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Abstract

Graph Neural Networks learn on graph-structured data by iteratively aggregating lo-
cal neighborhood information. While this local message passing paradigm imparts
a powerful inductive bias and exploits graph sparsity, it also yields three key chal-
lenges: (i) oversquashing of long-range information, (ii) oversmoothing of node
representations, and (iii) limited expressive power. In this work we inject random-
ized global embeddings of node features, which we term Sketched Random Features,
into standard GNNs, enabling them to efficiently capture long-range dependencies.
The embeddings are unique, distance-sensitive, and topology-agnostic—properties
which we analytically and empirically show alleviate the aforementioned limita-
tions when injected into GNNs. Experimental results on real-world graph learning
tasks confirm that this strategy consistently improves performance over baseline
GNNs, offering both a standalone solution and a complementary enhancement to
existing techniques such as graph positional encodings.

1 Introduction

Graph Neural Networks (GNNs) are a widely adopted approach for representation learning on graph-
structured data. Standard GNN architectures employ a message-passing framework [26], wherein
each node’s features are iteratively propagated and aggregated along edges. Thus, GNNs leverage
a strong topology-induced bias: node features are iteratively refined by their neighbors, enabling
local interactions to shape final node or graph embeddings. Moreover, these localized computations
naturally exploit graph sparsity, facilitating efficient training. Despite this success, three persistent
challenges remain:

• Oversquashing: Signals from distant nodes are compressed into a fixed size vector when traversing
multiple hops, hindering a GNN’s ability to capture long-range interactions [2].

• Oversmoothing: As network depth grows, node representations converge exponentially to nearly
identical values, eliminating meaningful distinctions [44, 56].

• Limited Expressive Power: Standard GNNs have expressive power no greater than the 1-
dimensional Weisfeiler–Lehman heuristic [67], leading them to fail at distinguishing many non-
isomorphic graphs or structurally distinct subgraphs [68].

To address these limitations, two primary lines of research have emerged. The first adapts transformers
[65] for graph-structured data, either by combining message passing with dense attention layers
[59, 70, 38, 46] or by replacing message passing altogether [39, 49]. This approach allows the model
to attend to arbitrary node pairs regardless of geodesic distance, thus circumventing many limitations
of message-passing GNNs. However, these methods typically incur O(N2) memory and computation
cost in the number of nodes N and rely on carefully designed node-level signals (called positional
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or structural encodings) to inject graph structure back into the model [39]. These encodings can be
challenging to design, and their theoretical properties remain only partially understood [63].

A second line of work augments traditional GNNs with encodings—often inspired by transformers—
to improve performance by enhancing expressiveness [53]. These include purely random node
features that break symmetry and guarantee universal separation of non-isomorphic graphs [1, 62].
However, such unstructured noise can slow convergence or degrade learning in practice [7]. In
contrast, structural encodings (e.g., spectral embeddings [23]) are topologically distance-sensitive
but rely on deterministic, graph-based representations that are difficult to make both unique and
equivariant under node permutation. This is because, unlike Euclidean spaces, graphs lack a canonical
coordinate system that defines cardinal direction, creating ambiguities that the GNN must handle.
Notably, both these approaches primarily focus on topology-derived encodings, and do not consider
informative node features typically present in real-world graphs.

This observation motivates our approach: instead of abandoning message passing or augmenting it
solely with structural information, we propose leveraging node features themselves to address GNN
limitations. To this end, we introduce Sketched Random Features (SRF), presented in Algorithm 1,
a simple yet powerful method for injecting global, feature-distance-sensitive signals into GNNs. SRF
augments each node’s features with sketches, or randomized low-dimensional projections, of all
node features in a kernel space, preserving feature similarity in expectation and breaking symmetry
through randomization. This paper describes how sketched random features can augment feature
representations in every layer of a message passing GNN to yield accurate predictions in a variety of
settings. By the Johnson–Lindenstrauss lemma [35, 8], such projections preserve important distance
relationships in feature space even in significantly reduced dimensions. We leverage these properties
to construct node-feature representations that we show overcome the challenges above.

Consider a graph’s node feature matrix X ∈ RN×F , where the i-th column of XT , xi ∈ RF denotes
the features of node i, and a positive-definite similarity function (kernel) κ : RF × RF → R defined
between these features. Let E : RN×F → RN×D denote a mapping that embeds X into a random
feature space via feature map φ(·).

Algorithm 1 Sketched Feature GNN
1: Input G = (V,E) ; X ∈ RN×F ; k;L
2: Φ = E(X)
3: Z = S(k)(Φ)

4: Initialize: h(0)
i = xi for all i ∈ V

5: for layer ℓ = 0 to L− 1 do
6: for each node i ∈ V do
7: h̃

(ℓ)
i = [h

(ℓ)
i |zi]

8: h
(ℓ+1)
i = f

(
h̃
(ℓ)
i , {h̃(ℓ)

j : j ∈ N (i)}
)

9: return h
(L)
i

While any random kernel feature φ(xi) ∈
RD (e.g., via random Fourier features [57])
already provides an unbiased approximation
of similarity between node features, i.e.,
E
[
φ(xi)

⊤ φ(xj)
]

= κ(xi,xj), we go fur-
ther by applying a cross-node random projec-
tion S(k) ∈ RN×N . Let Φ ∈ RN×D (with
(D ≪ N ) be the matrix of random kernel fea-
tures, where the i-th row of Φ is φ(xi). Mul-
tiplying S(k) and Φ yields the kernel sketch
Z = S(k) Φ, where the i-th column of ZT ,
denoted zi, is a linear combination of all node
features in the kernel space. Crucially, these
sketched embeddings {zi} still preserve kernel
relationships in expectation, i.e. for any i, j,
E
[
z⊤i zj

]
= κ

(
xi,xj

)
.

Interestingly, this sketched random feature matrix provides properties that, when injected into GNNs,
are surprisingly effective in mitigating the aforementioned limitations of message-passing graph
neural networks. In particular, these sketches:

• are unique yet distance-sensitive. Each sketch zi is unique, breaking symmetries, while pre-
serving distances in the node-feature space with high probability (Propositions 3.2 and 3.4). This
property confers universality (enabling GNNs to distinguish non-isomorphic graphs) and counters
oversmoothing by preventing embeddings from converging.

• contain topology-agnostic cross-node information. Since each zi is formed by a linear combina-
tion of all node embeddings in the random feature space, it injects a global signal into the GNN
(Proposition 3.3). This mitigates oversquashing by enabling immediate cross-node interactions,
regardless of geodesic distance.

• maintain equivariance in expectation. With suitable random projections, the cross-node sketch
preserves pairwise feature relationships under node permutation (Proposition 3.5).
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In this work, we demonstrate analytically (Section 3) and empirically (Section 4) that these sketched
random features provide the necessary global, distance-sensitive signals to overcome fundamental
limitations of message-passing GNNs while maintaining computational efficiency. Unlike traditional
uses of sketching for dimensionality reduction, our method leverages sketching as a mechanism for
mixing global feature information across nodes, enabling efficient propagation of non-local signals
without altering the graph topology. Experiments on real-world graph learning tasks demonstrate
that SRF-augmented models often outperform baseline GNNs, offering a computationally efficient
alternative to existing structural positional encodings. Moreover, by leveraging orthogonal information
derived from node features rather than topology, our approach can be integrated with existing
structural encoding methods to yield further performance improvements.

