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Abstract

Large language model (LLM) based knowledge001
graph completion (KGC) aims to predict the002
missing triples in the KGs with LLMs. How-003
ever, research about LLM-based KGC fails to004
sufficiently harness LLMs’ inference proficien-005
cies, overlooking critical structural information006
integral to KGs. In this paper, we explore meth-007
ods to incorporate structural information into008
the LLMs, with the overarching goal of facilitat-009
ing structurally-aware reasoning. We propose010
a Knowledge Prefix Adapter (KoPA) to fulfill011
this stated goal. The KoPA uses a structural012
pre-training phase to comprehend the intricate013
relations and entities within KGs. Then KoPA014
communicates such structural understanding to015
the LLMs through a knowledge prefix adapter016
which projects the structural embeddings into017
the textual space and obtains virtual knowl-018
edge tokens positioned as a prefix of the input019
prompt. We conduct comprehensive experi-020
ments and provide incisive analysis concerning021
how the introduction of structural information022
would be better for LLM’s knowledge reason-023
ing ability. Our code and data are available024
at https://anonymous.4open.science/r/KoPA-025
0122.026

1 Introduction027

Knowledge graphs (KGs) (Bollacker et al., 2008)028

are the quintessential wisdom essence and key in-029

frastructure of modern AI. KGs represent and store030

real-world knowledge in the triple form: (head en-031

tity, relation, tail entity). This structured format032

of knowledge triples offers significant advantages033

across many AI fields such as recommendation034

systems (Sun et al., 2020), question answering (Ya-035

sunaga et al., 2021), and fault analysis (Chen et al.,036

2023). However, there is a pertinent drawback of037

KGs, whether manually curated or automatically038

extracted. Their scope is restricted to observed039

knowledge, resulting in an incomplete represen-040

tation riddled with unobserved or missing triples.041

Figure 1: A simple case of LLM-based KGC. Useful
structural information that describes the surrounding
information about the entities can serve as auxiliary
prompts and guide the LLM to make correct decisions.

This phenomenon motivates knowledge graph com- 042

pletion (KGC), which aims to predict the missing 043

triples and further enhance the given KG. 044

Existing KGC approaches can be divided into 045

two categories: methods based on embeddings 046

(Bordes et al., 2013) and pre-train language models 047

(PLM) (Yao et al., 2019). Recently, as large lan- 048

guage models (LLMs) (Zeng et al., 2023; OpenAI, 049

2023) show outperforming capabilities (Ouyang 050

et al., 2022), this field has recently been revolution- 051

ized by LLMs. Some works (Yao et al., 2023) make 052

the first step towards LLM-based KGC, employ- 053

ing existing paradigms like zero-shot reasoning 054

(Brown et al., 2020) and instruction tuning (Ouyang 055

et al., 2022) to accomplish KGC. However, such ap- 056

proaches transform the KGC task into a text-based 057

prediction of individual triples, leading to specific 058

fundamental problems. LLMs lack the depth and 059

precision of factual knowledge which always re- 060

sults in the hallucination (Zhang et al., 2023b) prob- 061

lem of LLMs. Besides, the structural intricacies of 062

KGs such as subgraph structure, relational patterns, 063

and relative entities/relations are often overlooked. 064

This richly structured information, if properly in- 065

corporated, can significantly enhance the LLM’s 066

understanding and representation of KGs. Figure 067
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1 presents an intuitive view of the importance of068

