK↑ AURSC-EC↓

Brier 11.13 ± 0.43 4.92 ± 0.23 16.62 ± 0.05 3.85 ± 0.07

Neg-Log 11.13 ± 0.43 4.84 ± 0.23 16.71 ± 0.05 3.63 ± 0.07

RPS 12.61 ± 0.36 3.74 ± 0.17 17.28 ± 0.04 2.66 ± 0.05

sa-RPS 12.86 ± 0.33 3.46 ± 0.15 17.34 ± 0.03 2.52 ± 0.04

Table 8: Areas under the Retained Samples Curve for TMED and Eyepacs,
with a Mobilenet, for each PSR; best and second best values are marked.
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