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Abstract— To detect illegal copies of copyrighted images,
recent copy detection methods mostly rely on the bag-of-visual-
words (BOW) model, in which local features are quantized into
visual words for image matching. However, both the limited
discriminability of local features and the BOW quantization
errors will lead to many false local matches, which make
it hard to distinguish similar images from copies. Geometric
consistency verification is a popular technology for reducing the
false matches, but it neglects global context information of local
features and thus cannot solve this problem well. To address this
problem, this paper proposes a global context verification scheme
to filter false matches for copy detection. More specifically, after
obtaining initial scale invariant feature transform (SIFT) matches
between images based on the BOW quantization, the overlapping
region-based global context descriptor (OR-GCD) is proposed
for the verification of these matches to filter false matches. The
OR-GCD not only encodes relatively rich global context informa-
tion of SIFT features but also has good robustness and efficiency.
Thus, it allows an effective and efficient verification. Further-
more, a fast image similarity measurement based on random
verification is proposed to efficiently implement copy detection.
In addition, we also extend the proposed method for partial-
duplicate image detection. Extensive experiments demonstrate
that our method achieves higher accuracy than the state-of-
the-art methods, and has comparable efficiency to the baseline
method based on the BOW quantization.

Index Terms— Image copy detection, near-duplicate detection,
partial-duplicate detection, global context, overlapping
region.
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I. INTRODUCTION

W ITH the rapid development of network technologies
and the wide use of various powerful multimedia

processing tools, digital multimedia (image, video and audio)
is becoming easier to be replicated, modified and distributed
on networks [1], [2]. To protect owners against unauthorized
(re)use of their content, detecting illegal copies of digital
multimedia is a basic requirement [1], [3], [4]. In recent
years, content-based image copy detection has been researched
as a passive technology to detect illegal copies. Different
from watermarking, which uses previously embedded marks,
this technology extracts content-based features from images
and then searches for the copies by matching the extracted
features. The main advantages of content-based image copy
detection are that it does not need additional information
and copy detection can be implemented after image distrib-
ution [1], [3], [5]. In addition, content-based copy detection
technology can be applied to some emerging applications, such
as automatic annotating [6], [7], redundancy elimination [8],
and merchandize image retrieval [9].

Content-based copy detection is similar to near-duplicate
detection. These technologies include two main parts: content-
based feature extraction and image search based on the
extracted features. However, according to the definitions in
the literature [5], [10], there is a difference between the two
technologies. The former aims to search for copies of an
original (a copyrighted) image, which include both the exact
duplicates and the transformed versions generated by various
copy attacks such as rotation, scaling, cropping, intensity and
contrast changes and noise addition. The original image and its
copies are assumed to share the same digital source [5], [10].
The objective of the latter is not only to find the copies, but
also similar images captured from the same scene or object
by different capturing conditions such as different acquisition
time, viewpoints and positions. Fig. 1 shows several examples
to illustrate the difference between copies and similar images.
Fig.1(b) and (c) are copies derived from Fig. 1(a) by some
copy attacks, while Fig. 1(d), (e) and (f) are similar images of
Fig. 1(a) obtained by different capturing conditions. The three
similar images are near-duplicates but not copies of Fig. 1(a),
as they do not share the same source with Fig 1(a).

In practice, among the huge number of near-duplicate
images distributed on the networks, there are a lot of similar
images. It is worth noting that similar images that are not
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Fig. 1. The difference between image copies and similar images. (a) is an
original image. (b) and (c) are copies of the original image. (d)-(f) are similar
images.

Fig. 2. The illustration of limited performances of BOW model and geometric
verification. (a) The 83 false SIFT matches, which are generated by matching
SIFT features based on the quantization of BOW model, where the size
of visual codebook is set to 50K according to our experimental section.
(b) The 47 false SIFT matches, which still remain after removing most
of the geometrically inconsistent matches by the algorithm [17] with its
default parameters. Several pairs of visually similar local patches (non-copies)
corresponding to the falsely matched SIFT features are also illustrated on the
right side.

copies could be more visually similar to each other than the
copies generated by strong copy attacks [5], which makes
copy detection quite challenging. Thus, in this paper, we focus
on how to effectively and efficiently detect copies of a given
original (query) image in a large-scale database, in which there
are not only many copies but also a lot of similar images.

In the past few years, the bag-of-visual-words (BOW)
model [11] has become very popular for large-scale image
retrieval tasks. Generally, local features extracted from images
are quantized into visual words, and then they are indexed with
inverted file structure for image search. While favorable for
efficiency and scalability, the BOW model has two drawbacks
when directly applied to copy detection. The first is that local
features do not encode enough spatial information and thus
have limited discriminability. The second is that the BOW
quantization errors will further degrade the discriminability
of local features. Both the two drawbacks will lead to many
false matches when there are many visually similar local
patches, typically found between the similar images. That is
illustrated by the toy example in Fig. 2(a). The two similar
images, which share many visually similar local patches, have

Fig. 3. The corresponding local patches and global context regions of a pair
of falsely matched SIFT features between the two similar images.

83 scale invariant feature transform (SIFT) matches generated
by matching their SIFT features based on the quantization of
BOW model. Note that the two corresponding local patches
of each match are visually quite similar but not copies of each
other, and thus all of these SIFT matches can be regarded as
false matches. The existence of these false matches will cause
many similar images to be falsely detected as copies, resulting
in low accuracy for copy detection.

Recently, many geometric verification strategies [7],
[12]–[17] have been proposed to reduce false matches. After
obtaining local matches between images based on the BOW
quantization, these strategies check geometric consistency
among the matches to reduce the number of false matches.
This process can be quite efficient, since the number of
matched features is much smaller than the number of extracted
features [16], [17]. However, these strategies are originally
designed for near-duplication detection but not for copy detec-
tion. Many similar images will be falsely detected as copies
when they are employed for copy detection. That is because
many matches between similar images may satisfy geometric
consistency, and thus cannot be effectively removed. That
can be illustrated by the example shown in Fig. 2(b). After
removing most of the geometrically inconsistent false matches
by the geometric verification algorithm [17], the two similar
images still have 47 SIFT matches, most of which satisfy the
geometric consistency. Therefore, when the geometric consis-
tency verification strategies are applied to copy detection, it
will result in limited improvement of detection accuracy.

Nevertheless, since the variations of capture conditions may
lead to some changes in the global appearances of images, in
most cases global context information of falsely matched local
features between similar images differs to some extent. This
can be illustrated by the toy example in Fig. 3. This figure
shows the corresponding local patches and global context
regions of a pair of falsely matched SIFT features between the
two similar images in Fig. 2. The global context regions, which
almost cover the whole image, are created by expanding the
local patches proportionally. It can be clearly observed that,
although the corresponding local patches of the two falsely
matched SIFT features are visually similar, their global context
is somewhat different. Thus, the global context could provide
an overall reference to identify false matches.

Therefore, we propose an effective and efficient global
context verification scheme, which explores the global context
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information of matched SIFT features to identify and remove
the false matches for copy detection. More specifically, after
obtaining initial SIFT matches between images based on
the BOW quantization, we extract the overlapping region-
based global context descriptor (OR-GCD) for each matched
SIFT feature to describe its global context information. Then,
we compare the corresponding OR-GCDs of each pair of
matched SIFT features to filter the false matches. Finally,
the verification result is used to measure image similarities to
implement copy detection. To improve the detection efficiency,
we also propose a fast image similarity measurement based on
random verification. In addition, we extend the proposed copy
detection method for partial-duplicate image detection. The
main contributions of our method are concluded as follows:

1) The proposed global context descriptor (OR-GCD) for
verification of SIFT matches. In our previous work [18], we
propose a convex region-based global context (CRGC) feature
for SIFT match verification. However, since the feature is
extracted by directly using the histogram of oriented gradi-
ents (HOG) [19], it is not discriminative and efficient enough
for SIFT match verification. To address this issue, we propose
a novel global context descriptor, i.e., OR-GCD. It does not
only encode relatively rich global context information of each
matched SIFT feature, but also has good robustness and
efficiency. Thus, OR-GCD allows an effective and efficient
global context verification of SIFT matches for copy detection.