structural information for LLM reasoning. How-069

ever, this is neglected by vanilla IT approaches070

(Yao et al., 2023) because each input typically only071

includes a single input triple, leading to potential072

wastage of the structural information inherent in073

the KG. Such an approach fails to equip the LLMs074

with the awareness of the KG structure.075

To address these issues, we take a strategic step076

to LLM-based KGC, aiming to explore how to in-077

corporate the KG structural information into the078

LLMs and enable structure-aware reasoning. Our079

initial focus involves transferring the existing LLM080

paradigms such as in-context learning (ICL) (Dong081

et al., 2023) and instruction tuning (IT) (Ouyang082

et al., 2022) to a structure-aware context. We pro-083

pose a structure-aware ICL method and a structure-084

aware IT method as the base models, focusing on085

integrating the KG structural information into LLM086

through text form. Additionally, we propose a087

Knowledge Prefix Adapter (KoPA) approach to088

make LLMs a better knowledge reasoner, leverag-089

ing structural embedding pre-training to capture090

the KG structural information. Then KoPA trans-091

forms the structural embeddings into textual em-092

bedding space by a knowledge prefix adapter and093

obtains several virtual knowledge tokens. These094

tokens, acting as prefixes in the input prompt se-095

quence, direct the instruction-tuning process, pro-096

viding valuable supplementary input triple infor-097

mation. This mapping of structural embeddings098

to textual form provides auxiliary information to099

input triples. Besides, we conduct comprehensive100

analysis and experiments, highlighting the remark-101

able performance and transferability of KoPA. In102

summary, our contribution is three-folded:103

(1). We are the first extensive investigation of104

LLM-based KGC, specifically by incorporating105

KG structural information to enhance the reason-106

ing ability of LLMs. We discuss how to adapt107

the existing LLM paradigms like ICL and IT to a108

structure-aware setting for KGC.109

(2). We further propose a knowledge prefix110

adapter (KoPA) that effectively integrates pre-111

trained KG structural embeddings with LLMs.112

KoPA fosters a comprehensive interaction between113

textual embeddings derived from LLMs and struc-114

tural embeddings sourced from KGs.115

(3). We conduct extensive experiments on three116

public benchmarks and evaluate the KGC perfor-117

mance of all the structure-aware methods proposed118

by us with adequate baseline comparison with fur-119

ther exploration of the transfer ability and knowl- 120

edge retention degree. 121

2 Related Works 122

2.1 Knowledge Graph Completion 123

Knowledge graph completion (KGC) (Wang et al., 124

2017) is an important topic in the KG community, 125

aiming to mine unobserved triples in a given KG. 126

KGC contains several sub-tasks such as triple clas- 127

sification (Bordes et al., 2013), entity prediction 128

(Bordes et al., 2013). The common point among 129

KGC tasks is to establish an effective mechanism 130

to measure the plausibility of the triples. The main- 131

stream KGC methods can be divided into two cate- 132

gories: embedding-based and PLM-based methods. 133

Embedding-based methods (Bordes et al., 2013; 134

Yang et al., 2015; Trouillon et al., 2016; Sun et al., 135

2019) are designed to embed the entities and rela- 136

tions of KGs into continuous representation spaces. 137

These approaches make full use of structural in- 138

formation from the KGs to model triple plausibil- 139

ity with a well-designed score function and learn 140

the entity/relation embeddings in a self-supervised 141

manner. Moreover, PLM-based methods consider 142

KGC as text-based tasks by fine-tuning pre-trained 143

language models (Devlin et al., 2019). The short 144

textual descriptions are organized as an input se- 145

quence and encoded by the PLMs. 146

2.2 LLMs for KG research 147

Among the research topics of LLM, integrating 148

LLM and KG (Pan et al., 2023) is a popular and im- 149

portant one. On the one hand, hallucination (Zhang 150

et al., 2023b; Yang et al., 2023) is widespread in 151

LLMs which means LLMs are lack factual knowl- 152

edge and not interpretable. KGs that store struc- 153

tured knowledge can mitigate such a phenomenon 154

(Peng et al., 2023; Feng et al., 2023; Ji et al., 2023) 155

by introducing factual knowledge into LLMs. On 156

the other hand, LLMs can benefit KG-related tasks 157

such as KGC (Zhu et al., 2023b,c), entity align- 158

ment (Zhang et al., 2023a), and KGQA (Baek 159

et al., 2023) by its powerful generation capabil- 160

ity. KGs for LLMs (KG4LLM) and LLMs for 161

KGs (LLM4KG) are both important research top- 162

ics. We focus on applying LLMs in the KGC task 163

(LLM4KGC), which has not been carefully stud- 164

ied yet. KGLLaMA (Yao et al., 2023) made the 165

first step by vanilla instruction tuning approach 166

but it lacks in-depth and systematic exploration 167

about how to unleash the power of KGs themselves 168
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to make structure-aware reasoning in LLMs and169

achieve better KGC performance. In this paper, we170

will dive into this problem from a more systematic171

perspective with the triple classification task.172

3 Basic Settings for LLM-based KGC173

3.1 Notations and Preliminaries174

A KG can be denoted as G = (E ,R, T ,D) where175

E ,R are the entity set, relation set respectively.176

T = {(h, r, t) | h, t ∈ E , r ∈ R} is the triple177

set and D is the description set of each entity and178

relation. We denote D(e),D(r) as the short textual179

description of each entity e ∈ E and each relation180

r ∈ R. For example, the text description of the181

entity ’/m/0ctzf1’ is D(’/m/0ctzf1’)=’The Trans-182

formers’. When applying LLMs to KGC tasks,183

we denote a LLM as M that serves as a text de-184

coder. The input textual sequence S of the model185

M consists of several parts: the instruction prompt186

I, the triple prompt X , and the optional auxiliary187

demonstration prompt U . The instruction prompt188

I is the manually prepared instruction to guide189

the LLM M to execute the KGC task. The triple190

prompt X contains the textual information about191

the triples that need to be processed, which can192

be denoted as X (h, r, t) = D(h) ⊕ D(r) ⊕ D(t),193

where (h, r, t) ∈ T is a triple and ⊕ denotes the194

textual token concatenation operation. In other195

words, the short descriptions of h, r, t would be196

applied as the input information. The auxiliary197

demonstration prompt U is an optional prompt for198

different settings. In the following, we will follow199

this set of notations.200

Meanwhile, we use triple classification as an201

entry point to investigate how to utilize LLM to202

accomplish the KGC task. Triple classification is203

a basic KGC task aiming to conduct binary clas-204

sification tasks on the given triples. Whereas in205

the LLM paradigm, all tasks are converted into the206

form of text generation. Therefore, we desire the207

model M to answer true or false given the textual208

sequence input S = I ⊕ U ⊕ X .209

Triple classification is different from vanilla text210

classification because the entities and the relations211

in the prompt have complex semantic information212

defined by the given KG. Without knowledge of213

this type of information, the model response is un-214

reliable and unstable. Despite the vast amount of215

commonsense knowledge that exists in the LLMs216

(Zhang et al., 2023b), research has shown that large217

models are numb to fine-grained factual knowledge218

and will fall into a hallucination. Thus, incorporat- 219

ing the KG information into the prompt to provide 220

more auxiliary information and guide the LLM 221

to make structure-aware reasoning is the key to 222

achieving excellent LLM-based KGC. 223

3.2 KGC with Existing LLM Paradigms 224

In this section, we first discuss how to solve 225

the KGC task with existing mainstream LLM 226

paradigms called training-free reasoning ap- 227

proaches and instruction-tuning approaches. 228

Training-free reasoning approaches prompt 229

the LLMs to get direct answers without training. 230

Common training-free methods consist of zero-shot 231

reasoning (ZSR) and in-context learning (ICL). For 232

ZSR, we directly utilize the sequence Szsr = I⊕X 233

as the input to get the prediction results. For ICL, 234

some demonstration U will be added into the input 235

Sicl. To incorporate valuable KG information as the 236

demonstrations, we can sample the relative triples 237

in the local structure of the test triple (h, r, t) to 238

serve as the backbone knowledge. The detailed 239

design of ZSR and ICL approaches are presented 240

in Appendix B.1.1 and B.1.2. 241

Instruction tuning approaches fine-tune the 242

LLMs with instruction template to activate the in- 243

struction following ability of LLMs. Vanilla in- 244

struction tuning leverages the input Sit to fine- 245

tune LLMs with the next word prediction objec- 246

tive. To incorporate semantic-rich KG information 247

into LLMs, we also propose a structure-aware in- 248

struction tuning approach by adding the one-hop 249

neighborhood structure information in the input 250

prompt to inform the LLM with the local structural 251

information. The detailed design of instruction 252

tuning and structure-aware instruction tuning are 253

presented in Appendix B.2.1 and Appendix B.2.2. 254

Therefore, we provide a detailed discussion of 255

how the existing LLM paradigms can introduce 256

local structural information about KGs to further 257

enhance the model performance. However, though 258

these approaches can work to some extent, they 259

have obvious drawbacks. These fundamental ap- 260

proaches to incorporate KG structural information 261

focus on adding the neighborhood information 262

to the input prompt in the text form. However, 263

representing the KG structural information in text 264

is not a good choice, which may bring in more in- 265

valid or redundant information to the prompt. It’s 266

not scalable and effective to increase prompt length 267

indefinitely because a long context will lead to both 268

a decline in model capability and high computa- 269
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Figure 2: An overview of the knowledge prefix adapter (KoPA) by us. KoPA first pre-trains structural-embeddings
for the entities and relations in the given KG and then employs instruction tuning to fine-tune the LLM. The
structural embeddings of the given input triple will be projected into the textual space of the LLM by the adapter
and serve as prefix tokens in the front of the input sequence, which can be "seen" by the following texual tokens due
to the unidirectional attention mechanism in the decoder-only LLM.

