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Figure 1: Overall framework of VidGuard-R1. We present the first video authenticity detector
based on multi-modal large language models (MLLMs), which generates a chain-of-thought rea-
soning process along with the final answer.

ABSTRACT

With the rapid advancement of Al-generated videos, there is an urgent need for
effective detection tools to mitigate societal risks such as misinformation and rep-
utational harm. In addition to accurate classification, it is essential that detection
models provide interpretable explanations to ensure transparency for regulators
and end users. To address these challenges, we introduce VidGuard-R1, the first
video authenticity detector that fine-tunes a multi-modal large language model
(MLLM) using group relative policy optimization (GRPO). Our model delivers
both highly accurate judgments and insightful reasoning. We curate a challenging
dataset of 140k real and Al-generated videos produced by state-of-the-art gener-
ation models, carefully designing the generation process to maximize discrimi-
nation difficulty. We then fine-tune Qwen-VL using GRPO with two specialized
reward models that target temporal artifacts and generation complexity. Extensive
experiments demonstrate that VidGuard-R1 achieves state-of-the-art zero-shot
performance on existing benchmarks, with additional training pushing accuracy
above 95%. Case studies further show that VidGuard-R1 produces precise and
interpretable rationales behind its predictions.

1 INTRODUCTION

In the past year, we have witnessed unprecedented progress in video generation models, with dra-
matic improvements in realism and quality. The release of powerful models such as Sora (Brooks
letal.l[2024)), Wan (wanl [2025)), and HunyuanVideo 2024) has made Al-generated videos
more accessible to the public, further blurring the line between synthetic videos and real ones. At
the same time, these advancements have led to a series of social risks, including the spread of misin-
formation, violations of privacy rights, damage to personal reputations, and increased susceptibility
to scams and fraud.

Motivated by its practical significance, several pioneering works have been developed to detect Al-
generated videos. Early approaches primarily targeted DeepFake-style facial forgeries
2020b}; [Tan et al.} 2024} Gu et all,[2021)), which often assumed single-subject, frontal-face scenarios




Under review as a conference paper at ICLR 2026

under constrained settings. These assumptions diverge significantly from open-domain, multi-scene
videos produced by modern generative models. More recent detectors leverage spatial-temporal
consistency (Ma et al.| 2024; Bai et al.,2024b; |Liu et al., 2024); however, such methods are limited
in capturing higher-level semantic or causal inconsistencies and can be easily bypassed by post-
processing techniques. Other methods are trained on curated fake video detection datasets (Chen
et al., 2024a; N1 et al.l 2025; |[Kundu et al., |2025)), but these benchmarks often lack coverage of
newly emerging models and fail to reflect the full diversity of generative capabilities. A recent
benchmark (Chen et al., [2024a)) shows that even state-of-the-art detectors still struggle to reliably
identify videos from advanced models like Sora. Furthermore, these detectors typically offer only
binary decisions without accompanying explanations, which raises concerns for transparency, es-
pecially when detection outcomes affect content moderation or legal accountability. Users are also
more likely to trust detection systems that provide interpretable reasoning.

Recent advances in multi-modal large language models (MLLMs) have significantly enhanced video
understanding, enabling detailed explanations of model decisions (Bai et al., 2023} |[Zhang et al.,
2024b). This makes them promising candidates for detecting and explaining Al-generated videos.
However, directly applying existing MLLMs, including advanced models like GPT-40, yields subpar
performance on current benchmarks, underscoring the need for supervised fine-tuning (SFT). As an
initial step, we applied SFT to the Qwen2.5-VL-7B model (Bai et all [2025). While the model
achieved strong overall performance, it remained limited in its ability to explain why a video is fake,
revealing shortcomings in its reasoning capability.

To address this, we adopt reinforcement learning (RL), which has shown promise in enhancing LLM
reasoning (Guo et al.,|2025). Notably, Video-R1 (Feng et al.,|2025)) outperforms commercial models
on video reasoning tasks. RL enables MLLMs to develop self-improving reasoning via outcome-
based rewards. We hypothesize that RL fine-tuning can help models detect subtle temporal and
generative artifacts. Key to this is designing effective reward models. Simple binary rewards (e.g.,
1 for real, O for fake) are insufficient. Instead, we propose two strategies: (1) injecting temporal
artifacts into both real and fake videos to encourage temporal reasoning, and (2) assigning higher
rewards to videos generated with more diffusion steps, which are harder to detect. Incorporating
these into a group relative policy optimization (GRPO) framework leads to over 86% accuracy on
our dataset and 95% accuracy on two benchmarks.

* We introduce VidGuard-R1, the first video authenticity detector that fine-tunes the MLLM
using GRPO. The model leverages the pretrained knowledge of MLLMs for accurate clas-
sification and employs reinforcement learning for effective exploration. To further enhance
performance, we design two specialized reward models that target temporal artifacts and
generation complexity based on diffusion steps.

* We construct a challenging dataset of 140k real/fake video pairs for Al-generated video
detection. By employing state-of-the-art generation models and carefully controlling the
process, we ensure that distinguishing real from fake is non-trivial.

* VidGuard-R1 achieves state-of-the-art zero-shot performance on existing benchmarks,
with accuracy exceeding 95%. Case studies further highlight its ability to produce accurate
and interpretable explanations.

2 RELATED WORKS

2.1 AI-GENERATED VIDEO DETECTION METHOD

Recent research on Al-generated video detection has largely focused on deepfake videos with syn-
thetic faces (Pei et al.,2024), using spatial-temporal consistency, frequency artifacts, or data-driven
approaches. These methods often struggle to generalize beyond face-centric content to more di-
verse, real-world videos. Recently, general video detection methods have emerged: AIGDet (Bai
et al., 2024a) captures spatial-temporal anomalies, DeCoF (Ma et al., |2024)) exploits frame consis-
tency, and diffusion-based representations track temporal dynamics (Liu et al., [2024). Other works
identify appearance, motion, and geometry as key factors for classifier training (Chang et al.|[2024).
Multimodal LLMs have also been explored for forgery detection: FakeShield (Xu et al., 2024) uses
supervised fine-tuning (SFT) for image forgery detection, while SafeWatch (Chen et al., |2024b)
combines SFT and direct preference optimization (DPO) for video guardrails. In contrast, our work
is the first to fine-tune a multi-modal LLM with group relative policy optimization (GRPO) for Al-
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Figure 2: The overall training framework of VidGuard-R1, consisting of two stages: (1) supervised
fine-tuning (SFT) for chain-of-thought (CoT) initialization, and (2) reinforcement learning-based
fine-tuning to enable deeper reasoning.

generated video detection, demonstrating strong generalization across recent generative models and
benchmark datasets.

2.2 AI-GENERATED VIDEO DETECTION DATASET

Given the recency of this research area, only a limited number of benchmarks have been introduced.
The generated video dataset (GVD) (Bai et al., 2024a) (11k samples) and GenVideo (Chen et al.,
2024a)) (with millions of samples) consider settings where both training and test videos are generated
by the same series of models. However, these benchmarks lack prompt/image—video pairs, seman-
tic labels, or cross-source settings. GVF (2.8k samples) contains prompts/images—video pairs and
semantic labels, but does not provide cross-source settings. GenVidBench (Ni et al.| 2025)) consists
of 100k videos and incorporates cross-source settings, but the video generation models used are less
advanced, such as CogVideo and SVD.

Moreover, existing datasets often contain shortcuts in resolution, frame rate, bitrate, or data-source
imbalance, enabling models to exploit superficial cues rather than learn intrinsic visual realism. To
address these limitations, we construct a curated dataset of 140,000 real-fake videos generated with
state-of-the-art video generation models: HunyuanVideo (Kong et al.[2024)) and CogVideoX (Yang
et al.,[2024)). Our dataset explicitly standardizes bitrate, resolution, frame rate, and content distribu-
tion, resulting in a shortcut-free benchmark that encourages models to rely on semantic and temporal
realism rather than on metadata artifacts.

3 METHODOLOGY

Figure [2] illustrates the VidGuard-R1 framework, which consists of two stages. We first apply
supervised fine-tuning (SFT) to the multimodal large language model (MLLM), followed by di-
rect preference optimization (DPO) and group relative policy optimization (GRPO) based on the
collected datasets. We further develop two GRPO variants by introducing temporal artifacts and
leveraging videos generated with varying diffusion steps.

3.1 DATA COLLECTION
3.1.1 DATA CONSTRUCTION FOR VIDEO REALISM DISCRIMINATION

High-quality training data is essential for video reasoning in MLLMs.. However, many existing
benchmarks for real vs. generated video classification, such as GenVideo (Chen et al.| [2024a) and
GenVidBench (Ni et al.l [2025)), exhibit uncontrolled discrepancies in basic metadata—e.g., real
videos are often longer than 10 seconds while generated ones are typically under 4 seconds in Gen-
Video. Moreover, they reveal clear modality-level gaps in motion dynamics and content contrasts
between real and generated videos. These differences introduce unintended shortcuts, enabling mod-
els to rely on superficial cues like duration or resolution rather than actual visual realism. As a result,
VidGuard-R1 attains over 96% accuracy on both GenVideo and GenVidBench by exploiting such
artifacts. To mitigate this reward hacking behavior, we construct a curated dataset with standardized
video properties, encouraging models to focus on intrinsic visual content.