2) A fast image similarity measurement strategy based on
random verification. To further improve efficiency for copy
detection, we also propose a fast similarity measurement
strategy based on random verification and show that this
strategy can accurately measure image similarities for copy
detection using the verification result obtained by verifying
only a small number of randomly selected SIFT matches.

3) The extended method for partial-duplicate image detec-
tion. To deal with the task of partial-duplicate image detection,
we also extend the proposed copy detection method by adding
a stage of potential duplicated region location after obtaining
initial SIFT matches between images.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III presents the proposed
copy detection method in detail. Section IV presents the
fast image similarity measurement strategy based on random
verification. Section V details the extended method for partial-
duplicate image detection. Section VI presents and discusses
the experimental results. Conclusions are drawn in Section VII.

II. RELATED WORK

Content-based copy detection is similar to near-duplicate
detection. Thus, in this section, we not only review the copy
detection literature, but also state-of-the-art near-duplication
detection methods.

In the literature, many copy detection methods based on
local features have been proposed [10], [20]–[23]. To the
best of our knowledge, these methods generally investigate
the local features, such as SIFT [24] and its extensions includ-
ing principal component analysis on SIFT (PCA-SIFT) [25],
speeded-up robust feature (SURF) [26], and multi-scale
SIFT [10] for detecting image copies. These local features

have shown good robustness to various common types of
copy attacks, such as rotation, scaling, cropping, intensity
and contrast changes and noise addition. Therefore, these
methods perform well in detecting the copies generated by
those copy attacks. However, the robustness generally comes
at the expense of detection efficiency, because matching these
local features between images is usually computationally
intensive due to their high-dimensionality. More importantly,
since local features are extracted from small local patches
and thus encode less spatial context information, they have
limited discriminability. As a result, many false matches will
occur when there are many visually similar local patches,
typically found between the similar images [20]. As a result,
some similar images will be falsely detected as image copies,
which will significantly affect detection accuracy. Recently, the
BOW model has become popular for large-scale content-based
image retrieval. It quantizes the extracted local features into
visual words and then indexes images using an inverted file
structure for image search. To improve efficiency, many copy
detection methods relying on the BOW model have been
proposed [27]–[29]. Although they can achieve efficiency,
more false matches will occur between similar images, since
the BOW quantization errors will further degrade the discrim-
inability of local features. Consequently, the accuracy of copy
detection will be further decreased.

State-of-the-art near-duplicate detection methods such
as [7], [12], [16], [17], [30]–[34] also rely on the BOW
model. To reduce false matches for near-duplicate detection,
two main kinds of strategies have been proposed: incorporating
spatial information into image representation and geometric
consistency verification.

Incorporating spatial information entails encoding spa-
tial information around local features into image repre-
sentation to improve the discriminability of local features.
In [7], Zhang et al. propose a geometry-preserving visual
phrase (GVP) to encode more spatial information, which are
the co-occurrences and spatial layout of local features. In [31],
Wang et al. employ the statistics in the local neighborhood of
each local feature as its spatial context to improve its discrim-
inability. In [32], Zheng et al. propose a multi-IDF scheme
to embed the binary color information of local features into
the inverted index file. In [33], Yao et al. design a contextual
descriptor that encodes the relative spatial relationship between
each local feature and its neighbor features to strengthen the
discriminability of local features. Since the spatial informa-
tion within local areas instead of the whole image plane is
considered, the above strategies do not encode enough spatial
information, resulting in limited discriminability improvement.
Inspired by shape context [35], [36], Mortensen et al. [37]
augment SIFT feature with a high-dimensional global context
vector, which describes curvilinear shape information from
a much larger neighborhood. In [38], Liu et al. propose an
improved global context vector to enhance the discriminability
of SIFT features. However, these global context vectors are not
fully scale invariant and are very sensitive to cropping attacks.
Therefore, these methods cannot detect the images after scal-
ing and cropping attacks. Moreover, since high-dimensional
global context vectors are extracted for each SIFT feature
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Fig. 4. The framework of our copy detection method.

before feature matching, these methods make image repre-
sentation very complex, resulting in high computational cost
in the steps of feature extraction and matching.

The second kind of strategy focuses on implementing
geometric verification to filter false matches. Different from
the first kind, it does not change the image representation
or image-matching algorithm. Instead, local matches are first
obtained between images, and the geometric consistency
among the matches is then utilized for verification of these
matches to filter the false matches that are geometrically
inconsistent. Since the number of matched features is much
smaller than that of extracted features in images, these
strategies can be quite efficient for near-duplication detec-
tion [16], [17]. In [12], Jegou et al. propose a weak geometric
consistency (WGC) scheme. It verifies the consistency of the
angle and scale parameters for matched features to filter the
false matches. With an additional assumption that the cor-
rect matches also follow consistent translation transformation,
Zhao et al. [7] improve the WGC by adding translation infor-
mation. To fully capture geometric relationships of local fea-
tures, a global geometric consistency verification strategy, i.e.,
RANSAC [13]–[15], is very popular for this task. It randomly
samples several pairs of local matches many times to estimate
the affine transformations between images, and then verifies
the geometric consistency of local matches to filter out those
that are false. However, RANSAC can only be applied to
a small number of top-ranked candidate images due to its
high computational complexity. In [16], Zhou et al. propose a
spatial coding method to remove false matches based on spatial
maps. Unfortunately, it cannot handle rotation transformation
well. To address this problem, Zhou et al. [17] propose a
novel geometric coding scheme, which describes the geometric
relationships among SIFT features in three geo-maps for
verification of SIFT matches. It can efficiently and effectively
to filter the false matches that are geometrically inconsistent
under rotation and scaling transformations, partial-occlusion,
and background clutter. Note that all of those strategies are
originally designed for near-duplication but not for copy
detection. Many false matches between similar images may
satisfy geometric consistency, and thus they cannot be removed
effectively by those strategies. Therefore, if those strategies
are directly applied to copy detection, it will result in limited
improvement of accuracy.

Instead of resorting to the geometric consistency informa-
tion, our motivation is to design an effective and efficient ver-
ification scheme by exploring the global context information
of matched local features. In our previous work [18], a convex
region-based global context (CRGC) feature is proposed for
SIFT match verification. However, it is extracted by directly
using the histogram of oriented gradients (HOG) [19], which
has high-dimensionality and does not preserve enough spatial
information. Consequently, the CRGC feature is not discrim-
inative and efficient enough for local match verification. This
paper proposes a novel global context descriptor, i.e., OR-GCD
for the verification of local matches to remove false matches.
The OR-GCD not only encodes the global context information
of local features but also has good robustness and efficiency,
which ensures that false matches can be effectively and effi-
ciently identified and removed. Thus, our method can achieve
desirable performances in both accuracy and efficiency for
copy detection.

