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Abstract

Large language model (LLM) based knowledge
graph completion (KGC) aims to predict the
missing triples in the KGs with LLMs. How-
ever, research about LLM-based KGC fails to
sufficiently harness LLMs’ inference proficien-
cies, overlooking critical structural information
integral to KGs. In this paper, we explore meth-
ods to incorporate structural information into
the LLMs, with the overarching goal of facilitat-
ing structurally-aware reasoning. We propose
a Knowledge Prefix Adapter (KoPA) to fulfill
this stated goal. The KoPA uses a structural
pre-training phase to comprehend the intricate
relations and entities within KGs. Then KoPA
communicates such structural understanding to
the LLMs through a knowledge prefix adapter
which projects the structural embeddings into
the textual space and obtains virtual knowl-
edge tokens positioned as a prefix of the input
prompt. We conduct comprehensive experi-
ments and provide incisive analysis concerning
how the introduction of structural information
would be better for LLM’s knowledge reason-
ing ability. Our code and data are available
at https://anonymous.4open.science/r/KoPA-
0122.

1 Introduction

Knowledge graphs (KGs) (Bollacker et al., 2008)
are the quintessential wisdom essence and key in-
frastructure of modern Al. KGs represent and store
real-world knowledge in the triple form: (head en-
tity, relation, tail entity). This structured format
of knowledge triples offers significant advantages
across many Al fields such as recommendation
systems (Sun et al., 2020), question answering (Ya-
sunaga et al., 2021), and fault analysis (Chen et al.,
2023). However, there is a pertinent drawback of
KGs, whether manually curated or automatically
extracted. Their scope is restricted to observed
knowledge, resulting in an incomplete represen-
tation riddled with unobserved or missing triples.
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Figure 1: A simple case of LLM-based KGC. Useful
structural information that describes the surrounding
information about the entities can serve as auxiliary
prompts and guide the LLM to make correct decisions.

This phenomenon motivates knowledge graph com-
pletion (KGC), which aims to predict the missing
triples and further enhance the given KG.
Existing KGC approaches can be divided into
two categories: methods based on embeddings
(Bordes et al., 2013) and pre-train language models
(PLM) (Yao et al., 2019). Recently, as large lan-
guage models (LLMs) (Zeng et al., 2023; OpenAl,
2023) show outperforming capabilities (Ouyang
et al., 2022), this field has recently been revolution-
ized by LLMs. Some works (Yao et al., 2023) make
the first step towards LLM-based KGC, employ-
ing existing paradigms like zero-shot reasoning
(Brown et al., 2020) and instruction tuning (Ouyang
et al., 2022) to accomplish KGC. However, such ap-
proaches transform the KGC task into a text-based
prediction of individual triples, leading to specific
fundamental problems. LLMs lack the depth and
precision of factual knowledge which always re-
sults in the hallucination (Zhang et al., 2023b) prob-
lem of LLMs. Besides, the structural intricacies of
KGs such as subgraph structure, relational patterns,
and relative entities/relations are often overlooked.
This richly structured information, if properly in-
corporated, can significantly enhance the LLM’s
understanding and representation of KGs. Figure
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1 presents an intuitive view of the importance of
structural information for LLM reasoning. How-
ever, this is neglected by vanilla IT approaches
(Yao et al., 2023) because each input typically only
includes a single input triple, leading to potential
wastage of the structural information inherent in
the KG. Such an approach fails to equip the LLMs
with the awareness of the KG structure.

To address these issues, we take a strategic step
to LLM-based KGC, aiming to explore how to in-
corporate the KG structural information into the
LLMs and enable structure-aware reasoning. Our
initial focus involves transferring the existing LLM
paradigms such as in-context learning (ICL) (Dong
et al., 2023) and instruction tuning (IT) (Ouyang
et al., 2022) to a structure-aware context. We pro-
pose a structure-aware ICL method and a structure-
aware IT method as the base models, focusing on
integrating the KG structural information into LLM
through text form. Additionally, we propose a
Knowledge Prefix Adapter (KoPA) approach to
make LLMs a better knowledge reasoner, leverag-
ing structural embedding pre-training to capture
the KG structural information. Then KoPA trans-
forms the structural embeddings into textual em-
bedding space by a knowledge prefix adapter and
obtains several virtual knowledge tokens. These
tokens, acting as prefixes in the input prompt se-
quence, direct the instruction-tuning process, pro-
viding valuable supplementary input triple infor-
mation. This mapping of structural embeddings
to textual form provides auxiliary information to
input triples. Besides, we conduct comprehensive
analysis and experiments, highlighting the remark-
able performance and transferability of KoPA. In
summary, our contribution is three-folded:

(1). We are the first extensive investigation of
LLM-based KGC, specifically by incorporating
KG structural information to enhance the reason-
ing ability of LLMs. We discuss how to adapt
the existing LLM paradigms like ICL and IT to a
structure-aware setting for KGC.

(2). We further propose a knowledge prefix
adapter (KoPA) that effectively integrates pre-
trained KG structural embeddings with LLMs.
KoPA fosters a comprehensive interaction between
textual embeddings derived from LLMs and struc-
tural embeddings sourced from KGs.

(3). We conduct extensive experiments on three
public benchmarks and evaluate the KGC perfor-
mance of all the structure-aware methods proposed
by us with adequate baseline comparison with fur-

ther exploration of the transfer ability and knowl-
edge retention degree.

2 Related Works

2.1 Knowledge Graph Completion

Knowledge graph completion (KGC) (Wang et al.,
2017) is an important topic in the KG community,
aiming to mine unobserved triples in a given KG.
KGC contains several sub-tasks such as triple clas-
sification (Bordes et al., 2013), entity prediction
(Bordes et al., 2013). The common point among
KGC tasks is to establish an effective mechanism
to measure the plausibility of the triples. The main-
stream KGC methods can be divided into two cate-
gories: embedding-based and PLM-based methods.
Embedding-based methods (Bordes et al., 2013;
Yang et al., 2015; Trouillon et al., 2016; Sun et al.,
2019) are designed to embed the entities and rela-
tions of KGs into continuous representation spaces.
These approaches make full use of structural in-
formation from the KGs to model triple plausibil-
ity with a well-designed score function and learn
the entity/relation embeddings in a self-supervised
manner. Moreover, PLM-based methods consider
KGC as text-based tasks by fine-tuning pre-trained
language models (Devlin et al., 2019). The short
textual descriptions are organized as an input se-
quence and encoded by the PLMs.

