

000 TEXT-TO-SQL BENCHMARKS FOR ENTERPRISE RE- 001 ALITIES: UNDER MASSIVE SCOPES, COMPLEX 002 SCHEMAS AND SCATTERED KNOWLEDGE 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Existing Text-to-SQL benchmarks remain overly idealized and differ substantially
014 from enterprise scenarios, which require retrieving tables from massive query
015 scopes, interpreting complex schemas, and locating scattered knowledge across
016 large collections of documents. To address these gaps, we present two enterprise
017 benchmarks, BIRD-Ent and Spider-Ent, constructed through a cost-effective re-
018 finement framework applied to their academic counterparts (BIRD and Spider), to-
019 gether with a new task paradigm, Dual-Retrieval-Augmented-Generation (DRAG)
020 Text-to-SQL, which formalizes the dual-retrieval workflow of table schemas and
021 knowledge documents prior to SQL generation. Our benchmarks exhibit three
022 defining characteristics of enterprise settings: massive query scopes with over
023 4,000 columns, complex schemas with domain-specific and heavily abbreviated
024 table and column names, and scattered knowledge distributed across enterprise-
025 style documents totaling 1.5M tokens. These properties make the benchmarks
026 substantially more realistic and challenging than existing ones. Evaluation on sev-
027 eral state-of-the-art large language models (LLMs) reveals a sharp performance
028 drop, with only 39.1 EX on BIRD-Ent and 60.5 EX on Spider-Ent, underscoring
029 the gap between academic performance and enterprise requirements. By provid-
030 ing a rigorous and discriminative testbed under the DRAG Text-to-SQL paradigm,
031 our benchmarks offer a valuable resource to advance research toward Text-to-SQL
032 systems that are reliable and deployable in real-world enterprise environments.

034 1 INTRODUCTION

036
037 Converting natural language questions into SQL queries, commonly known as the Text-to-SQL task,
038 aims to enable non-experts to interact with relational databases and assist professionals in writing
039 SQL more efficiently. Owing to the widespread use of relational databases in real-world applica-
040 tions, Text-to-SQL has long been a topic of significant interest in both the NLP and database research
041 communities (Li et al., 2023a; Pourreza & Rafiei, 2023; Gao et al., 2024; Shkapenyuk et al., 2025).

042 Benchmarks play a central role in advancing Text-to-SQL research, as they not only define the task
043 setting but also serve as the foundation for measuring research progress and comparing approaches.
044 Recently, LLMs have achieved impressive scores on academic benchmarks, for example, reaching
045 an execution accuracy (EX) of 77.5 on BIRD (Li et al., 2023b) and as high as 91.2 on Spider
046 (Yu et al., 2018). However, such results do not imply that the challenges of Text-to-SQL have
047 been largely solved. As shown in Figure 1, most existing academic benchmarks, including Spider
048 and BIRD, remain overly idealized, characterized by limited scope, simple schema, and inlined
049 knowledge, all of which diverge significantly from the complexities of real-world enterprise practice.
050 In response, several recent efforts have attempted to construct enterprise-oriented benchmarks, such
051 as Spider 2.0 (Lei et al., 2025) and BEAVER (Chen et al., 2025). While these are important steps
052 forward, they still fall short of capturing the realities of enterprise scenarios. Specifically, their *query*
053 *scope* (i.e., the accessible schema scope for a single query) remains limited to dozens of tables, and
which is overly brief and sanitized compared to enterprise knowledge documentation.

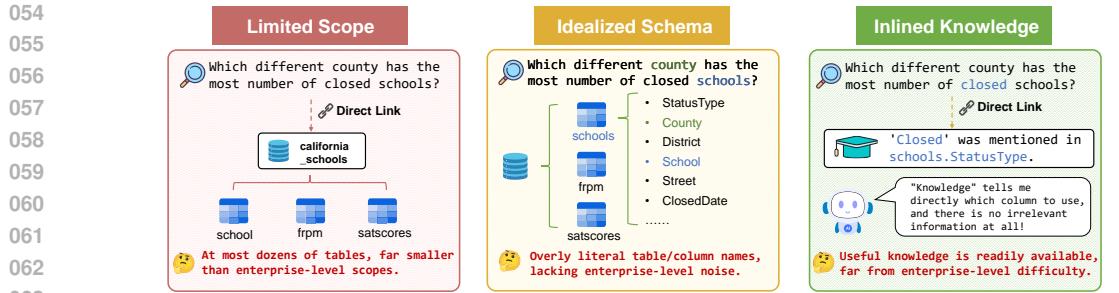


Figure 1: Limitations of existing benchmarks in reflecting real-world enterprise challenges.

Based on our observations of real-world enterprise scenarios, enterprise Text-to-SQL presents challenges that go well beyond these benchmarks. First, the query scope is extremely massive in enterprise scenarios, typically represented by a data asset that contains hundreds or even tens of thousands of tables originating from diverse sources. Second, table and column names in enterprise schemas often carry domain-specific, complex meanings; they tend to be lengthy, heavily abbreviated, and difficult to align with the natural language used in user questions. Third, answering a question often requires external knowledge (e.g., column descriptions and domain knowledge), which is sparsely scattered across a large number of unstructured and heterogeneous documents. Instead of generating SQL directly from a question and a predefined schema, enterprise Text-to-SQL systems must first search over a broad query scope to retrieve the relevant tables, and search across large-scale document collections to locate useful knowledge. These realities underscore the urgency of constructing new benchmarks that can faithfully reflect the challenges faced in enterprise scenarios.

However, collecting data directly from real-world enterprise scenarios presents substantial challenges. Privacy concerns often prevent clients from sharing their data, and the cost of data curation, including cleaning, validation, and annotation, is typically prohibitive. To address these obstacles, we propose a **cost-effective benchmark refinement approach that builds upon existing academic benchmarks**. Our method progressively enhances the realism of these benchmarks along three dimensions. First, at the **domain level**, we expand the tables of the original databases by domain using LLMs, thereby shifting the query scope to massive and heterogeneous data assets. Second, at the **schema level**, we inject realistic enterprise noise into tables and columns. Finally, at the **knowledge level**, we convert query-specific knowledge snippets into large-scale external document collections, providing a more realistic external knowledge storage environment. Throughout the refinement process, we preserve the original benchmark’s questions and SQL structures and the modifications are largely driven by LLMs with minimal human intervention, which significantly reduces the cost of constructing new benchmarks. To further align with enterprise Text-to-SQL workflows, we also introduce a new paradigm termed **Dual-Retrieval-Augmented-Generation Text-to-SQL**, which requires the model to retrieve information from large-scale data assets and external knowledge documents before generating the final SQL query.

Finally, by applying our refinement framework to two academic benchmarks, BIRD and Spider, and introducing the DRAG Text-to-SQL paradigm, we construct two enterprise benchmarks: **BIRD-Ent** and **Spider-Ent** (collectively referred to as the Ent-series benchmarks). BIRD-Ent expands the query scope to an average of **4,150.3** columns (55.8 \times larger than BIRD), and Spider-Ent to **4,053.3** columns (164.7 \times larger than Spider), highlighting the challenge of massive scopes. They further introduce more complex schema information and BIRD-Ent is paired with **1.5M** tokens of enterprise-style documents containing scattered knowledge. Evaluation results on several state-of-the-art (SOTA) LLMs reveal a significant performance drop on these refined benchmarks, indicating that current models struggle to handle the key challenges posed by enterprise Text-to-SQL scenarios. We summarize our contributions as follows:

- We introduce a new Text-to-SQL task setting, termed DRAG Text-to-SQL, that models the complex workflows encountered in real-world enterprise environments.
- We propose a comprehensive and fine-grained benchmark refinement framework that enables transforming existing academic benchmark into an enterprise benchmark at very low

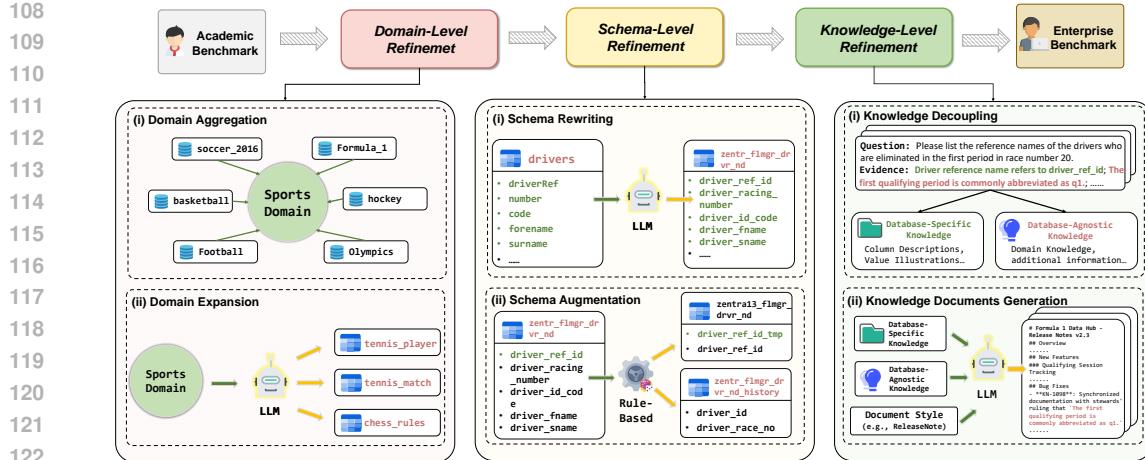


Figure 2: An overview of our benchmark refinement process.

cost. By applying this method to BIRD and Spider, we construct and release two high-quality enterprise Text-to-SQL benchmarks: **BIRD-Ent** and **Spider-Ent**.

- Our benchmarks reveal the formidable challenges of enterprise Text-to-SQL tasks, with SOTA LLMs achieving only **39.1%** EX on BIRD-Ent and **60.5%** EX on Spider-Ent.

2 TASK FORMULATION

Unlike previous benchmarks, where each question is paired with a predefined compact database and sometimes directly supplied with knowledge snippets, we define a new task paradigm, termed **Dual-Retrieval-Augmented-Generation (DRAG) Text-to-SQL**, which extends conventional Text-to-SQL by incorporating dual retrieval before SQL generation.

Given a natural language question Q , the system first retrieves the top- k table schemas \mathcal{C}_k from a large-scale data asset \mathcal{D} :

$$\mathcal{C}_k = \text{Retrieve}_{\text{schema}}(Q, \mathcal{D}), \quad (1)$$

and the top- n external knowledge documents \mathcal{K}_n from heterogeneous document collections \mathcal{K} :

$$\mathcal{K}_n = \text{Retrieve}_{\text{knowledge}}(Q, \mathcal{K}). \quad (2)$$

Finally, the target SQL query Y is generated conditioned on the question and the retrieved context:

$$Y = f(Q, \mathcal{C}_k, \mathcal{K}_n \mid \theta). \quad (3)$$

Here, \mathcal{C}_k denotes the retrieved table schemas, \mathcal{K}_n denotes the retrieved knowledge documents, and $f(\cdot \mid \theta)$ denotes a model parameterized by θ . This formulation explicitly reflects the dual-retrieval workflow inherent in real-world enterprise Text-to-SQL.

3 BENCHMARK REFINEMENT

As shown in Figure 2, our benchmark refinement consists of three key steps designed to simulate enterprise-level complexity: (i) **Domain-level refinement**, which enlarges the query scope by domain to reflect real-world data asset scales; (ii) **Schema-level refinement**, which introduces realistic naming and structural noise to mimic enterprise table schemas; and (iii) **Knowledge-level refinement**, which decouples query-specific external knowledge snippets from the input and embeds them across LLM-generated enterprise documents. We also incorporate quality control measures to ensure the reliability of the final benchmarks. All prompts used in this section, along with further details of the refinement methods, can be found in the Appendix B.