We collect real videos from the InternVid (Wang et al.,|2023c) and ActivityNet (Caba Heilbron et al.|
20135)) datasets and generate their corresponding fake counterparts using HunyuanVideo (Kong et al.}
2024) and CogVideoX (Yang et al.| |2024). We specifically choose these two models because they
support conditioning on both the first-frame image and a text description—an essential requirement
for generating videos that are contextually aligned with their real counterparts. To achieve such
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alignment, we provide the generation models with the first frame of each real video along with
a textual caption describing its content. For ActivityNet, which lacks native captions, we extract
concise descriptions using Qwen2.5-VL 72B. This pairing strategy mitigates content-based biases
and forces the model to reason over subtle visual details.

3.1.2 COLLECTING CHAIN OF THOUGHT (COT) ANNOTATION

Eliciting deliberate, step-by-step reasoning in MLLMs requires high-quality CoT supervision. To
this end, we leverage Qwen-2.5-VL (72B) to extract salient visual cues from each video and guide
the model toward a deeper understanding. Specifically, we query the model with critical factors
known to distinguish real from generated content—motion consistency, lighting consistency, texture
artifacts, and physical plausibility violations. These targeted prompts encourage detailed reasoning
grounded in visual evidence.

However, current MLLMs lack the capacity to reliably distinguish real from fake videos on their
own. To compensate, we provide ground-truth labels during prompt construction and instruct the
model to generate CoT rationales conditioned on the given label. While these rationales do not re-
flect genuine discrimination ability, they capture rich contextual cues—such as object interactions,
background details, and lighting inconsistencies—that are highly informative. These CoT annota-
tions serve as useful clues for subsequent reinforcement learning fine-tuning. For prompt templates
used in CoT generation, please refer to our supplementary materials.

3.2 SUPERVISED AND RL FINE-TUNING

We begin with SFT, where the model is trained to mimic the ground-truth reasoning process. Given
a video x and its annotation y from the collected dataset, the model parameters 6 are optimized by
minimizing the negative log-likelihood Lggr(6) = — Z?:l log pg(yr | y<t,x). To align the model
outputs with human preferences, we apply DPO, which updates the model based on pairwise pref-
erence data without explicit reward modeling. Given a preferred response y,, and a less-preferred
response y; for the same video z, the DPO loss encourages the model to prefer y,, over y; compared
to a reference model p.s:

Po(Yw|z) po(yi|z)
Lppo(0) = —E(, ~p | logo(flog —"—= — Blog ———=
oro(6) (@) D{ & (B ® pret(yol) Y gpref(yl\x))
where o(-) is the sigmoid function and /5 controls the preference strength. This method allows
fine-tuning using preference comparisons without requiring scalar rewards.

Finally, we adopt GRPO from DeepSeek R1 (Guo et al., 2025), which generalizes RLHF to group-
level comparisons. Given a query video z and a group of generated outputs {0;}% ,, the model
is trained to assign higher probabilities to outputs with higher rewards. The GRPO objective is:

— pref(oilx) pref(oi‘x)
where € is a clipping threshold and [ regularizes the policy to stay close to the reference model.
The advantage term A; normalizes the reward r; for output o; within the group, computed as
A, = %, where u, and o, are the mean and standard deviation of {7"1}?:1 GRPO thus enables
learning from relative ranking among multiple responses, capturing nuanced distinctions in quality
across outputs.

G
1 . HE . i
LGRPO(H) =- E(Iﬂol:G)ND |:G Z min <p0(0 |T) Aia ChP (p0(0 |x) ) 1- € 1+ E) Al) - BDKL (p9 H pref):|
i=1

3.3 VIDGUARD-R1
3.3.1 OVERVIEW

Figure [2| illustrates the training pipeline of VidGuard-R1. Following the data collection
procedure, we construct two datasets of different scales: VidGuard-R1-CoT-30k and
VidGuard-R1-RL-100k. We adopt Qwen2.5-VL-7B as the base MLLM and train it using our
proposed fine-tuning framework.

The first stage is supervised fine-tuning initialization using the VidGuard-R1-CoT-30k dataset,
which contains videos paired with chain-of-thought (CoT) annotations. This stage establishes foun-
dational reasoning ability and equips the model with basic cross-modal alignment and visual under-
standing. The resulting model is referred to as VidGuard-R1 (CoT).
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In the second stage, we apply two reinforcement learning methods—DPO and GRPO—to further
refine the model on a larger and more diverse dataset, VidGuard-R1-RL-100k. DPO aligns the
model with high-quality preference signals via pairwise comparisons, requiring the construction of
preference pairs. Specifically, since our dataset includes pairwise real and fake videos, each sample
is annotated with CoT rationales for both perspectives. For DPO training, we construct preference
pairs by swapping these CoTs. For a real video, the CoT supporting its authenticity with the answer
“real” serves as the positive annotation, while the CoT from the paired fake video with the answer
“fake” is used as the negative annotation. In contrast, GRPO encourages consistent performance
across grouped outputs by leveraging structural regularization. As it does not rely on preference
annotations, video labels are directly used as reward signals. The resulting models are denoted as
VidGuard-R1 (DPO) and VidGuard-R1 (GRPO).

We introduce two variants, GRPO-TA and GRPO-Q, to further enhance detection performance.
These methods extend the original GRPO framework by adjusting reward values according to the
difficulty of detecting fake videos. Detailed descriptions are provided in the following sections.

3.3.2 GRPO WITH TEMPORAL ARTIFACTS (GRPO-TA)

While standard GRPO performs well in video discrimination by leveraging local visual cues—such
as pixel distortions and lighting inconsistencies—it often overlooks temporal inconsistencies, which
are crucial for detecting generated videos. To address this limitation, we introduce GRPO with
temporal artifacts (GRPO-TA), a variant that explicitly promotes temporal reasoning through a
contrastive reward adjustment.

We apply two common temporal artifacts: (1) repeating a specific video segment and (2) reversing
the frame sequence within a segment. These manipulations are applied probabilistically, with the
manipulated region selected based on a Gaussian distribution over the video timeline.

Specifically, for each input query, we generate two sets of model outputs: {oi}iG:1 for the original
video, and {5,}%", for the corresponding manipulated video with temporal artifacts. These videos
should be classified as fake videos. In GRPO-TA, we assign additional rewards when the model
correctly classifies temporally manipulated videos as fake. Consider two numbers, a; > ag. De-
tecting temporal artifacts in videos manipulated from real content tends to be more challenging than
identifying those derived from fake videos. This is because real videos typically exhibit coherent
and natural motion, so temporal manipulations such as frame shuffling or repetition can be subtle
and difficult to detect. In contrast, generated videos often contain artifacts like unstable motion or
low temporal consistency, which make further manipulations more visually salient. To reflect this
asymmetry in difficulty, we assign the model a higher reward «; when the original video o; is real,
and a moderate reward as when the original video is fake. This is defined as:

aq, if 0; = fake and y; = real
w; = < ag, if 0; = fake and y; = fake (D)
0, otherwise

where y; denotes the label of the ¢-th video. In the experiments, we set the hyperparameters to
o1 = 0.5 and aa = 0.3. This additional reward, w;, is designed to be applied conditionally.
Specifically, for a given sample, we only add w; to the original GRPO reward if two conditions are
met: the model’s prediction on the original video (O;) must be correct, and the overall accuracy
on the group of manipulated videos (p) must exceed a predefined threshold p. This ensures that we
only reward the model for temporal reasoning when it already has a solid baseline performance. The
final reward of GRPO-TA is given by

2

creota  JTERPO 4w, if o; is correct and > p
i | rSRPO otherwise

where r; denotes the original GRPO reward, set to 1 if the model prediction on the original video
is correct, and O otherwise. The additional reward w; is applied only when both the original pre-
diction is correct and the group of responses for the temporally manipulated videos achieves higher
accuracy. In the experiments, we set ;4 = 0.8.

3.3.3 GRPO WITH QUALITY EVOLUTIONARY VIDEOS (GRPO-Q)

Our motivation is to extend the model’s capability to detect videos based on quality. Given the sub-
jective nature of quality assessment, we avoid relying on large-scale human annotations. Instead, we
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leverage diffusion-based video generation by systematically varying the number of reverse diffusion
steps to produce videos with distinct quality levels.