tional consumption. Besides, we also have diffi-270

culty finding the structural information in the KGs271

that is decisive for triple discrimination. These two272

problems put us in a dilemma.273

4 Methodlogy274

To solve such issues, we propose the Knowledge275

Prefix Adapter (KoPA for short) to incorporate the276

KG structural information into LLM for KGC. Fig-277

ure 2 presents an intuitive view of KoPA. Firstly278

we extract the structural information of entities and279

relations from the KG through structural embed-280

ding pre-training, and then we inform this struc-281

tural information to LLM through a structural pre-282

fix adapter into the input sequence S . The LLM M283

is further fine-tuned with the structural-enhanced284

text sequence. We will discuss the details in the285

next few sections about our design.286

4.1 Structural Embedding Pre-training287

Instead of adding text about the neighborhood in-288

formation into the input sequence, KoPA extracts289

the structural information of the entities and rela-290

tions by self-supervised structural embedding pre-291

training. For each entity e ∈ E and each rela-292

tion r ∈ R, we learn a structural embedding e ∈293

Rde , r ∈ Rdr respectively, where de, dr are the294

embedding dimensions. We encode the KG struc-295

tural information in the embeddings and further296

adapt them into the textual representation space297

of LLMs. Referring to the existing embedding-298

based KGC paradigm, we define a score func-299

tion F(h, r, t) to measure the plausibility of the300

triple (h, r, t). We adopt the self-supervised pre-301

training objective by negative sampling (Bordes302

et al., 2013): 303

Lpre =
1

|T |
∑

(h,r,t)∈T

(
− log σ(γ −F(h, r, t))

−
K∑
i=1

pi log σ(F(h′
i, r

′
i, t

′
i)− γ)

) (1) 304

where γ is the margin, σ is the sigmoid activation 305

function and (h′i, r
′
i, t

′
i)(i = 1, 2, . . . ,K) are K 306

negative samples (Bordes et al., 2013) of (h, r, t). 307

The weight pi is the self-adversarial weights pro- 308

posed in (Sun et al., 2019). 309

By minimizing such a pre-training loss, the struc- 310

tural embeddings of each entity and relation are 311

optimized to fit all its relative triples thus the KG 312

structural information such as subgraph structure 313

and relational patterns is captured in the embed- 314

dings. Such an approach has been proven effec- 315

tive in many embedding-based KGC methods (Bor- 316

des et al., 2013; Sun et al., 2019) to capture clas- 317

sic structural information like relational patterns 318

and distributed entity representations (Hinton et al., 319

1990) in the earliest days. 320

4.2 Knowledge Prefix Adapter 321

After structural embedding pre-training, we could 322

obtain the structural embeddings (h, r, t) of a 323

triple (h, r, t) where the KG structural informa- 324

tion is encoded in. However, the structural embed- 325

dings are learned in a different representation space 326

against the textual token representation space of the 327

LLM M, which means M can not directly under- 328

stand these embeddings. Thus we apply a knowl- 329

edge prefix adapter P to project them into the tex- 330

tual token representation space of M. Specifically 331
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speaking, the structural embeddings are converted332