Domain-level refinement. Existing Text-to-SQL benchmarks restrict each query to a small, fixed database, making schema linking relatively simple. To simulate enterprise reality, we instead expand

162 the query scope by constructing domain-level data assets. We first group databases in academic
 163 benchmarks into topical domains and aggregate them into data assets. Each asset is then enlarged
 164 with LLM-generated tables designed in enterprise schema style, including realistic names, types,
 165 and constraints, while ensuring the question-SQL pairs in the original benchmarks remain valid.

166 **Schema-level refinement.** In enterprise settings, business-driven design and continual evolution
 167 yield long, structured, and often abbreviated names as well as pockets of redundancy. To capture
 168 this, we apply schema rewriting and augmentation. For rewriting, we convert original table names
 169 to hierarchical enterprise conventions ($<project>.<area>.<content>$) and abbreviate excessively
 170 long names using LLMs. We also rewrite columns by enriching them with clearer semantics while
 171 adopting enterprise-style abbreviations. For instance, *power* becomes *card.pwr_val*. For augmen-
 172 tation, we inject redundant tables and columns that resemble active ones to mirror real causes of
 173 redundancy in enterprises (e.g., legacy systems, migrations, testing). Such artifacts are often la-
 174 beled with prefixes or suffixes like *history_* or *_migrated*, and they introduce ambiguity and stronger
 175 interference for table retrieval and schema linking.

176 **Knowledge-level refinement.** In enterprise scenarios, external knowledge must be retrieved from
 177 large document collections. To approximate this, we refine BIRD by first decoupling its query-
 178 specific evidence (knowledge snippet) from the queries (Spider does not incorporate external knowl-
 179 edge). The evidence contains both database-agnostic knowledge (e.g., domain knowledge) and
 180 database-specific knowledge (e.g., column descriptions). To avoid overlap with BIRD’s database
 181 description files, we keep only the database-agnostic portion of the evidence and rely on the descrip-
 182 tion files for database-specific content. Instead of presenting these materials directly, we segment
 183 them into passages and expand them with LLMs into longer documents written in enterprise styles
 184 (e.g., meeting minutes, technical manuals). Through an elaborate pipeline (more details in Ap-
 185 pendix B.3.2). Finally, we construct 1,412 documents totaling about 1.5M tokens.

186 **Quality control.** Although each refinement step is carefully designed to minimize disruptions, error-
 187 free transformations cannot be guaranteed. To ensure benchmark quality, we verify three aspects:
 188 (i) answer uniqueness, checking whether a question admits only one semantically valid SQL regard-
 189 less of syntactic form, as domain-level refinements may introduce semantically similar columns; (ii)
 190 semantic alignment, ensuring the question still matches its SQL after schema rewriting; and (iii)
 191 document correctness, confirming that generated knowledge documents faithfully preserve required
 192 content without semantic drift. We manually inspect at least 10% of samples, with double annotation
 193 and expert arbitration. Specially, for Spider, where many questions are underspecified, we observed
 194 frequent loss of answer uniqueness after refinement. We therefore conducted a manual full check,
 195 removed ambiguous cases, and retained 602 samples at last. Overall, BIRD-Ent reaches 94.8% an-
 196 swer uniqueness, 98.0% semantic alignment, and 96.7% document correctness, while Spider-Ent
 197 achieves 99.0% semantic alignment and 93.7% answer uniqueness, demonstrating that our bench-
 198 marks maintain high quality and that our refinement design effectively mitigates common errors.

200 4 DATA STATISTICS

201 We conduct an in-depth statistical analysis and comparison between existing Text-to-SQL bench-
 202 marks (including Spider, BIRD, BEAVER, and Spider 2.0) and our Ent-series benchmarks. As
 203 shown in Table 1, our benchmarks more closely reflect real-world enterprise Text-to-SQL scenarios
 204 across multiple critical dimensions.

205 **More massive query scopes.** Our Ent-series benchmarks substantially expand the query scopes
 206 compared to both academic (Spider, BIRD) and enterprise-oriented benchmarks (BEAVER, Spi-
 207 der 2.0). The average query scope in BIRD-Ent or Spider-Ent may span over 400 tables and 4000
 208 columns, representing at least a 57.7 \times increase in table scope and a 55.8 \times increase in column scope
 209 over academic settings, and still at least 5.1 \times more tables and columns than existing enterprise
 210 benchmarks. This dramatic increase reflects the scale and complexity of real enterprise data envi-
 211 ronments.

212 **A more realistic knowledge storage environment and storage format.** BIRD-Ent benchmark
 213 explicitly model the decoupling between queries and external knowledge, simulating a real-world
 214 scenario where task-relevant information must be retrieved from a large pool of loosely organized
 215 documents. Unlike BIRD and Spider 2.0-snow/lite, which directly provide a document including a

Benchmark	# Example	# Table /QS	# Col /QS	# Knowl. Tok. /Question	Enterprise Realism	Task Paradigm	Table Retrieval	Knowledge Retrieval
Spider	2147	4.0	24.6	-	★	Traditional	✗	✗
BIRD	1789	6.8	72.6	25.0	★★	Traditional	✗	✗
BEAVER	203	77.5	708.4	-	★★★	RAG	✓	✗
Spider 2.0-lite	547	49.0	803.6	343.8	★★★	Traditional	✗	✗
Spider 2.0-snow	547	51.7	812.1	344.0	★★★	Traditional	✗	✗
Spider 2.0-DBT	68	21.4	337.7	1.3M	★★★★	Code Agent	-	-
BIRD-Ent	1534	392.1	4150.3	1.5M	★★★★★	DRAG	✓	✓
Spider-Ent	602	413.0	4053.3	-	★★★★	RAG	✓	✗

Table 1: Comparison between existing benchmarks and our Ent-series benchmarks. QS denotes the Query Scope. Knowl. Tok. refers to the number of tokens of relevant knowledge.

small amount of dense external knowledge as part of the model input, BIRD-Ent adopts a sparsified storage format where relevant knowledge is scattered across longer, less structured documents, better reflecting enterprise realities. On average, BIRD-Ent requires the model to identify relevant information from over 1.5M tokens of candidate knowledge per question, approximately 4500 \times the size used in Spider 2.0-lite/snow, placing significantly greater demands on both retrieval accuracy and grounding robustness.

A task paradigm more aligned with enterprise scenarios. Unlike existing benchmarks that assume a predefined, compact database as input (e.g., BIRD, Spider 2.0-snow/lite), or BEAVER, which includes table retrieval but lacks knowledge retrieval, our Ent-series benchmarks adopt the DRAG Text-to-SQL paradigm (defined in Section 2) that decouples SQL generation from schema and knowledge selection. This mirrors the workflow of real-world enterprise analysts, who often operate over vast data and rely on heterogeneous knowledge sources to complete a task. By integrating both table and knowledge retrieval into the task paradigm, our benchmarks better reflect the multi-stage nature of such workflow, assess retrieval quality over large and noisy candidate spaces, evaluate model robustness under incomplete or imperfect inputs, and test whether generated SQL can be grounded in retrieved information-all of which are essential capabilities for deployment in enterprise scenarios.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

During the benchmark refinement stage, we use Deepseek-R1-0528 (DeepSeek-AI, 2025) for synthesizing new tables within each domain, rewriting schemas and generating documents, due to its strong reasoning capabilities and excellent instruction-following performance. The process is conducted using the development sets and full database collections from BIRD and Spider, along with the database description files provided in BIRD.

During the evaluation stage, we adhere to the proposed DRAG Text-to-SQL paradigm. In the retrieval step, we adopt a standard embedding-based framework as a result of the ultra-long context caused by the massive query scopes and document collections. Specifically, each table schema and external knowledge document is encoded using a semantic embedding model and stored in a vector index. At inference time, the input question is embedded using the same model, and relevant candidates are retrieved via cosine similarity search in the vector space. The retrieved schemas, external knowledge documents, and the input question are then concatenated and fed into an LLM for zero-shot SQL generation. The prompt used in this stage is provided in Appendix.

5.2 EXPERIMENTAL SETUP

Evaluation metrics. In the evaluation setting of our Ent-series benchmark, the ability to retrieve the correct tables and external knowledge documents has a critical impact on the final SQL generation performance. Following standard practices in retrieval evaluation, we adopt precision, recall, and F1 score as our primary metrics. In addition, following BEAVER (Chen et al., 2025), we introduce the Perfect Recall (PR) metric, which measures the proportion of examples where all gold instances are included in the top-k retrieved candidates. This metric is particularly important, as failing to retrieve

Model	EX			
	BIRD		Spider	
	dev	Ent	dev [†]	Ent
GPT-4o	57.6	34.4 (-23.2)	84.4	56.8 (-27.6)
GPT-4o-mini	53.6	26.4 (-27.2)	83.4	53.8 (-29.6)
GPT-o4-mini	58.3	39.0 (-19.3)	83.9	60.5 (-23.4)
Qwen3-32B-no-thinking	53.6	25.5 (-28.1)	82.4	47.2 (-35.2)
Qwen3-32B	59.2	33.8 (-25.4)	84.7	57.8 (-26.9)
Qwen3-235B-A22B-no-thinking	56.3	27.8 (-28.5)	82.8	54.0 (-28.8)
Qwen3-235B-A22B	59.6	36.9 (-22.7)	82.4	58.5 (-23.9)
Deepseek-R1-0528	58.5	39.1 (-19.4)	81.3	56.8 (-24.5)

Table 2: The EX performance of various baselines on the Ent-series benchmarks as well as their original counterparts (the Spider dev set is **marked with** \dagger , denoting the subset retained after the quality control described in Section 3, with 602 samples.). The model is provided with the top-10 tables and top-5 knowledge documents retrieved to obtain optimal results. The best results are highlighted in **bold**.

all relevant tables makes it highly unlikely for a model to generate the correct SQL. For the final SQL generation stage, we evaluate model performance using Execution Accuracy (EX), a widely adopted metric in prior work (Chang et al., 2023; Li et al., 2023b; Lei et al., 2025). EX measures the proportion of predicted SQL queries that yield the same execution results as their corresponding gold queries.

Baseline models. During the retrieval stage, we compare several SOTA embedding models, including Qwen3-Embedding-0.6B (Zhang et al., 2025), bge-m3 (Chen et al., 2024), and multilingual-e5-large-instruct (Wang et al., 2024). If not otherwise specified, we default to using Qwen3-Embedding-0.6B as the embedding model for the retrieval stage due to its superior retrieval performance. For the SQL generation stage, we select a range of leading LLMs, including the GPT series (4o, 4o-mini, o4-mini, OpenAI et al. (2024)), Qwen3-32B, Qwen3-235B-A22B (with and without thinking, Yang et al. (2025)), and Deepseek-R1-0528 (DeepSeek-AI, 2025). The selected models span both proprietary and open-source LLMs, as well as reasoning-augmented and standard variants, providing broad reference value.

5.3 MAIN RESULTS

We present our main evaluation results in Table 2, highlighting three core findings that offer deeper insights into model behavior under enterprise-level conditions.

Existing LLMs exhibit unsatisfactory performance on enterprise Text-to-SQL tasks. Moving from academic to enterprise settings, EX drops sharply on both benchmarks, with BIRD decreasing by up to 52.4% and Spider by up to 42.7%. Even the EX performance of strongest models on dev sets fall to 36.9 on BIRD-Ent and to 57.8 on Spider-Ent, indicating that today’s high EX scores do not translate to enterprise-style conditions.

Ent-series benchmarks faithfully capture the reasoning-intensive nature of enterprise scenarios. Reasoning-enhanced variants such as Qwen3-32B and Qwen3-235B-A22B reduce the Ent-side drop by up to 5.8 points on BIRD and 8.3 points on Spider, while GPT-o4-mini shows the smallest declines overall (-19.3 on BIRD and -23.4 on Spider). In contrast, their non-reasoning counterparts degrade much more severely, underscoring that success on our benchmarks requires explicit reasoning to carefully handle massive query scopes, complex schemas, and scattered knowledge.

