
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEXT-TO-SQL BENCHMARKS FOR ENTERPRISE RE-
ALITIES: UNDER MASSIVE SCOPES, COMPLEX
SCHEMAS AND SCATTERED KNOWLEDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing Text-to-SQL benchmarks remain overly idealized and differ substantially
from enterprise scenarios, which require retrieving tables from massive query
scopes, interpreting complex schemas, and locating scattered knowledge across
large collections of documents. To address these gaps, we present two enterprise
benchmarks, BIRD-Ent and Spider-Ent, constructed through a cost-effective re-
finement framework applied to their academic counterparts (BIRD and Spider), to-
gether with a new task paradigm, Dual-Retrieval-Augmented-Generation (DRAG)
Text-to-SQL, which formalizes the dual-retrieval workflow of table schemas and
knowledge documents prior to SQL generation. Our benchmarks exhibit three
defining characteristics of enterprise settings: massive query scopes with over
4,000 columns, complex schemas with domain-specific and heavily abbreviated
table and column names, and scattered knowledge distributed across enterprise-
style documents totaling 1.5M tokens. These properties make the benchmarks
substantially more realistic and challenging than existing ones. Evaluation on sev-
eral state-of-the-art large language models (LLMs) reveals a sharp performance
drop, with only 39.1 EX on BIRD-Ent and 60.5 EX on Spider-Ent, underscoring
the gap between academic performance and enterprise requirements. By provid-
ing a rigorous and discriminative testbed under the DRAG Text-to-SQL paradigm,
our benchmarks offer a valuable resource to advance research toward Text-to-SQL
systems that are reliable and deployable in real-world enterprise environments.

1 INTRODUCTION

Converting natural language questions into SQL queries, commonly known as the Text-to-SQL task,
aims to enable non-experts to interact with relational databases and assist professionals in writing
SQL more efficiently. Owing to the widespread use of relational databases in real-world applica-
tions, Text-to-SQL has long been a topic of significant interest in both the NLP and database research
communities (Li et al., 2023a; Pourreza & Rafiei, 2023; Gao et al., 2024; Shkapenyuk et al., 2025).

Benchmarks play a central role in advancing Text-to-SQL research, as they not only define the task
setting but also serve as the foundation for measuring research progress and comparing approaches.
Recently, LLMs have achieved impressive scores on academic benchmarks, for example, reaching
an execution accuracy (EX) of 77.5 on BIRD (Li et al., 2023b) and as high as 91.2 on Spider
(Yu et al., 2018). However, such results do not imply that the challenges of Text-to-SQL have
been largely solved. As shown in Figure 1, most existing academic benchmarks, including Spider
and BIRD, remain overly idealized, characterized by limited scope, simple schema, and inlined
knowledge, all of which diverge significantly from the complexities of real-world enterprise practice.
In response, several recent efforts have attempted to construct enterprise-oriented benchmarks, such
as Spider 2.0 (Lei et al., 2025) and BEAVER (Chen et al., 2025). While these are important steps
forward, they still fall short of capturing the realities of enterprise scenarios. Specifically, their query
scope (i.e., the accessible schema scope for a single query) remains limited to dozens of tables, and
the external knowledge is still provided as readily accessible snippets directly appended to queries,
which is overly brief and sanitized compared to enterprise knowledge documentation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Limited Scope

Which different county has the
most number of closed schools?

Direct Link

california

_schools

At most dozens of tables, far smaller
than enterprise-level scopes.

Idealized Schema Inlined Knowledge

Which different county has the
most number of closed schools?
Which different county has the
most number of closed schools?

schools

frpm

satscores

• StatusType

• County

• District

• School

• Street

• ClosedDate

……

Overly literal table/column names,
lacking enterprise-level noise.

Which different county has the
most number of closed schools?

frpm satscoresschool

Direct Link

'Closed' was mentioned in
schools.StatusType.

"Knowledge" tells me
directly which column to use,
and there is no irrelevant
information at all!

Useful knowledge is readily available,
far from enterprise-level difficulty.

Figure 1: Limitations of existing benchmarks in reflecting real-world enterprise challenges.

Based on our observations of real-world enterprise scenarios, enterprise Text-to-SQL presents chal-
lenges that go well beyond these benchmarks. First, the query scope is extremely massive in enter-
prise scenarios, typically represented by a data asset that contains hundreds or even tens of thousands
of tables originating from diverse sources. Second, table and column names in enterprise schemas
often carry domain-specific, complex meanings; they tend to be lengthy, heavily abbreviated, and
difficult to align with the natural language used in user questions. Third, answering a question often
requires external knowledge (e.g., column descriptions and domain knowledge), which is sparsely
scattered across a large number of unstructured and heterogeneous documents. Instead of generating
SQL directly from a question and a predefined schema, enterprise Text-to-SQL systems must first
search over a broad query scope to retrieve the relevant tables, and search across large-scale docu-
ment collections to locate useful knowledge. These realities underscore the urgency of constructing
new benchmarks that can faithfully reflect the challenges faced in enterprise scenarios.

However, collecting data directly from real-world enterprise scenarios presents substantial chal-
lenges. Privacy concerns often prevent clients from sharing their data, and the cost of data curation,
including cleaning, validation, and annotation, is typically prohibitive. To address these obstacles,
we propose a cost-effective benchmark refinement approach that builds upon existing academic
benchmarks. Our method progressively enhances the realism of these benchmarks along three di-
mensions. First, at the domain level, We expand the tables of the original databases by domain using
LLMs, thereby shifting the query scope to massive and heterogeneous data assets. Second, at the
schema level, we inject realistic enterprise noise into tables and columns. Finally, at the knowledge
level, we convert query-specific knowledge snippets into large-scale external document collections,
providing a more realistic external knowledge storage environment. Throughout the refinement pro-
cess, we preserve the original benchmark’s questions and SQL structures and the modifications are
largely driven by LLMs with minimal human intervention, which significantly reduces the cost of
constructing new benchmarks. To further align with enterprise Text-to-SQL workflows, we also
introduce a new paradigm termed Dual-Retrieval-Augmented-Generation Text-to-SQL, which
requires the model to retrieve information from large-scale data assets and external knowledge doc-
uments before generating the final SQL query.

Finally, by applying our refinement framework to two academic benchmarks, BIRD and Spider, and
introducing the DRAG Text-to-SQL paradigm, we construct two enterprise benchmarks: BIRD-
Ent and Spider-Ent (collectively referred to as the Ent-series benchmarks). BIRD-Ent expands
the query scope to an average of 4,150.3 columns (55.8× larger than BIRD), and Spider-Ent to
4,053.3 columns (164.7× larger than Spider), highlighting the challenge of massive scopes. They
further introduce more complex schema information and BIRD-Ent is paired with 1.5M tokens of
enterprise-style documents containing scattered knowledge. Evaluation results on several state-of-
the-art (SOTA) LLMs reveal a significant performance drop on these refined benchmarks, indicating
that current models struggle to handle the key challenges posed by enterprise Text-to-SQL scenarios.
We summarize our contributions as follows:

• We introduce a new Text-to-SQL task setting, termed DRAG Text-to-SQL, that models the
complex workflows encountered in real-world enterprise environments.

• We propose a comprehensive and fine-grained benchmark refinement framework that en-
ables transforming existing academic benchmark into an enterprise benchmark at very low

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(i) Domain Aggregation

(ii) Domain Expansion

Sports
Domain

Formula_1

hockey

Olympics

soccer_2016

Football

basketball

Sports
Domain

LLM

tennis_player

tennis_match

chess_rules
LLM

Domain Knowledge,
additional information…

LLM

(i) Schema Rewriting

(ii) Schema Augmentation

LLM

• driverRef

• number

• code

• forename

• surname

• ……

drivers

• driver_ref_id
• driver_racing_

number
• driver_id_code
• driver_fname
• driver_sname
• ……

zentr_flmgr_dr
vr_nd

• driver_ref_id
• driver_racing

_number
• driver_id_cod

e
• driver_fname
• driver_sname

zentr_flmgr_dr
vr_nd

• driver_id

• driver_race_no

• driver_ref_id_tmp

• driver_ref_id

zentr_flmgr_dr
vr_nd_history

Academic

Benchmark

Enterprise

Benchmark
Domain-Level

Refinemet

Schema-Level

Refinement
Knowledge-Level

Refinement

(i) Knowledge Decoupling

(ii) Knowledge Documents Generation

Document Style
(e.g., ReleaseNote)

Database-
Specific
Knowledge

Database-
Agnostic
Knowledge

Database-Specific
Knowledge

Question: Please list the reference names of the drivers who
are eliminated in the first period in race number 20.
Evidence: Driver reference name refers to driver_ref_id; The
first qualifying period is commonly abbreviated as q1.; ……

Database-Agnostic
Knowledge

Formula 1 Data Hub -
Release Notes v2.3
Overview
......
New Features
Qualifying Session
Tracking
......
Bug Fixes
- **KN-1098**: Synchronized
documentation with stewards'
ruling that `The first
qualifying period is
commonly abbreviated as q1.`
......

Column Descriptions,
Value Illustrations…

zentra13_flmgr_
drvr_nd

LLM

Rule-
Based

Figure 2: An overview of our benchmark refinement process.

cost. By applying this method to BIRD and Spider, we construct and release two high-
quality enterprise Text-to-SQL benchmarks: BIRD-Ent and Spider-Ent.

• Our benchmarks reveal the formidable challenges of enterprise Text-to-SQL tasks, with
SOTA LLMs achieving only 39.1% EX on BIRD-Ent and 60.5% EX on Spider-Ent.

2 TASK FORMULATION

Unlike previous benchmarks, where each question is paired with a predefined compact database
and sometimes directly supplied with knowledge snippets, we define a new task paradigm, termed
Dual-Retrieval-Augmented-Generation (DRAG) Text-to-SQL, which extends conventional Text-
to-SQL by incorporating dual retrieval before SQL generation.

Given a natural language question Q, the system first retrieves the top-k table schemas Ck from a
large-scale data asset D:

Ck = Retrieveschema(Q,D), (1)
and the top-n external knowledge documents Kn from heterogeneous document collections K:

Kn = Retrieveknowledge(Q,K). (2)

Finally, the target SQL query Y is generated conditioned on the question and the retrieved context:

Y = f(Q, Ck,Kn | θ). (3)

Here, Ck denotes the retrieved table schemas, Kn denotes the retrieved knowledge documents, and
f(· | θ) denotes a model parameterized by θ. This formulation explicitly reflects the dual-retrieval
workflow inherent in real-world enterprise Text-to-SQL.

3 BENCHMARK REFINEMENT

As shown in Figure 2, our benchmark refinement consists of three key steps designed to simulate
enterprise-level complexity: (i) Domain-level refinement, which enlarges the query scope by do-
main to reflect real-world data asset scales; (ii) Schema-level refinement, which introduces realistic
naming and structural noise to mimic enterprise table schemas; and (iii) Knowledge-level refine-
ment, which decouples query-specific external knowledge snippets from the input and embeds them
across LLM-generated enterprise documents. We also incorporate quality control measures to en-
sure the reliability of the final benchmarks. All prompts used in this section, along with further
details of the refinement methods, can be found in the Appendix B.

Domain-level refinement. Existing Text-to-SQL benchmarks restrict each query to a small, fixed
database, making schema linking relatively simple. To simulate enterprise reality, we instead expand

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the query scope by constructing domain-level data assets. We first group databases in academic
benchmarks into topical domains and aggregate them into data assets. Each asset is then enlarged
with LLM-generated tables designed in enterprise schema style, including realistic names, types,
and constraints, while ensuring the question-SQL pairs in the original benchmarks remain valid.

Schema-level refinement. In enterprise settings, business-driven design and continual evolution
yield long, structured, and often abbreviated names as well as pockets of redundancy. To capture
this, we apply schema rewriting and augmentation. For rewriting, we convert original table names
to hierarchical enterprise conventions (<project> <area> <content>) and abbreviate excessively
long names using LLMs. We also rewrite columns by enriching them with clearer semantics while
adopting enterprise-style abbreviations. For instance, power becomes card pwr val. For augmen-
tation, we inject redundant tables and columns that resemble active ones to mirror real causes of
redundancy in enterprises (e.g., legacy systems, migrations, testing). Such artifacts are often la-
beled with prefixes or suffixes like history or migrated, and they introduce ambiguity and stronger
interference for table retrieval and schema linking.