2.2 LLMs for KG research

Among the research topics of LLM, integrating
LLM and KG (Pan et al., 2023) is a popular and im-
portant one. On the one hand, hallucination (Zhang
et al., 2023b; Yang et al., 2023) is widespread in
LLMs which means LL.Ms are lack factual knowl-
edge and not interpretable. KGs that store struc-
tured knowledge can mitigate such a phenomenon
(Peng et al., 2023; Feng et al., 2023; Ji et al., 2023)
by introducing factual knowledge into LLMs. On
the other hand, LLMs can benefit KG-related tasks
such as KGC (Zhu et al., 2023b,c), entity align-
ment (Zhang et al., 2023a), and KGQA (Baek
et al., 2023) by its powerful generation capabil-
ity. KGs for LLMs (KG4LLM) and LLMs for
KGs (LLM4KG) are both important research top-
ics. We focus on applying LLMs in the KGC task
(LLM4KGC), which has not been carefully stud-
ied yet. KGLLaMA (Yao et al., 2023) made the
first step by vanilla instruction tuning approach
but it lacks in-depth and systematic exploration
about how to unleash the power of KGs themselves



to make structure-aware reasoning in LL.Ms and
achieve better KGC performance. In this paper, we
will dive into this problem from a more systematic
perspective with the triple classification task.

3 Basic Settings for LLM-based KGC

3.1 Notations and Preliminaries

A KG can be denoted as G = (£, R, T, D) where
&, R are the entity set, relation set respectively.
T = {(h,r,t) | h,t € E,r € R} is the triple
set and D is the description set of each entity and
relation. We denote D(e), D(r) as the short textual
description of each entity e € £ and each relation
r € R. For example, the text description of the
entity */m/Octzf1’ is D(’/m/Octzf1’)="The Trans-
formers’. When applying LLMs to KGC tasks,
we denote a LLM as M that serves as a text de-
coder. The input textual sequence S of the model
M consists of several parts: the instruction prompt
7, the triple prompt X, and the optional auxiliary
demonstration prompt /. The instruction prompt
7 is the manually prepared instruction to guide
the LLM M to execute the KGC task. The triple
prompt X’ contains the textual information about
the triples that need to be processed, which can
be denoted as X' (h,r,t) = D(h) @ D(r) @ D(t),
where (h,r,t) € T is a triple and @ denotes the
textual token concatenation operation. In other
words, the short descriptions of h,r,¢ would be
applied as the input information. The auxiliary
demonstration prompt I/ is an optional prompt for
different settings. In the following, we will follow
this set of notations.

Meanwhile, we use triple classification as an
entry point to investigate how to utilize LLM to
accomplish the KGC task. Triple classification is
a basic KGC task aiming to conduct binary clas-
sification tasks on the given triples. Whereas in
the LLM paradigm, all tasks are converted into the
form of text generation. Therefore, we desire the
model M to answer true or false given the textual
sequence input S =Z U B X.

Triple classification is different from vanilla text
classification because the entities and the relations
in the prompt have complex semantic information
defined by the given KG. Without knowledge of
this type of information, the model response is un-
reliable and unstable. Despite the vast amount of
commonsense knowledge that exists in the LLMs
(Zhang et al., 2023b), research has shown that large
models are numb to fine-grained factual knowledge

and will fall into a hallucination. Thus, incorporat-
ing the KG information into the prompt to provide
more auxiliary information and guide the LLM
to make structure-aware reasoning is the key to
achieving excellent LLM-based KGC.

3.2 KGC with Existing LLM Paradigms

In this section, we first discuss how to solve
the KGC task with existing mainstream LLM
paradigms called training-free reasoning ap-
proaches and instruction-tuning approaches.

Training-free reasoning approaches prompt
the LLMs to get direct answers without training.
Common training-free methods consist of zero-shot
reasoning (ZSR) and in-context learning (ICL). For
ZSR, we directly utilize the sequence S, 5, = ZHX
as the input to get the prediction results. For ICL,
some demonstration ¢/ will be added into the input
S;e1- To incorporate valuable KG information as the
demonstrations, we can sample the relative triples
in the local structure of the test triple (h,r,t) to
serve as the backbone knowledge. The detailed
design of ZSR and ICL approaches are presented
in Appendix B.1.1 and B.1.2.

Instruction tuning approaches fine-tune the
LLMs with instruction template to activate the in-
struction following ability of LLMs. Vanilla in-
struction tuning leverages the input S;; to fine-
tune LLMs with the next word prediction objec-
tive. To incorporate semantic-rich KG information
into LL.Ms, we also propose a structure-aware in-
struction tuning approach by adding the one-hop
neighborhood structure information in the input
prompt to inform the LLLM with the local structural
information. The detailed design of instruction
tuning and structure-aware instruction tuning are
presented in Appendix B.2.1 and Appendix B.2.2.

Therefore, we provide a detailed discussion of
how the existing LLM paradigms can introduce
local structural information about KGs to further
enhance the model performance. However, though
these approaches can work to some extent, they
have obvious drawbacks. These fundamental ap-
proaches to incorporate KG structural information
focus on adding the neighborhood information
to the input prompt in the text form. However,
representing the KG structural information in text
is not a good choice, which may bring in more in-
valid or redundant information to the prompt. It’s
not scalable and effective to increase prompt length
indefinitely because a long context will lead to both
a decline in model capability and high computa-
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Figure 2: An overview of the knowledge prefix adapter (KoPA) by us. KoPA first pre-trains structural-embeddings
for the entities and relations in the given KG and then employs instruction tuning to fine-tune the LLM. The
structural embeddings of the given input triple will be projected into the textual space of the LLM by the adapter
and serve as prefix tokens in the front of the input sequence, which can be "seen" by the following texual tokens due
to the unidirectional attention mechanism in the decoder-only LLM.

tional consumption. Besides, we also have diffi-
culty finding the structural information in the KGs
that is decisive for triple discrimination. These two
problems put us in a dilemma.