2 Background and Related Work

Preliminaries. We consider finite node-attributed graphs G = (V,E,X) with |V | = N nodes, |E|
edges, and node feature matrix X ∈ RN×F . Each column of XT , xi ∈ RF , represents the features
of node i. A message-passing GNN (MPGNN) [26] initializes each node representation with its
features, i.e. for node i, h0

i = xi, and iteratively updates each node’s hidden representation h
(ℓ)
i as

h
(ℓ+1)
i = f

(
h
(ℓ)
i , {h(ℓ)

j : j ∈ N (i)}
)
, (1)

where N (i) denotes the multiset of node i’s neighbors and f(·) encapsulates learnable transformations
(e.g., linear layers, MLPs) and aggregation mechanisms (e.g., sum, mean, attention). After L layers,
each node’s hidden state h(L)

i can be used for node-level tasks or pooled for graph-level tasks. Several
popular MPGNN architectures [68, 40, 27, 66] can be considered special cases of this paradigm and
differ only in specific choices of learnable functions and aggregations.

2.1 Known Limitations of GNNs

Despite the widespread adoption of MPGNNs, three fundamental limitations have attracted significant
attention. We briefly describe each challenge below and provide a more comprehensive discussion
and review of prior mitigation approaches for the limitations in Appendix A.1.

Oversquashing. As shown in Equation 1, MPGNNs propagate information through local neigh-
borhoods. Consequently, when two nodes i and j have geodesic distance d, any signal from node
i requires at least d message-passing layers to reach node j, and vice versa. During this process,
the number of nodes in the effective receptive field can grow exponentially with depth, whereas the
hidden dimension |h| typically remains fixed. This mismatch leads to oversquashing [2], where
long-range information is compressed and loses influence on downstream tasks.

Alon and Yahav [2] demonstrate oversquashing empirically with their Tree-NeighborsMatch dataset,
where a root node must predict a label based on leaf node signals traversing multiple tree levels. De-
spite the label being trivial to determine from direct leaf access, compression across the exponentially
growing receptive field (O(2L) at depth L) severely degrades performance as tree depth increases.

Oversmoothing. A commonly observed phenomenon in MPGNNs is the convergence of node
embeddings h to an indistinguishable constant vector as network depth grows [61, 44, 56, 12]. In
practice, this leads to GNNs being deployed with substantially fewer layers than their counterparts
in other domains (e.g., deep convolutional neural networks [37]), despite depth often being critical
for strong performance [19]. This effect is frequently attributed to the smoothing effect of repeated
message-passing steps, which iteratively mix each node’s features with those of its neighbors [44].
Although moderate smoothing can aid learning, it frequently converges rapidly to a subspace of trivial
signals [56, 12], yielding nearly identical node representations and thus impeding metric performance.
Following recent work [61, 12], we measure oversmoothing via a Dirichlet energy metric defined on
node embeddings H(ℓ) =

[
h
(ℓ)
1 , . . . , h

(ℓ)
N

]⊤ ∈ RN×F after ℓ MPGNN layers (cf. Equation 1):

D
(
H(ℓ)

)
=

1

N

∑
i∈V

∑
j∈N (i)

∥∥h(ℓ)
i − h

(ℓ)
j

∥∥2
2
, (2)

A rapid decrease in D(H(ℓ)) as ℓ grows indicates oversmoothing.
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Limited Expressiveness. Ideally, GNNs should distinguish non-isomorphic graphs, as this is a pre-
requisite for universal approximation of graph-invariant functions [53]. However, standard MPGNNs’
expressiveness is upper-bounded by the 1-dimensional Weisfeiler–Lehman (1-WL) heuristic [67],
which measures graph structure through iterative neighborhood aggregation. This expressivity con-
straint directly limits MPGNNs’ ability to distinguish many non-isomorphic graphs that have distinct
structural properties but identical neighborhood aggregation patterns [68]. In response, k-order
Weisfeiler–Lehman GNNs (k-WLGNNs) were introduced [52, 50]. They operate on k-tuples of nodes
and match the expressive power of the generalized k-WL heuristic, but typically require O(Nk)
computation and memory. Although recent work has shown that this can be reduced in certain cases
to O(N2) and O(N3) [4], these methods remain expensive for many applications.

To address this limitation efficiently, recent work proposes positional or structural encodings that
augment node features with additional signals. For instance, purely random node features [18]
render GNNs universal [62, 1], but often impair empirical performance [7]. Hence, recent efforts
have shifted toward graph-derived features, seeking to make semantically meaningful encodings
while retaining invariance to node permutations. Proposed approaches include spectral embeddings
[23, 45, 48], subgraph-based representations [43, 9], and homomorphism counts [55, 34, 6]. However,
designing an encoding that is simultaneously unique, distance-sensitive, and equivariant is difficult
as it is closely tied to the graph canonization problem—known to be at least as hard as distinguishing
graph isomorphism in general [5]. Recently, Pearl [36] proposes learning positional encodings with
GNNs augmented with either standard basis vectors (B-Pearl) or random features (R-Pearl). This
leads to better asymptotic complexity but can be expensive for small and medium graphs in practice.

In the following subsection, we introduce kernel methods and random feature approximations that
serve as the foundation for our approach to address these limitations.

2.2 Kernels, Random Kernel Features, and Sketching

Consider a positive-definite function κ : RF × RF → R. By the Moore–Aronszajn theorem [3],
there exists a Hilbert space H and a feature map ϕ : RF → H such that

κ(x,y) = ⟨ϕ(x), ϕ(y)⟩H for all x,y ∈ Rd (3)

In other words, any such function κ, known as a kernel, defines a lifting ϕ and inner product ⟨·, ·⟩.
This defines a geometry in H through the norm ∥ϕ(x)− ϕ(y)∥H, which in turn defines a notion of
distance between x and y and thus κ(x,y) can be interpreted as similarity measure that we refer to
as the kernel similarity between x and y. For instance, for linear kernel κ(x,y) = x⊤y, the map ϕ
is simply the identity, ϕ(x) = x, and distance in H corresponds to standard Euclidean distance in Rd.

Kernel methods [13, 30, 25] facilitate non-linear modeling by leveraging κ to implicitly measure fea-
ture similarity in the space H, thereby allowing otherwise linear models (e.g., SVMs [11]) to capture
complex relationships without explicitly mapping data into that space. However, these methods typi-
cally require instantiation of kernel matrix Ki,j = κ(xi,xj) for a dataset X = {x1, . . . ,xN} ⊂ RF ,
which leads to O(N2) memory complexity. Consequently, kernel methods often become impractical
at large scales, motivating efficient approximations.