III. THE PROPOSED COPY DETECTION METHOD

The framework of our copy detection method is shown
in Fig. 4. It consists of three main components, which are
SIFT feature matching, OR-GCD extraction, and verification
of SIFT matches. The main contributions of our method lie
in the later two components. In Section III-A, we match SIFT
features between images based on the BOW quantization to
obtain initial SIFT matches. In Section III-B, we extract the
OR-GCD to describe the global context of each matched
SIFT feature. In Section III-C, the matched SIFT features are
verified by comparing their corresponding OR-GCDs, and then
the verification result can be further used to measure image
similarities for copy detection.

A. SIFT Feature Matching

We extract hundreds of SIFT features from each image by
using the SIFT algorithm [24]. The extracted SIFT features are
then efficiently matched between images based on the BOW
quantization, which is detailed as follows.

A visual codebook including a lot of visual words is first
generated through clustering a sample set of SIFT features
by the hierarchical visual vocabulary tree approach [39].
Then, each extracted SIFT feature is quantized to its nearest
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Fig. 5. The illustration of overlapping region construction. (a) The construction between an original image and its copy. (b) The construction between the
two similar images.

visual word. Next, these SIFT features are indexed according
to their visual words to obtain an inverted index file, in which
each indexed feature records the ID of the image to which it
belongs, and its dominant orientation φ, characteristic scale s,
and coordinates (x, y). Note that these information will be
further used to extract the OR-GCDs for verification of SIFT
matches. By using the inverted index file, any two SIFT
features from two images quantized to the same visual word
are regarded as a local match between the two images.

B. OR-GCD Extraction

After the previous stage, we can obtain the initial SIFT
matches between images. As indicated in Section I, exploring
the global context of matched SIFT features for verification of
SIFT matches might be a feasible way to identify and remove
the false ones.

Therefore, a corresponding global context descriptor of
each matched feature is required to be extracted for the
verification. An ideal global context descriptor is expected to
encode rich global context information of a matched feature,
so that the false matches can be easily distinguished from
the correct matches. Meanwhile, the descriptor should be
robust to a variety of possible copy attacks, such as rotation,
scaling, cropping, intensity and contrast changes, and noise
addition, so that the false matches can be easily identified
and removed under these attacks. Moreover, it should also
have high efficiency, i.e., extraction and comparison should be
efficient to compute, so that the verification process is less
computationally complex.

To meet the above requirements, we propose a novel global
context descriptor, i.e., OR-GCD. Different from the tradi-
tional global context vectors [37], [38], which are directly
extracted from the whole image region, for each pair of
matched SIFT features between two images we use their three
property values—the dominant orientations, characteristic
scale, and coordinates—to construct the overlapping regions
between the images. Then, we generate a pair of OR-GCDs
corresponding to the two matched features by extracting and
concatenating two kinds of binary vectors—one based on
intensities and the other on gradients from the constructed
overlapping regions. The extraction of OR-GCD is detailed as
follows.

1) The Construction of the Overlapping Regions Between
Images: To achieve robustness to the common geometric
transformations including rotation, scaling, and cropping, we

construct the overlapping regions of images for the global
context descriptor extraction. For each pair of matched SIFT
features of two images, we use their property values—the
dominant orientations and characteristic scales—to adjust the
orientations and scales of the two images to make them
consistent. We then employ their keypoint coordinates to
compute the overlapping regions between the images. The
examples in Fig. 5 illustrate the construction of overlapping
regions.

Suppose that the two matched SIFT features fA and fB

are a correct match between an original image A and its
copy B , which is generated by transforming image A with a
combination of the three geometric attacks, which are rotation,
scaling, and cropping. We denote the corresponding keypoints
of the two features as pA and pB , their orientation angles as
φA and φB , and scales as sA and sB . In Fig. 5, the arrows
are used to represent the property values of the features. More
specifically, the origin positions of the arrows represent the
keypoint positions, and the lengths and orientations of the
arrows indicate the dominant orientations and characteristic
scales of the features, respectively.

From [24], we know that as SIFT features are extracted
based on image properties, their property values—the domi-
nant orientations and characteristic scales—change covariantly
with the rotation and scaling transformations. Therefore, we
can adjust the orientations and scales of images A and B
to be consistent according to the dominant orientations and
characteristic scales of their features fA and fB . Taking fB

as a reference feature and setting the keypoint coordinates of
feature fA as the origin in image A, we first rotate image A
by aligning the orientation of fA to be the same as that of fB .
Then, the scale of image A is adjusted to be the same as
that of image B by multiplying with the ratio between scales
sB and sA . If scale sA is larger than scale sB , the image
is smoothed by a Gaussian kernel before the transformation,
where the standard derivation of Gaussian used for smoothing
is set to be the ratio of sA and sB [24]. The transformation
can be represented by

X ′
A = sB/sA

(
cos(φB − φA) − sin(φB − φA)
sin(φB − φA) cos(φB − φA)

)
X A (1)

where X A denotes the coordinates of any pixel point in
image A, and X ′

A is the adjusted coordinates of the point
in the transformed image. Consequently, the orientations and
scales of image A are adjusted to be consistent with those of
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image B, as shown in Fig. 5(a). In the following, the images
are the transformed ones and the coordinates of all of their
pixel points are the adjusted coordinates.

Then, by using the coordinates of keypoints, we compute
the overlapping regions between the images. For the pair of
matched SIFT features fA and fB between images A and B ,
we first align the coordinates of keypoints pA and pB . Then
we compute the overlapping regions of the two images by

RA = {
pi

A ∈ A : I
(

pi
A

)
> 0 & I

(
pi

B

)
> 0

}
(2)

RB = {
pi

B ∈ B : I
(

pi
A

)
> 0 & I

(
pi

B

)
> 0

}
(3)

where I (pi
A) and I (pi

B) are intensities of the pixel
points pi

A and pi
B , and RA and RB are the overlapping regions

of images A and B , respectively. Since the overlapping regions
are the common regions between the two images, they can
cover the same image content under cropping transformation.

After the above steps, as features fA and fB are a correct
match between the original image A and its copy B , the
orientations, scales, and content of the constructed overlapping
regions can be consistent. That enables us to extract the cor-
responding global context descriptors of the matched features
that are robust to the geometric transformations including scal-
ing, rotation, cropping, and their combinations. From Fig. 5(b),
it can be also observed that, for the falsely matched features
fA and fC between image A and its similar image C , the
content of constructed overlapping regions of the two similar
images cannot be adjusted to be consistent in the same manner.
Thus, the corresponding global context descriptors of the two
features will be different to some extent, which is helpful in
identifying the match as false.

2) Generation of OR-GCD: Similar to the shape context
vector [35]–[37], OR-GCD is generated using the histograms
created in the polar coordinate system. The main difference is
that we create the histograms from the constructed overlapping
regions instead of the whole image regions for OR-GCD
generation.

Note that the overlapping regions might be irregular in shape
after the above construction procedure. To facilitate OR-GCD
generation, we extend each overlapping region to a rectangle
region through padding the black pixels whose intensities are
equal to 0, and then normalize it to the square region with a
certain size, as shown in Fig. 6(b). As all of the query images
used in our experimental section are resized to no larger than
400×400, the size of square regions is set as 400×400.