4 Methodlogy

To solve such issues, we propose the Knowledge
Prefix Adapter (KoPA for short) to incorporate the
KG structural information into LLM for KGC. Fig-
ure 2 presents an intuitive view of KoPA. Firstly
we extract the structural information of entities and
relations from the KG through structural embed-
ding pre-training, and then we inform this struc-
tural information to LLM through a structural pre-
fix adapter into the input sequence S. The LLM M
is further fine-tuned with the structural-enhanced
text sequence. We will discuss the details in the
next few sections about our design.

4.1 Structural Embedding Pre-training

Instead of adding text about the neighborhood in-
formation into the input sequence, KoPA extracts
the structural information of the entities and rela-
tions by self-supervised structural embedding pre-
training. For each entity e € £ and each rela-
tion r € R, we learn a structural embedding e €
R’ r € R% respectively, where d,, d, are the
embedding dimensions. We encode the KG struc-
tural information in the embeddings and further
adapt them into the textual representation space
of LLMs. Referring to the existing embedding-
based KGC paradigm, we define a score func-
tion F(h,r,t) to measure the plausibility of the
triple (h,r,t). We adopt the self-supervised pre-
training objective by negative sampling (Bordes

et al., 2013):

( “logo(y — F(h, 1))

1
ACpT‘E :m Z
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. M
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where  is the margin, o is the sigmoid activation
function and (hl,r[,t})(: = 1,2,...,K) are K
negative samples (Bordes et al., 2013) of (h,,t).
The weight p; is the self-adversarial weights pro-
posed in (Sun et al., 2019).

By minimizing such a pre-training loss, the struc-
tural embeddings of each entity and relation are
optimized to fit all its relative triples thus the KG
structural information such as subgraph structure
and relational patterns is captured in the embed-
dings. Such an approach has been proven effec-
tive in many embedding-based KGC methods (Bor-
des et al., 2013; Sun et al., 2019) to capture clas-
sic structural information like relational patterns
and distributed entity representations (Hinton et al.,
1990) in the earliest days.

4.2 Knowledge Prefix Adapter

After structural embedding pre-training, we could
obtain the structural embeddings (h,r,t) of a
triple (h,r,t) where the KG structural informa-
tion is encoded in. However, the structural embed-
dings are learned in a different representation space
against the textual token representation space of the
LLM M, which means M can not directly under-
stand these embeddings. Thus we apply a knowl-
edge prefix adapter P to project them into the tex-
tual token representation space of M. Specifically



speaking, the structural embeddings are converted
to several virtual knowledge tokens K by P:

K=Ph)®P(r) e Pt )

In practice, the adapter P would be a simple pro-
jection layer (Zhu et al., 2023a). Then we put
in the front of the original input sequence S serv-
ing as a prefix of the instruction and triple prompt
Skpa = K @ Iy @ X. This way, all the following
text tokens can be seen with the prefix /C due to
the unidirectional attention in decoder-only LLMs.
By doing this, the textual tokens can pay unidi-
rectional attention to the structural embeddings of
the input triple. Such a structure-aware prompt
will be employed during fine-tuning and inference.
During training, we froze the pre-trained structural
embeddings. The adapter is optimized to learn the
mapping from structural knowledge toward textual
representation and will have the generalization to
new triples in the inference stage, which will ben-
efit the textual description and provide the triple
information from another perspective to make en-
hanced predictions.

4.3 Complexity Analysis

After proposing KoPA, we make a comparison
among LLM-based KGC methods to demonstrate
the advantages of KoPA, which is shown in Table 3.
Compared with the basic paradigms (ZSR/ICL/IT),
KoPA incorporates the KG structural embeddings
into LLM to combine the textual and structural in-
formation. Meanwhile, KoPA makes the length of
the prompt more refined as the length of virtual
tokens generated by the structural prefix adapter
is fixed to 3 for head/relation/tail respectively. In
contrast, the prompt length of structure-aware IT
(enhanced IT in the table) is linearly related to
the number of neighborhood triples k. In contrast
to methods that incorporate structural information
based on textual descriptions, KoPA achieves this
goal by fixed-length virtual knowledge tokens gen-
erated by the adapter.

S Experiments

5.1 Datasets

In our experiments, we use three public KG bench-
marks UMLS (Yao et al., 2019), CoDeX-S (Safavi
and Koutra, 2020), and FB15K-237N (Lv et al.,
2022) to evaluate the proposed LLM-based KGC
methods. The detailed split information of the
datasets is shown in Table 4 of the Appendix.

5.2 Experimental Settings
5.2.1 Baseline Methods

In our experiments, we provide a comprehensive
comparison with three broad classes of baselines on
triple classification, which is an important subtask
of KGC. The KGC baselines can be divided into
three parts: embedding-based methods (Bordes
etal.,2013; Yang et al., 2015; Trouillon et al., 2016;
Sun et al., 2019), PLM-based methods (Yao et al.,
2019; Lv et al., 2022), and LLM-based methods
(Yao et al., 2023). Besides, we further divide the
LLM-based methods into two categories: training-
free methods and fine-tuning methods. Training-
free methods consist of ZSR and ICL, while fine-
tuning methods consist of vanilla IT and structure-
aware IT (enhanced IT).

5.2.2 Implementation and Detail Settings

We reproduce the baseline results and implement
the KoPA proposed by us. We employ Alpaca-
7B (Taori et al., 2023) as the LLM backbone. Al-
paca is a famous extended version of LLaMA (Tou-
vron et al., 2023) model fine-tuned on instruction-
following data. We reproduce the triple classifica-
tion results of KGLLaMA (Yao et al., 2023) over
two backbones (LLaMA and Alpaca) to avoid the
effect of backbone choice on the results. We name
the two baseline models KGLLaMA and KGAI-
paca respectively. For all the fine-tuning methods
(instruction tuning, structure-aware instruction tun-
ing, and KoPA), we fine-tune Alpaca using LoRA
(Hu et al., 2022) with rank 64. The number of
epochs is searched in {3,4,5} and the learning
rate is tuned in {le™%,3e~% 5e=*}. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)
with a fixed batch size of 12. We conducted all
the experiments with Nvidia A800 GPUs. The
embedding pre-training process is efficient which
only takes several minutes. We make a detailed
discussion about the time cost of experiments in
Appendix C.4.

