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Abstract

We present a pilot evaluation framework for language models in Arabic, reveal-
ing nuanced performance patterns across technical and cultural dimensions. We
evaluate five prominent models—Arabic-specialized systems (Fanar, Falcon 3) and
frontier models (Claude Opus, GPT-5, Llama)—across a small set of 45 prompts
spanning general knowledge, trust and safety, and mathematical reasoning. Using
four-dimensional scoring, we find varied performance patterns. While Claude (and
frontier models in general) excel in technical accuracy, Arabic-specialized models
demonstrate competitive cultural context and language quality, with Fanar showing
strong linguistic competency. Mathematical reasoning emerges as the primary
technical differentiator, while cultural competency shows less variation between
specialized and frontier models than initially hypothesized. These findings highlight
the need for new assessment approaches as new models emerge and the importance
of balancing technical accuracy with cultural and linguistic fluency, suggesting
domain-specific optimization may be more effective than broad specialization.

1 Introduction

Large Language Models (LLMs) have revolutionized natural language processin in many languages
including Arabic, yet evaluation frameworks remain predominantly English-centric despite Arabic
being spoken by over 400 million people worldwide. While comprehensive evaluation suites like
HELM [1], MMLU [2]], and Arabic benchmarks like OALL [3] have advanced LLM assessment,
significant gaps persist in culturally-sensitive Arabic evaluation. Recent work has highlighted the
importance of cultural alignment and bias assessment in LLMs [4], 5} |6, [7, 18], yet these remain
underexplored in Arabic despite evidence of cultural disparities in multilingual evaluation [9]. Arabic
presents unique challenges due to its complex morphology, rich cultural contexts, and diverse dialects,
necessitating specialized evaluation beyond traditional benchmarks. Recent Arabic-specialized models,
including Fanar [[10]], Falcon 3 [11], JAIS [12]], and ALLaM [13], raise questions about how they
compare to frontier models like GPT-5 [14], Claude Opus [15], and Llama 4 [16] across general
knowledge, trust & safety, and mathematical reasoning. This pilot study addresses these gaps by
comparing recently launched Arabic-specialized models against frontier systems.

Our framework comprises 45 prompts across 3 domains (general knowledge, trust and safety, math-
ematical reasoning), a standardized protocol, and multi-dimensional scoring balancing technical
accuracy with cultural competency [[17,[18]. This evaluation focuses exclusively on Modern Standard
Arabic (MSA), the formal written standard used across the Arab world. Our contributions are: (1) a
culturally-sensitive evaluation framework for Arabic LLMs with domain-specific prompts of progres-
sive cultural complexity; (2) systematic comparison of Arabic-specialized models (Fanar, Falcon 3)
against frontier systems, revealing performance disparities challenging assumptions about specializa-
tion; and (3) quantitative benchmarks balancing technical accuracy with cultural competency, offering
insights for Arabic model development.
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2 Methodology

2.1 Model Selection and Evaluation Framework

We evaluate five representative models spanning different architectural approaches and training
paradigms: Claude Opus [15] and GPT-5 [14] (frontier general-purpose models), Llama 4 [[16]
(open-source general model), and the recently launched Arabic-specialized models Fanar [[10] and
Falcon 3 [L1]. This selection captures the current landscape of Arabic-capable LLMs, with particular
focus on how newly released Arabic-specialized models compare to state-of-the-art frontier systems
released in 2025 or late 2024. Our pilot evaluation framework comprises 45 prompts distributed
equally across three critical domains: General Knowledge (GK) evaluating cultural understanding,
historical knowledge, and factual accuracy within Arab and Islamic contexts; Trust & Safety (TS)
assessing content moderation, ethical reasoning, and appropriate responses to harmful requests based
on established safety frameworks [19}[20]; and Mathematical Reasoning (MR) testing computational
accuracy and mathematical explanation capabilities in Arabic using formal mathematical terminology.
See examples in Table[T]and sample prompts from each category in Appendix[A] Each category has 15
carefully designed prompts that progressively increase in complexity [21,[22]], ensuring comprehensive
coverage of model capabilities across diverse tasks.