A powerful class of such approximations are random kernel features. These methods build on
the famed Johnson–Lindenstrauss lemma, which proves the existence of a random linear map that
approximately preserves pairwise distances in a dataset. Concretely, consider the same dataset
X ⊂ RF from the last example. The JL lemma states that for any ε ∈ (0, 1), there exists linear map
R ∈ RD×F to dimension D < F (with D = O( 1

ε2 logF )) such that for all i, j

(1− ε) ∥xi − xj∥2 ≤ ∥Rxi −Rxj∥2 ≤ (1 + ε) ∥xi − xj∥2 (4)

A Johnson–Lindenstrauss Transform (JLT) implements such a linear map R via random projection
(e.g., a Gaussian matrix, which achieves the bound above whp). In the context of kernel approxima-
tions, one seeks a mapping φ : RF → RD that provides an unbiased estimate of the kernel:

E
[
φ(x)⊤ φ(y)

]
= κ(x,y). (5)

In the simplest case of the linear kernel, κ(x,y) = x⊤y, we can directly take φlinear(x) = Rx,
yielding a lower-dimensional estimation φlinear(x) ∈ RD. This provides an unbiased estimate of x⊤y
while reducing computational costs relative to an explicit O(N2) kernel matrix.
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More recent work has shown that nonlinear kernels can also be estimated via random transformations
akin to the JLT [47]. In essence, one applies suitable nonlinearities to the randomly projected
inputs, producing an unbiased approximation of a desired kernel (i.e. Equation 5). A prominent
example is the use of random Fourier features [57], which enable efficient approximations of popular
shift-invariant kernels such as the radial basis function (RBF) kernel ϕRBF and Laplacian kernel
ϕL. Concretely, for the RBF kernel, one draws D frequencies ωd for d ∈ [D] from a Gaussian
distribution, and applies a trigonometric mapping:

φRBF(x) =

√
2

D

[
cos(ω⊤

1 x+ b1), . . . , cos(ω
⊤
Dx+ bD)

]⊤
, (6)

where bk ∈ [0, 2π) are sampled uniformly at random. Similarly, ϕL is approximated by sampling ω
from a Cauchy distribution and applying the same transformation.

In the next section, we apply these ideas in two distinct ways. First, we apply kernel embedding
approximations (e.g., Equation 6) to estimate the feature map ϕ. Second, we apply JLT projections to
the resulting kernel embeddings and show that doing so leads to desirable qualities when augmenting
MPGNNs. To avoid confusion, we distinguish these two transformations clearly: the first set are
kernel transformations of node features and the second are Sketched Random Features (SRF).

3 Sketched Random Features

3.1 Defining SRF

Building on the ideas discussed in Section 1-2, our goal is to construct Sketched Random Features that
(1) are distance-sensitive (2) unique, (3) encode signals across all nodes, and (4) remain permutation-
equivariant under node relabelings.

Embedding Operator E . Let X ∈ RN×F be the raw feature matrix, with each column of XT ,
denoted xi, corresponding to node i. We define an embedding operator E : RN×F → RN×D that
applies function φ : RF → RD to each column of XT independently. That is, E(XT ):,i = φ(xi).

In this work, we focus on φ functions that map features to random embeddings whose inner products
yield unbiased estimates (Equation 5) of a kernel κ (Equation 3). Examples are φlinear, φL, and φRBF,
as discussed in Section 2.2, yielding embedding operators Elinear, EL, and ERBF, respectively. Hence,
we define the kernel feature matrix as

Φ = E(X) ∈ RN×D.

Sketch Operator S. We next introduce a sketch operator S : RN×D → RN×D. This random
projection matrix implements a Johnson Lindenstrauss Transform (JLT) (Section 2.2) which provides
approximate preservation of pairwise distances with high probability (see Equation 4). In this work,
we focus on the additive Gaussian (AG) sketch, which we define as:

SAG(Φ) =
(
I + 1√

N
G
)
Φ, (7)

where I ∈ RN×N is the identity matrix, and G ∈ RN×N has i.i.d. entries Gij ∼ N (0, 1). Multiply-
ing Φ by the sketch forms random linear combinations of all rows in Φ.

Unlike typical JLT applications, we do not reduce dimension N . Instead, we employ this random
projection because it possesses properties (Propositions 3.1–3.5) that we show in Section 3.2 can
mitigate the standard limitations of message-passing GNNs. Importantly, the dimension D is
determined by the embedding operator E rather than S.

Multi-Projection Sketching. SAG introduces a one dimensional random projection of each column
of Φ. We can generalize this to multiple dimensions via concatenation. Specifically, we introduce the
k-order sketch operator S(k)

AG : RN×D → RN×kD:

S(k)
AG(Φ) =

[ (
I + 1√

N
G(1)

)
Φ
∣∣∣∣∣∣ (I + 1√

N
G(2)

)
Φ
∣∣∣∣∣∣ . . . ∣∣∣∣∣∣ (I + 1√

N
G(k)

)
Φ
]

where each G(k) ∈ RN×N is drawn independently with i.i.d. N (0, 1) entries. This operation
concatenates k independent AG sketches, enabling k-dimensional estimates of each feature.
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Sketched Random Features (SRF). Bringing these components together, we define the kernel
sketch matrix Z as

Z = S(k)
(
E(X)

)
∈ RN×(kD), (8)

where the new feature embedding of node i is given by zi ≜ Zi,:
1. In our experiments (Section 4),

we primarily analyze the (multi-) projection AG sketch S(k)
AG as introduced above, but also consider

the trivial identity sketch Sid = I as an ablation study. For embedding operator E , we consider the
operators based on the random kernel features discussed in Section 2.2: Elinear, EL, and ERBF.

3.2 Enhancing MPGNNs with Node Feature Sketches

We next turn to incorporate SRF into MPGNNs. To do so, we augment the node hidden states h(ℓ)
i

at each layer with the corresponding sketched embedding zi via concatination. Let h̃(ℓ)
i = [h

(ℓ)
i |zi]

denote this augmented representation, where [·|·] represents vector concatenation along the feature
dimension. The updated MPGNN formulation becomes (cf. Equation 1):

h
(ℓ+1)
i = f

(
h̃
(ℓ)
i , {h̃(ℓ)

j : j ∈ N (i)}
)
. (9)

By injecting zi at each layer, the model has access to both local node features and the information
encoded by SRF. This strategy addresses common MPGNN weaknesses discussed in Section 2, as
detailed in the proceeding subsection. Algorithm 1 summarizes the SRF-enhanced GNN procedure.

3.3 Properties of Sketched Random Features

We now establish key theoretical properties2 of SRF and demonstrate how they address core limita-
tions of message-passing GNNs. The following propositions characterize the fundamental mathemat-
ical properties of our approach.
Proposition 3.1 (Unbiased Cross-Terms in the Kernel Matrix). SRF provides an unbiased estimation
of cross-terms in the Kernel matrix. Specifically, for any distinct nodes i and j, the cross-term of the
Gram matrix is unbiased: EX,G[z

⊤
i zj ] = κ(xi,xj).