Next, we create the intensity and gradient histograms in the
polar coordinate system, and then extract two kinds of binary
vectors—an intensity-based vector and a gradient-based vector
—from the two histograms, respectively. The two extracted
vectors can be further used to form an OR-GCD. The intensity
histogram denoted as HI is created by accumulating the
intensities of the pixels into M × N bins. To create the
histogram, we set the widths of M bins at the radial direction
and N bins at the azimuthal direction in the polar coordinate
system by

wri = (

√
i − √

i − 1√
M

) × r (4)

Fig. 6. The generation of the binary vector of each histogram bin.
(a) An overlapping region. (b) Its normalized version overlaid with an
intensity histogram, which is created by accumulating the pixel intensities into
4 × 8 bins. (c) A bin and its eight neighbors selected from the intensity
histogram, and a four-dimensional binary vector generated by comparing the
intensity differences of these bins.

wa j = 2π

N
(5)

Where r is equal to half of the width of the square region,
i.e., 200, and wri and wa j represent the width of i -th
bin in the radial direction and that of j -th bin in the
azimuth direction, respectively. That can ensure that all of the
M×N bins are with the same size, which is equal to πr2/M N .
The parameters M and N are set according to our experimental
section. The example of a created intensity histogram with
4 × 8 bins in the polar coordinates is shown in Fig. 7(b).

Then, we use the intensity differences of the neighbor-
ing bins of each bin to extract the intensity-based vector.
For each bin b(i, j ), its intensity is denoted as I(i, j ), and
the intensities of its eight neighboring bins are denoted as
(I 1

(i, j ), I 2
(i, j ), · · · , I 8

(i, j ) ). For a bin located at the edge of the
histogram, some of its neighbors do not exist. Thus their
intensities are set to zero. To achieve the invariance to the
linear intensity and gradient changes, similar to CS-LBP [40],
we compute the signs of intensity differences of the center-
symmetric bins to form a four-dimensional binary vector
represented as V(i, j ) = (v1, v2, v3, v4), as shown in Fig. 6(c),
where ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1 = s(I 5
(i, j ) − I 1

(i, j ))

v2 = s(I 6
(i, j ) − I 2

(i, j ))

v3 = s(I 7
(i, j ) − I 3

(i, j ))

v4 = s(I 8
(i, j ) − I 4

(i, j ))

(6)

and

s(x) =
{

1, i f x ≥ 0

0, i f x < 0
(7)

Then, we can concatenate the four-dimensional binary vector
of each bin to form the final intensity-based vector, denoted
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Fig. 7. Examples of partial-duplicate images. (a) is an original image.
(b)-(d) are partial duplicates of the original image.

as I V = (I v1, I v2, , . . . , I vM×N×4), which has the length
of M × N × 4.

The extraction of the gradient-based vector is quite similar
to that of the intensity vector. The only difference is that,
instead of employing the intensities, we create the gradient
histogram HG by accumulating the gradient magnitudes of the
pixels into the bins, and compute the signs of gradient mag-
nitude differences to form the gradient-based vector, denoted
as GV = (Gv1, Gv2, . . . , GvM×N×4). Finally, we concatenate
the two vectors to form a M × N × 8 dimensional OR-GCD,
represented as D = (I V , GV ).

3) Property Analysis of OR-GCD:
a) Discriminability: As analyzed in Section I, since the

global context of falsely matched features is usually different
to some extent, global context information is quite helpful
in identifying false matches. Thus, the overlapping regions
constructed between images, which nearly cover the whole
image region and contain the global context information of
matched features, are suitable for extracting discriminative
global context descriptor. In our method, we create the inten-
sity and gradient histograms from the overlapping regions in
the polar coordinate system, and then use the two histograms
to extract the global context descriptor, i.e., OR-GCD. Since
these histograms contain the intensity and gradient information
of the histogram bins, and also preserve their relative spatial
positions, OR-GCD can encode relatively rich spatial context
information, and thus has high discriminability.

b) Robustness: Instead of directly employing the whole
image region, we construct the overlapping regions of images
for global context descriptor extraction. For each pair of
matched SIFT features, their three properties are used to
construct the overlapping regions. If the two features are a
correct match, the scale, orientation, and content of the con-
structed overlapping regions between images are consistent.
Therefore, OR-GCD can be invariant to the common geometric
transformations, such as rotation, scaling, cropping, and their
combinations.

OR-GCD also has the invariance to linear intensity and
contrast changes for the following reasons. A linear change in
image intensity in which the intensity of each pixel is added
with a constant will not change the intensity differences of
the histogram bins. Also, it will not change the gradients as
they are computed from intensity differences, and thus the gra-
dient differences of the histogram bins also remain the same.
Therefore, OR-GCD is invariant to the linear intensity change,
as it is computed using the signs of intensity and gradient
differences of histogram bins. A linear contrast change will

make the intensity and gradient of each pixel to be multiplied
by a constant. The intensity and contrast differences of the
histogram bins will be also be multiplied by the same constant.
However, the signs of intensity and contrast differences will
not be affected. Therefore, OR-GCD is also invariant to linear
contrast change.

In addition, the non-linear intensity and contrast changes
and the noise-like attacks, such as Gaussian blurring, compres-
sion, and noise addition, will significantly change the intensity
and gradient differences of individual pixels. However, instead
of employing the intensities and gradients of individual pixels,
we accumulate the intensities and gradients of the pixels
into histogram bins and use the signs of their intensity and
gradient differences for the OR-GCD extraction. The effect
caused by the non-linear intensity and contrast changes will
be effectively reduced in this manner. As a result, OR-GCD
has good robustness to those attacks.

c) Efficiency: An OR-GCD is extracted for each matched
feature instead of each extracted feature. Note that the number
of matched features is much smaller than that of all the
extracted features. In addition, OR-GCD is extracted in the
spatial domain by only utilizing image intensities and gradi-
ents. Therefore, the extraction of OR-GCD can be efficient. On
the other hand, according to our experimental part, OR-GCD
is only a 256 bit vector, when M and N are set appropriately
(M = 4, and N = 8). Thus, OR-GCD has good compactness,
so that the OR-GCD comparison is also efficient.

All of the above properties of OR-GCD ensure that the
verification of SIFT matches can be implemented effectively
and efficiently.

C. Verification of SIFT Matches

In this subsection, we verify each pair of matched SIFT
features by comparing their corresponding OR-GCDs, and
then use the verification result to measure image similarities
to implement copy detection.

For two matched features fA and fB , their corresponding
OR-GCDs are represented as D( fA) = (I V ( fA), GV ( fA))
and D( fB ) = (I V ( fB), GV ( fB)). We compute their distance
Dis(D( fA), D( fB )) and determine whether they are a correct
match or not by

Dis(D( fA), D( fB )) = α

∑M×N×4
i=1 |Ivi ( fA) − Ivi ( fB)|

M × N × 4

+ (1 − α)

∑M×N×4
i=1 |Gvi ( fA) − Gvi ( fB)|

M × N × 4
(8)

Dis(D( fA), D( fB )) ≤ DisTH (9)

where Ivi ( fA), Gvi ( fA), Ivi ( fB), and Gvi ( fB) are i -th ele-
ments of I V ( fA), GV ( fA), I V ( fB), and GV ( fB), respec-
tively, α is a weighting factor, and DisTH is a predefined
threshold. The two parameters are experimentally set.
If Dis(D( fA), D( fB )) is no greater than DisTH , fA and fB

can be determined as a correct match; otherwise, they are
regarded as a false match and then are removed.

After removing the false matches, we measure the image
similarities for copy detection. The traditional cardinality-
based similarity measurement strategy has been widely
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adopted in many copy detection and near-duplicate detection
methods [16], [17], [20], [33], [34]. This strategy directly uses
the number of matches judged to be correct, i.e., the number
of the surviving matches, as the image similarity. However,
since the number of these matches is often dependent on
image scene complexity, this strategy usually suffers from the
sensitivity problem. To avoid this problem, we use the ratio
of the number of the matches judged to be correct as the
image similarity for copy detection. Let the number of the
matches judged to be correct between a given query (original)
image Q and a test image T be n(Q, T ), and the number of
all the initial matches between the two images be N(Q, T ).
The image similarity between the two images can be measured
by the ratio of n(Q, T ) and N(Q, T ), which is in the range
of 0 to 1. Then, we can determine the test image T is a copy
of the query image Q, if

n(Q, T )

N(Q, T )
≥ RatTH (10)

where RatTH is a preset threshold that ranges from 0 to 1.