As in GRPO-TA, o; € Y and y; € )Y denote the model output and ground-truth label, with ) =
{real} U {fake-s}, where s is the diffusion step. A reward is given for an exact match, and no reward
is assigned if the real/fake classification is incorrect. In GRPO-Q, if the model correctly classifies a
fake video but selects an incorrect diffusion step, we assign a partial reward based on the distance
between the predicted and ground-truth diffusion steps. The GRPO-Q reward is defined as follows:

0, if (01- = real and y; # real)or (oi # real and y; = real)
rIRPOQ — 2 5, if 0; = s (3)
|g (Oi7yi)‘? if0i7yi Ey\{real}‘

The first scenario occurs when the model fails to correctly classify the video as real or fake. The
second scenario, where § = 1, represents an exact match in prediction, including the diffusion
progression. In the third case, the function g(-, -) maps the step distance to a scalar reward, enabling
fine-grained credit assignment based on the similarity in quality. Specifically, we define a progress
value s() in the range [0, 1] to indicate the fraction of diffusion steps used, where 0 denotes zero
steps, and 1 denotes full completion of the steps. The ground-truth value is s(y; ), and the model will
estimate a progress value. We define the reward function as g(0;,v;) = 6 - (1 — [s(0;) — s(y:)]).

This reward formulation enables the model to move beyond binary discrimination and perform fine-
grained analysis of video quality. By learning to associate subtle differences in generation steps
with quality variations, the model develops a deeper understanding of the diffusion process and its
impact on perceptual realism. As a result, it can not only detect whether a video is fake, but also
infer but also estimate the degree of quality degradation in generated videos. This facilitates more
interpretable and controllable evaluation of generated content quality.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS
4.1.1 DATASET

Our dataset contains 140k videos, balanced between 70k real and 70k generated samples, orga-
nized into contextual pairs. The real set comprises 55k videos from InternVid and 15k from Activ-
ityNet, while the generated set includes 50k samples synthesized by HunyuanVideo-I12V (Kong
et al) [2024) and 20k by CogVideoX-5B (Yang et al. 2024). We allocate 130k samples for
training and 10k for testing, with the latter evenly split between real and generated videos.
Within the training data, 30k samples are reserved for chain-of-thought (CoT) learning, denoted
as VidGuard-R1-CoT-30k, and the remaining 100k are used for reinforcement learning fine-
tuning, denoted as VidGuard-R1-RL-100k.

Since ntstate-of-the-art generative models still produce relatively short videos (~129 frames) at
modest resolutions, we standardize all real videos to match generated ones by enforcing 49 frames,
8 FPS, 720x480 resolution, and YUV420p format.

For GRPO-Q fine-tuning, we augment the training set with intermediate generations sampled from
diffusion steps 10 to 50. These are labeled with approximate quality levels (20%, 40%, 60%, 80%,
and 95%). Specifically, we use 12k real videos, each paired with five generated variants at different
diffusion steps, resulting in 72k samples per generation model.

4.1.2 EVALUATION PROTOCOL

We evaluate three datasets—ours, GenVidBench (N1 et al.l [2025), and GenVideo (Chen et al.,
2024a)—using the metrics and baselines defined by their respective benchmarks. For ours and
GenVidBench, we report mean Top-1 accuracy, the average correctness over all predictions. For
GenVideo, we follow the original protocol and report recall and F1 score. All evaluations adhere to
the official settings of each benchmark to ensure fair comparison.

4.1.3 TRAINING SETUP

We employ Qwen2.5-VL-7B as the base MLLM and conduct all experiments on four NVIDIA A100
GPUs (80GB). Each video is represented by up to 16 frames, where each frame is resized to a 28 x 28
spatial resolution and mapped to 128 feature channels for encoder input during both training and
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Table 1: Comparison of models on our  upje 2. Extended GenVidBench results with
dataset, reported as mean Top-1 accu-  viqGuard-R1 and additional MLLMs, reported as

racy (%). TF denotes transformer. mean Top-1 accuracy (%). TF denotes transformer.
Method Type  CogVideoX HunyuanVideo

STowFast CNN 7787 77.03 Method Type MuseV SVD CogVideo Mora HD-VG | Mean
13D CNN 64.78 62.13 SlowFast CNN 1225 1268 3834 4593 93.63 | 41.66
TRN CNN 68.73 69.87 13D CNN 8.15 8.29 60.11 59.24 93.99 49.23
UniFormer V2 TF T3.95 7192 TRN CNN 3892 2664 9134 9398 9397 | 71.26
TimeSformer TF 78.53 74.55 UniFormer V2 TF 2005 1481 4521 9921 9689 | 5755
VideoSwin TF 76.81 79.71 TimeSformer TF 73.14 20.17 74.80 39.40 92.32 64.28
MViT V2 TF 58.38 53.91 VideoSwin TF 6229 801 91.82 4583 9929 | 6727
Quen25.VL7B MLLM 5095 5 MVIiT V2 TF 7634 9829 4750 9662 9758 | 79.90
Qwen2.5-VL-72B MLLM 54.17 55.82 Qwen2.5-VL-7B. MLLM 2586 27.06 6851 4326 7115 | 4730
GPT-4.1 mini MLLM 54.95 5531 GPT-4.1 mini MLLM 2607 3378 9407  57.19 87.64 | 59.62
GPT-4o MLLM 56.81 57.42 VidGuard-R1 (CoT) MLLM 3652 1602 9935 7694 99.94 | 66.09
VidGuard-R1 (CoT) MLLM 66.18 63.19 VidGuard-R1 (GRPO,
VidGuard-R1 (DPO) ~ MLLM 79.13 80.88 GenVideo-pretrained, MLLM ~ 97.24 9659  99.88  99.93  88.14 | 96.37
VidGuard-R1 (GRPO) ~ MLLM 81.30 81.90 Zero-shot)
VidGuardR1 (GRPO-TA) MLLM  82.17 83.72 VidGuard-RI (GRPO) MLLM  97.38 9498  99.90  99.99 9546 | 97.53
VidGuard-R1 (GRPO-Q) MLLM 84.32 86.17

inference. For GenVideo and GenVidBench, we follow their official evaluation protocols and adopt
8-frame inputs. In GRPO training, we sample 8 responses per input; for GRPO-TA, we additionally
sample 4 responses from temporally manipulated variants of the input to enhance robustness against
temporal artifacts. Training proceeds in two stages: first, the base model is fine-tuned for one epoch
on the CoT dataset, yielding the SFT-CoT MLLM; second, we initialize VidGuard-R1 with SFT-
CoT and perform reinforcement learning for approximately 2,000 steps.

4.2 MAIN RESULTS
4.2.1 OUR DATASET

We evaluate VidGuard-R1 on our dataset with several methods, including CNN-based models
(SlowFast (Feichtenhofer et al.,[2019), I3D (Carreira & Zisserman, 2017), TRN (Zhou et al., [ 2018))),
Transformer-based models (UniFormer V2 |Li et al.| (2022al), TimeSformer (Bertasius et al., 2021)),
VideoSwin (Liu et al., 2022), MViT V2 (L1 et al., [2022b)), and MLLM-based models (Qwen2.5-
VL (Bai et al., [2025) and GPT-4.1 mini (OpenAl, 2025)). For CNN and Transformer models, we
use the default training settings provided by the MMAction2 framework (Contributors} 2020).

As shown in Table[I] CNN- and Transformer-based models achieved 53-79% accuracy, with Slow-
Fast and TimeSformer among the top performers. In contrast, Qwen2.5-VL-7B and GPT-4.1 mini
exhibited near-random performance, highlighting their limited capability in distinguishing fake
videos. VidGuard-R1 (CoT), trained via supervised fine-tuning (SFT) on Qwen2.5-VL-7B, substan-
tially improved accuracy from around 51% to over 66%, yet remained less competitive compared to
advanced SOTA methods. This result aligns with the intended role of the SFT stage—as a cold start
phase to guide the model toward structured think + answer responses, emphasizing the extraction of
salient visual cues.

In the subsequent RL stage, both DPO and GRPO further improved performance by roughly 2% over
the best baseline. Our proposed methods—GRPO-TA and GRPO-Q—achieved additional gains of
approximately 2% and 5% over GRPO, respectively, demonstrating the effectiveness of temporal
artifact supervision and quality-aware reward modeling in enhancing detection accuracy.