Ent-series benchmarks increase separation among models. On BIRD dev, the spread between the best and worst systems grows from 6.0 points on dev (59.6 vs 53.6) to 13.6 points on BIRD-Ent (39.1 vs 25.5). On Spider, the spread expands from 2.9 points on dev (84.2 vs 81.3) to 13.3 points

Model	EX						
	BIRD				Spider		
	dev	\mathbf{Ent}_D	\mathbf{Ent}_S	\mathbf{Ent}_K	dev [†]	\mathbf{Ent}_D	\mathbf{Ent}_S
Qwen3-32B-no-thinking	53.6	44.2 (-9.4)	41.7 (-11.9)	42.4 (-11.2)	82.4	72.8 (-9.6)	64.3 (-18.1)
Qwen3-32B	59.2	49.0 (-10.2)	49.2 (-10.0)	46.5 (-12.7)	84.7	79.3 (-5.4)	70.1 (-14.6)
Qwen3-235B-A22B-no-thinking	56.3	46.7 (-9.6)	45.2 (-11.1)	42.6 (-13.7)	82.8	75.6 (-7.2)	64.3 (-18.5)
Qwen3-235B-A22B	59.6	51.5 (-8.1)	52.5 (-7.1)	49.7 (-9.9)	82.4	80.0 (-2.4)	64.6 (-17.8)
Deepseek-R1-0528	58.5	51.0 (-7.5)	56.5 (-2.0)	49.9 (-8.6)	81.3	78.6 (-2.7)	65.6 (-15.7)

Table 3: Ablation results on EX performance across different refinement stages. \mathbf{Ent}_D , \mathbf{Ent}_S , and \mathbf{Ent}_K represent benchmarks after domain-level, schema-level, and knowledge-level refinement, respectively. Top-10 tables and top-5 knowledge documents retrieved are provided to the model to obtain optimal results.

Embedding Model	Table Retrieval							Knowledge Retrieval								
	Top-5				Top-10			Top-5				Top-10				
	P	R	F1	PR	P	R	F1	PR	P	R	F1	PR	P	R	F1	PR
BIRD-Ent																
Qwen3-Embedding-0.6B	28.7	76.8	40.8	62.5	16.4	86.0	27.0	76.5	29.6	46.2	34.4	14.9	20.8	62.9	30.2	31.8
multilingual-e5-large-instruct	26.0	70.1	37.0	52.8	15.1	79.8	24.9	66.4	28.7	43.9	33.1	12.8	21.1	62.2	30.4	31.8
bge-m3	20.4	55.1	29.0	38.2	12.1	65.2	20.0	49.9	21.1	31.9	24.2	7.1	14.7	43.7	21.3	14.9
Spider-Ent																
Qwen3-Embedding-0.6B	26.3	93.1	40.0	88.9	13.7	95.9	23.6	92.9	-	-	-	-	-	-	-	-
multilingual-e5-large-instruct	23.9	85.9	36.4	79.8	12.9	91.2	22.2	86.7	-	-	-	-	-	-	-	-
bge-m3	18.3	65.8	28.0	57.1	10.4	74.3	18.0	66.2	-	-	-	-	-	-	-	-

Table 4: Retrieval performance for tables and external knowledge documents across the BIRD-Ent and Spider-Ent benchmarks using different embedding models. Since Spider does not include an external knowledge setting, we did not perform knowledge-level refinement, and therefore no knowledge retrieval results are reported.

on Spider-Ent (60.5 vs 47.2). This larger margin reveals capability differences that are obscured by traditional settings and makes the Ent-series benchmarks suitable for tracking real progress.

5.4 MORE ANALYSIS

Each of the three refinement levels independently poses substantial enterprise-level obstacles for current LLMs. Table 3 shows the ablation studies to compare the effects of different refinement stages. All three refinements lead to significant performance drops, confirming that each introduces non-trivial complexity. Among them, knowledge-level refinement (\mathbf{Ent}_K) imposes the greatest challenge on BIRD, while schema-level refinement (\mathbf{Ent}_S) has the largest impact on Spider. Consistent with our main results, models with explicit reasoning abilities demonstrate stronger robustness under refinement, and enterprise benchmarks amplify the performance gap between models, indicating a higher discriminative power in evaluating real-world readiness.

Existing embedding-based retrieval frameworks are inadequate for the demands of enterprise-level Text-to-SQL retrieval. We evaluate the performance of various embedding models in retrieving top-5 and top-10 table schemas and external knowledge documents. As shown in Table 4, retrieval precision remains consistently low across all models, particularly in the top-10 setting. Although recall is relatively high, the low precision indicates a significant amount of noise in the retrieved results. In particular, the low PR scores in table retrieval suggest that many downstream SQL generation tasks are grounded on incorrect or irrelevant inputs. Notably, all models perform worse on knowledge retrieval than on table retrieval, highlighting the greater difficulty of semanti-

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 cally grounding unstructured documents. These findings suggest that, despite their widespread use, current embedding-based retrieval methods fall short in supporting high-precision grounding under complex enterprise conditions, underscoring the need for more targeted retrieval techniques.

Even under the oracle retrieval setting, current LLMs still struggle to handle the complexity and redundancy of enterprise-level schemas and knowledge documents. We further examine the EX performance of different baselines on the Ent-series benchmarks under an oracle setting, where the input is restricted to only the gold table schemas and gold knowledge documents, with no distractors. The results are presented in Table 5. Despite the absence of retrieval noise, the EX scores remain unsatisfactory, especially on BIRD-Ent, where even the strongest model (Deepseek-R1-0528) reaches only 51.8. This indicates that performance bottlenecks persist even when correct context is guaranteed, likely due to the inherent challenges in interpreting complex, redundant schemas and utilizing documents that contain abundant irrelevant information while the useful knowledge is highly scattered.

6 ERROR ANALYSIS

We randomly sample a total of 200 erroneous cases from BIRD-Ent and Spider-Ent for detailed error analysis, and categorize the common error types into 5 groups, the distribution of error types are shown in Figure 3.

Schema errors (40.6%) (i) Schema-retrieval errors (21.1%). Existing models frequently fails to retrieve the tables required to answer a question due to the massive query scopes and complex schemas in our benchmarks. (ii) Schema-linking errors (19.5%). Even if all of the gold tables are recalled, the model may still make mistakes in choosing the right tables and columns.

Knowledge errors (30.8%) (i) Knowledge-retrieval errors (24.8%). The knowledge documents required to answer the question may be absent from the retrieved ones. This is the most prevalent error type, indicating that the methodology used to retrieve knowledge documents requires improvement. (ii) Knowledge-grounding errors (6.0%). Even when the gold documents are retrieved, existing models may ignore or misinterpret the knowledge in the documents. This can be attribute to the fact that useful knowledge in our benchmark is often scattered across lengthy documents.

Question errors (14.3%) (i) Question-understanding errors (6.8%). In certain cases, the models will misinterpret the user’s question and generate an irrelevant SQL. (ii) Question-alignment errors (7.5%). The SQL generated by the models fails to align with the user’s requirements. For example, The user’s question asks for *ID* and *name*, while the models only return the *ID*.

SQL errors (8.3%) (i) SQL-function errors (2.3%). The models occasionally make mistakes in the use of functions. For instance, when extracting substring, the models incorrectly use the SQLite-unsupported `SUBSTRING()`. (ii) SQL-JOIN errors (6.0%). In some cases, the model may join unnecessary tables or perform joins without following foreign key constraints.

Model	EX	
	BIRD-Ent	Spider-Ent
Qwen3-32B-no-thinking	41.8	68.6
Qwen3-32B	46.9	70.0
Qwen3-235B-A22B-no-thinking	41.9	64.8
Qwen3-235B-A22B	50.7	64.6
Deepseek-R1-0528	51.8	65.0

Table 5: EX performance under the oracle setting with gold-only table schemas and knowledge documents.

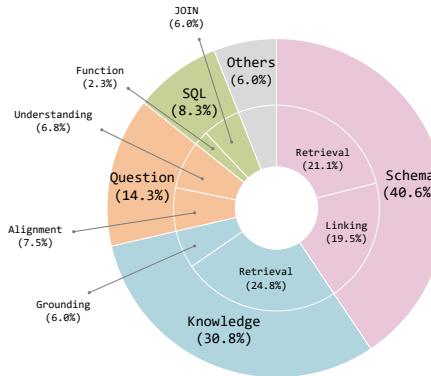


Figure 3: Error type distribution; case studies of each error type are provided in the Appendix C.

432 **Other errors (6.0%)** Apart from the above cases, we recognize some other errors such as common-
 433 sense errors and value mismatch errors, which means that the literal chosen by the models do not
 434 match the value in the database. For example, the models may use `date = '2007/01/02'` to query the
 435 date, whereas the database stores the value of `date` in the format `'2007-01-02'`.
 436

437 7 RELATED WORK

438 **Text-to-SQL benchmarks constructed from scratch** These benchmarks are typically released
 439 alongside the original datasets and databases. Among them, WikiSQL (Zhong et al., 2018) is the
 440 first large-scale cross-domain benchmark. Spider (Yu et al., 2018) expands the diversity and
 441 complexity of questions and SQLs under a cross-domain setting, and extends query scopes to multi-table
 442 databases. KaggleDBQA (Lee et al., 2021) incorporates database documentation into the pars-
 443 ing process, enriching the task formulation. BIRD (Li et al., 2023b) pushes benchmarks closer to
 444 real-world applications by introducing noisier database values and emphasizing the importance of
 445 external knowledge in query generation. Benchmarks such as SEDE (Hazoom et al., 2021), MIMIC-
 446 SQL (Wang et al., 2020), EHRSQ (Lee et al., 2022), and ScienceBenchmark (Zhang et al., 2023)
 447 address domain-specific challenges by constructing complex single-domain benchmarks grounded
 448 in practical use cases. Despite increasing in difficulty, these benchmarks remain relatively simple
 449 and idealized when compared to the capabilities and demands of modern LLM-based Text-to-SQL
 450 methods. As a result, recent efforts have shifted toward the construction of enterprise benchmarks.
 451 BEAVER (Chen et al., 2025) is the first benchmark specifically designed for enterprise Text-to-SQL
 452 scenarios. It constructs its databases and dataset based on real-world data warehouse environments,
 453 and introduces RAG task setting. Spider 2.0 (Lei et al., 2025), released later, focuses on even more
 454 complex database schemas and analytical tasks, incorporating multi-dialect challenges and agentic
 455 task formulations derived from enterprise use cases.
 456

457 **Text-to-SQL benchmarks constructed by refinement** Due to the high cost of constructing
 458 benchmarks from scratch, many studies attempt to refine existing benchmarks by introducing special
 459 settings. Spider-DK (Gan et al., 2021b) enhances the knowledge dimension by defining and
 460 integrating five types of domain knowledge into the Spider development set, aiming to assess the gener-
 461 alization ability of Text-to-SQL models. Spider-Realistic (Deng et al., 2021) and Spider-Syn (Gan
 462 et al., 2021a) introduce noise by replacing explicit schema-related terms in natural language ques-
 463 tions with synonyms. ADVETA (Pi et al., 2022) proposes Adversarial Table Perturbation (ATP),
 464 which focuses on evaluating model robustness under table-side disturbances by replacing column
 465 names with synonyms and adding confusing columns. Dr. Spider (Chang et al., 2023) further intro-
 466 duces 17 types of perturbations covering databases, natural language questions, and SQL queries,
 467 providing a comprehensive robustness evaluation. SParC (Yu et al., 2019) brings in a multi-turn
 468 interaction setting, guiding the construction of thematically consistent follow-up questions based on
 469 those from Spider. Spider-SS&CG (Gan et al., 2022) decomposes questions and SQLs in Spider
 470 into clauses and recombines them to construct a benchmark focused on clause-level compositional
 471 generalization, testing how well models generalize to new combinations of components seen during
 472 training.
 473

474 Our Ent-series benchmarks automatically refine existing benchmarks around three key challenges
 475 inherent to enterprise Text-to-SQL tasks. By minimizing annotation costs, BIRD-Ent and Spider-Ent
 476 deliver challenging benchmarks that faithfully reflects real-world enterprise scenarios.
 477

478 8 CONCLUSION

479 We release BIRD-Ent and Spider-Ent, two enterprise Text-to-SQL benchmarks that feature massive
 480 query scopes exceeding 4,000 columns, complex schemas, and scattered knowledge across docu-
 481 ments with 1.5M tokens. Alongside these datasets, we introduce the DRAG Text-to-SQL paradigm,
 482 reflecting the real-world enterprise workflow. Together, they mirror the challenges faced in enter-
 483 prise and expose substantial performance gaps in SOTA LLMs. The Ent-series benchmarks under
 484 the DRAG paradigm provide a rigorous and discriminative testbed for evaluating robustness, re-
 485 trieval, and grounding abilities, offering a valuable resource for advancing Text-to-SQL research
 486 toward models that are reliable and deployable in real-world enterprise scenarios.
 487

486 REFERENCES
487

488 Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei
489 Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve Ash, William Yang Wang, Zhiguo Wang,
490 Vittorio Castelli, Patrick Ng, and Bing Xiang. Dr.spider: A diagnostic evaluation benchmark
491 towards text-to-SQL robustness. In *The Eleventh International Conference on Learning Repre-
492 sentations*, 2023. URL <https://openreview.net/forum?id=Wc5bmZZU9cy>.