Proof. From Equation 7, the (i, j)-th inner product is

z⊤i zj =

N∑
p,q=1

(Iip +
1√
N
Gip)(Ijq +

1√
N
Gjq)φ(xp)

⊤φ(xq).

We note that for i ̸= j, E[Gip] = 0 and E[GipGjq] = δijδpq = 0. Thus, by Equation 5, we have

EX,G[z
⊤
i zj ] =

N∑
p,q=1

IipIjq E
[
φ(xp)

⊤φ(xq)
]
= E

[
φ(xi)

⊤φ(xj)
]
= κ(xi,xj).

Proposition 3.2 (Kernel Distance Sensitivity). With high probability, there exists a positive c ∼
O(N−1/2) such that for any nodes i, j:

(1− c)∥φ(xi)− φ(xj)∥2 ≤ ∥zi − zj∥2 ≤ (1 + c)∥φ(xi)− φ(xj)∥2

Proof. By construction, zi − zj =
(
I + 1√

N
G
) (

φ(xi) − φ(xj)
)

since each row zi corresponds

to the i-th row of
(
I + 1√

N
G
)
E(X). If φ(xi) = φ(xj), then ∥zi − zj∥2 = 0 and the claim holds

trivially. Thus, we assume φ(xi) ̸= φ(xj) and define v = φ(xi) − φ(xj). Applying the triangle
inequality: ∣∣∥v∥2 − 1√

N
∥Gv∥2

∣∣ ≤
∥∥v + 1√

N
Gv
∥∥
2

≤ ∥v∥2 + 1√
N
∥Gv∥2

1In the featureless limit where all xi are identical, SRF degenerates to random node individualization [62, 1],
preserving expressive power through randomization.

2For notational clarity, we present proofs under base case S(1)
AG and as the extension to S(k)

AG is straightforward.
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Next, the JL lemma (Equation 4) guarantees that, given ε ∈ [0, 1], with high probability over the
choice of the random Gaussian matrix G3:

√
1− ε ∥v∥2 ≤ 1√

N
∥Gv∥2 ≤

√
1 + ε ∥v∥2.

Substituting these bounds back into the triangle inequality shows(
1−

√
1 + ε

N

)
≤
∥∥zi − zj

∥∥
2

∥v∥2
≤

(
1 +

√
1 + ε

N

)
.

Thus, letting c =
√
(1 + ε)/N completes the proof.

Proposition 3.3 (Cross-Node Information). For any node i, the sketched embedding zi contains a
linear combination of the embeddings of all nodes in the graph.

Remark. Proposition 3.3 ensures that each SRF embedding encodes cross-node information due to
the row sketch construction.
Proposition 3.4 (Almost Sure Uniqueness). {zi} are unique with probability 1.

Proof. Without loss of generality, consider the case where the node features are identical, e.g. xi = 1.
Then φ(xi) = φ(1) for all i, and from the definition of SRF with S(1)

AG we have for row i of Z:

zi = φ(1) +
1√
N

N∑
j=1

Gijφ(1)

Since {
∑N

j=1 Gij} are independent Gaussian random variables, the coefficients multiplying φ(1)
are almost surely unique. Thus, zi ̸= zj for i ̸= j with probability 1. In the general case where node
features differ, φ(xi) and φ(xj) may also differ, providing additional distinctness.

Proposition 3.5 (Permutation Equivariance in Expectation). Let π be a fixed permutation of node
indices, with corresponding permutation matrix Pπ. Let the function f ≜ SAG ◦ E be the SRF
operation (Equation 8). Then f is permutation equivariant in expectation: EX,G[f(PπX)] =
EX,G[Pπf(X)].

Proof. By definition, f(X) =
(
I + 1√

N
G
)
Φ(X) and E[G] = 0. Then

E[f(PπX)] = E
[(
I + 1√

N
G
)
PπΦ(X)

]
= PπΦ(X),

and similarly
E[Pπf(X)] = E

[
Pπ

(
I + 1√

N
G
)
Φ(X)

]
= PπΦ(X).

SRF Mitigates Oversquashing. SRF mitigates oversquashing by encoding topology-agnostic
cross-node information in each sketched embedding zi, as shown in Proposition 3.3. While this
encoding into RD (where typically D ≪ N ) is not lossless, it enables direct information flow
between all node pairs independent of their geodesic distance. This circumvents the exponential
information bottleneck inherent in multi-hop message passing [2]. Our empirical analysis in Section
4.1 demonstrates that SRF achieves linear rather than exponential information loss as N increases.

SRF Alleviates Oversmoothing. SRF addresses oversmoothing by introducing node-specific,
distance-sensitive embeddings that preserve variance across nodes (Propositions 3.1 and 3.2, respec-
tively). The inclusion of unique zi vectors (Proposition 3.4) repeatedly injected into message passing
(Equation 9) ensures h̃(ℓ)

i = [h
(ℓ)
i |zi] remain distinct as ℓ grows. Our empirical results (Section 4.1)

show this approach maintains higher representation diversity even in base features h(ℓ)
i , preventing

representational collapse with depth.
3Note that while the version of the JL lemma discussed in Section 2.2 (Equation 4) provides bounds for

squared norms, taking square roots is valid since all terms are positive.
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Figure 1: Analysis of oversquashing and oversmoothing across model variants. (a) Accuracy vs.
graph radius showing the effect of oversquashing across methods. (b) Dirichlet energy across layers
for different methods. (c) Dirichlet energy across for EL with varying k. Lower Dirichlet energy
indicates more oversmoothing.

Universality of SRF in MPGNNs. SRF provides a principled way to achieve universality in
MPGNNs. As discussed in Section 2, purely random features guarantee universality, but often fail
to improve metric performance in practice. In contrast, structural encodings provide semantically
meaningful and equivariant signals which lead to improved empirical performance, but often fail to
provide an encoding that is unique, distance sensitive and equivariant, due to the inherent difficulty
of the graph canonization problem. SRF strikes a balance between these approaches: it is unique
(Proposition 3.4), ensuring universality, while preserving distance in the node feature kernel space
whp (Proposition 3.2). Additionally, it is permutation equivariant in expectation (Proposition 3.5).

Memory and Runtime Complexity. While the JLT is traditionally implemented with dense random
projection matrices, memory and runtime efficiency can be improved by using structured random
matrices (SRMs) [15] as detailed in Appendix A.2. SRMs lower storage requirements to O(N) and
enable matrix-vector multiplication in O(N logN). Notably, these matrices preserve the theoretical
guarantees of Section 3. This yields favorable asymptotic complexity compared to many positional
encoding methods. Detailed complexity analysis and comparisons are in Appendix A.2.

4 Experiments

We empirically evaluate SRF-enhanced GNNs 4, first validating that SRF addresses key MPGNN
limitations Section 4.1, then demonstrating performance on real-world benchmarks (Section 4.2). We
use GIN [68] for unattributed-edge graphs and GINE [31] for edge-featured graphs, with additional
architectures tested in Appendix B to verify architecture-agnostic benefits.