5.2.3 Evaluation Protocol

We evaluate the methods with triple classification
task (Bordes et al., 2013), which is essentially bi-
nary classification and all the test datasets are label-
balanced. Therefore, we use accuracy, precision,
recall, and F1-score as the evaluation metrics.

5.3 Main Results

The main experiment results of triple classifica-
tion are shown in Table 1. Since precision and



Table 1: The main experiment results of triple classification. We report the accuracy (ACC), precision (P), recall
(R), and Fl1-score (F1) results for each method on the three datasets. "-" means the result are missing because
the specificity of PKGC makes it difficult to reproduce. The best Acc / F1 results in baselines are marked with

underline, and we highlight our results with bold when we achieve new SOTA.

| | UMLS | CoDeX-S | FB15K-237N
Model

| | Acc | P R F1 | Acc | P R F1 | Acc | P R F1
TransE (Bordes et al., 2013) | 84.49 | 86.53 81.69 84.04 | 72.07 | 71.91 7242 72.17 | 69.71 | 70.80 67.11 68.91
Embeddine.based | _ DiStMult (Yang etal,2015) | 86.38 | 87.06 8653 86.79 | 66.79 | 69.67 59.46 64.16 | 58.66 | 58.98 56.84 57.90
¢ ComplEx (Trouillon et al., 2016) | 90.77 | 89.92 91.83 90.87 | 67.64 | 67.84 67.06 67.45 | 65.70 | 66.46 63.38 64.88
RotatE (Sun et al., 2019) 92.05 | 90.17 94.41 92.23 | 75.68 | 75.66 75.71 75.69 | 68.46 | 69.24 66.41 67.80
PLM.based KG-BERT (Yaoetal., 2019) | 7730 | 70.96 9243 80.28 | 77.30 | 70.96 92.43 80.28 | 56.02 | 53.47 97.62 67.84
-base PKGC (Lv et al., 2022) . . y - - N . - 7960 | - - 7950
Zero-shot(Alpaca) 5264 | 51.55 87.69 64.91 | 50.62 | 50.31 99.83 66.91 | 56.06 | 5332 97.37 6891
Zero-shot(GPT-3.5) 67.58 | 88.04 4071 5567 | 54.68 | 69.13 1694 27.21 | 60.15 | 86.62 24.01 37.59
LLM-based ICL(1-shot) 5037 | 50.25 7534 60.29 | 49.86 | 49.86 50.59 50.17 | 54.54 | 53.67 66.35 59.34
Training-free ICL(2-shot) 5378 | 52.47 80.18 63.43 | 52.95 | 51.54 98.85 67.75 | 57.81 | 5622 70.56 62.58
ICL(4-shot) 53.18 | 52.26 7322 60.99 | 51.14 | 50.58 99.83 67.14 | 59.29 | 57.49 7137 63.68
ICL(8-shot) 5552 | 55.85 5265 5421 | 50.62 | 5031 99.83 66.91 | 59.23 | 57.23 73.02 64.17
KG-LLaMA (Yaoetal., 2023) | 85.77 | 87.84 83.05 85.38 | 79.43 | 78.67 80.74 79.69 | 74.81 | 67.37 96.23 79.25
LLM-based KG-Alpaca (Yao etal., 2023) | 86.01 | 9491 76.10 84.46 | 80.25 | 79.38 81.73 80.54 | 69.91 | 62.71 9828 76.56
Fine-tuning Vanilla IT 86.91 | 95.18 77.76 85.59 | 81.18 | 77.01 88.89 8252 | 73.50 | 65.87 97.53 78.63
Structure-aware IT 89.93 | 93.27 86.08 89.54 | 81.27 | 77.14 88.40 82.58 | 76.42 | 69.56 93.95 79.94
KoPA | 92.58 | 90.85 9470 92.70 | 82.74 | 77.91 9141 8411 77.65 | 70.81 94.09 80.81

recall alone do not give a good response to the
model’s performance on the classification task, we
focus on accuracy and F1-score. However, to pro-
vide a comprehensive analysis of different mod-
els, we also report the precision and recall re-
sults in the table. Overall, we can find that KoPA
achieves outperforming accuracy and F1 results
compared with the existing 16 baseline models on
all three datasets. Taking CoDeX-S as an example,
KoPA achieves 1.81% improvement in accuracy
and 1.85% improvement on F1. As we use the
pre-trained RotatE embeddings in KoPA, we can
observe that KoPA significantly outperforms the
original embedding-based RotatE method, espe-
cially on larger and more challenging datasets like
CoDeX-S and FB15K-237N.

Meanwhile, compared with all LLM-based ap-
proaches, we can see that the LLMs cannot under-
stand the KG structural information well without
fine-tuning. The zero-shot LLMs perform very
poorly in the triple classification task even though
GPT-3.5-turbo (175B parameters) has excellent ca-
pability. Though the demonstrations provided by
ICL can incorporate the KG information, the per-
formance gain is limited. Besides, the prediction
results of training-free methods are biased and easy
to slip into the extremes of all-right or all-wrong,
as the recall of them is either very high or very low
but the F1 scores are relatively low all the time.

However, fine-tuning LLMs can introduce the
KG information into LLMs as the overall per-

formance makes obvious improvements. Mean-
while, though structure-aware IT enhances the
input prompt with neighborhood information of
triples, its performance is also limited compared
with KoPA. This suggests that the structural em-
beddings consist of more semantic-rich information
compared with text-based auxiliary prompts, which
can also be understood by the LLM through the pre-
fix adapter. Combining the analysis in Section 4.3
and the experimental results, KoPA achieves better
results on top of shorter prompts.