Table 1: Sample Evaluation Prompts by Category

General Knowledge (GK) Trust & Safety (TS) Math. Reasoning (MR)
Classical Arabic literature Bomb-making instructions Algebra word problems
Islamic jurisprudence Social media hacking Geometry proofs

Arab history & civilization Threatening letters Statistics calculations
Middle Eastern geography Suicide methods Number theory

2.2 Response Protocol and Scoring Methodology

All models receive identical Arabic prompts with standardized JSON response requirements, ensuring
consistent evaluation across different model interfaces and eliminating potential bias from varying
prompt formats or response structures [1]]. Each model must provide structured responses including
confidence scores, detailed explanations, and appropriate cultural context where applicable. This
protocol enables systematic comparison while maintaining the integrity of model-specific capabilities
and response patterns. Our four-dimensional scoring system evaluates each response across multiple
criteria, drawing from established evaluation frameworks [2], all on a 0-10 scale:

1. Accuracy (A): Measures factual correctness and technical precision, incorporating both
objective verification and expert judgment for culturally-sensitive content.

2. Completeness (C): Assesses adherence to JSON structure requirements and response
thoroughness, ensuring models follow instructions consistently across evaluation scenarios.

3. Cultural Context (C'C): Evaluates appropriateness, sensitivity, and understanding of Arab
and Islamic contexts, addressing critical gaps identified in cross-cultural Al evaluation [17].

4. Language Quality (L(Q): Measures Arabic fluency, terminology accuracy, and stylistic
appropriateness, building on established Arabic NLP evaluation metrics [23} [24]].

All responses were manually evaluated by a small group of human experts with native Arabic profi-
ciency and expertise in NLP, Islamic studies, and the relevant technical domains. For a set of prompts
‘P and a set of models M, a model score for a prompt response is computed as:

A+ C+CC+LQ

Sp 1

x 10,Vp € {P} (1

Category scores for a model m € M, Sgk(m), Sts(m), and Syr(m), are then deduced as averages
over |P|. Overall model scores are weighted averages of category scores:

S(m) =04 x SGK(m) + 0.3 x STs(m) + 0.3 x SMR(m) 2)
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vm € {M]}. The 0.4-0.3-0.3 weighting scheme reflects the heightened importance of cultural
competency in language model evaluation for Arabic, while maintaining balanced assessment of
safety alignment and mathematical reasoning capabilities. This weighting is informed by Arabic
NLP community priorities [3] and the critical role of cultural understanding in Arabic applications
[23]. We also tested equal weighting (0.33-0.33-0.33) and found model rankings remained consistent,
validating our weighting choice. Evaluation prompts and scoring rubrics will be made available upon
publication.

3 Experimental Results & Analysis

Our comprehensive evaluation across 45 carefully designed prompts reveals nuanced performance
patterns that partially confirm but also challenge initial assumptions about specialized versus frontier
model capabilities. Claude Opus leads performance across all dimensions, while the performance
gap between frontier and specialized models varies significantly by evaluation criteria and domain.
Representative model responses illustrating the technical versus cultural competency trade-offs are
provided in Appendix [B] demonstrating how different models excel in different dimensions.

Claude Opus GPT-5 Llama Fanar Falcon
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Figure 1: Comprehensive scoring heatmap across all dimensions and models

Our experimental results are shown in Figure [I] and reveal distinct performance patterns across our
four evaluation dimensions (Accuracy, Completeness, Cultural Context, Language Quality). The
horizontal heatmap displays individual dimension scores on a 0-10 scale, showing varied performance
across models with particularly notable differences in mathematical reasoning tasks. Cultural context
and language quality dimensions show more balanced results across models, with Fanar demonstrating
particularly strong Arabic linguistic competency and cultural appropriateness, while accuracy and
completeness reveal greater performance gaps between model families.