Knowledge-level refinement. In enterprise scenarios, external knowledge must be retrieved from
large document collections. To approximate this, we refine BIRD by first decoupling its query-
specific evidence (knowledge snippet) from the queries (Spider does not incorporate external knowl-
edge). The evidence contains both database-agnostic knowledge (e.g., domain knowledge) and
database-specific knowledge (e.g., column descriptions). To avoid overlap with BIRD’s database
description files, we keep only the database-agnostic portion of the evidence and rely on the descrip-
tion files for database-specific content. Instead of presenting these materials directly, we segment
them into passages and expand them with LLMs into longer documents written in enterprise styles
(e.g., meeting minutes, technical manuals). Through an elaborate pipeline (more details in Ap-
pendix B.3.2). Finally, we construct 1,412 documents totaling about 1.5M tokens.

Quality control. Although each refinement step is carefully designed to minimize disruptions, error-
free transformations cannot be guaranteed. To ensure benchmark quality, we verify three aspects:
(i) answer uniqueness, checking whether a question admits only one semantically valid SQL regard-
less of syntactic form, as domain-level refinements may introduce semantically similar columns; (ii)
semantic alignment, ensuring the question still matches its SQL after schema rewriting; and (iii)
document correctness, confirming that generated knowledge documents faithfully preserve required
content without semantic drift. We manually inspect at least 10% of samples, with double annotation
and expert arbitration. Specially, for Spider, where many questions are underspecified, we observed
frequent loss of answer uniqueness after refinement. We therefore conducted a manual full check,
removed ambiguous cases, and retained 602 samples at last. Overall, BIRD-Ent reaches 94.8% an-
swer uniqueness, 98.0% semantic alignment, and 96.7% document correctness, while Spider-Ent
achieves 99.0% semantic alignment and 93.7% answer uniqueness, demonstrating that our bench-
marks maintain high quality and that our refinement design effectively mitigates common errors.

4 DATA STATISTICS

We conduct an in-depth statistical analysis and comparison between existing Text-to-SQL bench-
marks (including Spider, BIRD, BEAVER, and Spider 2.0) and our Ent-series benchmarks. As
shown in Table 1, our benchmarks more closely reflect real-world enterprise Text-to-SQL scenarios
across multiple critical dimensions.

More massive query scopes. Our Ent-series benchmarks substantially expand the query scopes
compared to both academic (Spider, BIRD) and enterprise-oriented benchmarks (BEAVER, Spi-
der 2.0). The average query scope in BIRD-Ent or Spider-Ent may span over 400 tables and 4000
columns, representing at least a 57.7× increase in table scope and a 55.8× increase in column scope
over academic settings, and still at least 5.1× more tables and columns than existing enterprise
benchmarks. This dramatic increase reflects the scale and complexity of real enterprise data envi-
ronments.

A more realistic knowledge storage environment and storage format. BIRD-Ent benchmark
explicitly model the decoupling between queries and external knowledge, simulating a real-world
scenario where task-relevant information must be retrieved from a large pool of loosely organized
documents. Unlike BIRD and Spider 2.0-snow/lite, which directly provide a document including a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Benchmark # Example # Table
/ QS

Col
/QS

Knowl. Tok.
/Question

Enterprise
Realism

Task
Paradigm

Table
Retrieval

Knowledge
Retrieval

Spider 2147 4.0 24.6 - ⋆ Traditional ✗ ✗
BIRD 1789 6.8 72.6 25.0 ⋆⋆ Traditional ✗ ✗
BEAVER 203 77.5 708.4 - ⋆⋆⋆ RAG ✓ ✗
Spider 2.0-lite 547 49.0 803.6 343.8 ⋆⋆⋆ Traditional ✗ ✗
Spider 2.0-snow 547 51.7 812.1 344.0 ⋆⋆⋆ Traditional ✗ ✗
Spider 2.0-DBT 68 21.4 337.7 1.3M ⋆⋆⋆⋆ Code Agent - -

BIRD-Ent 1534 392.1 4150.3 1.5M ⋆⋆⋆⋆⋆ DRAG ✓ ✓
Spider-Ent 602 413.0 4053.3 - ⋆⋆⋆⋆ RAG ✓ ✗

Table 1: Comparison between existing benchmarks and our Ent-series benchmarks. QS denotes the
Query Scope. Knowl. Tok. refers to the number of tokens of relevant knowledge.

small amount of dense external knowledge as part of the model input, BIRD-Ent adopts a sparsi-
fied storage format where relevant knowledge is scattered across longer, less structured documents,
better reflecting enterprise realities. On average, BIRD-Ent requires the model to identify relevant
information from over 1.5M tokens of candidate knowledge per question, approximately 4500× the
size used in Spider 2.0-lite/snow, placing significantly greater demands on both retrieval accuracy
and grounding robustness.

A task paradigm more aligned with enterprise scenarios. Unlike existing benchmarks that as-
sume a predefined, compact database as input (e.g., BIRD, Spider 2.0-snow/lite), or BEAVER,
which includes table retrieval but lacks knowledge retrieval, our Ent-series benchmarks adopt the
DRAG Text-to-SQL paradigm (defined in Section 2) that decouples SQL generation from schema
and knowledge selection. This mirrors the workflow of real-world enterprise analysts, who often
operate over vast data and rely on heterogeneous knowledge sources to complete a task. By inte-
grating both table and knowledge retrieval into the task paradigm, our benchmarks better reflect the
multi-stage nature of such workflow, assess retrieval quality over large and noisy candidate spaces,
evaluate model robustness under incomplete or imperfect inputs, and test whether generated SQL
can be grounded in retrieved information-all of which are essential capabilities for deployment in
enterprise scenarios.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

During the benchmark refinement stage, we use Deepseek-R1-0528 (DeepSeek-AI, 2025) for syn-
thesizing new tables within each domain, rewriting schemas and generating documents, due to its
strong reasoning capabilities and excellent instruction-following performance. The process is con-
ducted using the development sets and full database collections from BIRD and Spider, along with
the database description files provided in BIRD.

During the evaluation stage, we adhere to the proposed DRAG Text-to-SQL paradigm. In the re-
trieval step, we adopt a standard embedding-based framework as a result of the ultra-long context
caused by the massive query scopes and document collections. Specifically, each table schema and
external knowledge document is encoded using a semantic embedding model and stored in a vec-
tor index. At inference time, the input question is embedded using the same model, and relevant
candidates are retrieved via cosine similarity search in the vector space. The retrieved schemas,
external knowledge documents, and the input question are then concatenated and fed into an LLM
for zero-shot SQL generation. The prompt used in this stage is provided in Appendix.

5.2 EXPERIMENTAL SETUP

Evaluation metrics. In the evaluation setting of our Ent-series benchmark, the ability to retrieve the
correct tables and external knowledge documents has a critical impact on the final SQL generation
performance. Following standard practices in retrieval evaluation, we adopt precision, recall, and F1
score as our primary metrics. In addition, following BEAVER (Chen et al., 2025), we introduce the
Perfect Recall (PR) metric, which measures the proportion of examples where all gold instances are
included in the top-k retrieved candidates. This metric is particularly important, as failing to retrieve

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Model
EX

BIRD Spider

dev Ent dev† Ent

GPT-4o 57.6 34.4 (-23.2) 84.4 56.8 (-27.6)

GPT-4o-mini 53.6 26.4 (-27.2) 83.4 53.8 (-29.6)

GPT-o4-mini 58.3 39.0 (-19.3) 83.9 60.5 (-23.4)

Qwen3-32B-no-thinking 53.6 25.5 (-28.1) 82.4 47.2 (-35.2)

Qwen3-32B 59.2 33.8 (-25.4) 84.7 57.8 (-26.9)

Qwen3-235B-A22B-no-thinking 56.3 27.8 (-28.5) 82.8 54.0 (-28.8)

Qwen3-235B-A22B 59.6 36.9 (-22.7) 82.4 58.5 (-23.9)

Deepseek-R1-0528 58.5 39.1 (-19.4) 81.3 56.8 (-24.5)

Table 2: The EX performance of various baselines on the Ent-series benchmarks as well as their
original counterparts (the Spider dev set is marked with †, denoting the subset retained after the
quality control described in Section 3, with 602 samples.). The model is provided with the top-
10 tables and top-5 knowledge documents retrieved to obtain optimal results. The best results are
highlighted in bold.

all relevant tables makes it highly unlikely for a model to generate the correct SQL. For the final
SQL generation stage, we evaluate model performance using Execution Accuracy (EX), a widely
adopted metric in prior work (Chang et al., 2023; Li et al., 2023b; Lei et al., 2025). EX measures
the proportion of predicted SQL queries that yield the same execution results as their corresponding
gold queries.

Baseline models. During the retrieval stage, we compare several SOTA embedding models, includ-
ing Qwen3-Embedding-0.6B (Zhang et al., 2025), bge-m3 (Chen et al., 2024), and multilingual-e5-
large-instruct (Wang et al., 2024). If not otherwise specified, we default to using Qwen3-Embedding-
0.6B as the embedding model for the retrieval stage due to its superior retrieval performance. For the
SQL generation stage, we select a range of leading LLMs, including the GPT series (4o, 4o-mini,
o4-mini, OpenAI et al. (2024)), Qwen3-32B, Qwen3-235B-A22B (with and without thinking, Yang
et al. (2025)), and Deepseek-R1-0528 (DeepSeek-AI, 2025). The selected models span both pro-
prietary and open-source LLMs, as well as reasoning-augmented and standard variants, providing
broad reference value.

5.3 MAIN RESULTS

We present our main evaluation results in Table 2, highlighting three core findings that offer deeper
insights into model behavior under enterprise-level conditions.

Existing LLMs exhibit unsatisfactory performance on enterprise Text-to-SQL tasks. Moving
from academic to enterprise settings, EX drops sharply on both benchmarks, with BIRD decreasing
by up to 52.4% and Spider by up to 42.7%. Even the EX performance of strongest models on dev
sets fall to 36.9 on BIRD-Ent and to 57.8 on Spider-Ent, indicating that today’s high EX scores do
not translate to enterprise-style conditions.

Ent-series benchmarks faithfully capture the reasoning-intensive nature of enterprise scenar-
ios. Reasoning-enhanced variants such as Qwen3-32B and Qwen3-235B-A22B reduce the Ent-side
drop by up to 5.8 points on BIRD and 8.3 points on Spider, while GPT-o4-mini shows the smallest
declines overall (-19.3 on BIRD and -23.4 on Spider). In contrast, their non-reasoning counter-
parts degrade much more severely, underscoring that success on our benchmarks requires explicit
reasoning to carefully handle massive query scopes, complex schemas, and scattered knowledge.

Ent-series benchmarks increase separation among models. On BIRD dev, the spread between
the best and worst systems grows from 6.0 points on dev (59.6 vs 53.6) to 13.6 points on BIRD-Ent
(39.1 vs 25.5). On Spider, the spread expands from 2.9 points on dev (84.2 vs 81.3) to 13.3 points

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model
EX

BIRD Spider

dev EntD EntS EntK dev† EntD EntS
Qwen3-32B-
no-thinking 53.6 44.2 (-9.4) 41.7 (-11.9) 42.4 (-11.2) 82.4 72.8 (-9.6) 64.3 (-18.1)

Qwen3-32B 59.2 49.0 (-10.2) 49.2 (-10.0) 46.5 (-12.7) 84.7 79.3 (-5.4) 70.1 (-14.6)

Qwen3-235B-A22B-
no-thinking 56.3 46.7 (-9.6) 45.2 (-11.1) 42.6 (-13.7) 82.8 75.6 (-7.2) 64.3 (-18.5)

Qwen3-235B-A22B 59.6 51.5 (-8.1) 52.5 (-7.1) 49.7 (-9.9) 82.4 80.0 (-2.4) 64.6 (-17.8)

Deepseek-R1-0528 58.5 51.0 (-7.5) 56.5 (-2.0) 49.9 (-8.6) 81.3 78.6 (-2.7) 65.6 (-15.7)

Table 3: Ablation results on EX performance across different refinement stages. EntD, EntS , and
EntK represent benchmarks after domain-level, schema-level, and knowledge-level refinement, re-
spectively. Top-10 tables and top-5 knowledge documents retrieved are provided to the model to
obtain optimal results.