IV. FAST IMAGE SIMILARITY MEASUREMENT BASED

ON RANDOM VERIFICATION

In the process of verification of SIFT matches, both the
extraction and comparison of OR-GCDs have low compu-
tational complexity. However, if we verify all initial SIFT
matches and then use the verification result to measure image
similarities, the detection efficiency will be affected to some
extent. In this section, we propose a fast image similarity
measurement based on random verification, which verifies a
certain small number of randomly selected SIFT matches and
then uses the verification result to measure image similarity.
Also, we theoretically prove that the proposed similarity mea-
surement strategy can significantly improve efficiency while
maintaining high accuracy for copy detection.

A. The Fast Image Similarity Measurement

Suppose the set of SIFT matches between a given
query (original) image Q and a test image T is S(Q, T ).
We randomly select a SIFT match from the set S(Q, T ) and
extract the two corresponding OR-GCDs. We then compare
them to verify the correctness of the match by Eq. (8) and (9).
This process is iterated a certain number of times, which is
denoted as N R(Q, T ). Consequently, N R(Q, T ) matches are
randomly selected from the set S(Q, T ) in total and they are
verified.

Then, we use the ratio between the number of randomly
selected matches judged to be correct, denoted as nr(Q, T ),
and that of all the randomly selected matches, i.e., N R(Q, T ),
as the similarity between the two images. The range of the
similarity is from 0 to 1. Similarly, we can determine test
image T is a copy of query image Q, if

nr(Q, T )

N R(Q, T )
≥ RatTH (11)

where RatTH is a preset threshold that also ranges from 0 to 1.

B. Property Analysis of Fast Similarity Measurement

The property analysis of the fast similarity measurement
is given as follows. By Eq. (8) and (9), we can determine
whether two matched SIFT features is a correct match or not.
For the SIFT matches between any two image copies, i.e.,
one is a copy of the other, we suppose the probability that
a match is judged to be correct is p1. For the SIFT matches
between any two non-copies, we suppose the probability that
a match is judged to be correct is p2. After verifying NR
randomly selected matches between images, two conclusions
can be obtained as follows.

If the two images are copies, the number of the randomly
selected matches that are judged to be correct, denoted as nr1,
will satisfy a binomial distribution denoted as B1(N R, p1).
The probability density function (PDF) of B1(N R, p1) can be
represented as

pd f1(nr1) =
(

N R
nr1

)
pnr1

1 (1 − p1)
N R−nr1 (12)

If the two images are non-copies of each other, the number
of the randomly selected matches that judged to be correct,
denoted as nr2, will also satisfy a binomial distribution
denoted as B2(N R, p2). The PDF of B2(N R, p2) can be
represented as

pd f2(nr2) =
(

N R
nr2

)
pnr2

2 (1 − p2)
N R−nr2 (13)

To obtain p1 and p2, 7,500 pairs of image copies and
4M pairs of non-copies are chosen from the Holidays
dataset [41], which is used in our experiments. Then, for
each SIFT match, we extract and compare the corresponding
OR-GCDs to verify its correctness, where the parameters—the
number of histogram bins M × N , the weighting factor α, and
the threshold DisTH —are set according to our experimental
section. As a result, p1 and p2 are estimated to be 0.92 and
0.24, respectively.

According to the estimated p1 and p2, if we use the
proposed image similarity measurement strategy for copy
detection, we can compute the true positive rate (TPR) PT

and false positive rate (FPR) PF by

PT =
∑N R

N R×RatTH

(
N R
nr1

)
pnr1

1 (1 − p1)
N R−nr1 (14)

PF =
∑N R

N R×RatTH

(
N R
nr2

)
pnr2

2 (1 − p2)
N R−nr2 (15)

Table I lists the computed PT and PF values when we
use different values of NR and RatTH . From Table I, we
can see that when N R = 15 and RatTH = 0.7, we can
obtain satisfactory true positive and false positive rates, i.e.,
0.9950 and 0.0001. This demonstrates that our strategy can
theoretically obtain a high level of accuracy by verifying only
a small number of randomly selected SIFT matches for copy
detection.

Thus, the proposed fast similarity measurement strategy
based on random verification can significantly improve the
efficiency, while maintaining the high accuracy levels for our
copy detection method. That can be also illustrated by the
experimental results in Section VI-C.
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TABLE I

THE PT AND PF VALUES FOR DIFFERENT NR AND RatTH

V. THE EXTENDED METHOD FOR PARTIAL-DUPLICATE

IMAGE DETECTION

Partial-duplicate images are the images sharing some dupli-
cated local regions, which are cropped from the same original
images with some copy attacks [16], [17]. Thus, these images
can be viewed as special cases of image copies. Fig. 7 shows
some examples of partial duplicates of a given original image.
From this figure, we can see that the partial-duplicate images
share some duplicated local regions but they have different
global appearances. As a result, the corresponding OR-GCDs
of matched local features between partial-duplicate images
will be quite different. Thus, the proposed copy detection
cannot be directly applied to partial-duplicate image detection.

To deal with the task of partial-duplicate image detec-
tion, we extend our method by adding a stage of potential
duplicated region location after obtaining the initial SIFT
matches between images. In this stage, a strict geometric
verification (SGV) strategy is proposed to effectively filter
the geometrically inconsistent matches between images, and
then the coordinates of the remaining matches are used for
potential duplicated region location. Finally, by cropping the
located regions and treating them as full-size images, the
proposed copy detection method is implemented to further
confirm whether the located regions are duplicated regions
of each other to obtain the partial-duplicate image detection
result.

Most of the existing geometric verification strategies, such
as RANSAC [13]–[15] and geometric coding [17], only utilize
the relative spatial positions of local features to check the
geometric consistency of local matches. Thus, they are not
strict enough to filter geometrically inconsistent matches. As a
result, if we use the coordinates of the remaining matches
to locate duplicated regions, the location accuracy will be
affected. To address this issue, we propose the SGV strategy,
which not only considers the relative positions of local features
but also their characteristic relationships to filter geometrically
inconsistent matches for potential duplicated region location.
The SGV strategy is detailed as follows.

As shown in Fig. 8(a), the coordinates, scale, and dominant
orientation of SIFT feature f in a given image are denoted
as (x, y), s, and φ, respectively. By setting each matched SIFT
feature as a reference feature fr , we extract four geometric
context features of fr to describe the relative positions and
characteristic relationships between the reference feature fr

and each of the other features fi . These features are the
relative position pri = √

(xi − xr )2 + (yi − yr )2/sr in radial

Fig. 8. The potential duplicated region location. (a) Four geometric context
features of feature fr , which describe the relative positions and characteristic
relationships between a reference feature fr and each of the other features
fi in a given image. (b) The remaining features after the strict geometric
verification. (c) The located region constructed using the coordinates of these
features.

direction, the relative position pai = | arctan [(yi − yr )/
(xi − xr )] − φr | in azimuthal direction, the scale relation-
ship sri = si/sr , and the dominant orientation relationship
ori = |φi −φr |. Consequently, we obtain 4×(N −1) geometric
context features of fr . Where N represents the total number
of all matches between the two images.

We denote the initially matched features of fr and fi in
a database image as f ′

r and f ′
i , respectively. In the same

manner, we also compute four geometric context features
between the reference feature f ′

r and each of other features f ′
i .