493 Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
494 Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
495 tillation, 2024.

496 Peter Baile Chen, Fabian Wenz, Yi Zhang, Devin Yang, Justin Choi, Nesime Tatbul, Mike Cafarella,
497 Çağatay Demiralp, and Michael Stonebraker. BEAVER: An enterprise benchmark for text-to-
498 SQL. In *The 4th Table Representation Learning Workshop at ACL 2025*, 2025. URL <https://openreview.net/forum?id=OgP25r2pBZ>.

499 500 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
501 2025. URL <https://arxiv.org/abs/2501.12948>.

502 503 Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and
504 Matthew Richardson. Structure-grounded pretraining for text-to-SQL. In Kristina Toutanova,
505 Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
506 terrell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of
507 the North American Chapter of the Association for Computational Linguistics: Human Lan-
508 guage Technologies*, pp. 1337–1350, Online, June 2021. Association for Computational Linguis-
509 tics. doi: 10.18653/v1/2021.naacl-main.105. URL <https://aclanthology.org/2021.naacl-main.105>.

510 511 Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward, Jinxia Xie, and
512 Pengsheng Huang. Towards robustness of text-to-SQL models against synonym substitution.
513 In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th
514 Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
515 Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 2505–2515, Online,
516 August 2021a. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.195.
517 URL <https://aclanthology.org/2021.acl-long.195>.

518 Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-
519 domain text-to-SQL generalization. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
520 and Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natu-
521 ral Language Processing*, pp. 8926–8931, Online and Punta Cana, Dominican Republic, Novem-
522 ber 2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.702.
523 URL <https://aclanthology.org/2021.emnlp-main.702>.

524 Yujian Gan, Xinyun Chen, Qiuping Huang, and Matthew Purver. Measuring and improving com-
525 positional generalization in text-to-SQL via component alignment. In Marine Carpuat, Marie-
526 Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), *Findings of the Association for
527 Computational Linguistics: NAACL 2022*, pp. 831–843, Seattle, United States, July 2022.
528 Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.62. URL
529 <https://aclanthology.org/2022.findings-naacl.62>.

530 Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
531 Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. A preview of xiyan-sql: A multi-generator
532 ensemble framework for text-to-sql. *arXiv preprint arXiv:2411.08599*, 2024. URL <https://arxiv.org/abs/2411.08599>.

533 534 Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-SQL in the wild: A naturally-occurring
535 dataset based on stack exchange data. In Royi Lachmy, Ziyu Yao, Greg Durrett, Milos Glig-
536 oric, Junyi Jessy Li, Ray Mooney, Graham Neubig, Yu Su, Huan Sun, and Reut Tsarfaty
537 (eds.), *Proceedings of the 1st Workshop on Natural Language Processing for Programming
538 (NLP4Prog 2021)*, pp. 77–87, Online, August 2021. Association for Computational Linguis-
539 tics. doi: 10.18653/v1/2021.nlp4prog-1.9. URL <https://aclanthology.org/2021.nlp4prog-1.9>.

540 Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. KaggleDBQA: Realistic evaluation
 541 of text-to-SQL parsers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
 542 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
 543 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 544 pp. 2261–2273, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
 545 v1/2021.acl-long.176. URL <https://aclanthology.org/2021.acl-long.176/>.

546 Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Min-
 547 joon Seo, Jong-Yeup Kim, and Edward Choi. EHRSQ: A practical text-to-SQL benchmark
 548 for electronic health records. In *Thirty-sixth Conference on Neural Information Processing Sys-*
 549 *tems Datasets and Benchmarks Track*, 2022. URL <https://openreview.net/forum?id=B2W8VY0rarw>.

550 Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin SU, ZHAOQING
 551 SUO, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun,
 552 Qian Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enter-
 553 prise text-to-SQL workflows. In *The Thirteenth International Conference on Learning Represen-*
 554 *tations*, 2025. URL <https://openreview.net/forum?id=XmProj9cPs>.

555 Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: decoupling schema link-
 556 ing and skeleton parsing for text-to-sql. In *Proceedings of the Thirty-Seventh AAAI Confer-*
 557 *ence on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Ar-*
 558 *ificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelli-*
 559 *gence*, AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023a. ISBN 978-1-57735-880-0. doi:
 560 10.1609/aaai.v37i11.26535. URL <https://doi.org/10.1609/aaai.v37i11.26535>.

561 Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
 562 Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chang, Fei Huang,
 563 Reynold Cheng, and Yongbin Li. Can LLM already serve as a database interface? a BIg bench for
 564 large-scale database grounded text-to-SQLs. In *Thirty-seventh Conference on Neural Information*
 565 *Processing Systems Datasets and Benchmarks Track*, 2023b. URL <https://openreview.net/forum?id=dI4wzAE6uV>.

566 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 567 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 568 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 569 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 570 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 571 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 572 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 573 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 574 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 575 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 576 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 577 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 578 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 579 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 580 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 581 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 582 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 583 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 584 mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 585 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 586 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 587 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 588 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 589 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 590 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 591 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 592 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 593

594 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 595 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 596 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 597 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 598 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 599 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 600 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 601 Rimbach, Carl Ross, Bob Rotstед, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 602 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 603 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 604 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 605 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 606 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 607 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 608 jayvergyia, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 609 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
 610 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 611 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 612 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 613 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
<https://arxiv.org/abs/2303.08774>.

614 Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun Li, and Jian-Guang Lou. Towards robustness
 615 of text-to-SQL models against natural and realistic adversarial table perturbation. In Smaranda
 616 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meet-
 617 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2007–2022,
 618 Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 619 acl-long.142. URL <https://aclanthology.org/2022.acl-long.142/>.

620 Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: Decomposed in-context learning of text-
 621 to-SQL with self-correction. In *Thirty-seventh Conference on Neural Information Processing
 622 Systems*, 2023. URL <https://openreview.net/forum?id=p53QDxS1c5>.

623 Vladislav Shkapenyuk, Divesh Srivastava, Theodore Johnson, and Parisa Ghane. Automatic meta-
 624 data extraction for text-to-sql, 2025. URL <https://arxiv.org/abs/2505.19988>.

625 Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
 626 lingual e5 text embeddings: A technical report. *arXiv preprint arXiv:2402.05672*, 2024.

627 Ping Wang, Tian Shi, and Chandan K. Reddy. Text-to-sql generation for question answering on elec-
 628 tronic medical records. In *Proceedings of The Web Conference 2020*, WWW ’20, pp. 350–361,
 629 New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370233. doi:
 630 10.1145/3366423.3380120. URL <https://doi.org/10.1145/3366423.3380120>.

631 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 632 Gao, Chengan Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 633 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 634 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 635 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 636 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 637 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 638 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 639 Qiu. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

640 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
 641 Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
 642 human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
 643 In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of
 644 the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 3911–3921,
 645 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 646 10.18653/v1/D18-1425. URL <https://aclanthology.org/D18-1425/>.

648 Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er,
 649 Irene Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan
 650 Kraft, Vincent Zhang, Caiming Xiong, Richard Socher, and Dragomir Radev. SParC: Cross-
 651 domain semantic parsing in context. In Anna Korhonen, David Traum, and Lluís Márquez
 652 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
 653 pp. 4511–4523, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
 654 10.18653/v1/P19-1443. URL <https://aclanthology.org/P19-1443/>.

655 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 656 An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
 657 ing text embedding and reranking through foundation models. *arXiv preprint arXiv:2506.05176*,
 658 2025.

660 Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Georgia Koutrika, and
 661 Kurt Stockinger. Sciencebenchmark: A complex real-world benchmark for evaluating natural
 662 language to sql systems. *Proc. VLDB Endow.*, 17(4):685–698, December 2023. ISSN 2150-
 663 8097. doi: 10.14778/3636218.3636225. URL <https://doi.org/10.14778/3636218.3636225>.

664 Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
 665 natural language using reinforcement learning, 2018. URL <https://openreview.net/forum?id=Sx6bz-Ab>.

669 670 A EXAMPLES

672 673 A.1 REAL-WORLD DATA ASSET

674 Figure 4 shows an example of data asset schema from real enterprise scenarios. Sensitive information
 675 was anonymized during the review process. In real scenarios, the column and table descriptions
 676 provided in this example are often missing; we include them here solely for ease of understanding.

677

678 **XXX Merchant Data Assets**

679

column_name	column_description	data_format
o_id	merchant OID	string
alias_name	merchant alias	string
new_mer_type	new merchant type: sole proprietorship	string
.....		
mcc_code_desc	MCC name	string
mcc_industry_0	MCC Level-1 Category	string
is_area_oid	is regional OID: 1/0	string
.....		

apmctcdm_dwd_ap_mct_minfo_oid_dd
/*merchant OID basic information table*/

column_name	column_description	data_format
activity_owner	activity owner	string
template_id	coupon template ID	string
voucher_id	aggregate coupon ID	string
.....		
trade_seller_id	payment PID	string
gmt_voc_revc_start	coupon redemption start time	string
voucher_goods_name	product name	string

apsycm_adm_ap_mct_sycm_mkt_use_vcc_di
/*external merchant – business advisor – marketing coupon redemption – detail fact table*/

column_name	column_description	data_format
store_id	online store store_id	string
app_id	app ID (this field will be deprecated in the future)	string
apply_id	external application ID	string
.....		
scene_code	scenario code	string
ext_attr	extended attributes	string
ext_template_id	template ID (parsed from extended attributes)	string

apcdm_dim_ap_mct_opt_merchant_store_info
/*merchant – merchant operations – online store dimension table*/

(This data asset contains a total of 415 tables.....)

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Figure 4: An example of enterprise data asset.

702 A.2 ENT-SERIES BENCHMARKS
703704 A.2.1 DATA ASSET
705

706 Figure 5 shows an example of the data asset in our BIRD-Ent benchmark. The data assets
707 constructed in our benchmarks simulate real enterprise assets in both naming conventions and scale. It
708 is worth noting that real enterprise data assets' tables (see in Figure 4) often include partitioning
709 information (e.g., *dd*) and data warehouse layering information (e.g., *dwd*). In our schema rewriting
710 step, however, such details are omitted, as the refined benchmarks are built on SQLite databases and
711 we are concerned that forcibly introducing them would cause confusion for benchmark users.
712

713

714 **Education and Academia Data Assets (Ours)**

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Geographical Organization Data Management FAQ

ⓘ Geographical Organization Data Management FAQ

> **Introduction**

This document addresses common questions about managing geographical organization data in our global reference system. It covers data definitions, usage scenarios, and troubleshooting for tables tracking international organizations and their memberships.

◊ *New team members should review this before interacting with the `zentra25_georef` dataset.*

ⓘ Organization Metadata

Q1: How do we uniquely identify organizations in our system?

We use two complementary identifiers:

- `organization_abbrev`: Stores the organization's abbreviation (e.g., **ASEAN** for the Association of Southeast Asian Nations).
- `city_name`: Records the **full name** of the organization.