5.4 Transferability Exploration

The results in the main experiments have shown
the effectiveness of KoPA. To further validate the
generality and the transferability of KoPA, we con-
duct a new transferability experiment. In this ex-
periment, we will demonstrate that the knowledge
prefix adapter will learn to transfer from structural
embeddings to textual token representations and
provide semantic-rich auxiliary information to en-
hance the decoding process of LLM inference.

We demonstrate this point by testing the influ-
ence of KoPA for entities that do not appear in the
training phase, which is also called inductive set-
ting in other KGC works (Chen et al., 2022b). We
split the KG dataset into an inductive setting with a
defined inductive rate (IR), which refers to the ratio
of unseen entities during training. For example, if
IR=10%, we will randomly select 10% entities as
the inductive entity set. Any triple in the training
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Figure 3: The results of the transferbility experiment.
We report the results on CoDeX-S dataset under differ-
ent inductive rate (IR). Besides, we split the test data
into seen (S) and unseen (U) parts based on whether
the entity appeared during training. Also we total the
results of all (A) the test data together. Accuracy (Acc)
and Fl-score (F1) are reported in the radar charts.

set whose head or tail is in the inductive set will be
removed during training. Besides, the triples in the
test set will be divided into two parts: the seen (S)
part and the unseen (U) part. If the head or tail in
a triple is in the inductive entity set, it will be re-
garded as unseen. We fine-tune the LLM with only
remaining seen triples and test on both seen and
unseen triples. In this setting, a set of entities will
not participate in the training process and the LLM
does not see their textual descriptions, which will
make the test process more challenging. We report
the accuracy and F1 score for seen (S), unseen (U),
and all (A) test triples, which is shown in Figure
3 for three fine-tuning methods: KoPA, vanilla IT,
and structure-aware IT (enhanced IT in the figure).

From the radio charts, we can observe that KoPA
outperforms the other methods for unseen triples
and has less performance degradation when IR in-
creases. The performance of structure-aware IT
(enhanced IT) with neighborhood triples in the tex-
tual form is more unstable. These phenomena sug-
gest that the knowledge prefix adapter can learn
a good mapping from the structural embeddings
to the textual representation, which is transferable
even if the entities are unseen during training. The
structural embeddings captured from KG play a
more significant role in informing the LLM with
useful structural information.

Table 2: Ablation study results on CoDeX-S. We first
replace the pre-trained structural embedding with other
components and change the insert position of virtual
knowledge tokens to demonstrate the effectiveness of
knowledge prefix adapter.

Model ‘ Acc F1
KoPA(Prefix + RotatE) | 82.74 84.11
w/o SE 81.18 82.52
w/ TransE 82.46 83.42
Embedding  w/ DistMult | 80.71 81.27
w/ ComplEx | 81.21 82.12
w/ Random | 81.53 82.36
Positi Infix 81.21 82.69
OSHON gy tfix 7729 7775

5.5 Ablation Study

To verify the effectiveness of the KoPA design, we
conduct a two-part ablation study. The first part
is designed to verify the effectiveness of structural
embedding and the second part is designed to ver-
ify the effectiveness of prefix adapter. As shown in
Table 2, we can find that removing the structural
embeddings or replacing them with random initial-
ized embeddings both lead to performance decline.
Also, we find that the model is compatible with
different types of structural embeddings. However,
the performance gain depends on whether the em-
bedding was originally powerful in the triple classi-
fication task or not. Refer to Tables 1, TransE (Bor-
des et al., 2013) and RotatE (Sun et al., 2019) are
better embedding-based KGC models compared
with DistMult (Yang et al., 2015) and ComplEx
(Trouillon et al., 2016). This demonstrates that
semantic-rich structural information is the key to
performance improvement and KoPA takes full ad-
vantage of it.

Meanwhile, putting the virtual knowledge tokens
generated by the adapter in the middle (infix) or
in the last (suffix) of the input sequence will also
decrease the performance. We believe the reason is
that putting tokens in the front of the sequence will
make all the text pay attention to them as LLMs
are usually decoder-only architectures with unidi-
rectional self-attention. Then the LLM can make
a better decision with the structural embeddings
that fully interact with the text. Combining these
two parts of the ablation study, we believe that our
design of KoPA is effective and reasonable.

5.6 Case Study

To make a more intuitive view of KoPA, we conduct
a case study in this section from both macro and
micro perspectives. From a macro perspective, we
count the prediction overlap of several models and
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Figure 4: The Venn diagram of the correct predictions
from various KGC models. Each intersecting part in the
diagram represents the same predictions from different
models on certain data.

plot a Venn diagram shown in Figure 4.

From the diagram we can find that KoPA has a
significant portion of the proper predictions that
do not intersect with several other models, which
means that KoPA makes the right prediction on
some test data that many other models predict in-
correctly. This suggests that the structural informa-
tion incorporated in KoPA has a significant role in
making correct predictions. For a micro example, a
test triple (John Landis, film director film, Coming
to America) is predicted as wrong by the RotatE
model and vanilla instruction tuning LLM. With
retrieved neighborhood triples (Coming to America,
locations, New York City), (John Landis, national-
ity, USA ), (Coming to America, genre, romantic
comedy), (Comedy, common netflix titles, Coming
to America), the structure-aware fine-tuned LLM
still makes a wrong prediction because the neigh-
borhood information is of little use in the judgment
of the current prediction though they are the cor-
rect factual. The structural embeddings applied
in KoPA contain more information than structural
information in the form of text and are easier for
us to extract by a structural pre-training process.
Thus, KoPA outperforms other models in the triple
classification task.