to several virtual knowledge tokens K by P:333

K = P(h)⊕ P(r)⊕ P(t) (2)334

In practice, the adapter P would be a simple pro-335

jection layer (Zhu et al., 2023a). Then we put K336

in the front of the original input sequence S serv-337

ing as a prefix of the instruction and triple prompt338

Skpa = K ⊕ Iit ⊕ X . This way, all the following339

text tokens can be seen with the prefix K due to340

the unidirectional attention in decoder-only LLMs.341

By doing this, the textual tokens can pay unidi-342

rectional attention to the structural embeddings of343

the input triple. Such a structure-aware prompt344

will be employed during fine-tuning and inference.345

During training, we froze the pre-trained structural346

embeddings. The adapter is optimized to learn the347

mapping from structural knowledge toward textual348

representation and will have the generalization to349

new triples in the inference stage, which will ben-350

efit the textual description and provide the triple351

information from another perspective to make en-352

hanced predictions.353

4.3 Complexity Analysis354

After proposing KoPA, we make a comparison355

among LLM-based KGC methods to demonstrate356

the advantages of KoPA, which is shown in Table 3.357

Compared with the basic paradigms (ZSR/ICL/IT),358

KoPA incorporates the KG structural embeddings359

into LLM to combine the textual and structural in-360

formation. Meanwhile, KoPA makes the length of361

the prompt more refined as the length of virtual362

tokens generated by the structural prefix adapter363

is fixed to 3 for head/relation/tail respectively. In364

contrast, the prompt length of structure-aware IT365

(enhanced IT in the table) is linearly related to366

the number of neighborhood triples k. In contrast367

to methods that incorporate structural information368

based on textual descriptions, KoPA achieves this369

goal by fixed-length virtual knowledge tokens gen-370

erated by the adapter.371

5 Experiments372

5.1 Datasets373

In our experiments, we use three public KG bench-374

marks UMLS (Yao et al., 2019), CoDeX-S (Safavi375

and Koutra, 2020), and FB15K-237N (Lv et al.,376

2022) to evaluate the proposed LLM-based KGC377

methods. The detailed split information of the378

datasets is shown in Table 4 of the Appendix.379

5.2 Experimental Settings 380

5.2.1 Baseline Methods 381

In our experiments, we provide a comprehensive 382

comparison with three broad classes of baselines on 383

triple classification, which is an important subtask 384

of KGC. The KGC baselines can be divided into 385

three parts: embedding-based methods (Bordes 386

et al., 2013; Yang et al., 2015; Trouillon et al., 2016; 387

Sun et al., 2019), PLM-based methods (Yao et al., 388

2019; Lv et al., 2022), and LLM-based methods 389

(Yao et al., 2023). Besides, we further divide the 390

LLM-based methods into two categories: training- 391

free methods and fine-tuning methods. Training- 392

free methods consist of ZSR and ICL, while fine- 393

tuning methods consist of vanilla IT and structure- 394

aware IT (enhanced IT). 395

5.2.2 Implementation and Detail Settings 396

We reproduce the baseline results and implement 397

the KoPA proposed by us. We employ Alpaca- 398

7B (Taori et al., 2023) as the LLM backbone. Al- 399

paca is a famous extended version of LLaMA (Tou- 400

vron et al., 2023) model fine-tuned on instruction- 401

following data. We reproduce the triple classifica- 402

tion results of KGLLaMA (Yao et al., 2023) over 403

two backbones (LLaMA and Alpaca) to avoid the 404

effect of backbone choice on the results. We name 405

the two baseline models KGLLaMA and KGAl- 406

paca respectively. For all the fine-tuning methods 407

(instruction tuning, structure-aware instruction tun- 408

ing, and KoPA), we fine-tune Alpaca using LoRA 409

(Hu et al., 2022) with rank 64. The number of 410

epochs is searched in {3, 4, 5} and the learning 411

rate is tuned in {1e−4, 3e−4, 5e−4}. We use the 412

AdamW optimizer (Loshchilov and Hutter, 2019) 413

with a fixed batch size of 12. We conducted all 414

the experiments with Nvidia A800 GPUs. The 415

embedding pre-training process is efficient which 416

only takes several minutes. We make a detailed 417

discussion about the time cost of experiments in 418

Appendix C.4. 419

5.2.3 Evaluation Protocol 420

We evaluate the methods with triple classification 421

task (Bordes et al., 2013), which is essentially bi- 422

nary classification and all the test datasets are label- 423

balanced. Therefore, we use accuracy, precision, 424

recall, and F1-score as the evaluation metrics. 425

5.3 Main Results 426

The main experiment results of triple classifica- 427

tion are shown in Table 1. Since precision and 428
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Table 1: The main experiment results of triple classification. We report the accuracy (ACC), precision (P), recall
(R), and F1-score (F1) results for each method on the three datasets. "-" means the result are missing because
the specificity of PKGC makes it difficult to reproduce. The best Acc / F1 results in baselines are marked with
underline, and we highlight our results with bold when we achieve new SOTA.

Model UMLS CoDeX-S FB15K-237N

Acc P R F1 Acc P R F1 Acc P R F1

Embedding-based

TransE (Bordes et al., 2013) 84.49 86.53 81.69 84.04 72.07 71.91 72.42 72.17 69.71 70.80 67.11 68.91
DistMult (Yang et al., 2015) 86.38 87.06 86.53 86.79 66.79 69.67 59.46 64.16 58.66 58.98 56.84 57.90

ComplEx (Trouillon et al., 2016) 90.77 89.92 91.83 90.87 67.64 67.84 67.06 67.45 65.70 66.46 63.38 64.88
RotatE (Sun et al., 2019) 92.05 90.17 94.41 92.23 75.68 75.66 75.71 75.69 68.46 69.24 66.41 67.80

PLM-based
KG-BERT (Yao et al., 2019) 77.30 70.96 92.43 80.28 77.30 70.96 92.43 80.28 56.02 53.47 97.62 67.84

PKGC (Lv et al., 2022) - - - - - - - - 79.60 - - 79.50

LLM-based
Training-free

Zero-shot(Alpaca) 52.64 51.55 87.69 64.91 50.62 50.31 99.83 66.91 56.06 53.32 97.37 68.91
Zero-shot(GPT-3.5) 67.58 88.04 40.71 55.67 54.68 69.13 16.94 27.21 60.15 86.62 24.01 37.59

ICL(1-shot) 50.37 50.25 75.34 60.29 49.86 49.86 50.59 50.17 54.54 53.67 66.35 59.34
ICL(2-shot) 53.78 52.47 80.18 63.43 52.95 51.54 98.85 67.75 57.81 56.22 70.56 62.58
ICL(4-shot) 53.18 52.26 73.22 60.99 51.14 50.58 99.83 67.14 59.29 57.49 71.37 63.68
ICL(8-shot) 55.52 55.85 52.65 54.21 50.62 50.31 99.83 66.91 59.23 57.23 73.02 64.17

LLM-based
Fine-tuning

KG-LLaMA (Yao et al., 2023) 85.77 87.84 83.05 85.38 79.43 78.67 80.74 79.69 74.81 67.37 96.23 79.25
KG-Alpaca (Yao et al., 2023) 86.01 94.91 76.10 84.46 80.25 79.38 81.73 80.54 69.91 62.71 98.28 76.56

Vanilla IT 86.91 95.18 77.76 85.59 81.18 77.01 88.89 82.52 73.50 65.87 97.53 78.63
Structure-aware IT 89.93 93.27 86.08 89.54 81.27 77.14 88.40 82.58 76.42 69.56 93.95 79.94

KoPA 92.58 90.85 94.70 92.70 82.74 77.91 91.41 84.11 77.65 70.81 94.09 80.81

recall alone do not give a good response to the429

model’s performance on the classification task, we430

focus on accuracy and F1-score. However, to pro-431

vide a comprehensive analysis of different mod-432

els, we also report the precision and recall re-433

sults in the table. Overall, we can find that KoPA434

achieves outperforming accuracy and F1 results435

compared with the existing 16 baseline models on436

all three datasets. Taking CoDeX-S as an example,437

KoPA achieves 1.81% improvement in accuracy438

and 1.85% improvement on F1. As we use the439

pre-trained RotatE embeddings in KoPA, we can440

observe that KoPA significantly outperforms the441

original embedding-based RotatE method, espe-442

cially on larger and more challenging datasets like443

CoDeX-S and FB15K-237N.444

Meanwhile, compared with all LLM-based ap-445

proaches, we can see that the LLMs cannot under-446

stand the KG structural information well without447

fine-tuning. The zero-shot LLMs perform very448

poorly in the triple classification task even though449

GPT-3.5-turbo (175B parameters) has excellent ca-450

pability. Though the demonstrations provided by451

ICL can incorporate the KG information, the per-452

formance gain is limited. Besides, the prediction453

results of training-free methods are biased and easy454

to slip into the extremes of all-right or all-wrong,455

as the recall of them is either very high or very low456

but the F1 scores are relatively low all the time.457

However, fine-tuning LLMs can introduce the458

KG information into LLMs as the overall per-459

formance makes obvious improvements. Mean- 460

while, though structure-aware IT enhances the 461

input prompt with neighborhood information of 462

triples, its performance is also limited compared 463

with KoPA. This suggests that the structural em- 464

beddings consist of more semantic-rich information 465

compared with text-based auxiliary prompts, which 466

can also be understood by the LLM through the pre- 467

fix adapter. Combining the analysis in Section 4.3 468

and the experimental results, KoPA achieves better 469

results on top of shorter prompts. 470

5.4 Transferability Exploration 471

The results in the main experiments have shown 472

the effectiveness of KoPA. To further validate the 473

generality and the transferability of KoPA, we con- 474

duct a new transferability experiment. In this ex- 475

periment, we will demonstrate that the knowledge 476

prefix adapter will learn to transfer from structural 477

embeddings to textual token representations and 478

provide semantic-rich auxiliary information to en- 479

hance the decoding process of LLM inference. 480

We demonstrate this point by testing the influ- 481

ence of KoPA for entities that do not appear in the 482

training phase, which is also called inductive set- 483

ting in other KGC works (Chen et al., 2022b). We 484

split the KG dataset into an inductive setting with a 485

defined inductive rate (IR), which refers to the ratio 486

of unseen entities during training. For example, if 487

IR=10%, we will randomly select 10% entities as 488

the inductive entity set. Any triple in the training 489
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(a). IR=10% (b). IR=20%