4.2.2 GENVIDBENCH BENCHMARK

The GenVidBench dataset comprises approximately 87k training samples and 82k testing sam-
ples, with fake videos generated by models such as MuseV (Xia et al., [2024), SVD (Blattmann
et al, 2023), CogVideo (Hong et al) [2022), and Mora (Yuan et al. 2024), and real videos
sourced from HD-VG (Wang et al) 2023b). We conduct training and evaluation under the
cross-source and cross-generator settings as proposed in their benchmark. In addition to
the models originally reported in GenVidBench, we evaluate VidGuard-R1 using the same
model families as in our dataset experiments—CNN-based, Transformer-based, and MLLM-based
models—including two MLLMs: Qwen2.5-VL and GPT-4.1 mini. VidGuard-R1 (GRPO,
GenVideo-pretrained, Zero-shot) denotes the zero-shot model pretrained on GenVideo
and evaluated on GenVidBench. As shown in Table 2| both the zero-shot model and two fine-tuned
variants achieve over 15% higher accuracy compared to prior SOTA methods. Notably, the zero-shot
model demonstrates strong generalization, highlighting the effectiveness of pretraining on diverse
generative content. Complete detection model results are provided in Appendix
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Table 3: Extended GenVideo results with VidGuard-R1 and additional MLLMs, evaluated by F1
score and recall (R)

Morph Model  Wild

Method Deltee‘fgon Metric  Sora Studio Gen2 HotShot Lavie Show-1 \1\//;[;1)1?; Crafter Scope  Scrape ‘ Mean
e o R O A R I
VideoMAE {Tong et al [2022] Vo f (6] 095 Dos 6096  o0a6 087 096 097 096 o | o

W e v B 55 0B 0% 0% oh W8 0% % on 0% |m
e R N R R
b G e 4% ob O 8% 0% 0B o8 1 0% o |0
oeesvn@IEARE s DR 6% 0% 08 06 08 oW 9 4w O | %
e CEmIE v 85 49 8% Gw 09 o % on 4% o9 |49
wowinien  wi K0 08 0% 48 0% on tn 4% om0 |
_ VidGuard-R1 (GRPO, MLLM R 095  0.98 0.90 0.89 0.97 0.85 0.99 0.93 0.81 0.87 ‘ 0.92
GenVidBench-pretrained, Zero-shot) F1 093 093 0.96 0.91 0.99 0.82 0.95 0.89 0.85 0.88 0.91
VidGuard-R1 (GRPO) MUM G5 69 0% 091 0% 0 095 0 005 0% | b9

4.2.3 GENVIDEO BENCHMARK

The GenVideo dataset comprises approximately 2.2M training samples and 20k testing samples,
with generated videos sourced from a diverse set of models, including Sora (OpenAl, |2024),
MorphStudio (mor, 2025), Gen2 (Esser et al.| 2023b), HotShot (hot, 2025}, Lavie (Wang et al.,
20235), Show-1 (Zhang et al.l [2024a), MoonValley (moo, 2025), Crafter (Chen et al., |2023)), Mod-
elScope (Wang et al.| 2023a)), and WildScrape (Wei et al., 2024). Following the official evalu-
ation protocol, we benchmark two MLLM baselines and three variants of VidGuard-R1. Among
these, VidGuard—R1 (GRPO) consistently outperforms almost all prior detection methods across
videos generated by the various models. As shown in Table[3] it achieves an F1 score improvement of
0.06 compared to DeMamba-XCLIP. Complete detection model results are provided in Appendix B}

4.2.4 PERFORMANCE GAP BETWEEN OUR DATASET AND BENCHMARKS

While VidGuard-R1 achieves approximately 85% accuracy on our dataset, it obtains significantly
higher accuracy—exceeding 95%—on the two benchmark datasets. This discrepancy arises from
two key differences. First, the benchmarks exhibit clear discrepancies in video metadata—such as
resolution, duration, and frame rate—between real and fake videos, which models can exploit as su-
perficial cues. In contrast, we standardize all videos in our dataset by matching resolution, FPS, and
format, thereby forcing models to rely on actual visual content. Second, our dataset ensures strong
contextual alignment by conditioning generation on the first frame and the corresponding caption of
a real video, resulting in more realistic and semantically consistent outputs. In comparison, bench-
mark datasets often generate fake videos from unrelated prompts and synthetic images, leading to
artifacts that make detection easier.

4.2.5 ABLATION STUDY

Explanation quality and accuracy comparison. Table[4] Table 4: LLM-as-a-Judge explanation
presents results on the HunyuanVideo (Kong et al| [2024) scores on our dataset

and CogVideoX (Yang et al| 2024) datasets. We report ex- ~ Method (Hunanvides)  (Convidenk)
planation quality scores, which are rated on a 1-10 scale ~ Quen2s-vL7B 8 s
(with 10 indicating excellent quality and full alignment) VidGuard RI (o) 63 69
by GPT-4.1 mini using the LLM-as-a-Judge prompt de-  viGuard-R1 GRPO) 81 80
scribed in Appendix [D] Compared to baseline models such R ORPOO) M 5

as Qwen2.5-VL-7B and GPT-4.1 mini, our VidGuard-R1
GRPO variants achieve consistent improvements in both
classification accuracy and explanation quality.

Table 5: Accuracy (%) for GRPO-
TA under different reward function
parameters oy and oo

a1 ay | Accuracy (%)

GRPO-TA reward ablation. Table [5] reports an ablation
study of GRPO-TA on our dataset by varying the weight pa-
rameters «; and aig, which control the relative importance of

different temporal artifact types. The highest classification ac- 03 01| 813l
curacy of 83.57% is achieved with v; = 0.5 and ap = 0.3, 03 03| ss
while the threshold g is fixed at 0.8 across all experiments. 03 B

0.5 82.53
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Table 6: Accuracy (%) for GRPO- Table 7: Cross-dataset evaluation for VidGuard-R1
g Wltg_ }?rymg number of interme- Test Dataset Training Source Accuracy (%)
1ate diffusion steps Ours VidGuard-R1 (Ours only) 81.65
# of steps (step numbers) | Accuracy (%) Ours A VidGuard-RI (Ours + GenVideo) 82.97
1 50) 3163 GenV¥deo V!dGuard-Rl (GenVideo on!y) 97.53
310, 30, 50) 8321 GenVideo VidGuard-R1 (Ours + GenVideo) 97.98
5 (10, 20, 30, 40, 50) 85.80
Table 8: Label-rationale consistency and expla- ~ Table 9: Human ranking of explanation quality
nation quality for 20 videos
Model Avg. Rank
Metric Value VidGuard-R1 (GRPO)  1.67
Annotators 5 GPT-40 2.08
Label-rationale alignment ~ 89% Qwen2.5-VL-72B 222

Rationale score (0-5) 3.9

GRPO-Q reward ablation. Table [f] presents an ablation study on GRPO-Q conducted on our
dataset by varying the number of intermediate diffusion steps included per real video during fine-
tuning. Using more steps provides richer supervision of video quality progression, improving detec-
tion accuracy. The best accuracy of 84.05% is obtained with five steps, which is the setting used in
our main experiments.

Cross-dataset complementarity. To assess whether training on a limited generative source in-
duces overfitting, we conduct dataset-mixing experiments using VidGuard-R1 (GRPO). As shown
in Table[7] augmenting our dataset with GenVideo leads to consistent performance gains across both
evaluation sets, suggesting that the model benefits from heterogeneous training data and does not
rely on artifacts from any single source. These findings indicate that incorporating diverse genera-
tive sources enhances overall accuracy, reinforcing that VidGuard-R1 learns generalizable detection
cues rather than dataset-specific patterns.

4.3 HUMAN EVALUATION OF EXPLANATION QUALITY

To examine the coherence and interpretability of CoT rationales, we conducted a human evaluation
of VidGuard-R1 (GRPO). Tables [8land [f] summarize the two complementary studies.

Consistency and quality. Five annotators evaluated twenty randomly selected fake videos that
the model correctly identified. Annotators judged whether each rationale was consistent with the
predicted label and assigned a quality score on a 0-5 scale after watching the corresponding video.
As shown in Table [8] annotators reported 89% label-rationale agreement with an average quality
score of 3.9. Lower scores (< 2) occurred primarily when the model emphasized subtle texture-
level artifacts that were difficult for human raters to perceive.

Explanation quality ranking. We conducted a blind ranking study in which five participants eval-
uated explanations from three models across twenty videos, consisting of ten real and ten synthetic
videos. Table[]shows that VidGuard-R1 achieved the strongest human preference, with the lowest
average rank (1.67), outperforming GPT-40 and Qwen2.5-VL-72B. Participants consistently judged
VidGuard-R1’s explanations to be more informative and higher quality. This improvement is likely
because, although GPT-40 and Qwen2.5-VL-72B also describe video features well, their explana-
tions are less effective at distinguishing real from synthetic content, whereas VidGuard-R1 better
highlights the discriminative aspects relevant to this task.
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/Question: Does this video look real or generated by an Al world model?\
A : Real or Gi d

PT

Let me think about this video. The first thing that comes to
mind is the motion consistency. .. the way the paper is being
folded seems to be too precise and consistent, almost like a

machine would perform the task. Next, lighting
consistency. .. no harsh shadows or highlights that would

suggest a real-world setting. .. Texture artifacts are another
aspect to consider. .. have a very smooth texture, which might
be a result of AI generation. .. let's think about physics
violations. The way the paper is being folded seems to defy
the natural physics of how paper behaves. ..

Hmm, I see. Let's break it down again. The motion is
consistent, but the precision and the way the paper folds are
too perfect. .. And the physics of the folding seem to violate
natural paper behavior. All these points suggest that this
video is likely AI-generated.

/Question: Does this video look real or generated by an Al world model?\
Answer: Real or Al-generated with xx% quality

: ] d ;
Let me think about this. .. The motion appears somewhat jerky
and inconsistent, which might be a sign of AI-generated
footage. .. Next, .. lighting .. no dramatic changes in
brightness or shadows that would suggest a real-life scenario.
However, this could be due to the nature of the equipment and
the environment, so it's not a definitive indicator.

Texture artifacts .. the way the hand interacts with the
equipment seems a bit off. The hand's movement looks a bit too
smooth and precise .. Lastly, let's think about physics
violations. The equipment and the hand seem to interact in a
way that follows the laws of physics. ..