Always cross-reference both fields when verifying organizational identity.

Q2: Where is headquarters location data stored?

Headquarters details are captured through three fields:

- `City`: The city where the headquarters are located.
- `province`: The province/state/region of the headquarters.
- `country_code`: The country code (ISO 3166) where the headquarters are located.

⚠ **Important**: Always validate province-country combinations to avoid mismatches like **"California, Canada"**.

....(Some content of the document is omitted here)....

ⓘ Steps to resolve:

1. Verify spelling of `Organization` against `organization_abbrev`
2. Check `ORG_HISTORICAL_ALIAS` for legacy codes
3. If unresolved, run script: `OrgIntegrityCheck.py`

Scenario 2: Discrepancy between `city_name` and physical headquarters location

ⓘ Remember:

- `city_name` = Full **organization name**, NOT a geographic location.
- Physical HQs are only in the `City` field.

▷ Action:

- Flag any entry where `city_name` includes place names (e.g., `"Nairobi Agreement Council"`) for correction.

Scenario 3: Missing Type classifications in membership records

ⓘ Since `Type` lacks formal definition:

- Do **not** infer meaning from blank or populated values
- Tag affected records with `TYPE_UNDEFINED` in audit logs
- Escalate per **Section 4.3 of the Data Governance Policy**

ⓘ Appendix: Change History

Date	Change Description	Ticket/Ref
2023-11	Deprecated `Region` field	GLB-223
2022-08	Rejected `Membership_Fee` field proposal	RFC-771
2020-05	Province naming standardization	DATA-441
2018-02	Country code standardization (FIPS → ISO 3166)	COMPLIANCE-98

> ⓘ This document is maintained by the Global Reference Data Team.

> Last updated: Based on changes up to **2023-11**.

Figure 6: An example of BIRD-Ent's external knowledge document.

tables from these newly generated databases are then added to the corresponding domain asset. We generate entire databases before extracting their tables, rather than generating tables directly, in order to ensure inherent logical connections among the tables, reflecting enterprise reality, where some tables within a data asset may originate from the same project or database. Moreover, in

Benchmark	Domain	Databases
BIRD	retail_and_e-commerce	car_retails, retail_sales, retail_world, regional_sales, retail_complains, sales, sales_in_weather, superstore, debit_card_specializing
	finance_and_economy	coinmarketcap, financial
	education_and_academia	authors, books, book_publishing_company, citeseer, college_completion, university, computer_student, cs_semester, language_corpus, student_loan, california_schools, student_club
	data_science_and_technology	codebase_comments, image_and_language, talkingdata, codebase_community
	healthcare_and_bioinformatics	synthea, genes, mental_health_survey, thrombosis_prediction, toxicology
	sports_and_athletes	hockey, ice_hockey_draft, european_football_1, soccer_2016, olympics, professional_basketball, european_football_2, formula_1
	entertainment_and_media	disney, movie, movies_4, movie_3, movie_lens, movie_platform, simpson_episodes, law_episode, shakespeare, video_games, superhero, card_games

Table 6: Domain aggregation results of the BIRD databases.

designing the prompts, we provide the model with the databases already present in the domain asset to prevent semantic collisions, which could otherwise lead to non-unique answers in the original datasets and degrade the quality of the final benchmarks. We also include examples of real enterprise table schemas in the prompt to guide the model in mimicking authentic schema styles. An example prompt for the domain expansion step is shown in Figure 14.

It is worth noting that we do not generate any sample values for the synthetic tables, nor do we verify their logical consistency or construct corresponding databases. This is because the original question-SQL pairs do not reference these tables, and their execution results are unaffected by them. The schemas of the synthetic tables serve as pseudo-schemas, they are designed solely to simulate enterprise scenarios by expanding the domain and introducing challenge to the schema linking process.

B.2 SCHEMA-LEVEL REFINEMENT

At the schema level, the complexity of academic benchmarks is generally not enough compared to real-world enterprise databases. The enterprise-level database fields are often more intricate and widely abbreviated. In addition, in enterprise systems, the processes of maintenance and iterative updates frequently generate historical, temporary, or backup tables and columns. Although they are no longer actively used, they remain within the system and often exhibit strong similarities to certain existing tables. We collectively call them redundant tables and columns.

To better simulate these real-world challenges, we propose schema rewriting and schema augmentation strategies for academic benchmarks at the schema level. The first step is schema rewriting. For table names, enterprise scenarios often have naming conventions. Motivated by common enterprise practices, we propose a hierarchical naming convention $\langle project \rangle _ \langle area \rangle _ \langle content \rangle$ to simulate the enterprise environment. In this convention, $\langle project \rangle$ refers to the id of the project in enterprise scenarios; $\langle area \rangle$ is a generalization of the business area to which a table belongs; $\langle content \rangle$ is a summary of the content of the table. To transform the original table names into the desired format, we first provide LLM with available database information to generate the project and area name. Then, the model produces an abbreviated representation of the original table name and concatenate it with the previously generated project and domain names to construct a fully structured table name. The prompt of table name rewriting is shown in Figure 15 and Figure 16. For column

864 names, considering the high degree of abbreviation observed in enterprise schema, we propose a
 865 CoT process to rewrite column names by using LLM. First, we generate a concise, domain-aware
 866 contextual summary for each database using available schema information and database descriptions
 867 (when present). Its prompt can be seen in Figure 17. Second, by using the domain context together
 868 with the columns’ descriptions within its table schema, we expand the column names. Its prompt
 869 can be seen in Figure 18. Last, to emulate enterprise terseness, we will abbreviate the column names
 870 with LLM. Details prompt is illustrated in Figure 19. For example, in the *card game* database, the
 871 table name *card* is rewritten as *zentral11_mcard_crd_catalog*, where *zentral11* is the project id of the
 872 enterprise, *mcard* represents the table belongs the card game area, and *crd_catalog* indicates that the
 873 table contains card catalog information, and the column name *power* (representing the power value
 874 of a card) is rewritten as *card_pwr_val*, a longer, more specific, and more heavily abbreviated field
 875 name.
 876

877 The injection of redundant tables and columns is achieved in the following way: We randomly
 878 select a subset of tables from each database and, following the table-naming convention, generate
 879 redundant table names by appending common noise suffixes or prefixes. For each selected table,
 880 we clone its schema to create the corresponding noise table. Then we randomly add some columns
 881 related to the table and remove a few columns that were not primary keys or foreign keys from
 882 this table to simulate the subtle differences between the noise table and the existing table caused by
 883 database evolution. Finally, we append the noise columns, which are created by copying the existing
 884 column and adding common noise suffixes or prefixes to the original table. We control the ratio of
 885 redundant tables to original tables to be 1:4 to simulate the real environment of the enterprise.
 886

	Table	Column
Suffix or Prefix	bak, hist, drop, tmp, mid, snapshot, history	backup, tmp, migrated, legacy, deprecated

887 Table 7: Common Suffixes and Prefixes Summary.
 888

889 B.3 KNOWLEDGE-LEVEL REFINEMENT

890 BIRD acknowledges the necessity of external knowledge
 891 in Text-to-SQL tasks, since user queries are often
 892 concise and may naturally omit information that is crucial
 893 for answering the question (e.g., domain-specific knowl-
 894 edge or descriptions of database contents). However, in
 895 BIRD, such knowledge is directly appended as part of the
 896 query, which is unrealistic in enterprise scenarios where
 897 relevant information must instead be retrieved from large-
 898 scale external document collections. Moreover, much
 899 of the external knowledge in BIRD is overly simplistic,
 900 which rarely appears in enterprise environments. To ad-
 901 dress these issues, our knowledge-level refinement con-
 902 sists of two steps: knowledge cleaning and decoupling,
 903 and document generation.

904 B.3.1 KNOWLEDGE CLEANING AND DECOUPLING

905 In the cleaning step, we manually examined the external
 906 knowledge provided in BIRD and categorized its types
 907 (as illustrated in Figure 8). This included redundant
 908 knowledge such as common-sense facts, basic arithmetic, fundamental SQL syntax, trivial syn-
 909 onyms, and simple reasoning, all of which were identified and removed.

910 For the remaining non-redundant knowledge, our analysis revealed two main categories: database-
 911 specific and database-agnostic. Database-specific knowledge typically consists of column descrip-
 912 tions and value illustrations, most of which originate from the database description documents re-
 913 leased alongside BIRD datasets. As exemplified in Figure 7, these documents cover nearly all

column_name	Column_description	data_format	Value_description
<i>Id</i>	<i>Id</i> of the paper	integer	
<i>Title</i>	<i>Title</i> of the paper	text	
<i>Year</i>	<i>Year</i> of the paper	integer	commonsense reasoning: if the year is “0”, it means this paper is preprint, or not published
<i>Conferenceld</i>	<i>Conference Id in which paper was published</i>	integer	
<i>Journalld</i>	<i>Journal Id in which paper was published</i>	integer	commonsense reasoning: If a paper contain “0” in both <i>Conferenceld</i> and <i>Journalld</i> , it means this paper is preprint

914 Figure 7: An example of a BIRD
 915 database description file (for the *Paper*
 916 table in the *authors* database)

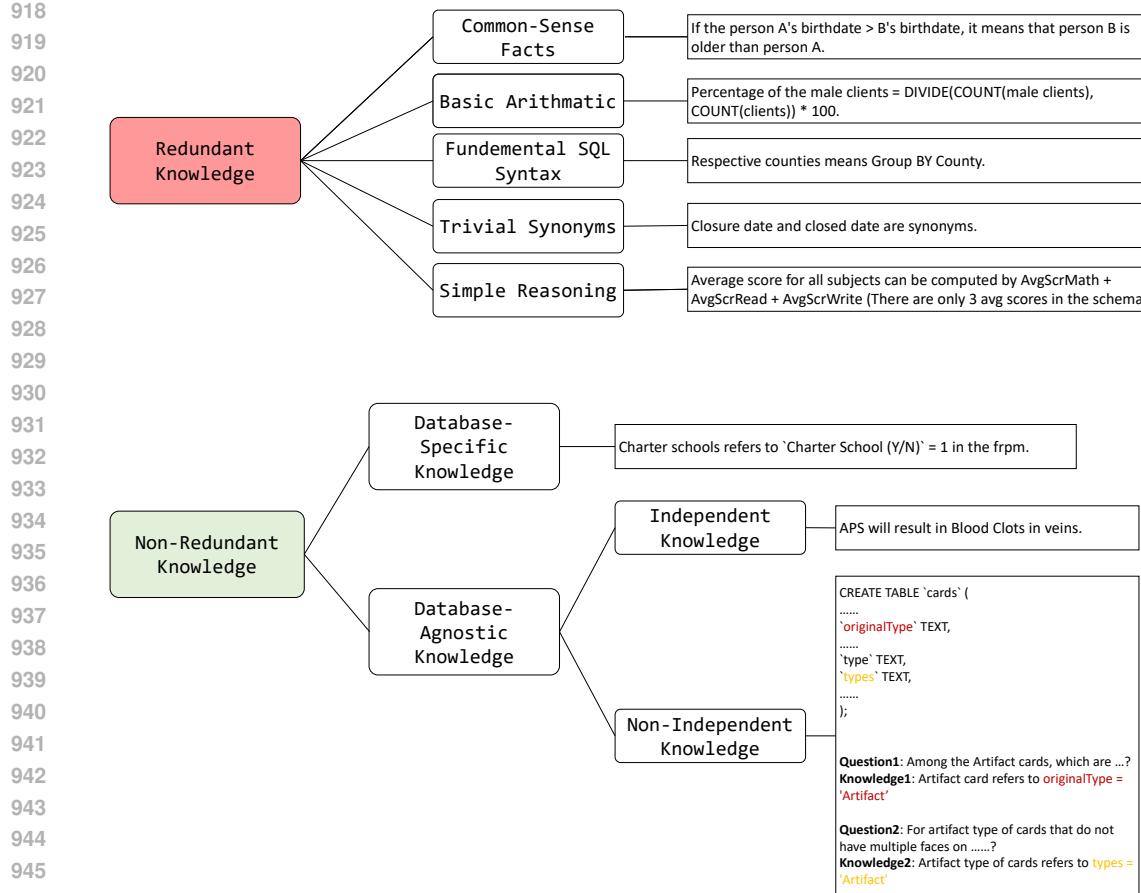


Figure 8: Classification and examples of BIRD external knowledge

columns across BIRD’s databases, including their column descriptions, types, and value illustrations. We merged this category of knowledge with the corresponding database descriptions, treating them as source material for generating external knowledge documents, which more closely reflects enterprise settings where such information is typically scattered across heterogeneous documents.