(c). IR=30% (d). IR=40%

KoPA Vanilla IT Enhanced IT

Figure 3: The results of the transferbility experiment.
We report the results on CoDeX-S dataset under differ-
ent inductive rate (IR). Besides, we split the test data
into seen (S) and unseen (U) parts based on whether
the entity appeared during training. Also we total the
results of all (A) the test data together. Accuracy (Acc)
and F1-score (F1) are reported in the radar charts.

set whose head or tail is in the inductive set will be490

removed during training. Besides, the triples in the491

test set will be divided into two parts: the seen (S)492

part and the unseen (U) part. If the head or tail in493

a triple is in the inductive entity set, it will be re-494

garded as unseen. We fine-tune the LLM with only495

remaining seen triples and test on both seen and496

unseen triples. In this setting, a set of entities will497

not participate in the training process and the LLM498

does not see their textual descriptions, which will499

make the test process more challenging. We report500

the accuracy and F1 score for seen (S), unseen (U),501

and all (A) test triples, which is shown in Figure502

3 for three fine-tuning methods: KoPA, vanilla IT,503

and structure-aware IT (enhanced IT in the figure).504

From the radio charts, we can observe that KoPA505

outperforms the other methods for unseen triples506

and has less performance degradation when IR in-507

creases. The performance of structure-aware IT508

(enhanced IT) with neighborhood triples in the tex-509

tual form is more unstable. These phenomena sug-510

gest that the knowledge prefix adapter can learn511

a good mapping from the structural embeddings512

to the textual representation, which is transferable513

even if the entities are unseen during training. The514

structural embeddings captured from KG play a515

more significant role in informing the LLM with516

useful structural information.517

Table 2: Ablation study results on CoDeX-S. We first
replace the pre-trained structural embedding with other
components and change the insert position of virtual
knowledge tokens to demonstrate the effectiveness of
knowledge prefix adapter.

Model Acc F1

KoPA(Prefix + RotatE) 82.74 84.11

Embedding

w/o SE 81.18 82.52
w/ TransE 82.46 83.42
w/ DistMult 80.71 81.27
w/ ComplEx 81.21 82.12
w/ Random 81.53 82.36

Position
Infix 81.21 82.69
Suffix 77.29 77.75

5.5 Ablation Study 518

To verify the effectiveness of the KoPA design, we 519

conduct a two-part ablation study. The first part 520

is designed to verify the effectiveness of structural 521

embedding and the second part is designed to ver- 522

ify the effectiveness of prefix adapter. As shown in 523

Table 2, we can find that removing the structural 524

embeddings or replacing them with random initial- 525

ized embeddings both lead to performance decline. 526

Also, we find that the model is compatible with 527

different types of structural embeddings. However, 528

the performance gain depends on whether the em- 529

bedding was originally powerful in the triple classi- 530

fication task or not. Refer to Tables 1, TransE (Bor- 531

des et al., 2013) and RotatE (Sun et al., 2019) are 532

better embedding-based KGC models compared 533

with DistMult (Yang et al., 2015) and ComplEx 534

(Trouillon et al., 2016). This demonstrates that 535

semantic-rich structural information is the key to 536

performance improvement and KoPA takes full ad- 537

vantage of it. 538

Meanwhile, putting the virtual knowledge tokens 539

generated by the adapter in the middle (infix) or 540

in the last (suffix) of the input sequence will also 541

decrease the performance. We believe the reason is 542

that putting tokens in the front of the sequence will 543

make all the text pay attention to them as LLMs 544

are usually decoder-only architectures with unidi- 545

rectional self-attention. Then the LLM can make 546

a better decision with the structural embeddings 547

that fully interact with the text. Combining these 548

two parts of the ablation study, we believe that our 549

design of KoPA is effective and reasonable. 550

5.6 Case Study 551

To make a more intuitive view of KoPA, we conduct 552

a case study in this section from both macro and 553

micro perspectives. From a macro perspective, we 554

count the prediction overlap of several models and 555

7



Enhanced IT

KoPA

Vanilla IT

RotatE

Figure 4: The Venn diagram of the correct predictions
from various KGC models. Each intersecting part in the
diagram represents the same predictions from different
models on certain data.

plot a Venn diagram shown in Figure 4.556

From the diagram we can find that KoPA has a557

significant portion of the proper predictions that558

do not intersect with several other models, which559

means that KoPA makes the right prediction on560

some test data that many other models predict in-561

correctly. This suggests that the structural informa-562

tion incorporated in KoPA has a significant role in563

making correct predictions. For a micro example, a564

test triple (John Landis, film director film, Coming565

to America) is predicted as wrong by the RotatE566

model and vanilla instruction tuning LLM. With567

retrieved neighborhood triples (Coming to America,568

locations, New York City), (John Landis, national-569

ity, USA ), (Coming to America, genre, romantic570

comedy), (Comedy, common netflix titles, Coming571

to America), the structure-aware fine-tuned LLM572

still makes a wrong prediction because the neigh-573

borhood information is of little use in the judgment574

of the current prediction though they are the cor-575

rect factual. The structural embeddings applied576

in KoPA contain more information than structural577

information in the form of text and are easier for578

us to extract by a structural pre-training process.579

Thus, KoPA outperforms other models in the triple580

classification task.581

5.7 Common Ability Retention582

To delve into the preservation of generic capabil-583

ities in LLMs, we conducted another experiment584

to assess the overall proficiency of LLMs both be-585

fore and after fine-tuning. We apply the MMLU586

(Hendrycks et al., 2021) benchmark for this prob-587

lem. MMLU is the most popular benchmark to588

evaluate the general abilities of LLMs in differ-589

ent domains such as Humanities, Social Sciences,590

STEM, and others. The overall evaluation results591

on different datasets are shown in Figure 5:592

From the results, it can be noticed that after593

KoPA training, there were discernible alterations594

CS

Clinical

Humanity

Economics

Politics

KnowPAT None PRO
AFT RRHF

Social 
Science

STEMOther

Average

None UMLS CoDeX FB15K-237N

Figure 5: The common ability experiments on MMLU.