Considering all these factors, .. The video could still be
real, but the inconsistencies in the hand's movement and the
overall feel of the footage suggest that it might be AI-
generated with 95% quality

AN J
VidGuard-R1 (GRPO): reasoning Figure 4: VidGuard-R1 (GRPO-Q): temporal in-
consistency observed as unnatural movements

Figure 3:
about an origami folding sequence

Interpretation and broader implications. Although the CoT rationales align closely with human
judgments, they are not guaranteed to be correct in every case. Hallucinations may arise, and the ra-
tionales should therefore be shown with an appropriate disclaimer noting their Al-generated nature.
Nevertheless, presenting interpretable cues helps users more effectively assess whether a video may
be Al-generated, supporting a practical human-in-the-loop verification process.

4.4 CASE STUDIES ON EXPLANATIONS

Figures [3 and [ illustrate cases where VidGuard-R1 correctly identifies videos as generated. The
model performs multi-faceted reasoning across motion, lighting, texture, and physical plausibility
before arriving at a final decision. Notably, it does not rely on a single cue, but instead accumulates
evidence across frames, resembling how humans distinguish fake videos. In each figure, pink high-
lights denote cues suggesting realism, red indicates artifacts indicative of generation, yellow marks
intermediate reasoning steps, and underlines represent several key factors.

For instance, in Figure [3] the smooth hand motion initially suggests realism; however, once the
origami folds in a physically implausible manner, the model revises its judgment. In Figure [4]
although the lighting and shadows are consistent—typically a cue for authenticity—the model rec-
ognizes that this is insufficient in a largely static scene with only a stationary machine and a human
hand. In particular, even in its final prediction, the model reflects on earlier realistic cues and ac-
knowledges that the video could still be real, underscoring its nuanced, human-like reasoning in
assessing video quality. Additional case studies are provided in the Appendix [E]

5 CONCLUSION

We propose VidGuard-R1, an MLLM-based discriminator that not only detects Al-generated
videos with high accuracy but also provides interpretable reasoning. By leveraging reinforcement
learning with reward models targeting temporal artifacts and generation quality, VidGuard-R1
achieves 85% accuracy on our dataset, 97% on GenVidBench, and 96% on GenVideo, substan-
tially surpassing prior state-of-the-art methods. We expect this work to advance MLLM-based video
analysis and foster future research on strengthening MLLMs’ reasoning.

5.1

Our dataset currently includes fake videos generated using HunyuanVideo and CogVideoX, which
are the primary open-source models supporting large-scale text-image joint conditioning. Other
diffusion models provide only text- or image-based conditioning, limiting their suitability for our
pairwise real-fake construction. While the current design ensures strong contextual alignment be-
tween real and generated videos, incorporating outputs from a broader set of generative models
would further improve diversity and robustness, thereby enhancing applicability to real-world sce-
narios.

LIMITATIONS

10
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ETHICS STATEMENT

This work does not involve personally identifiable information or sensitive user data. All datasets
used in our experiments are publicly available and constructed in accordance with their licenses and
usage guidelines. VidGuard-R1 is designed to mitigate societal risks associated with Al-generated
videos, such as misinformation and reputational harm, by providing interpretable CoT reasoning to
assist human verification. To the best of our knowledge, the method does not introduce risks related
to fairness, safety, or privacy.

REPRODUCIBILITY STATEMENT

The VidGuard-R1 framework is detailed, with a two-stage training process: SFT for CoT initializa-
tion, followed by RL fine-tuning using DPO and GRPO on the Qwen2.5-VL-7B model. The training
involves the VidGuard-R1-CoT-30k and VidGuard-R1-RL-100k datasets, with videos standardized
to 720 x 480 resolution and 8 FPS. Training proceeds for one SFT epoch, followed by ~ 2,000
RL steps on four NVIDIA A100 GPUs. Reproducibility is further ensured by specifying the reward
strategies: GRPO-TA and GRPO-Q.
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Table 10: Extended GenVidBench results with VidGuard-R1 and additional MLLMs, reported as
mean Top-1 accuracy (%). TF denotes transformer.

Method Type MuseV SVD CogVideo Mora HD-VG | Mean

SlowFast (Feichtenhofer et al.[[2019)  CNN 1225  12.68 38.34 4593 93.63 | 41.66

F3Net (Qian et al.|[2020a CNN 37.43 3727 36.46 39.59 5276 42.52

I3D (Carreira & Zisserman|[2017 CNN 8.15 8.29 60.11 59.24 93.99 49.23

CFV2 (Nguyen et al.|[2019 CNN 86.26  86.53 10.10 1690  88.40 60.53

TPN (Yang et al.| %%fm CNN 37.86 8.79 68.25 90.04 97.34 61.52

TIN (Shao et al.[[2020) CNN 3378 2147 81.59 79.44  97.88 63.97

TRN (Zhou et al.|[2018) CNN 3892  26.64 91.34 9398  93.97 71.26

TSM (Lin et al.|[2019) CNN 70.37  54.70 78.46 7037  96.76 76.40

X3D (Feichtenhofer/[2020) CNN 9239  37.27 65.72 49.60 97.51 77.09

UniFormer V2 (Li et al.[[2022a) TF 20.05 14.81 45.21 99.21 96.89 57.55

TimeSformer (Bertasius et al.[[2021) TF 73.14  20.17 74.80 39.40 92.32 64.28

VideoSwin (Liu et al.||2022 TF 62.29 8.01 91.82 45.83  99.29 67.27

MVIT V2 qgm]%%m'} TF 76.34  98.29 47.50 96.62  97.58 79.90

Qwen2.5-VL-7B (Bai et al.. MLLM  25.86 27.06 68.51 4326  71.15 47.30

GPT-4.1 mini 1@@”'% MLLM  26.07 33.78 94.07 57.19  87.64 59.62

VidGuard-RT (Co MLLM  36.52 16.02 99.35 76.94  99.94 66.09
VidGuard-R1 (GRPO,

GenVideo-pretrained, Zero-shot) MLLM  97.24  96.59 99.88 99.93 88.14 96.37

VidGuard-R1 (GRPO) MLLM  97.38  94.98 99.90 99.99  95.46 97.53

A ADDITIONAL SETUP

To further guide the model during RL training, we incorporate a length-based reward strategy. We
promote informative yet concise reasoning by rewarding outputs that are neither too brief nor exces-
sively long. Specifically, if the model predicts the correct answer and the length of the response falls
within the range [/min, lmax], an additional reward w is assigned. Let /; be the length of the model’s
response for the i-th video. The reward is defined as:

4)

total | Ti +w, if 0;is correct and liin < I < lpax
¢ 74, otherwise

where we set w = 0.1, I, = 320, and [, = 512.

B COMPREHENSIVE BENCHMARK EVALUATION

In this section, we provide extended benchmark results for VidGuard-R1 alongside additional
MLLMs. Table [I0] presents mean Top-1 accuracy on GenVidBench across multiple video datasets,
including CNN and Transformer baselines as well as selected MLLM variants. Table [T1] reports
comprehensive F1 and recall scores on the GenVideo dataset, including all models provided in the
official benchmark alongside our MLLM variants. These extended tables offer a complete compari-
son of performance across all evaluated models.

C ZERO-SHOT GENERALIZATION TO UNSEEN GENERATIVE MODELS

To evaluate the robustness of VidGuard-R1 beyond the curated training sources, we assess its zero-
shot performance on a diverse set of recently released generative video models that were not used
during training, including Gen-3 Alpha [2025), Pika [2025), Pika 2.2 [2025), Luma
Ray2 (fum] 2025)), Sora (sor} [2025), Veo2 [2025)), Veo3 (veo} [2025), and Wan 2.1 (wan], [2023).

Table [12] summarizes performance across these unseen systems. VidGuard-R1 achieves accuracy
above 80% in all cases, reaching up to 96.36%, demonstrating strong generalization to more recent
and increasingly realistic generative models.

These analyses demonstrate that VidGuard-R1 generalizes effectively beyond the curated genera-
tive sources and remains robust across a wide range of unseen, high-quality video generation models.
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Table 11: Extended GenVideo results with VidGuard-R1 and additional MLLMs, evaluated by F1
and recall scores

Model Deltee:;ion Metric  Sora l;/{zgg Gen2 HotShot Lavie Show-1 \l\/’i (l)l(;; Crafter I\S/{:‘;ieel S\g':ge Mean

F3Net (Qian et al.|2020a] g B 050 004 096 031 08 045 093 096 o088 08 ‘82(])
g e & 00 17 03 0% w7 om w o om ew|om
STIL (Gu et al 021 Vdo 0% 0 0o 07 om  oa 0% oo os o | o7
e
o e e & U 1 0% 0% 0% b @ m om e |on
movr G e & 09 4% ORS00 o0 1w gm uw om |
g e § 00 00 0% 0B I8 0B 1D Ih 1B e
v we § 05 00 8 01 % M 1n em om oo
I N
rEm | we & 0% 08 4 00 R 1% Sn 02 0n am |
—re I AT
g wm B 08 0% 0% 05 th o8 o 09 ta on i
orratmin @pnATps] w5 G0 00 05 0% 05 0% ooe om  om  om | o
wowmen won § % 0% 0h 0% 0% 0% 12 1% 1% em i
“VidGuard-R1 (GRPO, iim K095 098 09 08 097 08 099 093 08l 087 ‘0.92
GenVidBench-pretrained, Zero-shot) FI 093 093 09 091 099 08 095 08 085 088 | 091
VidGuard R GRPO) MUM F G5 0% 0w 0ol 0% os 0% % oo oo | ove

Table 12: Zero-shot detection accuracy on unseen generative models

Model Total Correct Incorrect Accuracy (%)
Gen-3 Alpha 56 49 7 87.50
Pika 110 101 9 91.82
Pika 2.2 110 106 4 96.36
Luma Ray?2 110 98 12 89.09
Sora 110 102 8 92.73
Veo2 52 45 7 86.54
Veo3 55 45 10 81.82
Wan2.1 55 46 9 83.64

D PROMPT

Figure [5] shows the base prompt used for the real-vs-fake classification task. Annotators are in-
structed to assess whether a video is real or Al-generated by analyzing key visual and physical
properties.