Embedding Model
Table Retrieval Knowledge Retrieval

Top-5 Top-10 Top-5 Top-10

P R F1 PR P R F1 PR P R F1 PR P R F1 PR

BIRD-Ent

Qwen3-Embedding-0.6B 28.7 76.8 40.8 62.5 16.4 86.0 27.0 76.5 29.6 46.2 34.4 14.9 20.8 62.9 30.2 31.8
multilingual-e5-large-instruct 26.0 70.1 37.0 52.8 15.1 79.8 24.9 66.4 28.7 43.9 33.1 12.8 21.1 62.2 30.4 31.8
bge-m3 20.4 55.1 29.0 38.2 12.1 65.2 20.0 49.9 21.1 31.9 24.2 7.1 14.7 43.7 21.3 14.9

Spider-Ent

Qwen3-Embedding-0.6B 26.3 93.1 40.0 88.9 13.7 95.9 23.6 92.9 - - - - - - - -
multilingual-e5-large-instruct 23.9 85.9 36.4 79.8 12.9 91.2 22.2 86.7 - - - - - - - -
bge-m3 18.3 65.8 28.0 57.1 10.4 74.3 18.0 66.2 - - - - - - - -

Table 4: Retrieval performance for tables and external knowledge documents across the BIRD-
Ent and Spider-Ent benchmarks using different embedding models. Since Spider does not include
an external knowledge setting, we did not perform knowledge-level refinement, and therefore no
knowledge retrieval results are reported.

on Spider-Ent (60.5 vs 47.2). This larger margin reveals capability differences that are obscured by
traditional settings and makes the Ent-series benchmarks suitable for tracking real progress.

5.4 MORE ANALYSIS

Each of the three refinement levels independently poses substantial enterprise-level obstacles
for current LLMs. Table 3 shows the ablation studies to compare the effects of different refinement
stages. All three refinements lead to significant performance drops, confirming that each introduces
non-trivial complexity. Among them, knowledge-level refinement (EntK) imposes the greatest chal-
lenge on BIRD, while schema-level refinement (EntS) has the largest impact on Spider. Consistent
with our main results, models with explicit reasoning abilities demonstrate stronger robustness un-
der refinement, and enterprise benchmarks amplify the performance gap between models, indicating
a higher discriminative power in evaluating real-world readiness.

Existing embedding-based retrieval frameworks are inadequate for the demands of enterprise-
level Text-to-SQL retrieval. We evaluate the performance of various embedding models in retriev-
ing top-5 and top-10 table schemas and external knowledge documents. As shown in Table 4,
retrieval precision remains consistently low across all models, particularly in the top-10 setting.
Although recall is relatively high, the low precision indicates a significant amount of noise in the
retrieved results. In particular, the low PR scores in table retrieval suggest that many downstream
SQL generation tasks are grounded on incorrect or irrelevant inputs. Notably, all models perform
worse on knowledge retrieval than on table retrieval, highlighting the greater difficulty of semanti-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

cally grounding unstructured documents. These findings suggest that, despite their widespread use,
current embedding-based retrieval methods fall short in supporting high-precision grounding under
complex enterprise conditions, underscoring the need for more targeted retrieval techniques.

Model EX

BIRD-Ent Spider-Ent

Qwen3-32B-no-thinking 41.8 68.6

Qwen3-32B 46.9 70.0

Qwen3-235B-A22B-no-thinking 41.9 64.8

Qwen3-235B-A22B 50.7 64.6

Deepseek-R1-0528 51.8 65.0

Table 5: EX performance under the oracle setting
with gold-only table schemas and knowledge doc-
uments.

Even under the oracle retrieval setting, cur-
rent LLMs still struggle to handle the com-
plexity and redundancy of enterprise-level
schemas and knowledge documents. We fur-
ther examine the EX performance of different
baselines on the Ent-series benchmarks under
an oracle setting, where the input is restricted
to only the gold table schemas and gold knowl-
edge documents, with no distractors. The re-
sults are presented in Table 5. Despite the ab-
sence of retrieval noise, the EX scores remain
unsatisfactory, especially on BIRD-Ent, where
even the strongest model (Deepseek-R1-0528)
reaches only 51.8. This indicates that perfor-
mance bottlenecks persist even when correct
context is guaranteed, likely due to the inherent challenges in interpreting complex, redundant
schemas and utilizing documents that contain abundant irrelevant information while the useful
knowledge is highly scattered.

6 ERROR ANALYSIS

We randomly sample a total of 200 erroneous cases from BIRD-Ent and Spider-Ent for detailed
error analysis, and categorize the common error types into 5 groups, the distribution of error types
are shown in Figure 3.

Schema
(40.6%)

Retrieval
(21.1%)

Linking
(19.5%)

Knowledge
(30.8%)

Retrieval
(24.8%)

Question
(14.3%)

SQL
(8.3%)

Grounding
(6.0%)

Alignment
(7.5%)

Understanding
(6.8%)

Function
(2.3%)

JOIN
(6.0%)

Others
(6.0%)

Figure 3: Error type distribution; case stud-
ies of each error type are provided in the Ap-
pendix C.

Schema errors (40.6%) (i) Schema-retrieval errors
(21.1%). Existing models frequently fails to retrieve
the tables required to answer a question due to the
massive query scopes and complex schemas in our
benchmarks. (ii) Schema-linking errors (19.5%).
Even if all of the gold tables are recalled, the model
may still make mistakes in choosing the right tables
and columns.

Knowledge errors (30.8%) (i) Knowledge-retrieval
errors (24.8%). The knowledge documents required
to answer the question may be absent from the re-
trieved ones. This is the most prevalent error type,
indicating that the methodology used to retrieve
knowledge documents requires improvement. (ii)
Knowledge-grounding errors (6.0%). Even when the
gold documents are retrieved, existing models may
ignore or misinterpret the knowledge in the docu-
ments. This can be attribute to the fact that use-
ful knowledge in our benchmark is often scattered
across lengthy documents.

Question errors (14.3%) (i) Question-understanding errors (6.8%). In certain cases, the models
will misinterpret the user’s question and generate an irrelevant SQL. (ii) Question-alignment errors
(7.5%). The SQL generated by the models fails to align with the user’s requirements. For example,
The user’s question asks for ID and name, while the models only return the ID.

SQL errors (8.3%) (i) SQL-function errors (2.3%). The models occasionally make mistakes in the
use of functions. For instance, when extracting substring, the models incorrectly use the SQLite-
unsupported SUBSTRING(). (ii) SQL-JOIN errors (6.0%). In some cases, the model may join
unnecessary tables or perform joins without following foreign key constraints.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Other errors (6.0%) Apart from the above cases, we recognize some other errors such as common-
sense errors and value mismatch errors, which means that the literal chosen by the models do not
match the value in the database. For example, the models may use date = ’2007/01/02’ to query the
date, whereas the database stores the value of date in the format ’2007-01-02’.

7 RELATED WORK

Text-to-SQL benchmarks constructed from scratch These benchmarks are typically released
alongside the original datasets and databases. Among them, WikiSQL (Zhong et al., 2018) is the
first large-scale cross-domain benchmark. Spider (Yu et al., 2018) expands the diversity and com-
plexity of questions and SQLs under a cross-domain setting, and extends query scopes to multi-table
databases. KaggleDBQA (Lee et al., 2021) incorporates database documentation into the pars-
ing process, enriching the task formulation. BIRD (Li et al., 2023b) pushes benchmarks closer to
real-world applications by introducing noisier database values and emphasizing the importance of
external knowledge in query generation. Benchmarks such as SEDE (Hazoom et al., 2021), MIMIC-
SQL (Wang et al., 2020), EHRSQL (Lee et al., 2022), and ScienceBenchmark (Zhang et al., 2023)
address domain-specific challenges by constructing complex single-domain benchmarks grounded
in practical use cases. Despite increasing in difficulty, these benchmarks remain relatively simple
and idealized when compared to the capabilities and demands of modern LLM-based Text-to-SQL
methods. As a result, recent efforts have shifted toward the construction of enterprise benchmarks.
BEAVER (Chen et al., 2025) is the first benchmark specifically designed for enterprise Text-to-SQL
scenarios. It constructs its databases and dataset based on real-world data warehouse environments,
and introduces RAG task setting. Spider 2.0 (Lei et al., 2025), released later, focuses on even more
complex database schemas and analytical tasks, incorporating multi-dialect challenges and agentic
task formulations derived from enterprise use cases.

Text-to-SQL benchmarks constructed by refinement Due to the high cost of constructing
benchmarks from scratch, many studies attempt to refine existing benchmarks by introducing special
settings. Spider-DK (Gan et al., 2021b) enhances the knowledge dimension by defining and inte-
grating five types of domain knowledge into the Spider development set, aiming to assess the gener-
alization ability of Text-to-SQL models. Spider-Realistic (Deng et al., 2021) and Spider-Syn (Gan
et al., 2021a) introduce noise by replacing explicit schema-related terms in natural language ques-
tions with synonyms. ADVETA (Pi et al., 2022) proposes Adversarial Table Perturbation (ATP),
which focuses on evaluating model robustness under table-side disturbances by replacing column
names with synonyms and adding confusing columns. Dr. Spider (Chang et al., 2023) further intro-
duces 17 types of perturbations covering databases, natural language questions, and SQL queries,
providing a comprehensive robustness evaluation. SParC (Yu et al., 2019) brings in a multi-turn
interaction setting, guiding the construction of thematically consistent follow-up questions based on
those from Spider. Spider-SS&CG (Gan et al., 2022) decomposes questions and SQLs in Spider
into clauses and recombines them to construct a benchmark focused on clause-level compositional
generalization, testing how well models generalize to new combinations of components seen during
training.

Our Ent-series benchmarks automatically refine existing benchmarks around three key challenges
inherent to enterprise Text-to-SQL tasks. By minimizing annotation costs, BIRD-Ent and Spider-Ent
deliver challenging benchmarks that faithfully reflects real-world enterprise scenarios.

8 CONCLUSION

We release BIRD-Ent and Spider-Ent, two enterprise Text-to-SQL benchmarks that feature massive
query scopes exceeding 4,000 columns, complex schemas, and scattered knowledge across docu-
ments with 1.5M tokens. Alongside these datasets, we introduce the DRAG Text-to-SQL paradigm,
refelecting the real-world enterprise workflow. Together, they mirror the challenges faced in enter-
prise and expose substantial performance gaps in SOTA LLMs. The Ent-series benchmarks under
the DRAG paradigm provide a rigorous and discriminative testbed for evaluating robustness, re-
trieval, and grounding abilities, offering a valuable resource for advancing Text-to-SQL research
toward models that are reliable and deployable in real-world enterprise scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei
Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve Ash, William Yang Wang, Zhiguo Wang,
Vittorio Castelli, Patrick Ng, and Bing Xiang. Dr.spider: A diagnostic evaluation benchmark
towards text-to-SQL robustness. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=Wc5bmZZU9cy.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge dis-
tillation, 2024.

Peter Baile Chen, Fabian Wenz, Yi Zhang, Devin Yang, Justin Choi, Nesime Tatbul, Mike Cafarella,
Çağatay Demiralp, and Michael Stonebraker. BEAVER: An enterprise benchmark for text-to-
SQL. In The 4th Table Representation Learning Workshop at ACL 2025, 2025. URL https:
//openreview.net/forum?id=OgP25r2pBZ.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov, Huan Sun, and
Matthew Richardson. Structure-grounded pretraining for text-to-SQL. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 1337–1350, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.105. URL https://aclanthology.org/2021.
naacl-main.105/.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward, Jinxia Xie, and
Pengsheng Huang. Towards robustness of text-to-SQL models against synonym substitution.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2505–2515, Online,
August 2021a. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.195.
URL https://aclanthology.org/2021.acl-long.195/.