Database-agnostic knowledge can be further divided into query-dependent and query-independent. Query-dependent knowledge supplements a specific question but is invalid in isolation. For example, as shown in Figure 8, the same noun (*Artifact cards*) may refer to different columns (*types* = 'Artifact' or *originalType* = 'Artifact') across queries; such knowledge only makes sense when tied to the query context. Therefore, we attach it directly to the original query rather than treating it as external knowledge. In contrast, query-independent knowledge remains valid outside the original query context. Owing to its generality, this category is retained as additional source material for generating external knowledge documents.

B.3.2 DOCUMENT GENERATION

The pipeline for generating knowledge documents is illustrated in Figure 9. In the first step, we segment the database description documents into chunks, each containing several columns along with their names, descriptions, types, value illustrations, and sampled values. These chunks are then combined with the independent external knowledge associated with the corresponding columns to form the raw external knowledge.

In the second step, we randomly select one of the predefined enterprise document genres (see in Table 8) and prompt DeepSeek-R1-0528 to generate a document in the chosen genre, where the raw external knowledge is naturally and contextually embedded. To facilitate subsequent inspection and

972 correction, we further instruct the LLM to annotate the generated text with special tags for each piece
 973 of knowledge content: $\langle ocn_i \rangle$ for column names, $\langle cd_i \rangle$ for column descriptions, $\langle vd_i \rangle$ for
 974 value illustrations, and $\langle ek_i \rangle$ for independent external knowledge. These annotations align the
 975 knowledge with standardized tags, enabling us to locate and verify the correctness of the embedded
 976 content. The prompt for this step is shown in Figure 20.
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002

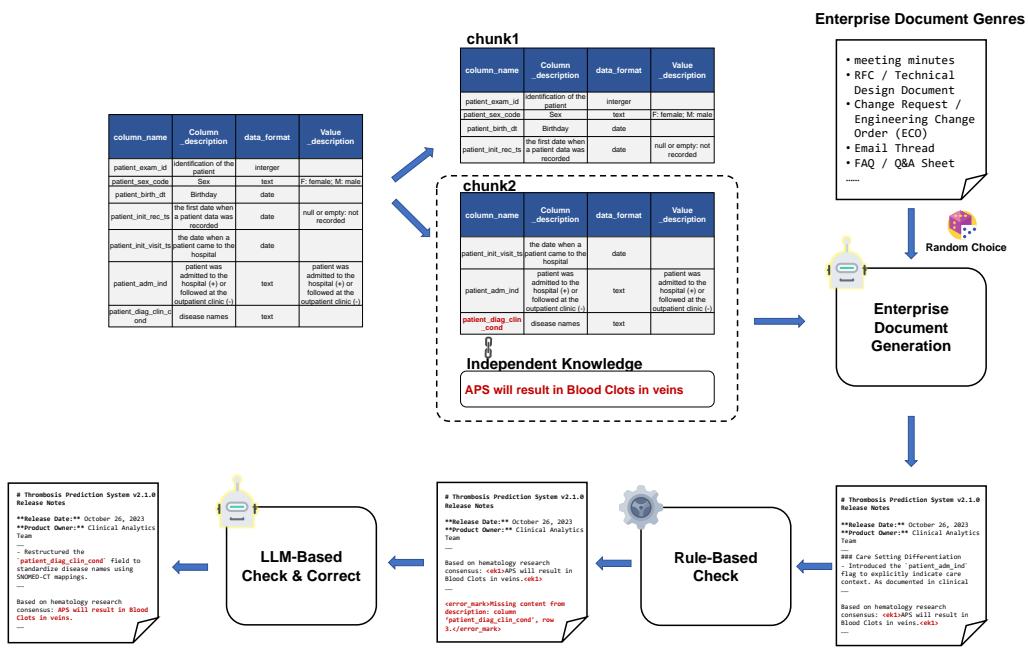


Figure 9: The pipeline for generating enterprise documents from raw external knowledge

1003 In the third step, we perform rule-based checks on the generated documents to ensure: (i) all required
 1004 tags are present, (ii) tags follow the correct format, and (iii) no unintended tags are included. If
 1005 violations are detected, an $\langle error_mark \rangle$ tag is appended to the corresponding content, preparing
 1006 the documents for LLM-based self-correction.

1007 In the fourth step, we provide the annotated knowledge documents, the raw external knowledge, and
 1008 the document generation rules as inputs to the LLM, which is tasked with correcting the documents.
 1009 The prompt used for this step is illustrated in Figure 21. In the quality control step, we also leverage
 1010 these pre-generated tags when inspecting the knowledge documents.

1011 Through this elaborate pipeline, we accurately transform BIRD’s external knowledge into a large
 1012 collection of enterprise-style knowledge documents.

1014 C CASE STUDY

1017 Figure 10 illustrates a typical schema-retrieval error. The failure of the predicted SQL stems from the
 1018 fact that not all target tables were included in the retrieved schema. When the model is not provided
 1019 with the complete set of relevant tables, it becomes exceedingly difficult to generate a correct SQL
 1020 query.

1021 Figure 11 reflects another type of schema error. In this case, although the target table is all retrieved
 1022 in the previous stage, the model does not select all the right tables and columns. This situation
 1023 may be caused by the semantic similarity among tables and columns within the same domain and
 1024 the interference of redundant tables. In the error analysis, such cases are not uncommon, suggesting
 1025 that existing models may still exhibit limitations in their sensitivity to distinguishing among different
 tables and columns.

Genre	Description
meeting minutes	Meeting minutes are written records of a meeting, typically including the time, location, attendees, topics discussed, decisions made, and action items for follow-up. It serves as an efficient communication tool to ensure that meeting participants and those who missed the meeting can stay informed and track the execution of decisions.
RFC / Technical Design Document	A Request for Comments (RFC) or Technical Design Document is used to propose and discuss technical decisions, design solutions, and system specifications. It provides a detailed explanation of the problem, proposed solutions, alternatives considered, risks, and potential impacts. This document serves as a reference to guide teams through the decision-making process, ensuring alignment and consistency in implementation.
Change Request / Engineering Change Order (ECO)	A Change Request (CR) or Engineering Change Order (ECO) is a formal document used to propose and approve changes to an existing system, product, or process. It details the nature of the proposed change, the reasons for the change, the potential impacts, and any associated risks. The document is typically reviewed and approved by relevant stakeholders before any changes are made.
Email Thread	An Email Thread is a chronologically ordered series of messages exchanged over the corporate mail system. Each message carries full header metadata (From, To, Cc, Date, Subject, Message-ID) and the complete body—often including quoted context from earlier replies. Because every revision and clarification is preserved verbatim, an email thread serves as a faithful, time-stamped record of decisions, technical justifications, and action items.
IM Thread	An Instant Messaging (IM) Thread captures a real-time chat conversation—typically from Slack, Microsoft Teams, or a similar platform—including timestamps, participants, and threaded replies. It preserves quick clarifications, decisions, and action items exchanged during day-to-day work.
FAQ / Q&A Sheet	An FAQ (Frequently Asked Questions) or Q&A Sheet provides answers to common questions, issues, or scenarios that are regularly encountered by teams or users. It organizes important clarifications, solutions, and best practices in a question-and-answer format, making it easy to refer to and address repeated inquiries.
API Reference / Interface Spec	An API Reference or Interface Specification document provides detailed information about the APIs (Application Programming Interfaces) or service endpoints that enable different software systems to communicate. This document includes the structure of API requests and responses, available methods, parameters, error handling, and any authentication or authorization requirements.
Release Notes / Changelog	Release Notes or Changelogs document the changes made in each version of a software product, including new features, enhancements, bug fixes, and any breaking changes. They help stakeholders, developers, and end-users track the progress and updates made to a system over time.
Test Plan / QA Checklist	A Test Plan or QA Checklist is a document that outlines the testing strategy for a new feature, system, or release. It defines the scope of testing, test cases, expected results, and the overall process to ensure that the software meets quality standards and is free from defects before it is released to production.

Table 8: Common Enterprise Document Genres and Their Descriptions

Errors can also occur in the knowledge part. In some cases, if you want the model to generate a correct SQL in the specific areas, you need to supply the model with some specific knowledge. In Figure 12, the knowledge is the information that the model needs to gain from the retrieved documents. However, the model selected the wrong document library. Therefore, it did not obtain the correct knowledge, leading to subsequent SQL execution errors. This observation indicates that, beyond table retrieval, knowledge retrieval also poses a considerable challenge for the model.

In Figure 13, although the predicted SQL aligns with the gold SQL in terms of overall structure, it overlooks the critical rules regarding group references. This indicates that the model either neglects the relevant knowledge or exhibits deficiencies in its understanding of such knowledge.

1080
1081
1082
1083
1084**Question:**

For the patient who has the highest Ig A within the normal range, what is his or her diagnosis?

1085
1086
1087
1088
1089
1090
1091
1092**Correct SQL:**

```
SELECT patientData.patient_diag_clin_cond
FROM xelora1_thromb_patient AS patientData
INNER JOIN xelora1_thromb_lab_monitoring AS labData
ON patientData.patient_exam_id = labData.patient_exam_id
WHERE labData.lab_iga_lv BETWEEN 80
AND 500 ORDER BY labData.lab_iga_lv DESC LIMIT 1
```

1093
1094
1095
1096
1097
1098
1099
1100**Predicted SQL:**

```
SELECT patient_diag_clin_cond
FROM xelora1_thromb_clin_exam
WHERE exam_anti_cardiolipin_iga_conc <= 10
ORDER BY exam_anti_cardiolipin_iga_conc DESC
LIMIT 1
```

1101

Figure 10: An example for schema-retrieval error

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111**Question:**

What is the percentage of cards whose language is French among the Story Spotlight cards?

1112
1113
1114
1115
1116
1117
1118
1119
1120**Correct SQL:**

```
SELECT CAST(SUM(CASE WHEN T2.
card_trans_lang = 'French'
THEN 1 ELSE 0 END) AS REAL) * 100 /
COUNT(T1.card_id) FROM
 AS T1
INNER JOIN  AS T2
ON T1.card_id_uuid = T2.card_id_uuid
WHERE T1.card_attr_story_spotlight_ind = 1
```

1121
1122
1123
1124
1125
1126
1127
1128**Predict SQL:**

```
SELECT ROUND(100.0 * SUM(CASE WHEN
card_trans_lang = 'French' THEN 1 ELSE 0 END) /
COUNT(*), 2)
AS french_percentage
FROM 
WHERE card_attr_story_spotlight_ind = 1;
```

1129
1130
1131
1132
1133**Retrieved tables**

```
CREATE TABLE `xelora1_thromb_clin_exam` (
`patient_exam_id` INTEGER,
`exam_ls` DATE,
...
CREATE TABLE `apghi56_rdr_dg_workflow` (
`diagnostic_id` INTEGER,
`patient_id` INTEGER,
...
CREATE TABLE `apghi60_nibr_clin_diag` (
`diagnosis_id` TEXT,
`subject_id` TEXT,
...
```

Missed tables

```
CREATE TABLE `xelora1_thromb_patient` (
`patient_diag_clin_cond` TEXT,
`patient_exam_id` TEXT,
...
CREATE TABLE `xelora1_thromb_lab_monitoring` (
`patient_exam_id` TEXT,
`lab_iga_lv` TEXT,
...
```

Documents

Omitted...