Figures [6] and [7] provide category-specific rationale collection prompts. In particular, Figure [6]
presents the prompt for identifying visual cues of realism in real videos, while Figure [7]focuses on
spotting artifacts in Al-generated videos. Both prompts guide annotators to evaluate videos across
four diagnostic categories: motion consistency, lighting consistency, texture artifacts, and physics
violations.

Figure [§] illustrates the LLM-as-a-Judge prompt used to evaluate rationale quality. In this setting,
GPT-4.1 mini rates the quality of model-generated explanations on a 1-10 scale, where a score of
10 corresponds to excellent quality and full alignment with the ground truth rationale.
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LLM-as-a-Judge Prompt for Rationale Quality Evaluation in Real vs. Generated Video Classification

SYSTEM:

You are an expert judge evaluating the explanation quality of a vision-language model (VLM) that decides
whether a video is real or Al-generated. The model outputs a binary decision (real or fake) along with a
rationale explaining the basis of its decision.

The rationale should focus on four visual diagnostic categories:

Your evaluation should consider the following five criteria:

Accuracy: Does the rationale identify the key generation artifacts or natural signals relevant to the
decision?

Alignment with Ground Truth: Does the rationale emphasize the same visual evidence?

Specificity: Is the rationale grounded in the visual content (i.e., free from hallucinations or vague
generalities)?

Conciseness: Is the rationale clearly and efficiently worded without unnecessary length or redundancy?
Consistency with Model’s Answer: Is the rationale logically coherent with the model's predicted label
(real/fake)? For example, if the model said “fake,” does the rationale convincingly support this?

Please provide your evaluation in the following format:

Start with "ANALYSIS:" and write a concise paragraph analyzing the rationale with respect to the five
criteria.

Then, on the next line, write "SCORE:" followed by a single integer from 1 to 10 (10 = excellent quality and
full alignment).

USER:

Let’s evaluate the model’s rationale!
Ground truth answer (real/fake):
{ground truth answer}

Ground truth rationale:

{ground truth rationale}

Model answer (real/fake):

{model answer}

Model rationale:

{model rationale}

Figure 8: LLM-as-a-Judge Prompt for Rationale Quality Evaluation

KQuestion: Does this video look real or generated by an Al world model?  Real or Generated

<think>Let me think about this. When evaluating whether this video is real or AI-generated, I'll consider the four factors
mentioned: Motion Consistency, Lighting Consistency, Texture Artifacts, and Physics Violations.

1. **Motion Consistency**: In the video, there are no moving objects that would allow me to assess motion consistency. The
scene appears static, with no visible movement of ships, boats, or any other elements. This lack of motion makes it
difficult to determine if the video is real or AI-generated based on motion consistency alone.

2. **Lighting Consistency**: The lighting in the video appears to be consistent with what one would expect in a real-world
scenario. The shadows and highlights on the buildings and water reflect natural lighting conditions. However, without more
context or a comparison to other videos, it's hard to definitively say if the lighting is perfectly consistent with real-
world conditions.

3. **Texture Artifacts**: Upon closer inspection, the textures of the buildings, water, and other elements appear somewhat
uniform and lack the fine detail and variation one would expect in a real-world photograph. This could be a result of the AI
generation process, where textures might not be perfectly realistic.

4. **physics Violations**: There are no obvious physics violations in this scene. The positioning of the buildings, water,
and boats seems plausible and follows the expected physics of a harbor or cityscape. However, the lack of motion and the
uniformity of textures could still be indicative of AI generation.

Considering these points, the video does not exhibit clear motion, and the textures and lighting are somewhat uniform, which
could suggest AI generation. However, the absence of motion and the lack of fine detail make it challenging to definitively
conclude.

In conclusion, while the video does not exhibit clear motion or physics violations, the uniformity of textures and the lack
of fine detail suggest that it could be AI-generated. However, more context or a comparison to other videos would be needed
for a more definitive assessment.</think>

\<answer‘> Generated </answer> /

Figure 9: VidGuard-R1 (GRPO) inference on a MuseV-generated video
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fQuestion: Does this video look real or generated by an Al world model?  Real or Gengrated

i

m 1Y
! -

<think>Let me think about this video carefully. The scene appears to be a chaotic event, possibly a protest or a police
intervention, with people in motion. As I analyze the video, I'll consider the factors mentioned: Motion Consistency,
Lighting Consistency, Texture Artifacts, and Physics Violations.

1. **Motion Consistency**: The individuals in the video seem to be moving in a way that is somewhat realistic. However, the
speed and direction of the movement appear slightly inconsistent at times. This could be due to the AI's attempt to simulate
human movement, but the slight discrepancies might indicate a lack of perfect synchronization.

2. **Lighting Consistency**: The lighting in the video appears to be consistent with natural daylight. There are no sudden
changes in brightness or shadows that would suggest artificial lighting. The shadows and highlights seem to follow the
expected patterns for an outdoor scene.

3. **Texture Artifacts**: Upon closer inspection, there are some subtle artifacts in the textures of the clothing and the
environment. The edges of objects and people seem a bit jagged, which is a common issue with AI-generated images. This could
be due to the AI's attempt to render textures in a realistic manner, but the artifacts are noticeable.

4. **physics Violations**: There are no obvious physics violations in the video. The people and objects are moving in a way
that is plausible for a real-world scenario. The interactions between the individuals and the environment also seem natural.
Considering these observations, the video does exhibit some inconsistencies that are typical of AI-generated content. The
motion and texture artifacts are subtle but present, and the overall scene is consistent with what one might expect from a
real-world event. However, the slight discrepancies in motion consistency and the presence of texture artifacts suggest that
this video is likely generated by an AI model rather than a real recording.

In conclusion, while the video appears to be a realistic depiction of a chaotic event, the subtle inconsistencies in motion
and texture artifacts point towards it being an AI-generated video.</think>

Qanswem Generated </answer> j

Figure 10: VidGuard-R1 (GRPO) inference on a SVD-generated video

/Question: Does this video look real or generated by an Al world model? Real or Generated \

/ -
Lot e cr

<think>Let me think about this. When evaluating whether this video is real or AI-generated, I'll consider the factors of
motion consistency, lighting consistency, texture artifacts, and physics violations.
1. **Motion Consistency**: The video shows a plush toy dinosaur inside a box. The movement of the toy appears to be smooth
and natural, suggesting that it might be a real video. However, the toy is not moving in a way that would be expected in a
real-world scenario, as it seems to be floating or moving in a way that defies gravity. This could be a physics violation.
2. **Lighting Consistency**: The lighting in the video appears consistent and natural. There are no harsh shadows or unusual
highlights that would suggest the use of artificial lighting or post-processing. This is a good sign that the video could be
real.
3. **Texture Artifacts**: The texture of the plush toy and the box looks realistic. There are no visible artifacts or
distortions that would indicate the use of AI generation. The fabric of the toy and the cardboard of the box have a natural
appearance.
4. **physics Violations**: The most striking aspect is the movement of the toy. It appears to be floating or moving in a way
that defies the laws of physics. This is a significant red flag for AI-generated content, as it is highly unlikely for a
real video to capture such an anomaly.
Considering all these points, the video seems to have a physics violation that is not typical in real-world footage. While
the motion and lighting appear consistent, the unnatural movement of the toy suggests that this video might be AI-generated.
The combination of these factors makes it highly improbable that this is a real video.</think>

\\janswer> Generated </answer> A//

Figure 11: VidGuard-R1 (GRPO) inference on a CogVideo-generated video
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<think>Let me think about this. The image provided is a still frame of what appears to be a vintage radio or cassette
player. It's a detailed and realistic-looking illustration, but I need to consider the factors mentioned to determine if
it's real or AI-generated.
1. **Motion Consistency**: The image is a still frame, so there's no motion to analyze. However, if this were a video, I
would look for any inconsistencies in the movement of the objects, such as the tape or the buttons, to see if they move
smoothly or if there are any jarring motions.
2. **Lighting Consistency**: The lighting in the image appears consistent across the entire frame. There are no shadows or
highlights that seem out of place. If this were a real video, I would expect the lighting to change slightly as the camera
moves or as the scene changes.
3. **Texture Artifacts**: The texture of the radio and the cassette tape looks very detailed and realistic. There are no
visible pixelation or distortion that would suggest it's AI-generated. The lines and edges are sharp and well-defined.
4. **physics Violations**: There are no physics violations in this image. Everything looks as it should, with the cassette
tape in the correct position and the buttons in a logical arrangement.
Given these observations, the image appears to be a high-quality illustration rather than a real video. The lack of motion,
the consistent lighting, the detailed textures, and the absence of physics violations all point towards this being an AI-
generated image rather than a real video.
Hmm, let's break it down. The still nature of the image, the detailed and realistic textures, and the absence of motion and
physics violations all support the conclusion that this is an AI-generated image. It's a convincing illustration, but it
doesn't have the dynamic qualities of a real video.</think>

\\:?nswer> Generated </answer>

Figure 12: VidGuard-R1 (GRPO) inference on a Mora-generated video

/Questlon Does this video look real or generated by an Al world model? Real or Generated

<think>Let me think about this. When evaluating whether a video is AI-generated, I consider several factors: motion

consistency, lighting consistency, texture artifacts, and physics violations. Let's break it down.