Yujian Gan, Xinyun Chen, and Matthew Purver. Exploring underexplored limitations of cross-
domain text-to-SQL generalization. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia,
and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 8926–8931, Online and Punta Cana, Dominican Republic, Novem-
ber 2021b. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.702.
URL https://aclanthology.org/2021.emnlp-main.702/.

Yujian Gan, Xinyun Chen, Qiuping Huang, and Matthew Purver. Measuring and improving com-
positional generalization in text-to-SQL via component alignment. In Marine Carpuat, Marie-
Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Findings of the Association for
Computational Linguistics: NAACL 2022, pp. 831–843, Seattle, United States, July 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.62. URL
https://aclanthology.org/2022.findings-naacl.62/.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, Jinyang Gao, Liyu Mou, and Yu Li. A preview of xiyan-sql: A multi-generator
ensemble framework for text-to-sql. arXiv preprint arXiv:2411.08599, 2024. URL https:
//arxiv.org/abs/2411.08599.

Moshe Hazoom, Vibhor Malik, and Ben Bogin. Text-to-SQL in the wild: A naturally-occurring
dataset based on stack exchange data. In Royi Lachmy, Ziyu Yao, Greg Durrett, Milos Glig-
oric, Junyi Jessy Li, Ray Mooney, Graham Neubig, Yu Su, Huan Sun, and Reut Tsarfaty
(eds.), Proceedings of the 1st Workshop on Natural Language Processing for Programming
(NLP4Prog 2021), pp. 77–87, Online, August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.nlp4prog-1.9. URL https://aclanthology.org/2021.
nlp4prog-1.9/.

10

https://openreview.net/forum?id=Wc5bmZZU9cy
https://openreview.net/forum?id=OgP25r2pBZ
https://openreview.net/forum?id=OgP25r2pBZ
https://arxiv.org/abs/2501.12948
https://aclanthology.org/2021.naacl-main.105/
https://aclanthology.org/2021.naacl-main.105/
https://aclanthology.org/2021.acl-long.195/
https://aclanthology.org/2021.emnlp-main.702/
https://aclanthology.org/2022.findings-naacl.62/
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://aclanthology.org/2021.nlp4prog-1.9/
https://aclanthology.org/2021.nlp4prog-1.9/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. KaggleDBQA: Realistic evaluation
of text-to-SQL parsers. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 2261–2273, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.acl-long.176. URL https://aclanthology.org/2021.acl-long.176/.

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin, Seongjun Yang, Min-
joon Seo, Jong-Yeup Kim, and Edward Choi. EHRSQL: A practical text-to-SQL benchmark
for electronic health records. In Thirty-sixth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?
id=B2W8Vy0rarw.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin SU, ZHAOQING
SUO, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun,
Qian Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enter-
prise text-to-SQL workflows. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=XmProj9cPs.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: decoupling schema link-
ing and skeleton parsing for text-to-sql. In Proceedings of the Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Ar-
tificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’23/IAAI’23/EAAI’23. AAAI Press, 2023a. ISBN 978-1-57735-880-0. doi:
10.1609/aaai.v37i11.26535. URL https://doi.org/10.1609/aaai.v37i11.26535.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. Can LLM already serve as a database interface? a BIg bench for
large-scale database grounded text-to-SQLs. In Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2023b. URL https://openreview.
net/forum?id=dI4wzAE6uV.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel

11

https://aclanthology.org/2021.acl-long.176/
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=B2W8Vy0rarw
https://openreview.net/forum?id=XmProj9cPs
https://doi.org/10.1609/aaai.v37i11.26535
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun Li, and Jian-Guang Lou. Towards robustness
of text-to-SQL models against natural and realistic adversarial table perturbation. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2007–2022,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.142. URL https://aclanthology.org/2022.acl-long.142/.

Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: Decomposed in-context learning of text-
to-SQL with self-correction. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=p53QDxSIc5.

Vladislav Shkapenyuk, Divesh Srivastava, Theodore Johnson, and Parisa Ghane. Automatic meta-
data extraction for text-to-sql, 2025. URL https://arxiv.org/abs/2505.19988.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Multi-
lingual e5 text embeddings: A technical report. arXiv preprint arXiv:2402.05672, 2024.

Ping Wang, Tian Shi, and Chandan K. Reddy. Text-to-sql generation for question answering on elec-
tronic medical records. In Proceedings of The Web Conference 2020, WWW ’20, pp. 350–361,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370233. doi:
10.1145/3366423.3380120. URL https://doi.org/10.1145/3366423.3380120.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 3911–3921,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425/.

12

https://arxiv.org/abs/2303.08774
https://aclanthology.org/2022.acl-long.142/
https://openreview.net/forum?id=p53QDxSIc5
https://arxiv.org/abs/2505.19988
https://doi.org/10.1145/3366423.3380120
https://arxiv.org/abs/2505.09388
https://aclanthology.org/D18-1425/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern Tan, Xi Victoria Lin, Suyi Li, Heyang Er,
Irene Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit, David Proctor, Sungrok Shim, Jonathan
Kraft, Vincent Zhang, Caiming Xiong, Richard Socher, and Dragomir Radev. SParC: Cross-
domain semantic parsing in context. In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pp. 4511–4523, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1443. URL https://aclanthology.org/P19-1443/.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025.

Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten, Georgia Koutrika, and
Kurt Stockinger. Sciencebenchmark: A complex real-world benchmark for evaluating natural
language to sql systems. Proc. VLDB Endow., 17(4):685–698, December 2023. ISSN 2150-
8097. doi: 10.14778/3636218.3636225. URL https://doi.org/10.14778/3636218.
3636225.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2SQL: Generating structured queries from
natural language using reinforcement learning, 2018. URL https://openreview.net/
forum?id=Syx6bz-Ab.

A EXAMPLES

A.1 REAL-WORLD DATA ASSET

Figure 4 shows an example of data asset schema from real enterprise scenarios. Sensitive informa-
tion was anonymized during the review process. In real scenarios, the column and table descriptions
provided in this example are often missing; we include them here solely for ease of understanding.

column_name
column

_description
data_format

o_id merchant OID string

alias_name merchant alias string

new_mer_type
new merchant type: sole

proprietorship
string

……

mcc_code_desc MCC name string

mcc_industry_0 MCC Level-1 Category string

is_area_oid is regional OID: 1/0 string

……

XXX Merchant Data Assets

apmctcdm_dwd_ap_mct_minfo_oid_dd

/*merchant OID basic information table*/

column_name
column

_description
data_format

app_id app id string

partner_type

Account entity type: 1 - xx

development, 2 - xxxx

(non-xxx) development, 3 -

third-party development

string

biz_partner_type_3th_flag

Whether defined as a

third-party mini program

by business: 1 - yes, 0 -

no

string

……

mini_cat_id_l1
Primary application

category code
string

biz_cat_name_l1

Primary industry

management category:

digital commerce line,

digital government &

enterprise line,

middleware line, digital

finance line

string

biz_cat_source
Category source: category

mapping, whitelist, others
string

……

apcdm_dim_ap_opf_tapp_category

/*category information of open ecosystem APPs*/

(This data asset contains a total of 415 tables…….)

column_name
column

_description
data_format

activity_owner activity owner string

template_id coupon template ID string

voucher_id aggregate coupon ID string

……

trade_seller_id payment PID string

gmt_vcc_recv_start
coupon redemption start

time
string

voucher_goods_name product name string

……

apsycm_adm_ap_mct_sycm_mkt_use_vcc_di

/*external merchant – business advisor – marketing

coupon redemption – detail fact table*/

column_name
column

_description
data_format

store_id online store store_id string

app_id
app ID (this field will be

deprecated in the future)
string

apply_id external application ID string

……

scene_code scenario code string

ext_attr extended attributes string

ext_template_id
template ID (parsed from

extended attributes)
string

……

apcdm_dim_ap_mct_opt_merchant_store_info

/*merchant – merchant operations – online store

dimension table*/

column_name
column

_description
data_format

customer_id customer ID string

da_industry_line
industry line entered in BD

workspace
string

da_second_industry

secondary industry entered

in BD workspace (1.

industry name maintained in

the BD workspace; 2. if

linking with the industry

transaction table, please

use the fields

`trd_first_industry` and

`trd_second_industry`)

string

……

brand_source

brand source (DA =

Yuandian, IPR = Brand

Direct, ISV = Platform P,

MRCH = Platform B)

string

brand_status

brand status (0 = deleted,

1 = completed, 2 =

rejected, 3 = under review,

4 = under recheck)

string

std_brand_flag
standard brand / 0 = non-

standard brand
string

……

apcdm_dwd_ap_mct_minfo_business_da_cu

stomer_brand_rel_dd

/*merchant foundation – commercial payment –

customer–brand binding relationship table*/

Figure 4: An example of enterprise data asset.

13

https://aclanthology.org/P19-1443/
https://doi.org/10.14778/3636218.3636225
https://doi.org/10.14778/3636218.3636225
https://openreview.net/forum?id=Syx6bz-Ab
https://openreview.net/forum?id=Syx6bz-Ab

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 ENT-SERIES BENCHMARKS

A.2.1 DATA ASSET

Figure 5 shows an example of the data asset in our BIRD-Ent benchmark. The data assets con-
structed in our benchmarks simulate real enterprise assets in both naming conventions and scale. It
is worth noting that real enterprise data assets’ tables (see in Figure 4) often include partitioning
information (e.g., dd) and data warehouse layering information (e.g., dwd). In our schema rewriting
step, however, such details are omitted, as the refined benchmarks are built on SQLite databases and
we are concerned that forcibly introducing them would cause confusion for benchmark users.

column_name
column

_description
data_format

school_cds_code
California Department

Schools
text

sch_enroll_cnt
enrollment (1st-12nd

grade)
integer

school_sat_takr_cnt
Number of Test Takers in

this school
integer

……

school_perf_sat_avg_sco

re_read

average scores in

Reading
integer

sch_perf_avg_math average scores in Math integer

school_perf_sat_avg_sco

re_write
average scores in writing integer

……

Education and Academia Data Assets (Ours)

xelion12_calsch_sat_performance

/*California schools' SAT performance Table*/

column_name
column

_description
data_format

author_id Id of the paper integer

paper_title Title of the paper text

publication_year

Year of the paper；
commonsense reasoning: if

the year is "0", it means this

paper is preprint, or not

published

integer

……

paper_conference_id
Conference Id in which

paper was published
integer

journal_id
Journal Id in which paper

was published
integer

keyword

Keywords of the paper ;

commonsense reasoning:

Keywords should contain

words and phrases that

suggest what the topic is

about.

Similar keywords represent

similar fields or sub-field.

text

……

zentra22_resch_pap_metadata
/*metadata table of academic papers*/

(This data asset contains a total of 439 tables…….)

column_name
column

_description
data_format

acad_year Academic Year integer

school_edu_option_type Educational Option Type text

school_charter_ind
Charter School (Y/N);

0:N;1:Y
integer

……

student_frpm_count_k12
Free or Reduced Price

Meal Count (K-12)
real

student_free_meal_count

_ages_5_to_17

Free Meal Count (Ages 5-

17)
real

calpads_fall1_cert_status

_2013_14

2013-14 CALPADS Fall 1

Certification Status
integer

……

xelion12_calsch_frpm
/*California school free and reduced-price meal Table*/

column_name
column

_description
data_format

inst_unit_id
unique Education Unit ID

number
integer

acad_lvl Level of institution text

institution_control_type Control of institution text

……

inst_lat_coord Institution latitude real

endow_value_fte_2013

End-of-year endowment

value per full-time

equivalent student

text

med_sat_percentile

Institution's percent rank

for median SAT value

within sector

text

……

xelion11_collg_inst_profile
/*comprehensive data table on higher education

institutions in the united states*/

column_name
column

_description
data_format

fed_info_proc_code

state FIPS (Federal

Information Processing

System) code

integer

institution_control_type

control; Public,

Private not-for-profit,

Private for-profit

text

gender_cat

gender of students; B' =

both genders; 'M' = male;

'F' = female

text

……

race_ethnicity_category

race/ethnicity of students;

commonsense evidence:

'X' = all students; 'Ai' =

American Indian; 'A' =

Asian; 'B' = Black; 'H' =

Hispanic; 'W' = White

text

cohort_type
degree-seeking cohort

type
text

grad_cohort graduation cohort text

……

xelion11_collg_state_sector_grads
/*graduation rate statistics table for u.s. higher

education institutions*/

Figure 5: An example of BIRD-Ent’s data asset.