These features are denoted as pr ′
i , pa′

i , sr ′
i , and or ′

i . As a
result, 4 × (N − 1) geometric context features of f ′

r are also
generated.

Then, we measure inconsistency between the features
fr and f ′

r , denoted as IC( fr , f ′
r ), by computing the nor-

malized mean difference between all of their corresponding
geometric context features according to Eq. (16).

IC( fr , f ′
r ) = 1

4(N − 1)

N−1∑
i=1

(
|pri − pr ′

i |
|pri + pr ′

i |
+ |pai − pa′

i |
|pai + pa′

i |

+ |sri − sr ′
i |

|sri + sr ′
i |

+ |ori − or ′
i |

|ori + or ′
i |

) (16)

Note that, if all the matches are true positives, IC( fr , f ′
r )

will be close to zero. If fr and f ′
r are a geometrically inconsis-

tent match, IC( fr , f ′
r ) will be a relatively large value. Similar

to [17], we find the match with the highest inconsistency
value, and remove it if its inconsistency value is larger than a
preset threshold ICTH . We iterate this process until the highest
inconsistency value of the remaining matches is no larger than
the threshold.

In most cases the meaningful objects are duplicated between
images, and thus the duplicated regions are usually not with a
regular shape. Thus, to be more close to the duplicated object
shape, by the algorithm of convex hull computation [42],
we construct a convex region using the coordinates of the
remaining matches to obtain the potential duplicated regions,
as shown in Fig. 8(c). When two images have multiple
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duplicated regions, which usually suffer different scale and
rotation transformations, we can locate the most dominant
region.

It is worth noting that some similar objects, which are
not partial duplicates, may have some geometric consistency
matches, and they will be located as potential duplicated
regions between images. Thus, we crop the located regions
from images and extend them to rectangle regions through
padding the black pixels whose intensities are equal to 0. Then,
by treating them as full-size images, we adopt the proposed
copy detection method to further confirm whether the located
regions are duplicates of each other to obtain the final partial
duplicate detection result.

VI. EXPERIMENTS

In this section, first, the datasets and evaluation crite-
ria adopted in our experiments are introduced. Second, the
parameters—the number of histogram bins M×N , the weight-
ing factor α, and the threshold DisTH —are experimentally
determined. Third, the validity of the proposed fast image simi-
larity measurement strategy is evaluated and its performance is
compared to that of the traditional cardinality-based similarity
measurement strategy. Finally, the performances of our method
are tested and compared with those of state-of-the-art meth-
ods for the tasks of copy detection and partial duplicate
detection.

A. Data Set and Evaluation Criteria

In our experiments, we adopt four datasets: Holidays
dataset [41], Copydays dataset [43], a challenging ground-truth
dataset [44], and DupImage dataset [45].

1) Holidays Dataset: This dataset is originally composed
of 1,491 personal holiday photos. In this dataset, there are
500 image groups, each of which represents a distinct scene
or object. Each group consists of several similar images, which
are obtained by different capture conditions, such as different
acquisition time, viewpoints, and positions. To conduct exper-
iments on this dataset, we choose the first image of each group
as the query image and treat the rest similar images as non-
copies. All the 500 query images are modified by Stirmark
tool [46] using the 15 different copy attacks listed in Table II to
generate 7,500 copies, which are inserted into the dataset. As a
result, the dataset contains 8,491 test images, which include
7,500 copies and 991 similar images (non-copies).

2) Copydays Dataset: This dataset contains 3,212 images,
including 157 original images and 3,055 copies generated
by three kinds of copy attacks, including JPEG compression,
cropping and “strong”. For each original image, it has 9 copies
generated by JPEG compression with 9 different quality fac-
tors, 9 cropped versions generated by removing the image
surface from 10% to 80%, and 2 to 6 copies generated by
“strong” attacks, which includes a variety of manipulations
such as scanning, blurring, rotating, and their combinations.
We choose the 175 original images as query images for copy
detection.

TABLE II

THE 15 DIFFERENT IMAGE COPY ATTACKS

3) Challenging Ground-Truth Dataset: We built a challeng-
ing ground-truth dataset to further test the copy detection
performance of different methods. This dataset contains 10K
images from 500 image groups. In each image group, there are
20 similar images, which are captured from the same scene or
object but under slightly different capture conditions including
acquisition time, viewpoints, and positions. The first image of
each group is chosen as query image, and all the 500 query
images are modified by the 15 different copy attacks listed in
Table II to generate 7,500 copies, which are inserted into the
dataset. Note that the challenging ground-truth dataset contains
a lot of similar images, which are mixed together with the
copies. These images are non-copies but are quite similar to
the query images, which makes it challenging to successfully
identify the copies from the dataset. The first image of each
group is treated as query image.

4) DupImage Dataset: We use this dataset to test the
performances of different methods for partial duplicate detec-
tion. This dataset consists of 1,104 partial-duplicate images
downloaded from the networks, which are put into 33 groups.
In each group, images are partial duplicates of each other. For
partial-duplicate image detection, 100 representative images
are randomly selected from this dataset as queries.

The last three datasets are used to test performances of
different methods. However, their sizes are relatively small.
Thus, we download 1M Internet images, which is used as
distracting images, and add these images into each of these
datasets. To make SIFT feature extraction and matching more
efficient, all query images in the datasets are rescaled to no
larger than 400×400. In addition, we find that the percentage
of the image copies that have no fewer than 5 matched features
is up to 98.13%. Thus, to enhance efficiency of the verification
process, the candidate images that have fewer than 5 matched
features will be skipped. We adopt Mean Average Preci-
sion (MAP), which represents the average precision across all
different recall levels, to evaluate the detection performances
of different methods.

B. Parameter Determination

In our copy detection method, there are four important
parameters: M and N , which control the number of the bins
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TABLE III

THE EFFECTS OF M AND N WHEN DisTH = 0.27

of the created histograms; α, which is the weighting factor for
the computation of distance between OR-GCDs; and DisTH ,
which represents the distance threshold for judging whether
a SIFT match is correct or not. Note that, if the values of
M , N , and DisTH are too small or too large, it will cause an
imbalance between the robustness and the discriminability for
OR-GCD, and thus the performance of our method the will be
affected to some extent. Also, when the value of α is equal to
1 or 0, only the intensity-based vector or the gradient-based
vector in OR-GCD plays a role in copy detection, and thus
we cannot obtain the optimal detection performance. Thus,
we test several proper values for each of those parameters.
More specifically, we test 3 values (2, 4, and 8) for M , 4
values (4, 8, 16, and 32) for N , 3 values (0.27, 0.3, and 0.32)
for DisTH , and 5 values (0.1, 0.25, 0.5, 0.75, and 0.9) for α.
In this experiment, we set the size of visual codebook, i.e., the
number of visual words, as 50K to verify all the SIFT matches
between images, and use the ratio of the matches judged to be
correct as the image similarity for copy detection. We test the
effects of these parameters on the MAP values of our method
using the Holidays dataset.

However, if we use all of the combinations of these values
to find the optimal parameter setting, it is required to repeat
the experiment 3 × 4 × 3 × 5 times, which is too time-
consuming. According to the experimental setting of the SIFT
algorithm [24], we assume α is independent to the three
other parameters. Therefore, we set α to a default value, i.e.,
0.5, to test the other parameters and then fix the three other
parameters to test α.