We evaluate embedding operators Elinear, EL, and ERBF with additive Gaussian sketch S(k)
AG, denoting

configurations as
(
E ,S(k)

AG

)
. To isolate sketching effects from kernel features alone, we ablate with

identity operator Sid = I , comparing
(
EL,Sid

)
against

(
EL,S(k)

AG

)
. Full dataset descriptions, baseline

details, hyperparameter search procedures, and other experimental details are provided in Appendix
C. We include additional experiments in the Appendix: validation of SRF benefits across diverse
GNN architectures (Appendix B) and analysis of SRF hyperparameters (embedding dimension D
and projection count k) on performance (Appendix D).

4.1 Synthetic Learning Tasks

Oversquashing. We evaluate SRF’s ability to mitigate oversquashing using the Tree-
NeighborsMatch synthetic benchmark [2] discussed in Section 2. Recall that as radius r increases,
exponentially more information must be aggregated by the message passing algorithm, making the
task progressively harder for standard MPGNNs. Results in Figure 1 show that while baseline GIN
and ablation

(
EL,Sid

)
suffer severe performance degradation beyond r = 4, SRF-enhanced models

maintain higher accuracy at large radii, regardless of choice of E . Notably, all SRF variants achieve

4Our source code is available at https://github.com/ryienh/sketched-random-features.
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Table 1: Performance on synthetic expressiveness benchmarks. All results averaged over 5 runs.
Standard deviations (≤ 0.002 across all experiments) omitted for clarity.

Dataset Baseline Ablation Ours (S(1)
AG) Ours (S(8)

AG)

None (EL,Sid) Elinear EL ERBF Elinear EL ERBF

CSL (Acc ↑) 0.100 0.100 1.000 1.000 1.000 1.000 1.000 1.000
EXP (Acc ↑) 0.518 0.520 1.000 1.000 1.000 1.000 1.000 1.000

perfect accuracy up to r = 4 and demonstrate more graceful performance decay thereafter, with
accuracy remaining above 40% even at r = 8. This improved performance at large radii empiri-
cally validates our theoretical analysis that SRF enables comparatively more effective long-range
communication in MPGNNs.

Oversmoothing. To assess SRF against oversmoothing, we follow Rusch et al. [61]’s protocol using
Cora [51] with randomized features (Xjk ∼ N (0, 1)) and measuring Dirichlet energy (Equation 2).
Figure 1(b) shows baseline GNNs exhibit near-exponential energy decay while SRF variants maintain
substantially higher energy. While feature injection alone helps prevent decay (ablation study),
Figure 1(c) shows that increasing projections (k) further preserves node distinctness in deeper layers.

Expressiveness. We evaluate the universal approximation capabilities of SRF-enhanced MPGNNs
using two graph isomorphism discrimination benchmarks: CSL [54] and EXP [1], containing graphs
indistinguishable by 1-WL and 2-WL tests respectively. Table 1 shows SRF-enhanced models
achieving perfect discrimination on both datasets, while baselines and ablations (without sketching)
perform no better than random chance.

4.2 Real-world Graph Learning Tasks
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Figure 2: Training efficiency comparison of SRF
(ours), R-PEARL, and B-PEARL. (a) Runtime in
seconds. (b) Memory usage in MB (log scale).

We evaluate SRF-enhanced GNNs on real-world
datasets, benchmarking against existing posi-
tional encoding approaches (Section 2.1). Our
results show SRF-enhanced GNNs outperform
many positional encoding approaches (Table 2,
left) while offering substantial efficiency gains:
about 3 times faster runtime and about two or-
ders of magnitude less memory than PEARL
on evaluated datasets (Figure 2). They show
robustness in out-of-distribution tasks where
other approaches falter, remaining competitive
with state-of-the-art approaches (Table 2, right).
Finally, they can be combined with positional
encodings for cumulative improvements due to
their complementary nature (Table 3).

Baselines. We consider several positional encoding baselines discussed in Section 2.1 and Appendix
A: random node features (rand id) [1, 62], SignNet and BasisNet [45], efficient approximations of
SignNet (SignNet-8S, SignNet-8L) [36], SPE [32] with its efficient variant SPE-8S, and Pearl
(R-PEARL, B-PEARL) [36]. For some experiments, we include graph transformers and attention-
enhanced GNNs: GPS [58], SAN [41], SUN [24], GNN-AK [71], Graph ViT [29].

Social Network Classification. We evaluate on REDDIT-B and REDDIT-M datasets [69], which
represent online discussion threads where nodes are users and edges indicate comment interactions.
These datasets require models to classify discussion graphs into their respective subreddits (online
communities). As shown in Table 2, SRF-augmented GNNs consistently outperform baseline
methods. Notably, even our simplest variant (Elinear) demonstrates substantial improvements over
prior state-of-the-art methods, with ERBF providing the strongest performance. The ablation confirms
these gains derive from sketching rather than merely adding kernel features.
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Table 2: Performance comparison of SRF enhanced GNNs and several positional encoding baselines
on Reddit (% accuracy) and DrugOOD (% AUC) datasets. Results for baselines from Kanatsoulis
et al. [36]. Values missing from the literature are denoted by “—”. OOM indicates out of memory.
First, second, and third best results are highlighted in blue, green, and orange, respectively.

Reddit (Acc ↑) DrugOOD (AUC ↑)

REDDIT-B REDDIT-M Assay Scaffold Size

Baselines:
GINE (No PE) 91.8 ± 1.0 56.9 ± 2.0 71.68 ± 1.10 68.00 ± 0.60 66.04 ± 0.70
GINE + rand id 91.8 ± 1.6 57.0 ± 2.1 — — —
SignNet OOM OOM 72.27 ± 0.97 66.43 ± 1.06 64.03 ± 0.70
SignNet-8S 92.4 ± 1.1 57.8 ± 0.8 — — —
SignNet-8L 79.5 ± 12.3 41.4 ± 2.7 — — —
BasisNet — — 71.66 ± 0.05 66.32 ± 5.68 60.79 ± 3.19
SPE — — 72.53 ± 0.66 69.64 ± 0.49 66.02 ± 0.49
SPE-8S — — 71.72 ± 0.71 68.72 ± 0.63 65.74 ± 2.20
R-PEARL 93.0 ± 1.3 59.4 ± 1.0 72.24 ± 0.30 69.20 ± 1.00 65.89 ± 1.30
B-PEARL — — 71.22 ± 0.42 69.51 ± 0.62 66.58 ± 0.67

Ablation:
(EL,Sid) 92.56 ± 0.58 58.32 ± 0.47 71.89 ± 0.37 65.34 ± 0.26 63.29 ± 0.63

Ours: (S(8)
AG)

Elinear 94.06 ± 0.39 60.18 ± 0.39 72.29 ± 0.30 68.79 ± 0.64 66.45 ± 0.24
EL 94.00 ± 0.35 60.33 ± 0.37 72.51 ± 0.69 69.43 ± 0.90 67.23 ± 0.54
ERBF 94.13 ± 0.69 60.53 ± 0.29 72.63 ± 0.41 69.60 ± 0.48 66.67 ± 0.35

Molecular Graph Out-of-Distribution (OOD) Generalization. We evaluate OOD generalization
on DrugOOD [33], which tests molecular property prediction across three domain shifts (Assay,
Scaffold, Size). As Kanatsoulis et al. [36] demonstrate, these OOD tasks are particularly challenging
for positional encoding approaches, with many advanced methods actually degrading performance
compared to GNN backbones alone. Conversely, Table 2 demonstrates that our feature-based
augmentation approach effectively overcomes this limitation, with all SRF variants consistently
outperforming the baseline GINE model across all splits. Notably, our approach achieves state-of-the-
art performance on the Assay and Size shifts, and remains competitive on the Scaffold split.