A.2.2 KNOWLEDGE DOCUMENT

Figure 6 shows an example of an external knowledge document in our BIRD-Ent benchmark. The
document is presented in an FAQ style and contains column descriptions and value illustrations for
a subset of the tables. Some content is omitted in the example due to the document’s length.

B DETAILS ON BENCHMARK REFINEMENT

B.1 DOMAIN-LEVEL REFINEMENT

To simulate the way data tables are typically stored in enterprises, we introduce a domain-level
refinement. In real-world enterprise settings, data tables are usually organized by domain to facilitate
topic-specific analysis by data analysts. To mimic this practice, we first leverage LLMs to classify
and aggregate the original databases in BIRD and Spider by domain, thereby constructing domain-
specific data assets. The resulting classification of BIRD is shown in Table 6. Since our refinement
is built upon the development sets of BIRD and Spider, we omit domains that are not covered in
their development sets.

After aggregation by domain, the query scope is expanded, but it still falls far short of the enterprise
scale, where a single data asset may comprise hundreds of tables. To bridge this gap, we perform
domain expansion, prompting the LLM to generate new databases within a given domain. The

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Geographical Organization Data Management FAQ

🌍 Geographical Organization Data Management FAQ

> **Introduction**
This document addresses common questions about managing geographical organization data in our global reference
system. It covers data definitions, usage scenarios, and troubleshooting for tables tracking international
organizations and their memberships.
🔹 *New team members should review this before interacting with the `zentra25_georef` dataset.*

🔖 Organization Metadata

Q1: How do we uniquely identify organizations in our system?

We use two complementary identifiers:
- `organization_abbrev`: Stores the organization’s abbreviation (e.g., **ASEAN** for the Association of
Southeast Asian Nations).
- `city_name`: Records the **full name** of the organization.

✅ Always cross-reference both fields when verifying organizational identity.

Q2: Where is headquarters location data stored?

Headquarters details are captured through three fields:
- `City`: The city where the headquarters are located.
- `province`: The province/state/region of the headquarters.
- `country_code`: The country code (ISO 3166) where the headquarters are located.

⚠️ **Important**: Always validate province–country combinations to avoid mismatches like *"California,
Canada"*.

……(Some content of the document is omitted here)……

🛠️ Steps to resolve:
1. Verify spelling of `Organization` against `organization_abbrev`
2. Check `ORG_HISTORICAL_ALIAS` for legacy codes
3. If unresolved, run script: `OrgIntegrityCheck.py`

Scenario 2: Discrepancy between `city_name` and physical headquarters location

🧠 Remember:
- `city_name` = Full **organization name**, NOT a geographic location.
- Physical HQs are only in the `City` field.

🚩 Action:
- Flag any entry where `city_name` includes place names (e.g., `"Nairobi Agreement Council"`) for correction.

Scenario 3: Missing Type classifications in membership records

❗ Since `Type` lacks formal definition:
- Do **not** infer meaning from blank or populated values
- Tag affected records with `TYPE_UNDEFINED` in audit logs
- Escalate per **Section 4.3 of the Data Governance Policy**

📚 Appendix: Change History

Date	Change Description	Ticket/Ref
2023-11	Deprecated `Region` field	GLB-223
2022-08	Rejected `Membership_Fee` field proposal	RFC-771
2020-05	Province naming standardization	DATA-441
2018-02	Country code standardization (FIPS → ISO 3166)	COMPLIANCE-98

> ℹ️ This document is maintained by the Global Reference Data Team.
> Last updated: Based on changes up to **2023-11**.

Figure 6: An example of BIRD-Ent’s external knowledge document.

tables from these newly generated databases are then added to the corresponding domain asset. We
generate entire databases before extracting their tables, rather than generating tables directly, in
order to ensure inherent logical connections among the tables, reflecting enterprise reality, where
some tables within a data asset may originate from the same project or database. Moreover, in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Benchmark Domain Databases

BIRD

retail and e-commerce
car retails, retails, retail world, regional sales,
retail complains, sales, sales in weather, super-
store, debit card specializing

finance and economy coinmarketcap, financial

education and academia

authors, books, book publishing company,
citeseer, college completion, university, com-
puter student, cs semester, language corpus,
student loan, california schools, student club

data science and technology codebase comments, image and language,
talkingdata, codebase community

healthcare and bioinformatics synthea, genes, mental health survey, thrombo-
sis prediction, toxicology

sports and athletes

hockey, ice hockey draft, euro-
pean football 1, soccer 2016, olympics,
professional basketball, european football 2,
formula 1

entertainment and media

disney, movie, movies 4, movie 3, movie-
lens, movie platform, simpson episodes,
law episode, shakespeare, video games, super-
hero, card games

Table 6: Domain aggreation results of the BIRD databases.

designing the prompts, we provide the model with the databases already present in the domain asset
to prevent semantic collisions, which could otherwise lead to non-unique answers in the original
datasets and degrade the quality of the final benchmarks. We also include examples of real enterprise
table schemas in the prompt to guide the model in mimicking authentic schema styles. An example
prompt for the domain expansion step is shown in Figure 14.

It is worth noting that we do not generate any sample values for the synthetic tables, nor do we
verify their logical consistency or construct corresponding databases. This is because the original
question-SQL pairs do not reference these tables, and their execution results are unaffected by them.
The schemas of the synthetic tables serve as pseudo-schemas, they are designed solely to simu-
late enterprise scenarios by expanding the domain and introducing challenge to the schema linking
process.

B.2 SCHEMA-LEVEL REFINEMENT

At the schema level, the complexity of academic benchmarks is generally not enough compared to
real-world enterprise databases. The enterprise-level database fields are often more intricate and
widely abbreviated. In addition, in enterprise systems, the processes of maintenance and iterative
updates frequently generate historical, temporary, or backup tables and columns. Although they are
no longer actively used, they remain within the system and often exhibit strong similarities to certain
existing tables. We collectively call them redundant tables and columns.

To better simulate these real-world challenges, we propose schema rewriting and schema augmenta-
tion strategies for academic benchmarks at the schema level. The first step is schema rewriting. For
table names, enterprise scenarios often have naming conventions. Motivated by common enterprise
practices, we propose a hierarchical naming convention <project> <area> <content> to simulate
the enterprise environment. In this convention, <project> refers to the id of the project in enterprise
scenarios; <area> is a generalization of the business area to which a table belongs; <content>
is a summary of the content of the table. To transform the original table names into the desired
format, we first provide LLM with available database information to generate the project and area
name. Then, the model produces an abbreviated representation of the original table name and con-
catenate it with the previously generated project and domain names to construct a fully structured
table name. The prompt of table name rewriting is shown in Figure 15 and Figure 16. For column

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

names, considering the high degree of abbreviation observed in enterprise schema, we propose a
CoT process to rewrite column names by using LLM. First, we generate a concise, domain-aware
contextual summary for each database using available schema information and database descriptions
(when present). Its prompt can be seen in Figure 17. Second, by using the domain context together
with the columns’ descriptions within its table schema, we expand the column names. Its prompt
can be seen in Figure 18. Last, to emulate enterprise terseness, we will abbreviate the column names
with LLM. Details prompt is illustrated in Figure 19. For example, in the card game database, the
table name card is rewritted as zentra11 mcard crd catalog, where zentra11 is the project id of the
enterprise, mcard represents the table belongs the card game area, and crd catalog indicates that the
table contains card catalog information, and the column name power (representing the power value
of a card) is rewritten as card pwr val, a longer, more specific, and more heavily abbreviated field
name.

The injection of redundant tables and columns is achieved in the following way: We randomly
select a subset of tables from each database and, following the table-naming convention, generate
redundant table names by appending common noise suffixes or prefixes. For each selected table,
we clone its schema to create the corresponding noise table. Then we randomly add some columns
related to the table and remove a few columns that were not primary keys or foreign keys from
this table to simulate the subtle differences between the noise table and the existing table caused by
database evolution. Finally, we append the noise columns, which are created by copying the existing
column and adding common noise suffixes or prefixes to the original table. We control the ratio of
redundant tables to original tables to be 1:4 to simulate the real environment of the enterprise.

Table Column

Suffix or Prefix bak, hist, drop, tmp, mid, snap-
shot, history backup, tmp, migrated,legacy, deprecated

Table 7: Common Suffixes and Prefixes Summary.

B.3 KNOWLEDGE-LEVEL REFINEMENT

column_name
Column

_description
data_format

Value

_description

Id Id of the paper integer

Title Title of the paper text

Year Year of the paper integer

commonsense

reasoning: if the

year is "0", it

means this paper is

preprint, or not

published

ConferenceId

Conference Id in

which paper was

published

integer

JournalId

Journal Id in which

paper was

published

integer

commonsense

reasoning: If a

paper contain "0" in

both ConferenceID

and JournalId, it

means this paper is

preprint

Figure 7: An example of a BIRD
database description file (for the Paper
table in the authors database)

BIRD acknowledges the necessity of external knowledge
in Text-to-SQL tasks, since user queries are often con-
cise and may naturally omit information that is crucial
for answering the question (e.g., domain-specific knowl-
edge or descriptions of database contents). However, in
BIRD, such knowledge is directly appended as part of the
query, which is unrealistic in enterprise scenarios where
relevant information must instead be retrieved from large-
scale external document collections. Moreover, much
of the external knowledge in BIRD is overly simplistic,
which rarely appears in enterprise environments. To ad-
dress these issues, our knowledge-level refinement con-
sists of two steps: knowledge cleaning and decoupling,
and document generation.

B.3.1 KNOWLEDGE CLEANING AND DECOUPLING

In the cleaning step, we manually examined the external
knowledge provided in BIRD and categorized its types
(as illustrated in Figure 8). This included redundant
knowledge such as common-sense facts, basic arithmetic, fundamental SQL syntax, trivial syn-
onyms, and simple reasoning, all of which were identified and removed.

For the remaining non-redundant knowledge, our analysis revealed two main categories: database-
specific and database-agnostic. Database-specific knowledge typically consists of column descrip-
tions and value illustrations, most of which originate from the database description documents re-
leased alongside BIRD datasets. As exemplified in Figure 7, these documents cover nearly all

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Redundant
Knowledge

Non-Redundant
Knowledge

Database-
Specific
Knowledge

Database-
Agnostic
Knowledge

Common-Sense
Facts

Independent
Knowledge

Non-Independent
Knowledge

Basic arithmaticBasic Arithmatic

Fundemental SQL
Syntax

Trivial Synonyms

Simple Reasoning

If the person A's birthdate > B's birthdate, it means that person B is
older than person A.

Percentage of the male clients = DIVIDE(COUNT(male clients),
COUNT(clients)) * 100.

Respective counties means Group BY County.

Closure date and closed date are synonyms.

Average score for all subjects can be computed by AvgScrMath +
AvgScrRead + AvgScrWrite (There are only 3 avg scores in the schema)

Charter schools refers to `Charter School (Y/N)` = 1 in the frpm.

APS will result in Blood Clots in veins.

CREATE TABLE `cards` (
……
`originalType` TEXT,
……
`type` TEXT,
`types` TEXT,
……
);

Question1: Among the Artifact cards, which are …?
Knowledge1: Artifact card refers to originalType =
'Artifact’

Question2: For artifact type of cards that do not
have multiple faces on ……?
Knowledge2: Artifact type of cards refers to types =
'Artifact'

Figure 8: Classification and examples of BIRD external knowledge

columns across BIRD’s databases, including their column descriptions, types, and value illustra-
tions. We merged this category of knowledge with the corresponding database descriptions, treating
them as source material for generating external knowledge documents, which more closely reflects
enterprise settings where such information is typically scattered across heterogeneous documents.