in the generalized abilities of LLMs. In most in- 595

stances, there was a decrease, but notably, STEM 596

proficiency exhibited improvement on the UMLS 597

dataset. We attribute this phenomenon to the 598

UMLS being a medical KG, encompassing substan- 599

tial knowledge in medicine, biology, and chemistry, 600

and training on this dataset allows the model to ac- 601

quire more STEM knowledge. Consequently, when 602

facing natural language inputs differing from the 603

training task, the model adeptly leverages the ac- 604

quired knowledge from KGC task fine-tuning to get 605

enhanced results. We have listed several subjects 606

in MMLUs that showed improvement after training 607

with UMLS. These subjects are highly relevant and 608

close to the knowledge domain encapsulated in the 609

UMLS. the LLMs trained with the KGC task also 610

achieved significant improvements across different 611

input prompts, marking a compelling observation. 612

6 Conclusion 613

In this paper, we systematically explore how to 614

incorporate structural information into LLMs to 615

make structure-aware reasoning for KGC tasks. We 616

extend the original LLM paradigms and propose 617

structure-aware ICL and IT methods to incorpo- 618

rate the structural information by text. We fur- 619

ther propose KoPA, a knowledge prefix adapter to 620

incorporate the pre-trained structural embeddings 621

into the LLMs. We conduct triple classification 622

experiments to make comprehensive comparisons 623

among the structure-aware methods and demon- 624

strate the outperforming results achieved by KoPA. 625

In the future, we plan to dive deep into LLM-based 626

KGC and think about a more unified framework 627

to accomplish all the KGC tasks with LLMs. Be- 628

sides, we will explore adapting KGs into LLM- 629

based downstream applications to make the LLMs 630

knowledgeable about KGs. 631
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Limitations632

In this paper, we focus on the topic of LLM-based633

KGC, aiming to integrate the KGC capability into634

LLM with structure-aware reasoning ability. There635

are some limitations in our work.636

Model Design. The design of the knowledge prefix637

adapter is relatively simple. A more sophisticated638

and subtle design will be our future plan.639

Task Generalization. we have not generalized640

the model method to all kinds of KGC tasks such641

as link prediction. The main task of the current642

research is triple classification.643

Model Interpretability. More in-depth experi-644

ments need to be further conducted to explore the645

interpretability of our model..646

Ethical Considerations647

The data and pre-trained LLMs we use in our pa-648

per are all existing open-sourced resources for aca-649

demic research and there are no ethical issues in650

our paper. We promise that there is no anti-ethic651

behavior in our research.652
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Appendix 923

A Related Works 924

In this section, we add some related works about 925

KG and LLM that for reasons of space could not 926

be mentioned in the main paper. 927

A.1 Knowledge Graph Completion 928

Depending on the design of the scoring function, 929

embedding-based methods can be divided into 930

three sub-categories: (1) translation-based meth- 931

ods like TransE (Bordes et al., 2013) and RotatE 932

(Sun et al., 2019), (2) tensor decomposition meth- 933

ods like DistMult (Yang et al., 2015) and Com- 934

plEx (Trouillon et al., 2016), (3) neural network- 935

based methods like ConvE (Shi and Zhao, 2022). 936

Embedding-based KGC methods learn the struc- 937

tural embeddings for triple discrimination but ne- 938

glect the textual information in the KG. 939

KG-BERT (Yao et al., 2019) is the first PLM- 940

based method that models KGC as a binary text 941

classification task. Subsequent works like MTL- 942

KGC (Kim et al., 2020) and StAR (Wang et al., 943

2021) have further improved KG-BERT by intro- 944

ducing more training tasks such as relation classifi- 945

cation and triple ranking and more complex triple 946

encoding strategy. PKGC (Lv et al., 2022) utilizes 947

manual prompt templates to capture the triple se- 948

mantic. Other methods like KGT5 (Saxena et al., 949

2022) and KG-S2S (Chen et al., 2022a) make a 950
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step on the generative KGC (Ye et al., 2022) in951