Figure 11: An example for schema-linking error

1134
1135
1136
1137
1138**Question:**

How many drivers managed to finish the race in the 2008 Australian Grand Prix?

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154**Correct SQL:**

```
SELECT COUNT(T2.driver_id)
FROM zentra13_f1mgr_races AS T1
INNER JOIN zentra13_f1mgr_drvr_race_results AS T2
ON T2.const_standings_race_id = T1.const_standings_race_id
WHERE T1.circuit_full_name = 'Australian Grand Prix'
AND T1.race_season_yr = 2008
AND T2.race_finish_tm IS NOT NULL
```

Retrieved tables

Omitted...

Documents

Document1: Formula 1 Driver Information Service API v1 Reference
...
Field Specifications
racing_number: Integer representing the number permanently assigned to the driver during races. Maps to database field driver_racing_num.
...
Document2: F1 Database Schema Clarifications: Driver Laptimes & Standings Tables
From: Rajiv Desai
To: Data Engineering Team
...
Document3: Formula 1 Race Results Data: Frequently Asked Questions
...
Document4: Formula 1 Racing Data Management: Pit Stops & Results FAQ
...
Document5: Urgent: Clarifications Needed for F1 Reporting Schema

Missed

Target Document: RFC-2024-001:
The race_finish_tm field (finish time) uses different formats based on driver position: commonsense evidence: ;
1. if the value exists, it means the driver finished the race.

1155

Figure 12: An example for knowledge-retrieval error

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165**Question:**

Which group does superhero A-Bomb belong to?

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182**Correct SQL:**

```
SELECT T2.superhero_race_classif
FROM zentos1_hrodom_char_metadata AS T1
INNER JOIN zentos1_hrodom_race AS T2
ON T1.sup_race_id = T2.align_id
WHERE T1.superhero_name = 'A-Bomb'
```

Retrieved tables

Omitted...

Documents

Document1: Superhero Management System v2.0.0 Release Notes
...
Overview
This major release introduces foundational changes to our superhero attribute
...
Document2: Superhero Registry API v1
Requests require HMAC-SHA256 signatures using client credentials issued by the Comic Industry Federation (CIF). Include headers:
...
Document3: Design Rationale
...
Document4: RFC-001: Design for Superhero Attribute Management System

...
Document5: RFC-001: Proposed Data Model Standardization for Superhero Attribute Management System
...
"commonsense evidence: In the context of superheroes, superhero_race_classif would refer to the particular group of people that the superhero belongs to base on these physical characteristics"
...

1183
1184
1185
1186
1187

Figure 13: An example for knowledge-grounding error

1188
 1189
 1190
 1191 **Prompt for Domain Expansion**
 1192
 1193 # Task Description
 1194 Create an enterprise-grade **SQLite** database schema related to the topic **{TOPIC_SLOT}**.
 1195 # Requirements
 1196 1. The schema must contain **at least {MIN_TABLES_SLOT} tables** and at **least {MIN_COLUMNS_SLOT} columns** in total.
 1197 2. The schema must be substantially different from existing databases in both intended functionality and naming, while still falling within the scope of the given topic. Do not duplicate or closely imitate any existing database. **Table names must be unique: generating any table with the table name that duplicates one from the existing databases is strictly prohibited.**
 1198 3. Provide only:
 1199 - the database name;
 1200 - for each table: its name, column names with data types, primary-key definition(s) and foreign-key constraint(s).
 1201 - Do not include sample data.
 1202 4. Design the schema to reflect a realistic enterprise use case.
 1203 5. The schema you generate needs to be relevant to the topic; But it (including the names of database, tables and columns) does not necessarily have to include keywords from the topic itself. For example, databases under the "sports_and_athletes" topic can be related to any sport, such as tennis, baseball, chess, and so on. We encourage generating **a diverse range of** databases that align with the topic.
 1204 6. The schema you generate must comply with the **SQLite database specifications**.
 1205 7. Your output should be entirely in English.
 1206
 1207 # Existing Databases (for exclusion check)
 1208 {EXISTING_DATABASES_SLOT}
 1209
 1210 # Enterprise Schema Example
 1211 Here are some examples of enterprise schemas to help you understand the characteristics of enterprise database schemas, Do not reuse its content or imitate its format:
 1212 ```plain
 1213 'anefi_ods_yeb_asset_increase_order_delta_hh'(asset_order_id "|gmt_create "|gmt_modified "|original_order_id "|biz_request_id "|user_id
 1214 |biz_type "|quotient "|real_amount "|status "|biz_no "|out_biz_no "|bill_detail_id "|biz_dt "|trans_dt |pmt_dt |biz_context "|memo
 1215 |ext_info "|contract_id |asset_account_type |asset_account_no |inst_id |sub_biz_type |cnl_pd_code |cnl_ev_code |cnl_no
 1216 |biz_pd_code |biz_ev_code |pd_code |lev_code |payment_id |gmt_commit |business_type |fund_code |Fund Code|fund_inst |Fund
 1217 Institution |clear_dt |Clearing Date |dt |hour")
 1218 'anods_ods_cfm_fun_order_delta_hh'(prefix 'Rowkey Prefix'|id |Fund Document Number|parent_id |Parent Fund Document Number|biz_trans_id
 1219 |Business Transaction ID|biz_trans_code |Business Transaction Code|request_user_id |Merchant Account ID|original_from |Business
 1220 |Source|access_channel |Access Channel|out_biz_no |External Business Number|order_no |Order Number|payment_no |Payment Serial
 1221 |Number|sub_biz_type |Sub-business Type|payer_party_id |Payer Participant ID|payer_card_id |Payer Card Info ID|payer_card_no |Payer Card
 1222 Number|payee_party_id |Payee Participant ID|payee_card_id |Payee Card Info ID|payee_card_no |Payee Card Number|currency |Currency
 1223 Code|amount |Transaction Amount|real_amount |Actual Amount|remark |Remark|status |Status|sub_status |Sub-status|error_code |Error
 1224 Code|fail_reason |Failure Reason|memo |Memo|gmt_execute |Execution Time|gmt_create |Creation Time|gmt_modified |Modification
 1225 Time|gmt_expired |Expiration Time|gmt_confirm |Confirmation Time|gmt_pay |Payment Time|order_fee |Order Pre-charge Amount |frozen
 1226 charge amount|charge_consult_no |Pre-charge Document Number |charge currently 28 digits|cnl_pd_code |Channel Product Code|cnl_ev_code
 1227 |Channel Event Code|cnl_no |Channel Serial Number|biz_pd_code |Upstream Business Product Code|biz_ev_code |Upstream Business Event
 1228 Code|pd_code |Business Product Code|ev_code |Business Event Code|ext_info |Extended Field|parent_biz_trans_id |Parent Business Transaction
 1229 ID|dt |hour")
 1230
 1231 # Output Format
 1232 Return a single JSON object in your response and enclose it within <answer> and </answer>:
 1233
 1234 <answer>
 1235 {
 1236 "db_name": "The name of the database you generated",
 1237 "schema": {
 1238 "the name of table 1": {
 1239 "schema": {
 1240 "the name of column 1": "data type of column 1",
 1241 "the name of column 2": "data type of column 2",
 1242 "the name of column 3": "data type of column 3",
 1243 // other columns in table 1
 1244 },
 1245 "constraints": {
 1246 "primary key": "PRIMARY KEY (`column x`)",
 1247 "foreign keys": [
 1248 "FOREIGN KEY (`column x`) REFERENCES `table i` (`column y`)",
 1249 // other foreign key constraints
 1250]
 1251 },
 1252 },
 1253 "the name of table 2": {
 1254 "schema": {
 1255 // columns in table 2
 1256 },
 1257 "constraints": {
 1258 "primary key": "primary key",
 1259 "foreign keys": [
 1260 // foreign keys if exists
 1261]
 1262 },
 1263 },
 1264 // other tables in this database
 1265 }
 1266 }
 1267 }
 1268 # Output
 1269
 1270 # Output

Figure 14: The prompt for domain expansion.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

Prompt for Project and Area Name Generation

You are a senior enterprise database architect. You are helping a company restructure its legacy database into an enterprise-grade system.

Database Name: {database_name}

You are given:

- Database name
- Database schema (DDL)
- database_description

Please:

1. Generate a project name (4-6 characters) for this database. The project name is randomly generated, has nothing to do with the database, and does not repeat with the domain.
2. Generate a high degree domain abbreviation (3-8 characters) that captures the business domain

Output format:

Project Name: [your_project_name]
 Domain Abbreviation: [your_domain_abbr]

[Database Schema]
 {schema}
 {desc_section}

Figure 15: The prompt for table project and area name generation.

Prompt for Enterprise Table Name Generation

You are an enterprise database architect helping rename a table to follow enterprise naming conventions.

Please rename the table {table_name} using the following pattern:

Naming Pattern:
 <project>_<domain>_<content>

Where:

- <project>: {project} (already determined)
- <domain>: {domain} (already determined)
- <content>: Semantic summary of the table's core entity or process

Example:
 Original table: user_behavior
 Expected: {project}_{domain}_usr_behavior

Now rename:

Table name: {table_name}

Guidelines:

1. Use precise, business-aware terms for <content>
2. Be concise but descriptive
3. Use common abbreviations (usr for user, txn for transaction, etc.)
4. Select the most appropriate partition suffix from the provided options

Only output the new table name as a single line. Do not include any explanations or formatting.

Figure 16: The prompt for table name generation.

1296
 1297
 1298
 1299
 1300
 1301 **Prompt for Area Explanation**
 1302
 1303 You are a senior enterprise database architect. You are helping a company restructure its legacy database into an
 enterprise-grade system.
 1304 You are provided with the following:
 1305 - A relational database schema (DDL format);
 1306 - A column-level description file (if available), which includes: original column names, semantic names, textual
 descriptions, and possible value explanations.
 1307 Your task is to perform a domain-level, enterprise-grade analysis of the database and return a structured summary for
 downstream usage.
 1308 ## Your output should include the following sections:
 1309 ### 1. Business Domain Classification
 1310 - Clearly identify the high-level business domain the database belongs to.
 1311 - Provide one or more enterprise-level subdomains involved
 1312 - Use concise and enterprise-recognizable terminology.
 1313 ### 2. Table Themes and Functional Definitions
 1314 - For each table in the schema, explain its business purpose.
 1315 - Describe the type of entity or process the table models
 1316 ### 3. Field Classifications and Semantic Grouping
 1317 - Organize fields into functional groups, such as:
 1318 - Identification fields - Address/location fields
 1319 - Operational attributes
 1320 - Classification codes
 1321 - For each group, summarize its business purpose and usage context.
 1322 ### 4. Semantic Repair and Enrichment
 1323 - Identify any columns whose descriptions are missing, vague, or purely abbreviations.
 1324 - For such fields, infer and supplement accurate definitions based on domain knowledge.
 1325 - Emphasize clarity and completeness over brevity. Avoid unexplained abbreviations unless they are domain standards
 1326 and include their expansion.
 1327 ### Formatting Constraints:
 1328 - Be concise but informative.
 1329 - Avoid repeating the schema line-by-line; instead, provide a business-level summary.
 1330 - Use bullet points or short paragraphs for clarity.
 1331 - Do not assume a single fixed domain.
 1332 Expected Output Format:
 1333 Business Domain Classification:
 1334 This database primarily serves the following domain(s):
 1335 - [High-level domain, e.g., Public Education, Financial Services, Healthcare...]
 1336 Enterprise Subdomains:
 1337 - [Subdomain A]: [Short description, e.g., "Manages the lifecycle and attributes of registered educational
 1338 institutions."]
 1339 - [Subdomain B]: [Short description, e.g., "Tracks charter classification and operational status of schools."]
 1340 ...
 1341 Table Classification and Definitions:
 1342 - table_name_1: [Concise description of what entity or process the table represents and its business purpose.]
 1343 - table_name_2: [Concise description...]
 1344 ...
 1345 Field Classification and Groupings:
 1346 - Identification Fields:
 1347 - field_a: [Business meaning]
 1348 - field_b: ...
 1349 - Geolocation / Address Fields:
 1345 - ...
 1346 - Status / Operational Attributes:
 1347 - ...
 1348 - Classification / Typing Codes:
 1349 - ...
 1345 ...
 1346 Semantic Repair and Enrichment:
 1347 - [field_name_1]: [Inferred or repaired explanation. Expand abbreviation if unclear, and describe usage.]
 1348 - [field_name_2]: ...
 1349 ...
 1350 **Database Schema:**
 1351 {schema_ddl}
 1352 {desc_section}

Figure 17: The prompt for column name area explanation.