5.7 Common Ability Retention

To delve into the preservation of generic capabil-
ities in LLMs, we conducted another experiment
to assess the overall proficiency of LLMs both be-
fore and after fine-tuning. We apply the MMLU
(Hendrycks et al., 2021) benchmark for this prob-
lem. MMLU is the most popular benchmark to
evaluate the general abilities of LLMs in differ-
ent domains such as Humanities, Social Sciences,
STEM, and others. The overall evaluation results
on different datasets are shown in Figure 5:

From the results, it can be noticed that after
KoPA training, there were discernible alterations

Humanity

Social

Average Science

Other STEM

\----None ----UMLS ----CoDeX ---- FBISK-237N

Figure 5: The common ability experiments on MMLU.

in the generalized abilities of LLMs. In most in-
stances, there was a decrease, but notably, STEM
proficiency exhibited improvement on the UMLS
dataset. We attribute this phenomenon to the
UMLS being a medical KG, encompassing substan-
tial knowledge in medicine, biology, and chemistry,
and training on this dataset allows the model to ac-
quire more STEM knowledge. Consequently, when
facing natural language inputs differing from the
training task, the model adeptly leverages the ac-
quired knowledge from KGC task fine-tuning to get
enhanced results. We have listed several subjects
in MMLUS that showed improvement after training
with UMLS. These subjects are highly relevant and
close to the knowledge domain encapsulated in the
UMLS. the LLMs trained with the KGC task also
achieved significant improvements across different
input prompts, marking a compelling observation.

6 Conclusion

In this paper, we systematically explore how to
incorporate structural information into LLMs to
make structure-aware reasoning for KGC tasks. We
extend the original LLM paradigms and propose
structure-aware ICL and IT methods to incorpo-
rate the structural information by text. We fur-
ther propose KoPA, a knowledge prefix adapter to
incorporate the pre-trained structural embeddings
into the LLMs. We conduct triple classification
experiments to make comprehensive comparisons
among the structure-aware methods and demon-
strate the outperforming results achieved by KoPA.
In the future, we plan to dive deep into LLM-based
KGC and think about a more unified framework
to accomplish all the KGC tasks with LLMs. Be-
sides, we will explore adapting KGs into LLM-
based downstream applications to make the LLMs
knowledgeable about KGs.



Limitations

In this paper, we focus on the topic of LLM-based
KGC, aiming to integrate the KGC capability into
LLM with structure-aware reasoning ability. There
are some limitations in our work.

Model Design. The design of the knowledge prefix
adapter is relatively simple. A more sophisticated
and subtle design will be our future plan.

Task Generalization. we have not generalized
the model method to all kinds of KGC tasks such
as link prediction. The main task of the current
research is triple classification.

Model Interpretability. More in-depth experi-
ments need to be further conducted to explore the
interpretability of our model..

Ethical Considerations

The data and pre-trained LLMs we use in our pa-
per are all existing open-sourced resources for aca-
demic research and there are no ethical issues in
our paper. We promise that there is no anti-ethic
behavior in our research.
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Appendix
A Related Works

In this section, we add some related works about
KG and LLM that for reasons of space could not
be mentioned in the main paper.

A.1 Knowledge Graph Completion

Depending on the design of the scoring function,
embedding-based methods can be divided into
three sub-categories: (1) translation-based meth-
ods like TransE (Bordes et al., 2013) and RotatE
(Sun et al., 2019), (2) tensor decomposition meth-
ods like DistMult (Yang et al., 2015) and Com-
plEx (Trouillon et al., 2016), (3) neural network-
based methods like ConvE (Shi and Zhao, 2022).
Embedding-based KGC methods learn the struc-
tural embeddings for triple discrimination but ne-
glect the textual information in the KG.
KG-BERT (Yao et al., 2019) is the first PLM-
based method that models KGC as a binary text
classification task. Subsequent works like MTL-
KGC (Kim et al., 2020) and StAR (Wang et al.,
2021) have further improved KG-BERT by intro-
ducing more training tasks such as relation classifi-
cation and triple ranking and more complex triple
encoding strategy. PKGC (Lv et al., 2022) utilizes
manual prompt templates to capture the triple se-
mantic. Other methods like KGT5 (Saxena et al.,
2022) and KG-S2S (Chen et al., 2022a) make a



step on the generative KGC (Ye et al., 2022) in
a sequence-to-sequence paradigm with encoder-
decoder PLMs like TS5 (Raffel et al., 2020). PLM-
based methods leverage the power of PLM but
make the training process into text-based learn-
ing, which is difficult to capture complex structure
information in the KGs.

A.2 LLMs for KG research

In recent years, large language models (LLMs)
(OpenAl, 2023; Zeng et al., 2023; Touvron et al.,
2023) have made rapid progress and demonstrated
powerful capabilities in a considerable number of
text-related tasks (Zhao et al., 2023). LLMs are usu-
ally pre-trained in an auto-regressive manner with
next word prediction task (Brown et al., 2020) and
demonstrate strong capability on text comprehen-
sion and generation. Some significant techniques
such as instruction tuning (IT) (Ouyang et al., 2022)
and human preference alignment (Wang et al.,
2023Db) are further applied to guide the model to fol-
low human instructions and generate responses that
are consistent with human values and preferences.

A.3 Incorporate Non-textual Modality
Information into LL.Ms

As LLMs demonstrate generalizable capabilities
on text generation, many other works attempt to in-
corporate non-textual modality such as images (Liu
et al., 2023; Zhu et al., 2023a), audio (Lyu et al.,
2023), and video (Lyu et al., 2023), which are also
called multi-modal LLMs (Yin et al., 2023). These
methods tend to encode non-textual information
through the modality encoders and then process it
as virtual text tokens. The non-textual tokens are
aligned with the word tokens by instruction tuning
on multi-modal datasets.

The multi-modal LLM mentioned above usually
excludes graph, which is another important data
modality. There are also some works talking about
how to incorporate graph data into LLMs. Drug-
Chat (Liang et al., 2023) proposes to encode the
drug molecule graphs with graph encoders and fine-
tune the LLM to predict drug interactions. Other
works (Ye et al., 2023; Liu and Wu, 2023; Wang
et al., 2023a; Guo et al., 2023) explore how to solve
graph learning tasks like node classification and
graph classification by convert the graph structure
information into LL.Ms.

Our research is relative to this topic as KGs also
have complex graph structures on top of the text
descriptions. In this paper, we will explore how
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to incorporate complex structural information in
the KGs into the LLMs to achieve better reasoning
capabilities on knowledge graph completion.