Long-Range Interactions in Peptide Structure Prediction. To assess whether SRF complements
structural approaches, we evaluate on Peptides-struct [22], a benchmark with long-range dependencies
where graph transformers typically excel. Table 3 shows that combining PEARL positional encodings
and SRF augmentation (ERBF,S(8)

AG) closes the performance gap between graph transformers and
GNNs, verifying SRF provides complementary benefits to positional encodings.

Table 3: Performance comparison for peptide-struct (MAE, lower is better). Baseline results reported
by Kanatsoulis et al. [36]. Error bars presented in Appendix C but do not exceed ± 0.004.

Baselines Ours

R-PEARL B-PEARL GPS SAN+
RWSE GNN-AK+ SUN Graph ViT R-PEARL

+SRF
B-PEARL

+SRF

0.247 0.248 0.252 0.255 0.274 0.250 0.245 0.245 0.243

5 Conclusion

We have presented an unconventional application of the Johnson-Lindenstrauss transform for en-
hancing message-passing graph neural networks. Our theoretical analysis and empirical results
demonstrate that such a strategy overcomes well-known shortcomings of MPGNNs with minimal
computational overhead, making it a practical enhancement for existing architectures. A promising
direction for future work is to investigate whether analogous sketching techniques generalize to
topology-aware embeddings (e.g., graph random kernel features [16]) or structural encodings.
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A SRF Background and Complexity Analysis
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Figure 3: Block diagram visualizing the SRF method defined in Algorithm 1. SRF is computed once
(top, blue) and then concatenated to node states at every GNN layer during training (bottom, green).

This section expands on the limitations of MPGNNs discussed in Section 2.1, reviews prior mitigation
strategies, and compares the computational complexity of SRF with recent baselines. Figure 3
overviews the SRF preprocessing strategy defined in Algorithm 1 and described in detail in Section 3.

A.1 Additional Discussion on Prior Work

Oversquashing. Theoretical work formalizes oversquashing by analyzing the partial derivative of
the hidden states of nodes i and j at depth l, i.e.

∣∣∂h(l)
i /∂h0

j

∣∣, with Topping et al. [64] showing it is
bounded by c ·Ad for constant c, graph adjacency matrix A, and geodesic distance d, thereby implying
that node hi and hj become exponentially less sensitive to each other as d grows. Furthermore,
Di Giovanni et al. [20] validate the intuition posed in Alon and Yahav [2], proving that increasing
hidden dimension |h| can alleviate oversquashing, whereas greater depth |L| alone fails to resolve it.

Recent work seeks to mitigate oversquashing in MPGNNs by defining a rewiring Q : Rn×n → Rn×n

that operates on the adjacency matrix A to yield Q(A), hence producing a rewired graph G′. This
process reduces either the graph diameter or the Cheeger constant (which quantifies the connectivity
of a graph relative to its cut size) [17]5. Thus, these strategies alleviate oversquashing by altering
topology to remove bottlenecks. However, this leads to an altered and usually denser graph G′,
undermining the original topological bias of message passing and increasing computational overhead.

Oversmoothing. Common ways to mitigate oversmoothing include strategies based on regulariza-
tion [28, 72, 60] or skip connections [42, 14]. Nevertheless, striking a balance between preventing
oversmoothing and preserving the expressive power of deeper GNNs remains challenging. Indeed,
recent evidence suggests that merely suppressing oversmoothing without enhancing a model’s capac-
ity may still limit its ultimate performance [61]. We refer interested readers to the recent survey by
Rusch et al. [61] for a more detailed discussion.

Limited Expressiveness. A pedagogical example of the shortcomings of existing positional en-
codings described in Section 2 is the use of Laplacian eigenvectors (e.g. [23]), which can produce
multiple valid solutions depending on the chosen sign or basis, and may fail to distinguish co-spectral
but non-isomorphic graphs. This limitation motivates a body of existing encoding approaches such
as learned [50] and heuristic-based [21] eigenvector canonization. However, as described in the
main manuscript, designing encodings based on topology that are unique, distance sensitive, and
equivariant in polynomial time may be impossible due to its relatedness to graph canonization [5]. We
refer interested readers to the recent survey by Morris et al. [53] for a more comprehensive overview
of positional encodings for GNNs.

As described in the main manuscript, recent work presented by Kanatsoulis et al. [36] instead aim to
learn positional encodings using a message passing module that is trained end-to-end with the main

5We credit Di Giovanni et al. [20] for unifying these prior approaches and offering a comprehensive overview.
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("backbone") GNN. The PEARL methodology begins by anonymizing the input graph by stripping
away all node and edge attributes. For each node in the graph, the framework generates M random
(R-PEARL) or basis (B-PEARL) attributes. These generated samples are then individually processed
through a GNN and its outputs are combined using a pooling function ρ to create (equivariant)
positional encodings. In the final stage, the framework processes the graph structure alongside the
generated PEs and any existing node or graph attributes, using either a GNN or a Graph Transformer
for the final analysis. Thus, PEARL’s positional encodings enjoy better asympotic complexity than
many classical (e.g. spectral-based) positional encoding methods, including a linear, rather than cubic
cost, in the number of nodes in the input graph. However, unlike these classical methods, PEARL
pays this O(n) cost for each graph at every epoch of training.

A.2 Complexity Analysis

SRF Complexity and SRMs. We analyze the runtime complexity of computing Sketched Random
Features (SRF) when using structured random matrices (SRMs) as the sketching operator, as intro-
duced in Section 3 of the main manuscript. SRMs, introduced by Choromanski et al. [15], are designed
to accelerate Johnson–Lindenstrauss-style projections while preserving statistical properties of dense
Gaussian matrices. Specifically, SRMs such as SD-product matrices (e.g., Hadamard–Rademacher
constructions) admit fast matrix-vector multiplication in time O(N logN), rather than the O(N2)
cost incurred by unstructured dense matrices. When applied to a full matrix Φ ∈ RN×D consisting of
D feature vectors, the corresponding matrix-matrix multiplication with a SRM costs O(N2 logN).

Our SRF construction proceeds in two stages. Given an input feature matrix X ∈ RN×F , we first
compute kernel embeddings by applying a random feature map ϕ : RF → RD (e.g., random Fourier
features [57]) to each row of X , yielding the matrix Φ = E(X) ∈ RN×D. This step has complexity
O(NFD) under the assumption that ϕ involves dense linear projections.