Database-agnostic knowledge can be further divided into query-dependent and query-independent.
Query-dependent knowledge supplements a specific question but is invalid in isolation. For exam-
ple, as shown in Figure 8, the same noun (Artifact cards) may refer to different columns (types =’
Artifact’ or originalType = ’Artifact’) across queries; such knowledge only makes sense when tied
to the query context. Therefore, we attach it directly to the original query rather than treating it as
external knowledge. In contrast, query-independent knowledge remains valid outside the original
query context. Owing to its generality, this category is retained as additional source material for
generating external knowledge documents.

B.3.2 DOCUMENT GENERATION

The pipeline for generating knowledge documents is illustrated in Figure 9. In the first step, we
segment the database description documents into chunks, each containing several columns along
with their names, descriptions, types, value illustrations, and sampled values. These chunks are then
combined with the independent external knowledge associated with the corresponding columns to
form the raw external knowledge.

In the second step, we randomly select one of the predefined enterprise document genres (see in
Table 8) and prompt DeepSeek-R1-0528 to generate a document in the chosen genre, where the raw
external knowledge is naturally and contextually embedded. To facilitate subsequent inspection and

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

correction, we further instruct the LLM to annotate the generated text with special tags for each piece
of knowledge content: < ocni > for column names, < cdi > for column descriptions, < vdi > for
value illustrations, and < eki > for independent external knowledge. These annotations align the
knowledge with standardized tags, enabling us to locate and verify the correctness of the embedded
content. The prompt for this step is shown in Figure 20.

column_name
Column

_description
data_format

Value

_description

patient_exam_id
identification of the

patient
interger

patient_sex_code Sex text F: female; M: male

patient_birth_dt Birthday date

patient_init_rec_ts

the first date when

a patient data was

recorded

date
null or empty: not

recorded

patient_init_visit_ts

the date when a

patient came to the

hospital

date

patient_adm_ind

patient was

admitted to the

hospital (+) or

followed at the

outpatient clinic (-)

text

patient was

admitted to the

hospital (+) or

followed at the

outpatient clinic (-)

patient_diag_clin_c

ond
disease names text

column_name
Column

_description
data_format

Value

_description

patient_exam_id
identification of the

patient
interger

patient_sex_code Sex text F: female; M: male

patient_birth_dt Birthday date

patient_init_rec_ts

the first date when

a patient data was

recorded

date
null or empty: not

recorded

column_name
Column

_description
data_format

Value

_description

patient_init_visit_ts

the date when a

patient came to the

hospital

date

patient_adm_ind

patient was

admitted to the

hospital (+) or

followed at the

outpatient clinic (-)

text

patient was

admitted to the

hospital (+) or

followed at the

outpatient clinic (-)

patient_diag_clin

_cond
disease names text

chunk1

chunk2

Independent Knowledge

APS will result in Blood Clots in veins

Enterprise

Document

Generation

Enterprise Document Genres

Random Choice

Rule-Based

Check

LLM-Based

Check & Correct

Thrombosis Prediction System v2.1.0
Release Notes

Release Date: October 26, 2023
Product Owner: Clinical Analytics
Team
……
Care Setting Differentiation
- Introduced the `patient_adm_ind`
flag to explicitly indicate care
context. As documented in clinical
……

Based on hematology research
consensus: <ek1>APS will result in
Blood Clots in veins.<ek1>
……

Thrombosis Prediction System v2.1.0
Release Notes

Release Date: October 26, 2023
Product Owner: Clinical Analytics
Team
……
- Restructured the
`patient_diag_clin_cond` field to
standardize disease names using
SNOMED-CT mappings.
……

Based on hematology research
consensus: APS will result in Blood
Clots in veins.
……

Thrombosis Prediction System v2.1.0
Release Notes

Release Date: October 26, 2023
Product Owner: Clinical Analytics
Team
……

Based on hematology research
consensus: <ek1>APS will result in
Blood Clots in veins.<ek1>
……

<error_mark>Missing content from
description: column
‘patient_diag_clin_cond', row
3.</error_mark>

• meeting minutes
• RFC / Technical
Design Document

• Change Request /
Engineering Change
Order (ECO)

• Email Thread
• FAQ / Q&A Sheet
……

Figure 9: The pipeline for generating enterprise documents from raw external knowledge

In the third step, we perform rule-based checks on the generated documents to ensure: (i) all required
tags are present, (ii) tags follow the correct format, and (iii) no unintended tags are included. If vi-
olations are detected, an < error mark > tag is appended to the corresponding content, preparing
the documents for LLM-based self-correction.

In the fourth step, we provide the annotated knowledge documents, the raw external knowledge, and
the document generation rules as inputs to the LLM, which is tasked with correcting the documents.
The prompt used for this step is illustrated in Figure 21. In the quality control step, we also leverage
these pre-generated tags when inspecting the knowledge documents.

Through this elaborate pipeline, we accurately transform BIRD’s external knowledge into a large
collection of enterprise-style knowledge documents.

C CASE STUDY

Figure 10 illustrates a typical schema-retrieval error. The failure of the predicted SQL stems from the
fact that not all target tables were included in the retrieved schema. When the model is not provided
with the complete set of relevant tables, it becomes exceedingly difficult to generate a correct SQL
query.

Figure 11 reflects another type of schema error. In this case, although the target table is all retrieved
in the previous stage, the model does not select all the right tables and columns. This situation
may be caused by the semantic similarity among tables and columns within the same domain and
the interference of redundant tables. In the error analysis, such cases are not uncommon, suggesting
that existing models may still exhibit limitations in their sensitivity to distinguishing among different
tables and columns.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Genre Description

meeting minutes Meeting minutes are written records of a meeting, typically including the time,
location, attendees, topics discussed, decisions made, and action items for
follow-up. It serves as an efficient communication tool to ensure that meet-
ing participants and those who missed the meeting can stay informed and track
the execution of decisions.

RFC / Technical Design
Document

A Request for Comments (RFC) or Technical Design Document is used to pro-
pose and discuss technical decisions, design solutions, and system specifica-
tions. It provides a detailed explanation of the problem, proposed solutions,
alternatives considered, risks, and potential impacts. This document serves as a
reference to guide teams through the decision-making process, ensuring align-
ment and consistency in implementation.

Change Request / Engi-
neering Change Order
(ECO)

A Change Request (CR) or Engineering Change Order (ECO) is a formal doc-
ument used to propose and approve changes to an existing system, product, or
process. It details the nature of the proposed change, the reasons for the change,
the potential impacts, and any associated risks. The document is typically re-
viewed and approved by relevant stakeholders before any changes are made.

Email Thread An Email Thread is a chronologically ordered series of messages exchanged
over the corporate mail system. Each message carries full header metadata
(From, To, Cc, Date, Subject, Message-ID) and the complete body—often in-
cluding quoted context from earlier replies. Because every revision and clarifi-
cation is preserved verbatim, an email thread serves as a faithful, time-stamped
record of decisions, technical justifications, and action items.

IM Thread An Instant Messaging (IM) Thread captures a real-time chat conversa-
tion—typically from Slack, Microsoft Teams, or a similar platform—including
timestamps, participants, and threaded replies. It preserves quick clarifications,
decisions, and action items exchanged during day-to-day work.

FAQ / Q&A Sheet An FAQ (Frequently Asked Questions) or Q&A Sheet provides answers to com-
mon questions, issues, or scenarios that are regularly encountered by teams or
users. It organizes important clarifications, solutions, and best practices in a
question-and-answer format, making it easy to refer to and address repeated in-
quiries.

API Reference / Inter-
face Spec

An API Reference or Interface Specification document provides detailed infor-
mation about the APIs (Application Programming Interfaces) or service end-
points that enable different software systems to communicate. This document
includes the structure of API requests and responses, available methods, param-
eters, error handling, and any authentication or authorization requirements.

Release Notes /
Changelog

Release Notes or Changelogs document the changes made in each version of
a software product, including new features, enhancements, bug fixes, and any
breaking changes. They help stakeholders, developers, and end-users track the
progress and updates made to a system over time.

Test Plan / QA Check-
list

A Test Plan or QA Checklist is a document that outlines the testing strategy for
a new feature, system, or release. It defines the scope of testing, test cases, ex-
pected results, and the overall process to ensure that the software meets quality
standards and is free from defects before it is released to production.

Table 8: Common Enterprise Document Genres and Their Descriptions

Errors can also occur in the knowledge part. In some cases, if you want the model to generate
a correct SQL in the specific areas, you need to supply the model with some specific knowledge.
In Figure 12, the knowledge is the information that the model needs to gain from the retrieved
documents. However, the model selected the wrong document library. Therefore, it did not obtain
the correct knowledge, leading to subsequent SQL execution errors. This observation indicates that,
beyond table retrieval, knowledge retrieval also poses a considerable challenge for the model.

In Figure 13, although the predicted SQL aligns with the gold SQL in terms of overall structure, it
overlooks the critical rules regarding group references. This indicates that the model either neglects
the relevant knowledge or exhibits deficiencies in its understanding of such knowledge.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Predict SQL:

Question:

For the patient who has the highest Ig A within the normal range, what is his or her diagnosis?

Correct SQL: Retrieved tables

Omitted…

Documents

SELECT patientData.patient_diag_clin_cond

FROM xelora1_thromb_patient AS patientData

INNER JOIN xelora1_thromb_lab_monitoring AS labData

ON patientData.patient_exam_id = labData.patient_exam_id

WHERE labData.lab_iga_lvl BETWEEN 80

AND 500 ORDER BY labData. lab_iga_lvl DESC LIMIT 1

SELECT patient_diag_clin_cond

FROM xelora1_thromb_clin_exam

WHERE exam_anti_cardiolipin_iga_conc <= 10

ORDER BY exam_anti_cardiolipin_iga_conc DESC

LIMIT 1

Predicted SQL：

CREATE TABLE `xelora1_thromb_clin_exam` (

`patient_exam_id` INTEGER,

`exam_ts` DATE,

…

CREATE TABLE `apghi56_rdr_dg_workflow` (

`diagnostic_id` INTEGER,

`patient_id` INTEGER,

…

CREATE TABLE `apghi60_nibr_clin_diag` (

`diagnosis_id` TEXT,

`subject_id` TEXT,

…

Missed tables
CREATE TABLE `xelora1_thromb_patient ` (

`patient_diag_clin_cond ` TEXT,

`patient_exam_id ` TEXT,

…

CREATE TABLE ` xelora1_thromb_lab_monitoring` (

`patient_exam_id ` TEXT,

`lab_iga_lvl ` TEXT,

…

Figure 10: An example for schema-retrieval error

Question:

What is the percentage of cards whose language is French among the Story Spotlight cards?

Correct SQL: Retrieved tables

SELECT CAST(SUM(CASE WHEN T2.

card_trans_lang = 'French’

THEN 1 ELSE 0 END) AS REAL) * 100 /

COUNT(T1.card_id) FROM

zentra11_mcard_crd_catalog AS T1

INNER JOIN zentra11_mcard_foreign_data AS T2

ON T1.card_id_uuid = T2. card_id_ uuid

WHERE T1. card_attr_story_spotlight_ind = 1

SELECT ROUND(100.0 * SUM(CASE WHEN

card_trans_lang = 'French' THEN 1 ELSE 0 END) /

COUNT(*), 2)

AS french_percentage

FROM zentra11_mcard_crd_catalog_snapshot

WHERE card_attr_story_spotlight_ind = 1;

CREATE TABLE `zentra11_mcard_foreign_data` (

`card_id` INTEGER /*Examples: 1*/,

`card_id_uuid` TEXT,

`card_trans_lang` TEXT ,

…

CREATE TABLE `zentra11_mcard_crd_catalog_snapshot` (

`card_id` INTEGER,

`card_id_uuid` TEXT,

`card_attr_story_spotlight_ind` INTEGER,

…

CREATE TABLE `zentra11_mcard_crd_catalog` (

`card_id` INTEGER,

`card_id_uuid` TEXT,

`card_attr_story_spotlight_ind` INTEGER,

…

Predict SQL:

Documents

Omitted…

Figure 11: An example for schema-linking error

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Predict SQL:

Question:

How many drivers managed to finish the race in the 2008 Australian Grand Prix?