1350

1351

1352

Prompt for Column Names Expansion

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 18: The prompt for column name expansion.

Prompt for Column Name Abbreviation

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure 19: The prompt for column name abbreviation.

1404
 1405
 1406
 1407
 1408
 1409
 1410 **Prompt for Document Generation**
 1411
 1412
 1413 # Background
 1414 To build a benchmark that truly reflects **“enterprise-grade Text-to-SQL”** scenarios, we must replicate how knowledge is distributed inside real companies:
 1415 - Business / domain knowledge is scattered across meeting minutes, change requests, ops runbooks, emails, and other heterogeneous documents.
 1416 - A querying system must **“retrieve”** information from a vast collection of external documents **“before”** generating SQL.
 1417 Your task is to **“sparsify”** the external knowledge you receive—turning it into a single Markdown document that resembles a real-world knowledge artifact.
 1418
 1419 # Task Description
 1420 You are given two sources of external knowledge:
 1421 1. **“Database description”** – full table/column names, value explanations, and embedded business / domain knowledge.
 1422 2. **“Extra knowledge”** – additional domain knowledge not present in the description file.
 1423 Your goal is to transform this input into one Markdown document of at least **{MIN_WORDS_SLOT}** words, written in the specified genre as
 1424 **“tailored below”**:
 1425 {DOC_GENRE_SLOT}
 1426 # Requirements
 1427 1. **“No knowledge may be omitted.”**
 1428 - Every piece of original external knowledge **“must appear somewhere in the document, except for `sample_value` and `data_format`”**.
 1429 * This explicitly includes:
 1430 * All rows from the database description table (Including 3 columns: **‘original_column_name’**, **‘column_description’**,
 1431 * **‘value_description’**),
 1432 * every item contained in the extra-knowledge input.
 1433 - If any information cannot be woven naturally into the narrative, list it verbatim in a **“① Loose Notes”** block at the end of the
 1434 document—**“otherwise do not include that block”**.
 1435 2. **“Tag original external knowledge for manual completeness checks. Use the tagging scheme below.”**
 1436 - For each row **“i”** (starting at 1) in the database-description table, tag each non-empty field as:
 1437 - **‘original_column_name’** → <ocn{i}> ... </ocn{i}>
 1438 - **‘column_description’** → <cd{i}> ... </cd{i}>
 1439 - **‘value_description’** → <vd{i}> ... </vd{i}>
 1440 - The **‘sample_value’** and **‘data_format’** columns are provided for your reference to help you understand the external knowledge. You
 1441 **“may include relevant content”** in the final document if appropriate, but **“must not apply any tags”** to it.
 1442 - If a field in that row is blank, **“omit the corresponding tag; never invent content”**.
 1443 - For each extra-knowledge item **“k”** (in provided order), tag it as <ek{k}> ... </ek{k}>.
 1444 - The text inside every tag must come directly from the original external knowledge (verbatim or with only trivial rephrasing that
 1445 leaves the meaning unchanged).
 1446 - Distribute tagged elements throughout the document and do not cluster them in a single section if possible. Avoid mechanically listing
 1447 tags and the knowledge within tags (e.g., directly providing a list).
 1448 3. **“Sparsification & contextualization”**
 1449 - **“Do not”** present a tidy data-dictionary list such as **“table-field-meaning”**.
 1450 - Knowledge should be woven naturally into the chosen genre and dispersed across the document.
 1451 - You may appropriately expand upon the original external knowledge to make the document more natural and realistic. However, the final
 1452 document **“must not”** contain any content that contradicts the original external knowledge.
 1453 - If new columns that are not present in the description file are mentioned (e.g., due to simulated discussions or change proposals),
 1454 they must be framed negatively—for example, discussing their removal or disagreement over adding them.
 1455 4. **“Directory path”**
 1456 - Provide a relative path for the document (e.g., **‘design/RFC-0421.md’** or **‘ops/playbook/alert_CPU.md’**) to show hierarchy.
 1457 5. **“Independent theme”**
 1458 - The document’s subject matter **“must not”** directly reference the task itself (e.g., Text-to-SQL benchmark, enterprise Text-to-SQL,
 1459 External Knowledge). Choose varied, realistic business or technical topics instead.
 1460
 1461 # Output Format
 1462 Return a single JSON object in your response and enclose it within **<answer>** and **</answer>**:
 1463
 1464 <answer>
 1465 {
 1466 “path”: “your/path/here”,
 1467 “genre”: “{DOC_GENRE_NAME_SLOT}”, // Only the genre name needs to be given
 1468 “title”: “the title of the document”,
 1469 “content_md”: “the content of the document”
 1470 }
 1471 </answer>
 1472
 1473 # Original External Knowledge
 1474 ## Database description
 1475 {DB_DESCRIPTION_SLOT}
 1476
 1477 ## Extra knowledge
 1478 {EXTRA_KNOWLEDGE_SLOT}
 1479
 1480 # Output

Figure 20: The prompt for enterprise knowledge document generation.

1458
 1459
 1460
 1461
 1462 **Prompt for Document Check & Correct**
 1463
 1464 # Background
 1465 In the prior task, your colleague has taken concise, densely packed external knowledge and-following the
 1466 sparsification & tagging rules-expanded it into **one Markdown document** written in the specified genre. This
 1467 artifact will later feed a retrieval-based Text-to-SQL benchmark, so its accuracy is critical.
 1468
 1469 ## Prior task description and materials
 1470 ### Prior task description
 1471 You are given two sources of external knowledge:
 1472 1. **Database description** - full table/column names, value explanations, and embedded business / domain
 1473 knowledge.
 1474 2. **Extra knowledge** - additional domain knowledge not present in the description file.
 1475
 1476 Your task is to **sparsify** the external knowledge you receive-turning it into a single Markdown document
 1477 that resembles a real-world knowledge artifact.
 1478
 1479 ### Database description
 1480 {DB_DESCRIPTION_SLOT}
 1481
 1482 ### Extra knowledge
 1483 {EXTRA KNOWLEDGE_SLOT}
 1484
 1485 ### Target genre
 1486 {DOC_GENRE_SLOT}
 1487
 1488 ### Sparsification & tagging rules**
 1489 - **No knowledge may be omitted.**
 1490 - Every piece of original external knowledge **must appear somewhere in the document, except for**
 1491 `sample_value` and `data_format`.
 1492
 1493
 1494 (Omitted here, you can refer to the same part of the prompt for document generation)
 1495
 1496
 1497 ## Candidate document
 1498 To assist you in identifying errors, the candidate document has already been pre-checked according to specific
 1499 rules, and any detected issues have been marked accordingly. (Note: The rule-based check is limited in
 1500 capability and may miss some errors – you must carefully identify any remaining issues during your review.)
 1501 ```md
 1502 {CANDIDATE_DOC_SLOT}
 1503
 1504 # Your Task
 1505 Audit the candidate document against the source materials and the rules, then correct it where necessary.
 1506
 1507 ## Checklist
 1508 1. **Completeness**
 1509 - Every element of the original external knowledge except for `sample_value` and `data_format` must appear
 1510 in the document-either in the main text or, if it cannot be woven in naturally, in a “ Loose Notes” block.
 1511
 1512 2. **Tag validation & correction**
 1513 - **Structural correctness** Each tag must have a valid index, a recognized tag type (ocn, cd, df, vd, ek),
 1514 and must appear in proper pairs (`<tag>` and `</tag>`). Fix any malformed or unmatched tags.
 1515 - **Existence** If the corresponding field in the database description is blank, delete the tag **and its**
 1516 enclosed content.
 1517 - **Accuracy** The text inside every tag must match the source verbatim, or with only trivial re-phrasing
 1518 that preserves meaning. Replace mismatches with the correct source text.
 1519
 1520 3. Check whether any other part of the document violates the sparsification and tagging rules. If such
 1521 violations are found, revise the document accordingly to ensure full compliance.
 1522
 1523 ## Requirements
 1524 1. Modify **only** the content that violates the checklist or rules; everything else must remain unchanged.
 1525 2. You only need to revise the document content – no need to provide the title, genre, or file path.
 1526 3. When checking for completeness, go through the database description row by row, verifying each column field
 1527 individually. Then do the same for each item in the extra knowledge section. Present the results as a
 1528 structured checklist.
 1529 4. When validating tags, iterate over each tag that appears in the document, and check the following
 1530 dimensions: Structural correctness, Existence, Accuracy. Present the tag validation as a checklist as well.
 1531
 1532 # Output format
 1533 Provide **one final, corrected Markdown document** that meets all requirements, and wrap it exactly as shown:
 1534 <answer> ...your corrected Markdown... </answer>
 1535
 1536 # Output

Figure 21: The prompt for checking and correcting enterprise knowledge document.

1512
 1513
 1514
 1515

Prompt for Evaluation on BIRD-Ent

1516 **# Task Description**
 1517 You own a data asset (similar to a data warehouse) that has collected a series of tables from different sources around
 1518 a specific topic. You are now given the schemas and data sources for all the tables within this data asset. To help
 1519 you better answer the question, your colleague has pre-selected several tables that may be relevant to the question.
 1520 Based on this information, please write an SQLite query to answer the following question.

1521 **# Requirements:**
 1522 1. You only need to provide one complete, correct, and executable SQL statement.
 1523 2. Do not include any additional information outside of the SQL query in your response.

1524 **# Output Format**
 1525 Your SQL should be placed between `<answer>` and `</answer>`, as follows:
`<answer>your SQL query</answer>`

1526 **# Data Table Naming Standards**
 1527 Below are the naming conventions for the data tables, which will help you understand the following Data Asset
 1528 Information:
 1529 Table naming conventions: `<project>_<area>_<content>`.
 1530 - `<project>`: The project/product or data domain identifier to distinguish teams, business lines, or application
 1531 contexts.
 1532 - `<area>`: Business domain and subject area identifier which the table belongs.
 1533 - `<content>`: The summary of the table's content.

1534 **# Data Asset Information**
`{SCHEMA_SLOT}`

1535 **# External Knowledge**
 1536 The following document may contain useful information needed to answer the question and is provided for your reference:
`{KNOWLEDGE_SLOT}`

1537 **# Output**
 1538 Question: `{QUESTION_SLOT}`
 1539 Your Answer:

Figure 22: The prompt for evaluation on the BIRD-Ent Benchmark.

1540
 1541
 1542 **Prompt for Evaluation on Spider-Ent**

1543
 1544 **# Task Description**
 1545 You own a data asset (similar to a data warehouse) that has collected a series of
 1546 tables from different sources around a specific topic. You are now given the schemas
 1547 and data sources for all the tables within this data asset. To help you better answer
 1548 the question, your colleague has pre-selected several tables that may be relevant to
 1549 the question. Based on this information, please write an SQLite query to answer the
 1550 following question.

1551 **# Requirements:**
 1552 1. You only need to provide one complete, correct, and executable SQL statement.
 1553 2. Do not include any additional information outside of the SQL query in your
 1554 response.

1555 **# Output Format**
 1556 Your SQL should be placed between `<answer>` and `</answer>`, as follows:
`<answer>your SQL query</answer>`

1557 **# Data Asset Information**
`{SCHEMA_SLOT}`

1558 **# Output**
 1559 Question: `{QUESTION_SLOT}`
 1560 Your Answer:

Figure 23: The prompt for evaluation on the Spider-Ent Benchmark.