1. **Motion Consistency**: In the video, the wolves are shown in a natural, fluid motion. Their movements appear smooth and

consistent with how animals would move in the wild. There are no sudden jerks or unnatural movements that would typically

indicate AI generation. The wolves' postures and the way they interact with each other seem realistic.

2. **Lighting Consistency**: The lighting in the video is consistent with what one would expect in a night scene. The

moonlight illuminates the wolves and the surrounding environment in a way that is natural and not overly artificial. The

shadows and highlights are well-balanced, which adds to the realism of the scene.

3. **Texture Artifacts**: The texture of the wolves and the environment appears smooth and natural. There are no visible

pixelation or unusual textures that are often seen in AI-generated images. The fur of the wolves looks realistic, and the

environment, including the trees and the ground, has a natural texture that is consistent with what one would expect in a

forest at night.

4. **physics Violations**: The wolves are shown howling and moving in a way that is physically plausible. There are no

obvious physics violations, such as the wolves floating or moving in an unrealistic manner. The howling and the movement of

the wolves are in sync with their natural behavior.

Considering all these factors, the video does not exhibit any significant motion inconsistencies, lighting inconsistencies,

texture artifacts, or physics violations. The scene appears to be a real video of wolves in a natural setting, captured in a

way that is consistent with real-world photography or video.

Therefore, based on the analysis, it seems that this video is likely a real video rather than an AI-generated one.</think>
\\jénswer> Generated </answer> 4//

Figure 13: VidGuard-R1 (GRPO) inference on a Sora-generated video
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<think> Let me think about this. When evaluating whether this video is real or AI-generated, I'll consider the four factors
you mentioned: Motion Consistency, Lighting Consistency, Texture Artifacts, and Physics Violations.

1. **Motion Consistency**: In the video, people are walking, and their movements appear somewhat natural. However, the speed
and fluidity of their movements might not be entirely consistent with real-world human motion. AI-generated videos often
have a slightly artificial feel to the movement, which can be subtle but noticeable.

2. **Lighting Consistency**: The lighting in the video seems to be consistent with what you'd expect in a real-world
setting. The shadows and highlights on the people and buildings appear natural, suggesting that the lighting was carefully
simulated to match real-world conditions.

3. **Texture Artifacts**: Upon closer inspection, the textures of the people's clothing and the environment (like the
cobblestones and building facades) appear somewhat uniform and lack the fine detail and variation you'd typically see in a
real photograph or video. This could be a sign that the textures are generated by an AI model.

4. **physics Violations**: There are no obvious physics violations in this video. The people are walking in a way that is
consistent with how they would move in a real-world scenario. The shadows and reflections also align with what you'd expect
in a real environment.

Considering these points, the video seems to have some artificial qualities, particularly in the texture and motion
consistency. While it's not definitively clear if this is an AI-generated video, the subtle inconsistencies in texture and
motion suggest that it might be. However, without more advanced analysis tools, it's challenging to be certain. The video
could still be a high-quality real-world recording that has been edited or enhanced in some way.</think>

<answer> Generated </answer>

%

Figure 14: VidGuard-R1 (GRPO) inference on a Morph Studio-generated video

<think>Let me think about this. The image provided is a still frame from what appears to be an animated video. When
considering the factors of Motion Consistency, Lighting Consistency, Texture Artifacts, and Physics Violations, I'll analyze
the image step by step.

1. **Motion Consistency**: The character in the image is in a dynamic pose, suggesting movement. However, since this is a
still frame, we cannot determine motion consistency. The character's pose looks smooth and well-animated, which is typical
for high-quality animation.

2. **Lighting Consistency**: The lighting in the image is bright and evenly distributed, which is consistent with a well-1lit
animated scene. There are no harsh shadows or inconsistencies that would suggest a real-world environment.

3. **Texture Artifacts**: The texture of the character and the background appears smooth and consistent with digital
animation. There are no visible signs of pixelation or irregularities that would indicate a real-world video.

4. **physics Violations**: The character is depicted in a way that defies real-world physics. For example, the character is
floating in the air, which is not possible in real life. This is a clear indication that the image is from an animated
video.

Considering these points, it seems that the image is indeed an AI-generated video. The character's pose, lighting, and the
physics involved all point towards animation rather than a real-world video. The absence of motion in the still frame does
not affect this conclusion, as the analysis is based on the visual elements present.

In summary, the image exhibits characteristics typical of AI-generated animation, such as smooth textures, consistent
lighting, and physics violations, which are not present in real-world videos.</think>

\\ianswer> Generated </answer> ‘//

Figure 15: VidGuard-R1 (GRPO) inference on a Gen2-generated video
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/Question: Does this video look real or generated by an Al world model? Real or Generated \
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<think>Let me think about this. When evaluating whether a video is real or AI-generated, I consider several factors: motion
consistency, lighting consistency, texture artifacts, and physics violations. Let's break it down.
1. **Motion Consistency**: In the video, the Ferris wheel appears to be in motion, but the movement seems somewhat jerky and
inconsistent. Real-world objects, especially large structures like Ferris wheels, typically exhibit smoother motion. The way
the gondolas are moving might suggest a lack of natural fluidity, which is a common sign of AI-generated content.
2. **Lighting Consistency**: The lighting in the video appears to be natural, with shadows and highlights that align with
what one would expect from sunlight. There are no obvious artifacts or anomalies in the lighting that would suggest the use
of artificial lighting techniques typically employed in AI-generated videos.
3. **Texture Artifacts**: The texture of the Ferris wheel and the gondolas looks quite uniform and lacks the fine details
that would be expected in a real-world photograph. AI-generated images often have a slightly artificial look, with less
variation in texture and detail.
4. **physics Violations**: The Ferris wheel is rotating, and the gondolas are moving in a way that seems plausible. However,
the motion of the gondolas appears a bit too perfect and lacks the slight imperfections one would expect in real-world
footage. The gondolas seem to move in a way that doesn't quite match the natural physics of a Ferris wheel.
Considering these observations, the video exhibits some inconsistencies in motion and texture that are characteristic of AI-
generated content. The motion of the Ferris wheel and gondolas is not entirely natural, and the texture of the objects is
somewhat artificial. While the lighting is consistent with natural sunlight, the overall impression is that this video is
likely AI-generated.</think>

\\ianswer> Generated </answer> 4//

Figure 16: VidGuard-R1 (GRPO) inference on a HotShot-generated video

/Question: Does this video look real or generated by an Al world model? Real or Generated \

<think>Let me think about this video and the factors you've mentioned. The video shows a red and blue boat floating on calm
blue waters under a clear sky. As I analyze it, I'll consider the motion consistency, lighting consistency, texture
artifacts, and physics violations.
1. **Motion Consistency**: The boat appears to be moving smoothly across the water. There are no abrupt changes in its
position or orientation, which suggests a consistent motion. However, the lack of visible ripples or waves around the boat
might indicate a slight inconsistency in the water's movement, which could be a result of the AI generation process.
2. **Lighting Consistency**: The lighting in the video seems natural, with the sun casting shadows that align with the
direction of the light source. The colors of the boat and the water appear vibrant and consistent with what one would expect
in a sunny day. There are no noticeable artifacts or anomalies in the lighting that would suggest the video is AI-generated.
3. **Texture Artifacts**: The water's surface looks smooth and lacks the fine details that would be expected in a real
photograph or video. The boat's surface also appears somewhat uniform, which might be a result of the AI's attempt to
simplify textures for aesthetic purposes.
4. **physics Violations**: The boat is floating on water without any visible support or propulsion, which is a plausible
scenario. However, the lack of any movement or interaction with the water, such as ripples or waves, might be a physics
violation. In a real scenario, the boat would create some disturbance in the water, even if it's moving slowly.
Considering these observations, the video seems to have some inconsistencies in motion and texture, which are common in AI-
generated images. The lighting and physics violations are subtle but noticeable. Therefore, it is likely that this video has
been generated by an AI model, but it is still quite plausible that it could be a real video with some post-processing or
simplification.</think>

\\:énswer> Generated </answer> 4//

Figure 17: VidGuard-R1 (GRPO) inference on a Lavie-generated video
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<think>Let me think about this video carefully. The scene depicts a group of dancers performing on a stage with vibrant
lighting. As I analyze the video, I'll consider the factors mentioned: Motion Consistency, Lighting Consistency, Texture
Artifacts, and Physics Violations.