Correct SQL: Retrieved tables

Omitted…

Documents

SELECT COUNT(T2. driver_id)

FROM zentra13_f1mgr_races AS T1

INNER JOIN zentra13_f1mgr_drvr_race_results AS T2

ON T2. const_standings_race_id = T1. const_standings_race_id

WHERE T1. circuit_full_name = 'Australian Grand Prix’

AND T1. race_season_yr = 2008

AND T2. race_finish_tm IS NOT NULL

FROM zentra13_f1mgr_drvr_race_results rr

JOIN zentra13_f1mgr_races r

ON rr.constructor_race_id = r.const_standings_race_id

WHERE r.race_season_yr = 2008

AND r.circuit_full_name = 'Australian Grand Prix'

AND rr.race_result_fin_pos IS NOT NULL

Predicted SQL：

Document1: Formula 1 Driver Information Service API v1 Reference

…

Field Specifications

`racing_number`: Integer representing the number permanently assigned to

the driver during races. Maps to database field driver_racing_num.

…

Document2: F1 Database Schema Clarifications: Driver Laptimes & Standings

Tables

From: Rajiv Desai

To: Data Engineering Team

…

Document3: Formula 1 Race Results Data: Frequently Asked Questions

…

Document4: Formula 1 Racing Data Management: Pit Stops & Results FAQ

…

Document5: Urgent: Clarifications Needed for F1 Reporting Schema

Missed
Target Document: RFC-2024-001:

The race_finish_tm field (finish time) uses different formats based on driver

position: commonsense evidence: ;

1. if the value exists, it means the driver finished the race.

Figure 12: An example for knowledge-retrieval error

Question:

Which group does superhero A-Bomb belong to?

Correct SQL: Retrieved tables

Omitted…

Predict SQL:

Documents

SELECT T2. superhero_race_classif

FROM zentos1_hrodom_char_metadata AS T1

INNER JOIN zentos1_hrodom_race AS T2

ON T1. sup_race_id = T2. align_id

WHERE T1.superhero_name = 'A-Bomb'

SELECT ca.superhero_align_ethic_stance

FROM zentos1_hrodom_char_metadata AS cm

JOIN zentos1_hrodom_char_alignment AS ca

ON cm.superhero_align_id = ca.align_id

WHERE cm.superhero_id_name = 'A-Bomb'

Document1: Superhero Management System v2.0.0 Release Notes

…

Overview

This major release introduces foundational changes to our superhero attribute

…

Document2: Superhero Registry API v1

Requests require HMAC-SHA256 signatures using client credentials issued by

the Comic Industry Federation (CIF). Include headers:

…

Document3: Design Rationale

…

Document4: RFC-001: Design for Superhero Attribute Management System

…

Document5: RFC-001: Proposed Data Model Standardization for Superhero

Attribute Management System

…

"commonsense evidence: In the context of superheroes, superhero_race_classif

would refer to the particular group of people that the superhero belongs to base

on these physical characteristics“

…

Figure 13: An example for knowledge-grounding error

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt for Domain Expansion

Task Description
Create an enterprise-grade **SQLite** database schema related to the topic **{TOPIC_SLOT}**.

Requirements
1. The schema must contain **at least {MIN_TABLES_SLOT} tables** and at **least {MIN_COLUMNS_SLOT} columns** in total.
2. The schema must be substantially different from existing databases in both intended functionality and naming, while
still falling within the scope of the given topic. Do not duplicate or closely imitate any existing database. **Table
names must be unique: generating any table with the table name that duplicates one from the existing databases is
strictly prohibited.**
3. Provide only:

- the database name;
- for each table: its name, column names with data types, primary-key definition(s) and foreign-key constraint(s).
- Do not include sample data.

4. Design the schema to reflect a realistic enterprise use case.
5. The schema you generate needs to be relevant to the topic; But it (including the names of database, tables and
columns) does not necessarily have to include keywords from the topic itself. For example, databases under the
"sports_and_athletes" topic can be related to any sport, such as tennis, baseball, chess, and so on. We encourage
generating **a diverse range of** databases that align with the topic.
6. The schema you generate must comply with the **SQLite database specifications**.
7. Your output should be entirely in English.

Existing Databases (for exclusion check)
{EXSISTING_DATABASES_SLOT}

Enterprise Schema Example
Here are some examples of enterprise schemas to help you understand the characteristics of enterprise database schemas,
Do not reuse its content or imitate its format:
```plain

'anefi_ods_yeb_asset_increase_order_delta_hh'(asset_order_id ''|gmt_create ''|gmt_modified ''|original_order_id ''|biz_request_id ''|user_id 
''|biz_type ''|quotient ''|real_amount ''|status ''|biz_no ''|out_biz_no ''|bill_detail_id ''|biz_dt ''|trans_dt ''|pmt_dt ''|biz_context ''|memo 
''|ext_info ''|contract_id ''|asset_account_type ''|asset_account_no ''|inst_id ''|sub_biz_type ''|cnl_pd_code ''|cnl_ev_code ''|cnl_no 
''|biz_pd_code ''|biz_ev_code ''|pd_code ''|ev_code ''|payment_id ''|gmt_commit ''|business_type ''|fund_code 'Fund Code'|fund_inst 'Fund 
Institution'|clear_dt 'Clearing Date'|dt ''|hour ‘’)

'anods.ods_cfm_fund_order_delta_hh'(prefix 'Rowkey Prefix'|id 'Fund Document Number'|parent_id 'Parent Fund Document Number'|biz_trans_id 
'Business Transaction ID'|biz_trans_code 'Business Transaction Code'|request_user_id 'Merchant Account ID'|original_from 'Business 
Source'|access_channel 'Access Channel'|out_biz_no 'External Business Number'|order_no ' Order Number'|payment_no 'Payment Serial 
Number'|sub_biz_type 'Sub-business Type'|payer_party_id 'Payer Participant ID'|payer_card_id 'Payer Card Info ID'|payer_card_no 'Payer Card 
Number'|payee_party_id 'Payee Participant ID'|payee_card_id 'Payee Card Info ID'|payee_card_no 'Payee Card Number'|currency 'Currency 
Code'|amount 'Transaction Amount'|real_amount 'Actual Amount'|remark 'Remark'|status 'Status'|sub_status 'Sub-status'|error_code 'Error 
Code'|fail_reason 'Failure Reason'|memo 'Memo'|gmt_execute 'Execution Time'|gmt_create 'Creation Time'|gmt_modified 'Modification 
Time'|gmt_expired 'Expiration Time'|gmt_confirm 'Confirmation Time'|gmt_pay 'Payment Time'|order_fee 'Order Pre-charge Amount (frozen 
charge amount)'|charge_consult_no 'Pre-charge Document Number (charge currently 28 digits)'|cnl_pd_code 'Channel Product Code'|cnl_ev_code 
'Channel Event Code'|cnl_no 'Channel Serial Number'|biz_pd_code 'Upstream Business Product Code'|biz_ev_code 'Upstream Business Event 
Code'|pd_code 'Business Product Code'|ev_code 'Business Event Code'|ext_info 'Extended Field'|parent_biz_trans_id 'Parent Business Transaction 
ID'|dt ''|hour ‘’)
```

Output Format
Return a single JSON object in your response and enclose it within <answer> and </answer>:

<answer>
{

"db_name": "The name of the database you generated",
"schema": {

"the name of table 1": {
"schema":{

"the name of column 1": "data type of column 1",
"the name of column 2": "data type of column 2",
"the name of column 3": "data type of column 3",
// other columns in table 1

},
"constraints":{

"primary key": "PRIMARY KEY (`column x`)",
"foreign keys": [

"FOREIGN KEY (`column x`) REFERENCES `table i` (`column y`)",
// other foreign key constraints

]
}

},
"the name of table 2": {

"schema":{
// columns in table 2

},
"constraints":{

"primary key": "primary key",
"foreign keys" [

// foreign keys if exisit
]

}
},
// other tables in this database

}
}
</answer>

Output

Figure 14: The prompt for domain expansion.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt for Project and Area Name Generation

You are a senior enterprise database architect. You are helping a company restructure its legacy database into an
enterprise-grade system.

Database Name: {database_name}

You are given:
- Database name
- Database schema (DDL)
- database_description

Please:
1. Generate a project name (4-6 characters) for this database.The project name is randomly generated, has nothing to
do with the database, and does not repeat with the domain.
2. Generate a high degree domain abbreviation (3-8 characters) that captures the business domain

Output format:
Project Name: [your_project_name]
Domain Abbreviation: [your_domain_abbr]

[Database Schema]
{schema}
{desc_section}

Figure 15: The prompt for table project and area name generation.

Prompt for Enterprise Table Name Generation

You are an enterprise database architect helping rename a table to follow enterprise naming conventions.

Please rename the table {table_name} using the following pattern:

Naming Pattern:
<project>_<domain>_<content>

Where:
- <project>: {project} (already determined)
- <domain>: {domain} (already determined)
- <content>: Semantic summary of the table's core entity or process

Example:
Original table: user_behavior
Expected: {project}_{domain}_usr_behavior

Now rename:

Table name: {table_name}

Guidelines:
1. Use precise, business-aware terms for <content>
2. Be concise but descriptive
3. Use common abbreviations (usr for user, txn for transaction, etc.)
4. Select the most appropriate partition suffix from the provided options

Only output the new table name as a single line. Do not include any explanations or formatting.

Figure 16: The prompt for table name generation.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt for Area Explanation

You are a senior enterprise database architect. You are helping a company restructure its legacy database into an
enterprise-grade system.

You are provided with the following:
- A relational database schema (DDL format);
- A column-level description file (if available), which includes: original column names, semantic names, textual
descriptions, and possible value explanations.

Your task is to perform a domain-level, enterprise-grade analysis of the database and return a structured summary for
downstream usage.

Your output should include the following sections:

1. Business Domain Classification
- Clearly identify the high-level business domain the database belongs to.
- Provide one or more enterprise-level subdomains involved
- Use concise and enterprise-recognizable terminology.

2. Table Themes and Functional Definitions
- For each table in the schema, explain its business purpose.
- Describe the type of entity or process the table models

3. Field Classifications and Semantic Grouping
- Organize fields into functional groups, such as:
- Identification fields - Address/location fields
- Operational attributes
- Classification codes
- For each group, summarize its business purpose and usage context.

4. Semantic Repair and Enrichment
- Identify any columns whose descriptions are missing, vague, or purely abbreviations.
- For such fields, infer and supplement accurate definitions based on domain knowledge.
- Emphasize clarity and completeness over brevity. Avoid unexplained abbreviations unless they are domain standards
and include their expansion.

Formatting Constraints:
- Be concise but informative.
- Avoid repeating the schema line-by-line; instead, provide a business-level summary.
- Use bullet points or short paragraphs for clarity.
- Do not assume a single fixed domain.

Expected Output Format:

Business Domain Classification:
This database primarily serves the following domain(s):
- [High-level domain, e.g., Public Education, Financial Services, Healthcare...]

Enterprise Subdomains:
- [Subdomain A]: [Short description, e.g., "Manages the lifecycle and attributes of registered educational
institutions."]
- [Subdomain B]: [Short description, e.g., "Tracks charter classification and operational status of schools."]
...

Table Classification and Definitions:
- table_name_1: [Concise description of what entity or process the table represents and its business purpose.]
- table_name_2: [Concise description...]
...

Field Classification and Groupings:
- Identification Fields:
- field_a: [Business meaning]
- field_b: ...

- Geolocation / Address Fields:
- ...

- Status / Operational Attributes:
- ...

- Classification / Typing Codes:
- ...

...

Semantic Repair and Enrichment:
- [field_name_1]: [Inferred or repaired explanation. Expand abbreviation if unclear, and describe usage.]
- [field_name_2]: ...
...