The effects of M and N when using different values of
DisTH are illustrated in Table III to Table V. From these
tables, it is clear that larger M and N lead to better detection
performance. That is mainly because the created histograms
with a larger number of bins can encode more detailed global
context information, which makes OR-GCD more discrimi-
native. However, increasing M and N does not consistently
improve performance. That might be because a larger number
of histogram bins causes a smaller number of pixels in each
bin, which will make OR-GCD more sensitive to nosing-like
attacks such as Gaussian blurring, compression, and noise
addition.

The effects of DisTH can be also observed in
Table III to Table V. When DisTH is too small or too
large, the detection performance degrades. The main reason is
that when DisTH is too small, it causes many correct matches
to be detected as false, and when DisTH is too large, it
causes many false matches to be judged as correct. According

TABLE IV

THE EFFECTS OF M AND N WHEN DisTH = 0.3

TABLE V

THE EFFECTS OF M AND N WHEN DisTH = 0.32

Fig. 9. The effects of α when M = 4, N = 8 and DisTH = 0.3.

to these tables, when M , N , and DisTH are equal to 4,
8, and 0.3, respectively, we can obtain desirable detection
performance.

We test the effects of α by fixing the three other parameters
as the above values. Fig. 9 illustrates the effects of α. Accord-
ing to Eq. (8), larger α means the intensity-based vector of
OR-GCD plays a greater role in copy detection, while smaller
α indicates the gradient-based vector of OR-GCD has more
influence on copy detection. From Fig. 9, it can be observed
that α = 0.75 provides the best performance, i.e., 0.9793
MAP value. Therefore, we set α as 0.75 and the three other
parameters—M , N , and DisTH —as 4, 8, and 0.3, respectively,
in the following experiments.

C. Validity of Fast Image Similarity Measurement

After selecting the parameters, we test the validity of the
fast image similarity measurement strategy based on random
verification, and compare its performance with that of the
traditional cardinality-based similarity measurement strategy.

To this end, we verify different numbers of randomly
selected SIFT matches between images (5, 10, 15, and 20)
by the proposed global context verification scheme, and then
measure the image similarity using the ratio of the ran-
domly selected matches judged to be correct. We denote
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Fig. 10. The MAP values when verifying different numbers of matches.

Fig. 11. The average detection time when verifying different numbers of
matches.

the corresponding methods as RV(5)+RAT, RV(10)+RAT,
RV(15)+RAT, and RV(20)+RAT. Also, we verify all the initial
matches, and measure the image similarity using the ratio
value or the number of matches judged to be correct. The
two corresponding methods are denoted as VF(All)+RAT and
VF(All)+NM. Here, VF(All)+NM can be also regarded as the
method that uses the traditional cardinality-based strategy for
copy detection. Then, we test and compare the performances
of all of these methods for accuracy and efficiency. The
experiments are also conducted on the Holidays dataset, and
the size of visual codebook is set as 50K.

Fig. 10 shows the MAP values of these methods. As more
SIFT matches are verified for image similarity measurement,
the better detection accuracy is obtained. This indicates that
verifying more initial matches is helpful for performance
improvement. It is clear that RV(15)+RAT and RV(20)+RAT
achieve comparable performances with VF(All)+RAT, which
illustrates that it is unnecessary to verify all the matches
between images; desirable performance can be obtained by
verifying only a small number of matches. We also observe
that VF(All)+RAT outperforms VF(All)+NM. The main rea-
son is that using the ratio of the matches judged to be correct
for similarity measurement can avoid the sensitive problem of
the traditional cardinality-based strategy, since the ratio value
is independent of image scene complexity.

The average detection time of different methods are shown
in Fig. 11. It is clear that as more initial matches are
verified for similarity measurement, the time cost per query
image increases proportionally. However, the time costs of
RV(5)+RAT, RV(10)+RAT, RV(15)+RAT, and RV(20)+RAT
are significantly lower than those of VF(All)+RAT and
VF(All)+NM. This is because the four methods only need to
verify a small number of matches, far smaller than that of all

Fig. 12. The MAP values of different methods on the Copydays dataset.

the initial matches. As indicated in Fig. 10 and Fig. 11, when
we use RV(15)+RAT for copy detection, a good trade-off
between accuracy and efficiency can be obtained, i.e., 0.9777
MAP value and 0.453 second per query on average. Therefore,
the proposed similarity measurement strategy can significantly
improve efficiency while maintaining high accuracy for copy
detection. In the following experiments, we verify 15 randomly
selected matches, and use the ratio of the matches judged to
be correct as image similarity for copy detection.

D. Experiments on Copy Detection

In this subsection, we test our method on the Copydays
dataset and our challenging ground-truth dataset, and make
comparisons with the four other methods in the aspects of both
accuracy and efficiency for copy detection. These methods are
listed as follows.

(1) Baseline: The baseline is the method based on the
BOW quantization. It obtains initial SIFT matches between
images by the steps described in Section III-A, and then uses
the number of these matches as image similarity for copy
detection.

(2) RANSAC: After obtaining initial SIFT matches based
on the BOW quantization, this method adopts a variant of
RANSAC algorithm [14] as used in [15] to verify SIFT
matches and to identify and remove false matches. The number
of matches judged to be correct, i.e., surviving matches, is used
as image similarity for copy detection.

(3) Geometric coding: Different from RANSAC, this
method adopts the geometric coding algorithm [17] for the
verification of SIFT matches to remove the false matches that
are geometrically inconsistent.

(4) CRGC-based version and (5) OR-GCD-based version of
our method: To compare the performances of our method when
using two different global context features, i.e., the CRGC
feature proposed in our previous work [18] and OR-GCD,
we test two corresponding versions of our method, denoted
as CRGC-based version and OR-GCD-based version for copy
detection.

We adopt different sizes of visual codebook, i.e., 300K,
500K, 800K and 1M to test the detection performances of
those methods. The parameters of the first three methods and
the CRGC feature are set according to the suggestion in the
corresponding papers.

Fig. 12 and Fig. 13 show the MAP values of these methods
on the two datasets, respectively. It is clear that all of these
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Fig. 13. The MAP values of different methods on the challenging
ground-truth dataset.

Fig. 14. The average detection time of different methods.

methods perform better on the Copydays dataset than on
the challenging ground-truth dataset. That is mainly because
the challenging ground-truth dataset contains many similar
images, which are hard to be distinguished from image copies.
From the two figures, we can also see that OR-GCD-based ver-
sion achieves the highest accuracy among all of these methods.
OR-GCD-based version outperforms RANSAC and Geomet-
ric coding, mainly because it explores the global context
information for verification of SIFT matches, which is more
effective for filtering false matches for copy detection than the
geometric consistency information among SIFT matches. Also,
OR-GCD-based version performs better than CRGC-based
version. That is mainly because OR-GCD is more discrimina-
tive than CRGC feature, since OR-GCD encodes relatively rich
spatial information. The baseline method performs worse than
all of the other methods, because the baseline method does
not make any extra efforts to reduce the false matches between
images. In addition, when using a smaller visual codebook, the
accuracy of the baseline method decreases. The main reason is
fewer visual words lead to more quantization errors. However,
the performances of the other methods are better when using
a smaller visual codebook. That might be because the features
extracted from image copies are more likely to be quantized
to the same visual word. Although more false matches will
occur at the same time, a considerable number of them can
be identified and removed by the verification process.