1. **Motion Consistency**: The dancers appear to be moving in a coordinated manner, which is typical for a choreographed
performance. However, upon closer inspection, the movements seem slightly unnatural. The fluidity of the dancers' movements
is not entirely consistent with what I would expect from real human dancers. There are some abrupt transitions that might
suggest the video is not entirely natural.

2. **Lighting Consistency**: The lighting on the stage is dynamic and colorful, which is a common feature in live
performances. The lighting changes in a way that is visually appealing and consistent with what one would expect from a
professional stage setup. There are no obvious inconsistencies in the lighting that would suggest the video is AI-generated.
3. **Texture Artifacts**: The dancers' costumes and the stage itself appear to have a realistic texture. There are no
visible artifacts or distortions that would indicate the video is AI-generated. The textures of the costumes and the stage
are smooth and consistent with what one would expect in a real video.

4. **physics Violations**: The dancers' movements are generally consistent with what one would expect from human dancers.
There are no obvious physics violations, such as dancers floating or moving in ways that defy gravity. The movements are
smooth and coordinated, which is typical for a well-rehearsed performance.

After considering all these factors, I'm inclined to think that this video is likely AI-generated. The slight
inconsistencies in the dancers' movements and the lack of a completely natural flow suggest that the video might be a
generated image or a heavily edited video. The lighting and texture appear consistent with real footage, but the motion
inconsistencies are a strong indicator that this is not a real video.

In conclusion, while the video has some realistic elements, the motion inconsistencies are significant enough to suggest
that this video is AI-generated.</think>

\\i?nswer> Generated </answer> <///

Figure 18: VidGuard-R1 (GRPO) inference on a Show-1-generated video

Question: Does this video look real or generated by an Al world model? Real or Generated

<think>Let me think about this video carefully. The image shows a scene with toy cars, and I need to determine if it's real
or Al-generated. Let's break it down by the factors mentioned:

1. **Motion Consistency**: The cars appear to be moving in a way that looks somewhat realistic, but the motion seems a bit
stiff and not entirely natural. The cars are positioned in a way that suggests they are moving forward, but the way the
wheels are turning and the cars' positions don't quite align with real-world physics. This could be a sign of AI-generated
content.

2. **Lighting Consistency**: The lighting in the scene is quite uniform and doesn't show any significant shadows or
highlights that would be expected in a real-world scenario. This could be a result of the AI model trying to create a
consistent lighting environment, but it might not match the natural lighting conditions.

3. **Texture Artifacts**: The cars and the background have a smooth, almost plastic-like texture. This is not typical of
real-world objects, which usually have more varied and complex textures. The lack of detail in the textures could be another
indicator of AI generation.

4. **physics Violations**: The cars are positioned in a way that suggests they are moving, but the physics of their movement
don't seem to follow real-world rules. For example, the cars appear to be moving without any visible force or interaction
with the ground, which is not how real cars would behave.

Considering all these points, it seems that the video has some inconsistencies that are typical of AI-generated content. The
motion, lighting, and texture artifacts, along with the physics violations, suggest that this is likely an AI-generated
video rather than a real-world recording. However, it's important to note that AI models can sometimes produce content that
closely mimics real-world scenarios, so the distinction might not always be clear-cut.</think>

\\iénswer> Generated </answer> l//

Figure 19: VidGuard-R1 (GRPO) inference on a Moonvalley-generated video
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/Question: Does this video look real or generated by an Al world model? Real or Generated
- 'P- "‘L'P' '/H’ "H

<think>Let me think about this. When evaluating whether this video is real or AI-generated, I'll consider the four factors
you mentioned: Motion Consistency, Lighting Consistency, Texture Artifacts, and Physics Violations.

1. **Motion Consistency**: In the video, the woman appears to be walking through a cave. Her movement looks smooth and
natural, which is a good sign. However, the motion is somewhat exaggerated, which might be a result of the AI generation
process. Real-life videos typically show more subtle and less exaggerated movements.

2. **Lighting Consistency**: The lighting in the video seems to be consistent with what one would expect in a cave. The
light source appears to be natural, possibly sunlight filtering through an opening. The shadows and highlights are
realistic, which supports the idea that this could be a real video.

3. **Texture Artifacts**: The textures of the cave walls and the woman's dress appear quite detailed and realistic. There
are no obvious signs of pixelation or distortion that one would typically associate with AI-generated images. The colors and
details in the environment look natural and well-rendered.

4. **physics Violations**: The woman's movement through the cave seems to follow the laws of physics. There are no sudden or
unrealistic movements that would suggest a physics violation. The way she walks and the way the light interacts with her and
the environment are consistent with real-world physics.

Considering all these points, the video seems to be quite realistic. The motion is smooth and natural, the lighting is
consistent with a real cave, the textures are detailed and realistic, and there are no physics violations. However, the
slight exaggeration in the woman's movement might be a subtle indicator that this is an AI-generated video.

In conclusion, while the video appears to be real, the slight exaggeration in motion could suggest that it is generated by
an AI model.</think>

\\fﬁnswer> Generated </answer> 4//

Figure 20: VidGuard-R1 (GRPO) inference on a Crafter-generated video

<think>Let me think about this. When evaluating whether this video is real or AI-generated, I'll consider the four factors
you've mentioned: Motion Consistency, Lighting Consistency, Texture Artifacts, and Physics Violations.

1. **Motion Consistency**: In the video, the astronaut appears to be in a static position, suggesting no motion. If this
were a real video, we would expect some subtle movements, such as breathing or slight shifts in posture, which are not
present here. This lack of motion could indicate that the video is AI-generated.

2. **Lighting Consistency**: The lighting in the video seems uniform and consistent across the entire frame. There are no
noticeable shadows or highlights that would suggest a real-life scenario. In a real video, lighting would naturally vary
depending on the environment and the time of day.

3. **Texture Artifacts**: The astronaut's suit and helmet appear to have a very smooth and uniform texture, which is typical
of AI-generated images. Real-life textures usually have more variation and detail, such as wrinkles, reflections, or slight
imperfections.

4. **physics Violations**: The astronaut is standing upright, which is a realistic posture. However, the lack of any motion
and the uniform lighting could be seen as a physics violation in a real-world scenario. Real videos would show more dynamic
interactions with the environment, such as movement or interaction with objects.

Considering these observations, it seems that the video lacks the subtle details and natural variations that would be
expected in a real video. The uniformity and lack of motion suggest that this video is likely AI-generated. The absence of
realistic lighting and texture artifacts further supports this conclusion.

Hmm, I see. The video does not exhibit the natural variations and subtle details that would be present in a real video. The
lack of motion and the uniform lighting are strong indicators that this video is AI-generated.</think>

\\ianswer> Generated </answer> 4//

Figure 21: VidGuard-R1 (GRPO) inference on a ModelScope-generated video
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/Question: Does this video look real or generated by an Al world model? Real or Generated \

<think>Let me think about this. When evaluating whether this video is real or AI-generated, I'll consider the factors of
motion consistency, lighting consistency, texture artifacts, and physics violations.
1. **Motion Consistency**: The astronaut riding the horse appears to be in motion, but the movement looks somewhat
unnatural. The horse's legs and the astronaut's body seem to move in a way that doesn't quite align with real-life physics.
The motion looks slightly jerky and inconsistent, which is a common sign of AI-generated content.
2. **Lighting Consistency**: The lighting in the video seems to be consistent with what one might expect in a real outdoor
setting. However, the lighting on the astronaut and the horse is somewhat flat and lacks the depth and variation that would
be present in a real scene. This could be due to the AI model's limitations in generating realistic lighting.
3. **Texture Artifacts**: The textures of the astronaut's suit and the horse's coat appear somewhat artificial. There are no
visible details that would suggest a real-life material, which is another indicator that this might be AI-generated.
4. **physics Violations**: The most striking aspect is the physics violation. An astronaut in a spacesuit would not be able
to ride a horse in a real-world scenario. The combination of these elements suggests that this is not a real video but
rather an AI-generated one.
Considering all these points, it seems that this video likely falls into the category of AI-generated content. The
inconsistencies in motion, the flat lighting, the artificial textures, and the physics violations all point towards this
conclusion. However, it's important to note that AI models can sometimes produce content that closely mimics real-life
scenarios, so it's always a good idea to cross-reference with other sources or experts if possible.</think>

\\ianswer> Generated </answer> 4//

Figure 22: VidGuard-R1 (GRPO) inference on a DreamVideo-generated video
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