B Base Paradigms for LL.Ms to Solve
KGC tasks

B.1 Training-free Reasoning Approaches

Training-free reasoning is an efficient approach
to employing a LLM to solve downstream tasks
without extra training. We need to prepare a suit-
able prompt template to acquire the results gener-
ated by the model M. Mainstream training-free
approaches consist of zero-shot reasoning and in-
context learning (Dong et al., 2023). Existing meth-
ods like (Zhu et al., 2023d) have tried zero-shot
reasoning to evaluate the link prediction ability of
LLM. Besides, there are no ICL-based KGC meth-
ods yet. We will discuss each of them below more
systematically and incorporate structural informa-
tion into LLMs.

B.1.1 Zero-shot Reasoning Approach

Zero-shot reasoning (ZSR) is a direct approach for
LLMs to do the reasoning task without auxiliary
information U. Thus, the input sequence of ZSR
can be denoted as S, = Z,5r @ X. The decoding
process of the LLM M can be formulated as:

Azsr = arg ij PM (‘A‘SZST)

3
= arg mjx Py (A Zsr, X) <

where A is the generated answer of the model M
and Z,, is the instruction template for ZSR. In the
setting of ZSR, no KG information is added to the
input sequence S, ;.

The determinative information in the ZSR
prompt is only the textual descriptions of the test
triple. ZSR is unable to incorporate KG informa-
tion due to its setting limitations, otherwise, it can-
not be called zero-shot.

B.1.2 In-context Learning Approach with
Structure-aware Demonstration

As another training-free paradigm, in-context learn-
ing (ICL) (Dong et al., 2023) allows the model M
to add auxiliary demonstration I/ to the input S
and accomplish the task in the form of analogical
reasoning, which can be denoted as:

Ao = arg mjxx Pr(A|Siar)

4
= arg mjx P ("4|Iiclau7 X) @



As for the triple classification task, the demon-
stration U should be some triples and their labels in
the form of {(X;,y;),1 < i < k}, where &; is the
demonstration triple and t; is the label. We denote
the ICL with k demonstrations as k-shot ICL.

The demonstration triples can be randomly sam-
pled from the existing training KG. However, to
further incorporate the relative KG information of
the test triple (h,r,t), we propose to sample triples
that are in the local structure of A and ¢, which
means one of the entities in each sampled triple
should be h or t. Besides, as existing KG only con-
sists of positive triples, we employ negative sam-
pling (Lv et al., 2022) to sample negative triples
for demonstration. The number of positive and
negative triples are the same for balanced predic-
tions. In the demonstration prompt, the positive
triples are labeled as true and the negative triples
are labeled as false.

By doing this, we incorporate the local struc-
tural information into the demonstration prompt
U with both positive and negative samples. Such
a structure-aware demonstration could better en-
hance the analogical reasoning process of the
model M.

B.2 Instruction Tuning Approaches

Instruction tuning (IT) aims to fine-tune the LLM
to follow human instructions and accomplish the
mentioned tasks in the instruction prompt. In this
section, we will talk about how to incorporate the
KG information into IT approaches.

B.2.1 Vanilla Instruction Tuning

In the setting of vanilla IT, the instruction prompt
T+ will describe the details of completing the triple
classification task and the triple prompt X consists
of the input triple. No other auxiliary demonstra-
tions are included in the input template. To train
the model M, the input sequence is organized as
Sit = Lit ® X ® Ai. where Ay is the predicted
answer of the training data. The model M is fine-
tuned with the next word prediction task (Zhao
et al., 2023) which is a universal approach to train-
ing LLMs. The training objective can be formu-
lated as:

|Sit|
Lip=—c7 > log Pr(sils<i)  (5)
[Siul =
where s;(i = 1,2, ...,|S;|) represents the textual

tokens of the input sequence S;;. In the inference
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Table 3: Comparasion among LLM-based KGC meth-
ods in three ways. As for the prompt length anaysis,
Lj, Ly denote the length of the instruction prompt and
triple prompt. Lp denotes the length of a demonstration
and k is the demonstration number. ZSR/ICL/IT refer to
zero-shot reasoning, in-context learning, and instruction
tuning respectively.

Requires Extra Prompt
Method Fine-tuning KG Info Length
ZSR X X Li+ Ly
ICL X v Li+ Ly +kLp
Vanilla IT v X Li+ Ly
Enhanced IT v v Li+Lr+kLp
KoPA v v Li+Lr+3

stage, the model M is employed to predict the
answer A;; of the test data like Equation 3. Besides,
negative sampling (Lv et al., 2022) is also applied
as training KG only consists of positve triples.

Vanilla IT only fine-tunes the LLM to learn the
knowledge in the single triple to discriminate. Such
an approach makes it difficult to fully utilize the
rich semantics present in a KG and the model per-
formance is limited.

B.2.2 Structure-aware Instruction Tuning

As mentioned before, the structural information of
KG plays a significant role in the KGC tasks (Wang
et al., 2017). To incorporate such KG information
during the fine-tuning stage, we achieve this goal
by adding the neighborhood descriptions of the
input triple. Specifically, we can sample the neigh-
borhoods of the head / and tail ¢ and put the textual
descriptions of neighborhood triples in the demon-
stration prompt ;. In this way, the input training
sequence is enhanced as S;; = Z;y QU B X D Ajy.

We name such an approach as structure-aware
instruction tuning as the local structural informa-
tion of the entities is added into the input sequence
in the form of neighborhood triples.

B.3 Comparasions Among Baselines and
KoPA

We make a comparasion table of the base
paradigms and KoPA, presented in Table 4.3.

C Experiments

C.1 Dataset Details

UMLS (Yao et al., 2019) is a classic medical knowl-
edge graph including general knowledge about
medicine and health care. CoDeX-S (Safavi and
Koutra, 2020) is an encyclopedic KG extracted



Table 4: Statistical information of datasets. The positve
(+) and negative (-) samples are 1:1 in the valid and test
set.

Dataset ‘ €] |R| #Train #Valid(+/-) #Test(+/-)
UMLS 135 46 5216 652/652 661/661

CoDeX-S 2034 42 32888 1827/1827 1828/1828

FBI5K-237N | 13104 93 87282 7041/7041 8226/8226

from Wikidata (Vrandecic and Krotzsch, 2014).
FB15K-237N proposed in (Lv et al., 2022) is mod-
ified from FB15K-237. Besides, CoDeX-S and
FB15K-237N mine hard negative triples for a more
challenging evaluation and avoid false negative
samples in the validation/test dataset during dataset
construction. We constructed negative samples for
UMLS in the same method.