In the second stage, we apply a sketching operator S(k) consisting of k independent SRMs to Φ,
producing the final sketched matrix Z = S(k)(Φ) ∈ RN×kD. Since each SRM projection costs
O(N2 logN), the total cost across k independent sketches is O(kN2 logN). Combining both stages,
the overall runtime complexity of SRF is:

O(NFD + kN2 logN).

This is asymptotically more efficient than using dense Gaussian projections, which incur a cost of
O(kN3), while preserving similar guarantees on distance preservation and kernel approximation [15].

Finally, in the context of our broader complexity analysis, which considers scaling with respect to the
number of nodes N and the number of training epochs T , we observe that SRF features are computed
once at initialization and reused throughout training. Thus, like spectral encodings, SRF contributes
a one-time cost and does not scale with T . The dominant term is the ROM projection, yielding an
effective runtime complexity of O(N2 logN) and memory complexity of O(N) with respect to the
graph size.

Additional Discussion on Computational Complexity. We analyze the computational and memory
complexity of baseline methods described in Sections 3 and 4. Table 4 presents the complexity
of these methods with respect to the number of nodes N . The analysis distinguishes between
methods that require preprocessing versus those that perform computations during each forward
pass. Preprocessing methods like random id [1] and SRF (ours) incur their computational cost once
before training, then impose minimal overhead per epoch, while other methods perform their stated
complexity computations during each forward pass. In scenarios where graphs are processed over
many training epochs, preprocessing approaches achieve computational advantages as the number of
epochs approaches or exceeds the graph size. Many graph learning benchmarks commonly found
in the literature, including those used to evaluate PEARL and SPE, involve small graphs processed
over many training epochs, favoring preprocessing approaches. Runtime benchmarks in Figure
2 complement this complexity analysis, demonstrating that SRF achieves superior computational
efficiency in such scenarios. This efficiency advantage is also partially attributed to PEARL’s
requirement for a large number of graph samples that we empirically observe often scale with the
number of graphs in the dataset. In scenarios where the required sample count is substantially smaller
than the number of nodes, PEARL’s empirical runtime would likely be comparatively more favorable.
Future work should empirically validate this hypothesis.
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Table 4: Comparison of computational and memory complexity for various GNN positional encoding
methods with respect to number of nodes N . Methods marked with ∗ incur costs once before training,
while others incur costs per forward pass. When the number of training epochs is comparable to
graph size, preprocessing methods achieve computational advantages.

Method Computational Complexity Memory Complexity
Random id∗ O(N) O(N)
SignNet O(N3) O(N2)
SignNet-8S O(N3) O(N)
SignNet-8L O(N) O(N)
BasisNet O(N3) O(N2)
SPE O(N3) O(N2)
SPE-8S O(N3) O(N2)
R-PEARL O(N) O(N)
B-PEARL O(N2) O(N)

SRF (ours)∗ O(N2 logN) O(N)

A.3 Additional Discussion on Baselines

For completeness, we describe the key methodological components of baseline encoding approaches
referenced throughout the main manuscript. A qualitative summary of the differences between
different baseline methods and SRF is provided in Table 5.

SignNet and BasisNet. Lim et al. [45] present SignNet and BasisNet, neural architectures that
solve the sign and basis ambiguity problems in spectral graph positional encodings. SignNet addresses
sign invariance by parameterizing functions of the form f(v1, . . . , vk) = ρ

(
[ϕ(vi) + ϕ(−vi)]

k
i=1

)
,

where the structure ϕ(vi) + ϕ(−vi) ensures invariance to sign flips of each eigenvector vi, and ϕ
and ρ are neural networks (e.g., GIN and MLP respectively). BasisNet handles basis invariance
in higher-dimensional eigenspaces by computing f(V1, . . . , Vl) = ρ

(
[IGNdi

(ViV
T
i )]li=1

)
, where

Vi ∈ Rn×di are orthonormal bases of eigenspaces, the mapping V 7→ V V T produces the orthogonal
projector which is invariant to basis changes V Q for orthogonal Q, and IGNs (Invariant Graph
Networks) process the resulting matrices while maintaining permutation equivariance. Both methods
can incorporate eigenvalues and node features as additional inputs, and the processed eigenvectors
are concatenated with original node features before being fed to downstream prediction models.
Kanatsoulis et al. [36] introduce efficient variants: SignNet-8S and BasisNet-8S utilize the 8 small-
est eigenvalues while maintaining O(N3) computational complexity, with SignNet-8S achieving
reduced O(N) memory complexity compared to the original O(N2). SignNet-8L uses the 8 largest
eigenvalues, achieving both O(N) computational and memory complexity.

Hybrid Models and Miscellanies. GPS [58] proposes a modular Graph Transformer frame-
work that decouples local message-passing from global attention, combining three components:
positional/structural encodings, local aggregation mechanisms, and global attention in a unified
architecture. SAN [41] uses a learned positional encoding based on the Laplacian spectrum, which
is added to node features before processing with a fully-connected Transformer. GNN-AK+ [71]
extends standard MPNNs by replacing star-pattern aggregation with general subgraph pattern aggre-
gation, where each node representation is computed from an induced subgraph encoding rather than
just immediate neighbors. Graph ViT [29] adapts the Vision Transformer architecture, achieving
linear complexity while capturing long-range dependencies and mitigating over-squashing through
global receptive fields. SUN [24] combines subgraph-based methods with neural networks to enhance
expressivity beyond traditional message-passing limitations.

B GNN Architecture Analysis

To verify that our approach generalizes across different GNN architectures, we evaluate SRF with
three additional backbone architectures: Graph Convolutional Networks (GCN) [40], Graph Attention
Networks (GAT)[66], and Graph Attention Networks v2 (GATv2)[10]. We compare against random
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Table 5: Qualitative comparison of SRF to common baselines. Properties summarize typical behavior
discussed in the main text and Appendix. Entries consolidate theoretical and empirical properties
established or referenced throughout the manuscript. †Denotes families of methods; specific variants
may differ in details, but the stated properties reflect their typical guarantees and practical behavior.

Method Unique Representation? Distance Sensitive? Invariant or Equivariant? Mitigates Oversquashing? Alleviates Oversmoothing?

Random Node Features Almost surely No In expectation No No
Spectral Encodings No Yes Yes No No
Subgraph encodings† No No Yes No Unclear
Homomorphism counts† No No Yes No Unclear
PEARL Unclear With high probability Yes No No
SRF (Ours) Almost surely With high probability In expectation Yes Yes

feature injection baselines that maintain the same total number of learnable parameters. Following
Abboud et al. [1], we inject random features, but unlike their approach, we perform reinjection at
each layer to provide a fair comparison with our method’s parameter count. All experiments use the
hyperparameter configurations of the GIN/E models for which results are presented in Section 4.