Database Schema:
{schema_ddl}
{desc_section}

Figure 17: The prompt for column name area explanation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Prompt for Column Names Expansion

You are an enterprise database architect specializing in field expansion and semantic enrichment. Your task is to
transform academic or legacy column names into enterprise-grade naming patterns.

Enterprise Naming Recommendations:
1. Avoid using casual prefixes like is, has, or was. Use neutral, abstract, and semantically-rich terms instead.
2. Ensure column names reflect business meaning, embedding semantics and context without redundancy.
3. Supplement the column name with contextual information about the table and related fields. The contextual
information needs to conform to the column name logic and structured naming.

Domain Adaptation Rule:
- The database you are working with may belong to a specific business domain.
- If a certain column concept or terminology is typically expressed using domain-specific naming conventions, please
adapt to that convention naturally.
Domain Context:
{domain_analysis}
Instructions:
1: Suggest a full, enterprise-style column name that clearly expresses its business meaning. You may rewrite or
reorder components, but do not omit or change key context words already in the original name.
2: If a more commonly used business domain synonym exists for a component, perform the replacement. Only replace terms
that do not affect the core semantic scope.
3: Ensure that the column name covers both the column description and value meanings in a meaningful but non-redundant
way.

Column Information:
- Table: {column_info.table_name}
- Original Name: {column_info.original_name}
- Description: {description_display}
- Data Type: {column_info.data_format}
- Value Semantics: {value_desc_display}
{sample_text}

Final Output Format:
Final Column Name: ...

Your response must include the exact header '### Final Column Name:'

Figure 18: The prompt for column name expansion.

Prompt for Column Name Abbreviation

You are an enterprise database engineer. Your task is to abbreviate and normalized the following enterprise-style
column name.
Unify similar rules:
for any synonymous or overlapping terms in the input,
choose one canonical wording and apply it consistently across all outputs.
Prefer clearly abbreviated words over ad-hoc name.
For each category of indicators, choose one consistent naming convention within the same table. For example, for
level-type indicators, always use either level or lvl consistently. For countable indicators, unify choices among cnt,
count, or total and apply the same form to all related columns. Apply this principle to other types of indicators as
well.

Abbreviate Rules:
1. Use snake_case format only.
The abbreviation rule for snake case is to determine whether each component between underscores can be abbreviated.
Example:
description_product_number: desc_prod_num
2. Retain the integrity of the meaning of the core terms in the Original Name and ensure that experts in the relevant
field can understand its meaning after abbreviation.
Do NOT use single-letter initials.
3.If a token appears multiple times within the same output batch, always abbreviate it consistently.
4. Abbreviations should be as close to the original meaning as possible—easy to understand and semantically clear. If
you think a word is already concise, you don't need to abbreviate it.

Column Information:
- Full Enterprise Name in the table: {full_column_names}

Output Format:

Final Column Names in the table: [Final names]

Your response must include the exact headers shown above.

Figure 19: The prompt for column name abbreviation.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Prompt for Document Generation

Background
To build a benchmark that truly reflects **enterprise-grade Text-to-SQL** scenarios, we must replicate how knowledge is distributed inside
real companies:
- Business / domain knowledge is scattered across meeting minutes, change requests, ops runbooks, emails, and other heterogeneous documents.
- A querying system must **retrieve** information from a vast collection of external documents **before** generating SQL.

Your task is to **sparsify** the external knowledge you receive—turning it into a single Markdown document that resembles a real-world
knowledge artifact.

Task Description
You are given two sources of external knowledge:
1. **Database description** – full table/column names, value explanations, and embedded business / domain knowledge.
2. **Extra knowledge** – additional domain knowledge not present in the description file.

**Your goal is to transform this input into one Markdown document of at least {MIN_WORDS_SLOT} words, written in the specified genre as
detailed below**:
{DOC_GENRE_SLOT}

Requirements
1. **No knowledge may be omitted.**

- Every piece of original external knowledge **must appear somewhere in the document, except for `sample_value` and `data_format`**.
This explicitly includes:
* All rows from the database description table (Including 3 columns: `original_column_name`, `column_description`,

`value_description`),
* every item contained in the extra-knowledge input.

- If any information cannot be woven naturally into the narrative, list it verbatim in a “🛈 Loose Notes” block at the end of the
document—*otherwise do not include that block*.

2. **Tag original external knowledge for manual completeness checks. Use the tagging scheme below:**
- For each row *i* (starting at 1) in the database-description table, tag each non-empty field as:

- `original_column_name` → <ocn{i}> … </ocn{i}>
- `column_description` → <cd{i}> … </cd{i}>
- `value_description` → <vd{i}> … </vd{i}>
- The `sample_value` and `data_format` columns are provided for your reference to help you understand the external knowledge. You

may include relevant content in the final document if appropriate, but **must not apply any tags** to it.
- If a field in that row is blank, **omit the corresponding tag; never invent content**.
- For each extra-knowledge item *k* (in provided order), tag it as <ek{k}> … </ek{k}>.
- The text inside every tag must come directly from the original external knowledge (verbatim or with only trivial rephrasing that

leaves the meaning unchanged).
- Distribute tagged elements throughout the document and do not cluster them in a single section if possible. Avoid mechanically listing

tags and the knowledge within tags (e.g., directly providing a list).

3. **Sparsification & contextualization**
- **Do not** present a tidy data-dictionary list such as “table-field-meaning”.
- Knowledge should be woven naturally into the chosen genre and dispersed across the document.
- You may appropriately expand upon the original external knowledge to make the document more natural and realistic. However, the final

document **must not** contain any content that contradicts the original external knowledge.
- If new columns that are not present in the description file are mentioned (e.g., due to simulated discussions or change proposals),

they must be framed negatively—for example, discussing their removal or disagreement over adding them.

4. **Directory path**
- Provide a relative path for the document (e.g., `design/RFC-0421.md` or `ops/playbook/alert_CPU.md`) to show hierarchy.

5. **Independent theme**
- The document’s subject matter **must not** directly reference the task itself (e.g., Text-to-SQL benchmark, enterprise Text-to-SQL,

External Knowledge). Choose varied, realistic business or technical topics instead.

Output Format
Return a single JSON object in your response and enclose it within <answer> and </answer>:

<answer>
{

"path": "your/path/here",
"genre": "{DOC_GENRE_NAME_SLOT}", // Only the genre name needs to be given
"title": "the title of the document",
"content_md": "the content of the document"

}
</answer>

Original External Knowledge
Database description
{DB_DESCRIPTION_SLOT}

Extra knowledge
{EXTRA_KNOWLEDGE_SLOT}

Output

Figure 20: The prompt for enterprise knowledge document generation.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Prompt for Doucument Check & Correct

Background
In the prior task, your colleague has taken concise, densely packed external knowledge and—following the
sparsification & tagging rules—expanded it into **one Markdown document** written in the specified genre. This
artifact will later feed a retrieval-based Text-to-SQL benchmark, so its accuracy is critical.

Prior task description and materials
Prior task description
You are given two sources of external knowledge:
1. **Database description** – full table/column names, value explanations, and embedded business / domain
knowledge.
2. **Extra knowledge** – additional domain knowledge not present in the description file.

Your task is to **sparsify** the external knowledge you receive—turning it into a single Markdown document
that resembles a real-world knowledge artifact.

Database description
{DB_DESCRIPTION_SLOT}

Extra knowledge
{EXTRA_KNOWLEDGE_SLOT}

Target genre
{DOC_GENRE_SLOT}

Sparsification & tagging rules
- **No knowledge may be omitted.**

- Every piece of original external knowledge **must appear somewhere in the document, except for
`sample_value` and `data_format`**.
……

(Omitted here, you can refer to the same part of the pormpt for document generation)

……
Candidate document
To assist you in identifying errors, the candidate document has already been pre-checked according to specific
rules, and any detected issues have been marked accordingly. (Note: The rule-based check is limited in
capability and may miss some errors — you must carefully identify any remaining issues during your review.)
```md
{CANDIDATE_DOC_SLOT}
```

Your Task
Audit the candidate document against the source materials and the rules, then correct it where necessary.

Checklist
1. **Completeness**

- Every element of the original external knowledge except for `sample_value` and `data_format` must appear
in the document—either in the main text or, if it cannot be woven in naturally, in a “🛈 Loose Notes” block.

2. **Tag validation & correction**
- **Structural correctness** Each tag must have a valid index, a recognized tag type (ocn, cd, df, vd, ek),

and must appear in proper pairs (<tag> and </tag>). Fix any malformed or unmatched tags.
- **Existence** If the corresponding field in the database description is blank, delete the tag **and its

enclosed content**.
- **Accuracy** The text inside every tag must match the source verbatim, or with only trivial re-phrasing

that preserves meaning. Replace mismatches with the correct source text.

3. Check whether any other part of the document violates the sparsification and tagging rules. If such
violations are found, revise the document accordingly to ensure full compliance.

Requirements
1. Modify **only** the content that violates the checklist or rules; everything else must remain unchanged.
2. You only need to revise the document content — no need to provide the title, genre, or file path.
3. When checking for completeness, go through the database description row by row, verifying each column field
individually. Then do the same for each item in the extra knowledge section. Present the results as a
structured checklist.
4. When validating tags, iterate over each tag that appears in the document, and check the following
dimensions: Structural correctness, Existence, Accuracy. Present the tag validation as a checklist as well.

Output format
Provide **one final, corrected Markdown document** that meets all requirements, and wrap it exactly as shown:
<answer> ...your corrected Markdown... </answer>

Output

Figure 21: The prompt for checking and correcting enterprise knowledge document.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Prompt for Evaluation on BIRD-Ent

Task Description
You own a data asset (similar to a data warehouse) that has collected a series of tables from different sources around
a specific topic. You are now given the schemas and data sources for all the tables within this data asset. To help
you better answer the question, your colleague has pre-selected several tables that may be relevant to the question.
Based on this information, please write an SQLite query to answer the following question.

Requirements:
1. You only need to provide one complete, correct, and executable SQL statement.
2. Do not include any additional information outside of the SQL query in your response.

Output Format
Your SQL should be placed between <answer> and </answer>, as follows:
<answer>your SQL query</answer>

Data Table Naming Standards
Below are the naming conventions for the data tables, which will help you understand the following Data Asset
Information:
Table naming conventions: <project>_<area>_<content>.
- <project>: The project/product or data domain identifier to distinguish teams, business lines, or application
contexts.
- <area>: Business domain and subject area identifier which the table belongs.
- <content>: The summary of the table's content.

Data Asset Information
{SCHEMA_SLOT}

External Knowledge
The following document may contain useful information needed to answer the question and is provided for your reference:
{KNOWLEDGE_SLOT}

Output
Question: {QUESTION_SLOT}
Your Answer:

Figure 22: The prompt for evaluation on the BIRD-Ent Benchmark.

Prompt for Evaluation on Spider-Ent

Task Description
You own a data asset (similar to a data warehouse) that has collected a series of
tables from different sources around a specific topic. You are now given the schemas
and data sources for all the tables within this data asset. To help you better answer
the question, your colleague has pre-selected several tables that may be relevant to
the question. Based on this information, please write an SQLite query to answer the
following question.

Requirements:
1. You only need to provide one complete, correct, and executable SQL statement.
2. Do not include any additional information outside of the SQL query in your
response.

Output Format
Your SQL should be placed between <answer> and </answer>, as follows:
<answer>your SQL query</answer>

Data Asset Information
{SCHEMA_SLOT}

Output
Question: {QUESTION_SLOT}
Your Answer:

Figure 23: The prompt for evaluation on the Spider-Ent Benchmark.

29

	Introduction
	Task Formulation
	Benchmark Refinement
	Data Statistics
	Experiments
	Implementation Details
	Experimental Setup
	Main Results
	More Analysis

	Error Analysis
	Related Work
	Conclusion
	Examples
	Real-World Data Asset
	Ent-Series Benchmarks
	Data Asset
	Knowledge Document

	Details on Benchmark Refinement
	Domain-Level Refinement
	Schema-Level Refinement
	Knowledge-Level Refinement
	Knowledge Cleaning and Decoupling
	Document Generation

	Case Study