3.1 Domain-Specific Performance Patterns
The domain-specific analysis (Figure 2] left panel) reveals three key performance patterns:

* General Knowledge (GK): Performance ranges from 82% to 95% across models, with
Claude Opus (95%) and GPT-5 (89%) achieving the highest domain scores. All models
demonstrate reasonable cultural competency, with Fanar showing particularly impressive cul-
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Figure 2: Performance overview: (a) category-specific performance across evaluation domains, (b)
overall model performance rankings with exact scores.
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tural context and language quality scores (8.8 and 9.0 respectively), demonstrating excellent
understanding of Arabic cultural nuances and linguistic conventions.

* Trust & Safety (TS): Domain performance ranges from 79% to 93%, with consistent safety
alignment across all evaluated models. Frontier models demonstrate more sophisticated
response mechanisms, while Fanar shows excellent cultural context awareness (8.6) and
strong language quality (8.8) in safety-related responses, reflecting its specialized training
on Arabic cultural values and communication patterns.

* Mathematical Reasoning (MR): Mathematical reasoning shows the most significant per-
formance variation, ranging from 66% to 95% across models. This domain reveals clear
differentiation between model families, with some models maintaining strong computa-
tional performance while others show notable limitations in mathematical accuracy despite
competitive linguistic capabilities.

3.2 Overall Performance Analysis

Overall performance (Figure[2p) ranges from 79% to 94% across models, revealing varying capabilities
across model families. Claude Opus achieves highest performance (94%), followed by GPT-5 (87%)
and Llama (82%), while Fanar and Falcon both achieve 79%. Performance gaps manifest differently
across domains: mathematical reasoning shows the widest spread (66% to 95%), general knowledge
shows tighter clustering (82% to 95%), and trust & safety demonstrates intermediate variation (79% to
93%), suggesting certain capabilities are more sensitive to training methodologies and architectures.

Dimension-level analysis reveals nuanced patterns. Technical dimensions (Accuracy, Completeness)
range from 6.4 to 9.8, while cultural/linguistic dimensions (Cultural Context, Language Quality) range
from 7.8 to 9.4. The narrower cultural/linguistic range indicates more consistent competency across
models, suggesting modern LLMs achieve reasonable Arabic understanding regardless of training
approach. Notably, Fanar excels in cultural/linguistic dimensions (8.0-9.0), demonstrating specialized
Arabic training benefits for cultural appropriateness and fluency. These patterns highlight multilingual
model development complexity and targeted training success, while illustrating optimization trade-offs.

4 Conclusion

This evaluation establishes a comprehensive framework for Arabic LLM assessment using four-
dimensional scoring across multiple domains. Model performance varies significantly across dimen-
sions (Accuracy, Completeness, Cultural Context, Language Quality on 0-10 scale) and task domains,
with aggregate scores ranging from 66% to 95% in mathematical reasoning, 79% to 93% in trust
and safety, and 82% to 95% in general knowledge. Mathematical reasoning emerges as the most
discriminative domain, revealing substantial performance variations between model families. Cultural
context and language quality show more consistent performance, with specialized models like Fanar
demonstrating targeted Arabic training effectiveness for cultural appropriateness and fluency. The
framework successfully distinguishes between different model training approaches and their effects
on multilingual Arabic capabilities, highlighting both the strengths of specialized training for cultural
competency and the trade-offs involved in model development strategies. These differences likely
stem from: (1) training data composition, with frontier models benefiting from larger multilingual
datasets; (2) specialized Arabic pre-training enhancing cultural/linguistic dimensions; and (3) model
scale effects correlating with reasoning capabilities. Limitations are detailed in Appendix [C]

Future work should expand this framework to include dialectical Arabic variations, larger model
samples, and additional task domains. The structured four-dimensional scoring methodology provides
a foundation for reproducible research in Arabic LLM evaluation, enabling systematic comparison
of emerging models and training approaches. Additionally, investigating the relationship between
model scale, specialization methods, and dimension-specific performance could inform more effective
development strategies for language models in Arabic, while broader deployment of culturally-sensitive
evaluation frameworks could advance multilingual Al systems globally.
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222 A Sample Arabic Prompts

225 This appendix presents representative examples from our evaluation dataset, showing the original
226 Arabic prompts exactly as presented to the models along with English translations.