a sequence-to-sequence paradigm with encoder-952

decoder PLMs like T5 (Raffel et al., 2020). PLM-953

based methods leverage the power of PLM but954

make the training process into text-based learn-955

ing, which is difficult to capture complex structure956

information in the KGs.957

A.2 LLMs for KG research958

In recent years, large language models (LLMs)959

(OpenAI, 2023; Zeng et al., 2023; Touvron et al.,960

2023) have made rapid progress and demonstrated961

powerful capabilities in a considerable number of962

text-related tasks (Zhao et al., 2023). LLMs are usu-963

ally pre-trained in an auto-regressive manner with964

next word prediction task (Brown et al., 2020) and965

demonstrate strong capability on text comprehen-966

sion and generation. Some significant techniques967

such as instruction tuning (IT) (Ouyang et al., 2022)968

and human preference alignment (Wang et al.,969

2023b) are further applied to guide the model to fol-970

low human instructions and generate responses that971

are consistent with human values and preferences.972

A.3 Incorporate Non-textual Modality973

Information into LLMs974

As LLMs demonstrate generalizable capabilities975

on text generation, many other works attempt to in-976

corporate non-textual modality such as images (Liu977

et al., 2023; Zhu et al., 2023a), audio (Lyu et al.,978

2023), and video (Lyu et al., 2023), which are also979

called multi-modal LLMs (Yin et al., 2023). These980

methods tend to encode non-textual information981

through the modality encoders and then process it982

as virtual text tokens. The non-textual tokens are983

aligned with the word tokens by instruction tuning984

on multi-modal datasets.985

The multi-modal LLM mentioned above usually986

excludes graph, which is another important data987

modality. There are also some works talking about988

how to incorporate graph data into LLMs. Drug-989

Chat (Liang et al., 2023) proposes to encode the990

drug molecule graphs with graph encoders and fine-991

tune the LLM to predict drug interactions. Other992

works (Ye et al., 2023; Liu and Wu, 2023; Wang993

et al., 2023a; Guo et al., 2023) explore how to solve994

graph learning tasks like node classification and995

graph classification by convert the graph structure996

information into LLMs.997

Our research is relative to this topic as KGs also998

have complex graph structures on top of the text999

descriptions. In this paper, we will explore how1000

to incorporate complex structural information in 1001

the KGs into the LLMs to achieve better reasoning 1002

capabilities on knowledge graph completion. 1003

B Base Paradigms for LLMs to Solve 1004

KGC tasks 1005

B.1 Training-free Reasoning Approaches 1006

Training-free reasoning is an efficient approach 1007

to employing a LLM to solve downstream tasks 1008

without extra training. We need to prepare a suit- 1009

able prompt template to acquire the results gener- 1010

ated by the model M. Mainstream training-free 1011

approaches consist of zero-shot reasoning and in- 1012

context learning (Dong et al., 2023). Existing meth- 1013

ods like (Zhu et al., 2023d) have tried zero-shot 1014

reasoning to evaluate the link prediction ability of 1015

LLM. Besides, there are no ICL-based KGC meth- 1016

ods yet. We will discuss each of them below more 1017

systematically and incorporate structural informa- 1018

tion into LLMs. 1019

B.1.1 Zero-shot Reasoning Approach 1020

Zero-shot reasoning (ZSR) is a direct approach for 1021

LLMs to do the reasoning task without auxiliary 1022

information U . Thus, the input sequence of ZSR 1023

can be denoted as Szsr = Izsr ⊕X . The decoding 1024

process of the LLM M can be formulated as: 1025

Azsr = argmax
A

PM(A|Szsr)

= argmax
A

PM(A|Izsr,X )
(3) 1026

where A is the generated answer of the model M 1027

and Izsr is the instruction template for ZSR. In the 1028

setting of ZSR, no KG information is added to the 1029

input sequence Szsr. 1030

The determinative information in the ZSR 1031

prompt is only the textual descriptions of the test 1032

triple. ZSR is unable to incorporate KG informa- 1033

tion due to its setting limitations, otherwise, it can- 1034

not be called zero-shot. 1035

B.1.2 In-context Learning Approach with 1036

Structure-aware Demonstration 1037

As another training-free paradigm, in-context learn- 1038

ing (ICL) (Dong et al., 2023) allows the model M 1039

to add auxiliary demonstration U to the input S 1040

and accomplish the task in the form of analogical 1041

reasoning, which can be denoted as: 1042

Aicl = argmax
A

PM(A|Sicl)

= argmax
A

PM(A|Iicl,U ,X )
(4) 1043
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As for the triple classification task, the demon-1044

stration U should be some triples and their labels in1045

the form of {(Xi, yi), 1 ≤ i ≤ k}, where Xi is the1046

demonstration triple and †i is the label. We denote1047

the ICL with k demonstrations as k-shot ICL.1048

The demonstration triples can be randomly sam-1049

pled from the existing training KG. However, to1050

further incorporate the relative KG information of1051

the test triple (h, r, t), we propose to sample triples1052

that are in the local structure of h and t, which1053

means one of the entities in each sampled triple1054

should be h or t. Besides, as existing KG only con-1055

sists of positive triples, we employ negative sam-1056

pling (Lv et al., 2022) to sample negative triples1057

for demonstration. The number of positive and1058

negative triples are the same for balanced predic-1059

tions. In the demonstration prompt, the positive1060

triples are labeled as true and the negative triples1061

are labeled as false.1062

By doing this, we incorporate the local struc-1063

tural information into the demonstration prompt1064

U with both positive and negative samples. Such1065

a structure-aware demonstration could better en-1066

hance the analogical reasoning process of the1067

model M.1068

B.2 Instruction Tuning Approaches1069

Instruction tuning (IT) aims to fine-tune the LLM1070

to follow human instructions and accomplish the1071

mentioned tasks in the instruction prompt. In this1072

section, we will talk about how to incorporate the1073

KG information into IT approaches.1074

B.2.1 Vanilla Instruction Tuning1075

In the setting of vanilla IT, the instruction prompt1076

Iit will describe the details of completing the triple1077

classification task and the triple prompt X consists1078

of the input triple. No other auxiliary demonstra-1079

tions are included in the input template. To train1080

the model M, the input sequence is organized as1081

Sit = Iit ⊕ X ⊕ Ait. where Ait is the predicted1082

answer of the training data. The model M is fine-1083

tuned with the next word prediction task (Zhao1084

et al., 2023) which is a universal approach to train-1085

ing LLMs. The training objective can be formu-1086

lated as:1087

Lit = − 1

|Sit|

|Sit|∑
i=1

logPM(si|s<i) (5)1088

where si(i = 1, 2, . . . , |Sit|) represents the textual1089

tokens of the input sequence Sit. In the inference1090

Table 3: Comparasion among LLM-based KGC meth-
ods in three ways. As for the prompt length anaysis,
LI , LT denote the length of the instruction prompt and
triple prompt. LD denotes the length of a demonstration
and k is the demonstration number. ZSR/ICL/IT refer to
zero-shot reasoning, in-context learning, and instruction
tuning respectively.

Method Requires
Fine-tuning

Extra
KG Info

Prompt
Length

ZSR % % LI + LT

ICL % ! LI + LT + kLD

Vanilla IT ! % LI + LT

Enhanced IT ! ! LI + LT + kLD

KoPA ! ! LI + LT + 3

stage, the model M is employed to predict the 1091

answer Ait of the test data like Equation 3. Besides, 1092

negative sampling (Lv et al., 2022) is also applied 1093

as training KG only consists of positve triples. 1094

Vanilla IT only fine-tunes the LLM to learn the 1095

knowledge in the single triple to discriminate. Such 1096

an approach makes it difficult to fully utilize the 1097

rich semantics present in a KG and the model per- 1098

formance is limited. 1099

B.2.2 Structure-aware Instruction Tuning 1100

As mentioned before, the structural information of 1101

KG plays a significant role in the KGC tasks (Wang 1102

et al., 2017). To incorporate such KG information 1103

during the fine-tuning stage, we achieve this goal 1104

by adding the neighborhood descriptions of the 1105

input triple. Specifically, we can sample the neigh- 1106

borhoods of the head h and tail t and put the textual 1107

descriptions of neighborhood triples in the demon- 1108

stration prompt Uit. In this way, the input training 1109

sequence is enhanced as Sit = Iit⊕Uit⊕X ⊕Ait. 1110

We name such an approach as structure-aware 1111

instruction tuning as the local structural informa- 1112

tion of the entities is added into the input sequence 1113

in the form of neighborhood triples. 1114

B.3 Comparasions Among Baselines and 1115

KoPA 1116

We make a comparasion table of the base 1117

paradigms and KoPA, presented in Table 4.3. 1118

C Experiments 1119

C.1 Dataset Details 1120

UMLS (Yao et al., 2019) is a classic medical knowl- 1121

edge graph including general knowledge about 1122

medicine and health care. CoDeX-S (Safavi and 1123

Koutra, 2020) is an encyclopedic KG extracted 1124
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Table 4: Statistical information of datasets. The positve
(+) and negative (-) samples are 1:1 in the valid and test
set.