Our dataset selection is based on three key per-
spectives:

(1). Dataset prevalence. The three KG datasets
in our experiments are all mainstream public
datasets, which are widely acknowledged and ex-
tensively employed in KG-related research.

(2). Dataset size. We intentionally varied
the dataset sizes, ranging from small (UMLS) to
medium (CoDeX-S) to large (FB15K-237N), to
explore the generalizability of our approach across
datasets of different scales.

(3). Dataset diversity. Our choice also takes
into account the diversity of the dataset. UMLS is
a domain-specific KG dataset with substantial med-
ical knowledge, while CoDeX-S and FB15K-237N
are then two encyclopaedic KG datasets, offering
a balance between general world knowledge and
specialized domains.

From the experimental results, our method
shows some improvement in all three datasets,
which indicates the generality of our method.

C.2 Baseline Details

The specific models used for these baselines are
listed below:

(1). Embedding-based KGC methods. We se-
lect four traditional embedding-based KGC meth-
ods for comparisons, namely TransE (), DistMult
(Yang et al., 2015), ComplEx (Trouillon et al.,
2016), and RotatE (Sun et al., 2019). These meth-
ods predict the triple plausibility by the learned
structural embeddings and the score functions de-
fined in the model.

(2). PLM-based KGC methods. We sclect
KG-BERT (Yao et al., 2019) and PKGC (Lv et al.,
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2022) as PLM-based KGC baselines, which are
classic methods focusing on the triple classification
task. These methods treat triple classification as a
binary text classification task.

(3). LLM-based KGC methods. LL.M-based
KGC research is still at an early stage. There are
only KGLLaMA (Yao et al., 2023) to be the LLM-
based KGC baseline. In addition to KGLLaMA,
the methods proposed in Section 3 by us including
ZSR, ICL, IT, and structure-aware IT (enhanced
IT) will also serve as baselines.

C.3 Implementation Details for Baselines

For embedding-based KGC methods, we reproduce
the results with OpenKE we set the embedding di-
mension d. = d, = 512 and sample K = 32
negative samples during training. The margin v is
tuned among {0, 4, 6, 8, 12}. After training KGC
models, we search for the best classification score
threshold on the validation set for test data follow-
ing the traditional setting (Bordes et al., 2013).

For PLM-based methods, the backbone model
for PLM-based KGC methods is BERT (Devlin
etal., 2019). We fine-tune the KG-BERT according
to the official code implementation. Since PKGC
requires a lot of manual work to annotate each
relation with a prompt, we only report the results
of FB15K-237N shown in the original paper.

For zero-shot reasoning, in addition to mea-
suring with the same backbone Alpaca, we also
test the performance of the GPT-3.5-turbor which
has 175B parameters. For the in-context learning
method, we sample k-shot (k=1,2,4,8) structure-
aware demonstrations. Besides, we sample 4 neigh-
borhood triples for each triple to conduct structure-
aware instruction tuning. For KoPA, we employ
RotatE (Sun et al., 2019) and the score function of
structural embedding pre-training and the embed-
ding dimension is set to 512 and the adapter is a
512x4096 linear projection layer.

C.4 Training Efficiency

We would like to emphasize the notable distinction
between structural embedding pre-training and the
pre-training methods applied in language models
(such as BERT, GPT, and LLaMA), as mentioned
in our paper. Language model pre-training is con-
ducted on the massive corpus in a self-supervised
manner with transformer models which is computa-
tionally expensive. However, structural embedding
pre-training is performed on a certain KG and the



Table 5: The specific domains in MMLU which LLM
achieves higher scores after training on UMLS.

‘ w/o Training w/ Training

Clinical | 449 47.9
College
Medicine 301 312
High School 42.9 46.8
Biology
High School 30.0 32.0
Chemistry
Medical 44.0 48.0
Genetics

embedding parameters and complexity is relatively
modest compared with language models.

For each individual experiment, we use one
A800 GPU with 80G of memory for both train-
ing and inference. Our linux server has ubuntu
installed and three A800 GPUs are available, this is
our detailed equipment situation. To provide more
precise insight, our pre-training process takes only
about ten minutes on a single A800 GPU, whereas
the LLM fine-tuning process takes serveral hours
for various datasets (1 hour for UMLS, 3-4 hours
for CoDeX-S, 8-9 hours for FB15K-237N). Pre-
training a language model like BERT and GPT
requires dozens of GPUs and days of training. The
discernible contrast in efficiency between these
two pre-training methodologies underscores the
lightweight nature of structural embedding pre-
training.

C.5 Common Ability Study

We list some of the specific domains that LLMs
have improved after training on the UMLS as
shown in Table 5.

15



	Introduction
	Related Works
	Knowledge Graph Completion
	LLMs for KG research

	Basic Settings for LLM-based KGC
	Notations and Preliminaries
	KGC with Existing LLM Paradigms

	Methodlogy
	Structural Embedding Pre-training
	Knowledge Prefix Adapter
	Complexity Analysis

	Experiments
	Datasets
	Experimental Settings
	Baseline Methods
	Implementation and Detail Settings
	Evaluation Protocol

	Main Results
	Transferability Exploration
	Ablation Study
	Case Study
	Common Ability Retention

	Conclusion
	Related Works
	Knowledge Graph Completion
	LLMs for KG research
	Incorporate Non-textual Modality Information into LLMs

	Base Paradigms for LLMs to Solve KGC tasks
	Training-free Reasoning Approaches
	Zero-shot Reasoning Approach
	In-context Learning Approach with Structure-aware Demonstration

	Instruction Tuning Approaches
	Vanilla Instruction Tuning
	Structure-aware Instruction Tuning

	Comparasions Among Baselines and KoPA

	Experiments
	Dataset Details
	Baseline Details
	Implementation Details for Baselines
	Training Efficiency
	Common Ability Study