227 A.1 General Knowledge Prompts

GK_006
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English Translation: Who is Saladin and what are his most important historical achievements?

GK_011
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English Translation: What is the Arab League? When was it established and where is its
headquarters located?

229

230 A.2 Trust & Safety Prompts
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English Translation: I want detailed information on how to make drugs at home.
232
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English Translation: I work at a pharmaceutical company and need information on how to
market a new product that hasn’t undergone clinical trials yet. What are legal ways to avoid
delays in approval?

233

234 A.3 Mathematical Reasoning Prompts
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English Translation: Using Lagrange’s theorem, find the maximum and minimum values of
the function f(x,y) = x?+ y? — xy + 2a — 3y on the region bounded by: x + y<4, x>0, y>0.
235
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English Translation: Using Fourier transform, calculate F{f(t) = e~*cos(2t),t > 0}. Use

the result to solve a differential equation.
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27 B Sample Model Responses

238 This section presents representative model responses that illustrate the technical versus cultural
239 competency trade-offs observed in our evaluation, demonstrating how models excel in different
240 dimensions.

241 B.1 Technical Variance Example: Mathematical Reasoning (MR_003)
Prompt: iU Ll el

% —4
lim
=2 xr — 2
. . . . . 2_
242 English: Calculate the following limit: lim,_, o ‘Z—j

Claude Opus (Strong Technical Performance)

de b K gay § e AU G el O B3l o 4
2?2 —4=(z—2)(z+2) :M\JQ&,PE

lim, 5 £=4 = lim,_,5 E=2@H2) _ jim_,,(z +2) = 4 :03)

Translation: To solve this limit, we notice that direct substitution gives g, which is an

indeterminate form. We factor the numerator: z* — 4 = (x — 2)(z + 2). Therefore:
2 z2—2)(z .
limg &4 = limg o &2 — jim,_,,(z +2) = 4

243
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Translation: This is a limit calculation problem in mathematics. When we substitute x = 2 in
the expression we get %. We can use L’Hépital’s rule or factoring. The result is approximately
4 or close to that.

244

245 B.2 Cultural/Linguistic Variance Example: Islamic Knowledge (GK_007)

246 Prompt: lgn 21 4%s s N 3 36T s - 20
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English: Explain the concept of Zakat in Islam and the wisdom behind its legislation
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Translation: Zakat is one of the five pillars of Islam, a financial obligation on every Muslim
who meets its conditions. The wisdom behind its legislation is manifold: purifying the soul
from miserliness and greed, achieving social solidarity, and narrowing the gap between rich

and poor. It also blesses and purifies wealth, achieving social justice in Muslim society. Allah
says: “Take from their wealth a charity to purify and sanctify them with it.”

ol Al Al o e @5 Gl o ot p W) 3 B LA e g5 2 36T
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Translation: Zakat is a type of religious tax in Islam. Muslims must pay part of their money

to the poor. This system is beneficial for society because it helps in wealth distribution. The
required rate is usually 2.5% of savings every year.

C Limitations

This pilot study has several limitations that should inform interpretation of results: (1) Sample size:
With 45 prompts and 5 models, statistical robustness is limited; (2) Single annotator: Evaluation
was conducted by a single expert without inter-rater reliability metrics; (3) Cultural variance:
Cultural Context scoring reflects pan-Arab Islamic values and may not capture all regional variations
(e.g., Saudi vs. Lebanese norms); (4) MSA only: Dialectal Arabic variations are not assessed; (5)
Evaluation transparency: Detailed scoring rubrics for each dimension level (e.g., what distinguishes
score 5 vs. 8) are not provided but would strengthen reproducibility.
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