Dataset |E| |R| #Train #Valid(+/-) #Test(+/-)

UMLS 135 46 5216 652/652 661/661
CoDeX-S 2034 42 32888 1827/1827 1828/1828

FB15K-237N 13104 93 87282 7041/7041 8226/8226

from Wikidata (Vrandecic and Krötzsch, 2014).1125

FB15K-237N proposed in (Lv et al., 2022) is mod-1126

ified from FB15K-237. Besides, CoDeX-S and1127

FB15K-237N mine hard negative triples for a more1128

challenging evaluation and avoid false negative1129

samples in the validation/test dataset during dataset1130

construction. We constructed negative samples for1131

UMLS in the same method.1132

Our dataset selection is based on three key per-1133

spectives:1134

(1). Dataset prevalence. The three KG datasets1135

in our experiments are all mainstream public1136

datasets, which are widely acknowledged and ex-1137

tensively employed in KG-related research.1138

(2). Dataset size. We intentionally varied1139

the dataset sizes, ranging from small (UMLS) to1140

medium (CoDeX-S) to large (FB15K-237N), to1141

explore the generalizability of our approach across1142

datasets of different scales.1143

(3). Dataset diversity. Our choice also takes1144

into account the diversity of the dataset. UMLS is1145

a domain-specific KG dataset with substantial med-1146

ical knowledge, while CoDeX-S and FB15K-237N1147

are then two encyclopaedic KG datasets, offering1148

a balance between general world knowledge and1149

specialized domains.1150

From the experimental results, our method1151

shows some improvement in all three datasets,1152

which indicates the generality of our method.1153

C.2 Baseline Details1154

The specific models used for these baselines are1155

listed below:1156

(1). Embedding-based KGC methods. We se-1157

lect four traditional embedding-based KGC meth-1158

ods for comparisons, namely TransE (), DistMult1159

(Yang et al., 2015), ComplEx (Trouillon et al.,1160

2016), and RotatE (Sun et al., 2019). These meth-1161

ods predict the triple plausibility by the learned1162

structural embeddings and the score functions de-1163

fined in the model.1164

(2). PLM-based KGC methods. We select1165

KG-BERT (Yao et al., 2019) and PKGC (Lv et al.,1166

2022) as PLM-based KGC baselines, which are 1167

classic methods focusing on the triple classification 1168

task. These methods treat triple classification as a 1169

binary text classification task. 1170

(3). LLM-based KGC methods. LLM-based 1171

KGC research is still at an early stage. There are 1172

only KGLLaMA (Yao et al., 2023) to be the LLM- 1173

based KGC baseline. In addition to KGLLaMA, 1174

the methods proposed in Section 3 by us including 1175

ZSR, ICL, IT, and structure-aware IT (enhanced 1176

IT) will also serve as baselines. 1177

C.3 Implementation Details for Baselines 1178

For embedding-based KGC methods, we reproduce 1179

the results with OpenKE we set the embedding di- 1180

mension de = dr = 512 and sample K = 32 1181

negative samples during training. The margin γ is 1182

tuned among {0, 4, 6, 8, 12}. After training KGC 1183

models, we search for the best classification score 1184

threshold on the validation set for test data follow- 1185

ing the traditional setting (Bordes et al., 2013). 1186

For PLM-based methods, the backbone model 1187

for PLM-based KGC methods is BERT (Devlin 1188

et al., 2019). We fine-tune the KG-BERT according 1189

to the official code implementation. Since PKGC 1190

requires a lot of manual work to annotate each 1191

relation with a prompt, we only report the results 1192

of FB15K-237N shown in the original paper. 1193

For zero-shot reasoning, in addition to mea- 1194

suring with the same backbone Alpaca, we also 1195

test the performance of the GPT-3.5-turbor which 1196

has 175B parameters. For the in-context learning 1197

method, we sample k-shot (k=1,2,4,8) structure- 1198

aware demonstrations. Besides, we sample 4 neigh- 1199

borhood triples for each triple to conduct structure- 1200

aware instruction tuning. For KoPA, we employ 1201

RotatE (Sun et al., 2019) and the score function of 1202

structural embedding pre-training and the embed- 1203

ding dimension is set to 512 and the adapter is a 1204

512×4096 linear projection layer. 1205

C.4 Training Efficiency 1206

We would like to emphasize the notable distinction 1207

between structural embedding pre-training and the 1208

pre-training methods applied in language models 1209

(such as BERT, GPT, and LLaMA), as mentioned 1210

in our paper. Language model pre-training is con- 1211

ducted on the massive corpus in a self-supervised 1212

manner with transformer models which is computa- 1213

tionally expensive. However, structural embedding 1214

pre-training is performed on a certain KG and the 1215
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Table 5: The specific domains in MMLU which LLM
achieves higher scores after training on UMLS.

w/o Training w/ Training

Clinical 44.9 47.9

College
Medicine

30.1 31.2

High School
Biology

42.9 46.8

High School
Chemistry

30.0 32.0

Medical
Genetics

44.0 48.0

embedding parameters and complexity is relatively1216

modest compared with language models.1217

For each individual experiment, we use one1218

A800 GPU with 80G of memory for both train-1219

ing and inference. Our linux server has ubuntu1220

installed and three A800 GPUs are available, this is1221

our detailed equipment situation. To provide more1222

precise insight, our pre-training process takes only1223

about ten minutes on a single A800 GPU, whereas1224

the LLM fine-tuning process takes serveral hours1225

for various datasets (1 hour for UMLS, 3-4 hours1226

for CoDeX-S, 8-9 hours for FB15K-237N). Pre-1227

training a language model like BERT and GPT1228

requires dozens of GPUs and days of training. The1229

discernible contrast in efficiency between these1230

two pre-training methodologies underscores the1231

lightweight nature of structural embedding pre-1232

training.1233

C.5 Common Ability Study1234

We list some of the specific domains that LLMs1235

have improved after training on the UMLS as1236

shown in Table 5.1237
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