The average time costs of these methods on the two datasets
are shown in Fig. 14. It can be observed that the efficiency of
OR-GCD-based version is comparable to that of the baseline
method and higher than those of the four other methods.
That is the case for the following reasons: 1) the extraction

Fig. 15. Detection results of different methods for a same query. The images
that are falsely detected as copies are highlighted by color boxes.

and comparison of OR-GCDs are quite efficient due to the
good efficiency of OR-GCDs; 2) since only a small number
of SIFT matches need to be verified, a small number of
OR-GCDs corresponding to the matched features need to be
extracted. Thus, OR-GCD-based version requires only a little
extra computation cost for verification of SIFT matches. The
average time cost of RANSAC is highest, because estimating
an optimal affine transformation model for filtering false
matches is a time-consuming process. In addition, when using
larger visual codebook the average time cost of the baseline
method increases slightly. That is because a larger number of
visual words lead to more time cost in feature quantization.
However, as the size of the visual codebook increases, the
average time costs of the other methods decrease. The main
reason is that fewer features are quantized to the same visual
word, resulting in less time cost in the verification process.

Fig. 15 presents an example of the detection results of
these methods on challenging ground-truth dataset. For the
same query, the ninth to fifteenth images detected by different
methods are shown in this figure. Although there are a lot
of similar images in the dataset, our method, i.e., OR-GCD-
based version, successfully detects all the copies generated by
a variety of possible copy attacks. The color boxes highlight
the similar images that the other methods falsely detect as
copies.

As indicated in Fig. 12 and Fig. 13, when the size of visual
codebook is equal to 1M, the MAP values of OR-GCD-based
version on the two datasets are 0.9767 and 0.9692,
respectively, which are significantly higher than those of the
other methods. From Fig.14, the average time cost on the two
datasets is only 0.4014 second, which is slightly higher than
that of the baseline method. In conclusion, our method can
achieve higher accuracy than all of the other methods with
comparable efficiency to the baseline method.

E. Experiments on Partial-Duplicate Image Detection

In our extended method, the potential duplicated region
location is a key stage for partial-duplicate image detection.
Thus, we first test the performance of the proposed location
method, named as SVC-based location method, and compare
with those of two other location methods. The two methods
are denoted as RANSAC-based and Geometric coding-based
location methods. They adopt RANSAC [14] and geometric
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Fig. 16. The precision and recall rates of different location methods.

coding [17] strategies to filter geometrically inconsistent SIFT
matches, respectively, and then both of them locate potential
duplicated regions in the manner described in Section V. The
parameters of RANSAC and geometric coding strategies used
in the two location methods are set according to the suggestion
in the corresponding papers. The size of visual codebook is
set to 1M. Since at least three matches are required to locate
the regions between images, the images that have less than
three remaining matched features will be skipped.

We randomly choose 2,000 pairs of partial-duplicate images
from the DupImage dataset to test the location performances
of different methods. We adopt the recall rate and the precision
rate to evaluate the location performances of different methods.
Let Rl be the located region, and Ra actual duplicated region.
At a certain threshold τ , the precision rate and the recall rate
are defined as follows:

Pr ecision(τ ) = Rl ∩ Ra

Rl
(17)

Recall(τ ) = Rl ∩ Ra

Ra
(18)

A good region location method is expected to have high
precision rate, so that the content of the corresponding located
regions of a pair of partial-duplicate images can be almost
consistent and thus the robustness of the OR-GCDs extracted
from the regions will not be significantly affected. Meanwhile,
it should not have low recall rate to ensure the located
regions contain relatively rich spatial information, and thus the
OR-GCDs extracted from the regions can maintain the good
discriminability. By experiment, when the threshold ICTH is
set to 0.05, the precision rate and the recall rate of SVC-based
location method can be up to 94.3% and 65.7%,
respectively.

Fig. 16 shows the precision and recall rates of different loca-
tion methods. From this figure, it is clear that the SVC-based
location method can achieve higher precision rate and compa-
rable recall rate compared with two other location methods.
That is because the SVC-based location method considers both
the relative spatial positions and the characteristic relationships
of local features to filter geometrically inconsistent matches,
and thus the accuracy of potential duplicated region location
will be less affected.

For partial-duplicate image detection, we test the perfor-
mances of six partial duplicate detection methods in the
aspects of both accuracy and efficiency. These methods are

Fig. 17. The MAP values of different methods on the DupImage dataset.

denoted as: (1) Baseline, (2) RANSAC, (3) Geometric coding,
(4) RANSAC+CDM, (5) Geometric coding+CDM, and
(6) SGV+CDM. The first three methods are same to the corre-
sponding methods described in Section VI-D. These methods
can be directly applied to partial-duplicate image detection by
using the number of the initial SIFT matches or that of the
remaining SIFT matches after geometric verification. The next
three methods are those methods, which locate the potential
duplicated regions by adopting the RANSAC-based location
method, the Geometric coding-based location method, and the
proposed SGV-based location method, respectively. Then, all
of the next three methods use the proposed copy detection
method to confirm whether the located regions are duplicated
regions or not to obtain partial duplicate detection result. The
parameters of the first three methods and those of the three
location methods and our copy detection method are set the
same as mentioned above. The size of visual codebook is also
set to 1M.

Fig. 17 shows MAP values of the six methods. From this
figure, it is clear that our extended method, i.e., SGV+CDM
achieves highest MAP value, i.e., 0.857. SGV+CDM outper-
forms both RANSAC+CDM and Geometric coding+CDM,
mainly because the SGV-based location method can locate
the duplicated regions more accurately than the two other
location methods, as shown in Fig. 16. RANSAC+CDM
and Geometric coding+CDM perform worse than RANSAC
and Geometric coding, respectively, for the following reason.
Although RANSAC+CDM and Geometric coding+CDM use
both the geometric context information and global context
information of matched local features for partial duplicate
detection, due to the low precision rates of the RANSAC-based
and Geometric coding-based location methods, the detection
accuracies will be significantly affected.

Table VI shows the average time cost of each stage of the six
methods and the total time costs per query of these methods.
The stages in these methods include SIFT feature matching,
geometric verification, potential duplicated region construc-
tion, and global context verification, which are denoted as
FM, GV, PDRC, and GCV, respectively. It is clear that the
total time cost per query of SGV+CDM, i.e., our extended
method, is 0.572 second, which is much lower than those
of RANSAC+CDM and Geometric coding+CDM, The main
reason is that RANSAC needs to estimate the affine trans-
formation model beforehand and geometric coding contains
the step of adjusting the coordinate of each matched feature.
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TABLE VI

THE AVERAGE TIME COSTS OF DIFFERENT METHODS (SECONDS)

Instead, SGV directly filter geometrically inconsistent matches
without the two time-consuming steps. The total time costs
per query of RANSAC+CDM and Geometric coding+CDM
are higher than those of RANSAC and Geometric coding,
respectively, and much higher than that of Baseline. That
is because the stages of PDRC, GCV, and GV will lead to
additional computation.

In conclusion, our extended method can achieve higher
accuracy than all of the other methods, and slightly lower
efficiency than the baseline method for partial-duplicate image
detection.

VII. CONCLUSION

In this paper, we present an effective and efficient global
context verification scheme for image copy detection. Instead
of resorting to geometric consistency, the global context infor-
mation of SIFT features is explored for verification of SIFT
matches to remove false matches to improve the detection
performance. In addition, we extend the proposed copy detec-
tion method to deal with the task of partial-duplicate image
detection.

Practically, there are many near-duplicate images distributed
on the networks, in which the copies are usually mixed
together with the similar images. These copies need to be
distinguished from similar images for copyright protection pur-
poses. The experimental results demonstrate that our method
can achieve desirable performances in both accuracy and
efficiency even when there are many similar images in the
dataset. In addition, the extended version of the proposed
method also achieves good performance for partial-duplicate
image detection. Hence, we can conclude that our method has
significance in the area of copyright protection, and is also
quite useful in many other tasks, such as automatic annotating,
content-based web links creation and redundancy elimination.
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