Table 6 presents the results on REDDIT-B and REDDIT-M datasets. Across all architectures, most
SRF variants consistently outperform random feature baselines, demonstrating that the performance
gains are not dependent on the specific choice of GNN backbone. However, we find that random
features do slightly outperform a single variant, (ERBF,S(8)

AG) on one experiment (REDDIT-B dataset
and GAT backbone). Interestingly, relative performance differences between SRF variants across
architectures, are slightly different than in the trend found in Section 4.2, with (Elinear,S(8)

AG) achieving
slightly stronger comparative performance for some dataset/backbone pairs. Future work should
investigate whether these performance variations arise from architecture-specific hyperparameter
sensitivities or inherent compatibility differences between SRF variants and GNN backbones.

C Experimental Details

C.1 Dataset Descriptions

Here, we describe properties of the real world graph datasetrs used in our experiments. All datasets
are used in accordance with their respective licenses and terms of use.

Reddit-B and Reddit-M. The Reddit datasets [69] consist of graph classification tasks where each
graph represents an online discussion thread. Nodes correspond to users and edges indicate response
relationships between users’ comments. Reddit-B contains 2,000 graphs across 2 classes with an
average of 429.6 nodes per graph, where the task is to classify discussion threads as belonging to
question/answer-based communities versus discussion-based communities. Reddit-M contains 5,000
graphs across 5 classes with an average of 508.5 nodes per graph, where the task is to predict which
specific subreddit a discussion thread belongs to.

DrugOOD. The DrugOOD dataset [33] evaluates models on out-of-distribution generalization for
drug-target binding affinity prediction. The dataset focuses on domain shifts arising from different
bioassays (Assay), molecular scaffolds (Scaffold), and molecular sizes (Size), testing the ability to
generalize to unseen experimental conditions, molecular structures, and compound sizes respectively.
Each sample consists of paired protein-compound data with binary classification labels indicating
binding activity.

Peptides-struct. The Peptides-struct dataset [22] from the Long Range Graph Benchmark com-
prises over 15,000 molecular graphs with more than 2 million nodes total, where individual graphs
range from 8 to 444 nodes. The dataset involves multi-label regression on 3D structural properties of
peptides, including inertia, length, sphericity, and geometric fit measures. Graphs are constructed
with heavy atoms as nodes and chemical bonds as edges, requiring models to capture long-range
interactions without explicit 3D coordinate information.
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Table 6: Performance (Accuracy %) comparison of SRF variants across different GNN architectures
on Reddit datasets. Random feature injection is a parameter-matched baseline with reinjection at
each layer.

Architecture Method REDDIT-M REDDIT-B

GCN

Random Features 53.46 ± 1.00 91.60 ± 1.04
(Elinear,S(8)

AG) 58.04 ± 1.00 93.30 ± 0.72
(EL,S(8)

AG) 57.20 ± 0.90 93.30 ± 0.72
(ERBF,S(8)

AG) 58.08 ± 0.89 93.05 ± 0.16

GAT

Random Features 47.75 ± 0.84 86.55 ± 1.89
(Elinear,S(8)

AG) 51.40 ± 1.04 89.05 ± 1.17
(EL,S(8)

AG) 49.64 ± 0.96 88.15 ± 1.43
(ERBF,S(8)

AG) 49.72 ± 1.02 86.15 ± 1.43

GATv2

Random Features 46.88 ± 0.89 84.2 ± 0.76
(Elinear,S(8)

AG) 52.04 ± 0.56 87.4 ± 0.74
(EL,S(8)

AG) 48.76 ± 0.89 87.6 ± 0.42
(ERBF,S(8)

AG) 48.40 ± 1.27 86.7 ± 1.30

C.2 Training Details and Hyperparameter Search Procedure

All experiments use SRF with parameters k = 8 and search over the SRF hyperparameter D · k ∈
{16, 32, 64, 128, 256} (See Section 3). Hyperparameter optimization is conducted using Weights and
Biases across all datasets. The Adam optimizer is used throughout all experiments.

Reddit Datasets. Following standard practice [36], we employ 10-fold cross-validation and report
results for the best epoch across 330 training epochs. We report mean and standard deviation across
folds. We use CrossEntropy loss with sum pooling. The hyperparameter grid search includes:
number of layers ∈ {3, 4, 5, 6, 7, 8}, hidden dimensions ∈ {32, 64, 128, 256, 512}, batch size ∈
{16, 32, 64, 128}, and learning rate ∈ [10−5, 10−2].

DrugOOD. We follow the experimental setup from [36], training for 150 epochs and report-
ing results on the out-of-distribution test set using L1 loss. The hyperparameter search includes:
number of layers ∈ {3, 4, 5, 6, 7}, batch size ∈ {16, 32, 64, 128}, learning rate ∈ [10−5, 10−2],
layer normalization ∈ {true, false}, batch normalization ∈ {true, false}, and hidden dimensions
∈ {32, 64, 80, 90, 100, 110}.

Peptides-struct. Models are trained for 500 epochs using L1 loss with residual connections.
The hyperparameter search includes: number of layers ∈ {4, 5, 6, 7, 8, 9}, hidden dimensions
∈ {70, 95, 105, 135, 150}, batch size ∈ {10, 25, 50, 75}, learning rate ∈ [10−5, 10−2], layer nor-
malization ∈ {true, false}, and batch normalization ∈ {true, false}. We additionally include the
hyperparameters used by PEARL [36] in their evaluation, as we combine the methods (Section 4).
Results are reported for Elinear sketch variant. Error bars as reported by Kanatsoulis et al. [36] are
±0.001 for PEARL-B, PEARL-R, GPS, SUN, and SAN+RWSE; ±0.002 for Graph ViT; ±0.004 for
SAN+LapPE; and 0.00 for GNN-AK+. The error bars for our variants are ±0.004.

C.3 Hardware and Software Tools

Our graph processing and learning experiments utilize the open-source PyTorch Geometric library as
the primary framework, with NetworkX serving as a supplementary tool for graph operations. To
ensure reproducibility and accurate runtime evaluation, we include a catalog of all software depen-
dencies and their specific versions in the Supplementary material. An anonymized implementation
of our codebase is also made available in the Supplementary material. All performance evaluations
were conducted using an AMD EPYC 7713 64-Core Processor running Red Hat Enterprise Linux 9.3

20

https://wandb.ai/site/
https://wandb.ai/site/
https://pytorch-geometric.readthedocs.io
https://networkx.org


and a NVIDIA DGX A100 GPUs (80GB memory). At times during experimentation, a cluster of 8
such GPUs were used to run parallel experiments.

C.4 Limitations

While SRF provides a principled and efficient mechanism for enhancing GNNs with global, feature-
based information, it also has several limitations. First, its effectiveness relies on the presence of
informative node features; in domains where features are sparse, noisy, or absent, performance gains
may be limited. Second, as SRF relies on randomized projections, its properties hold in expectation;
in practice, this introduces variance across runs, although our empirical results indicate this effect
is negligible. Third, SRF is inherently topology-agnostic and may fail to capture structural signals
that positional encodings or spectral methods explicitly model, but as noted, SRF can be used to
complement these approaches. Finally, SRF introduces modest computational overhead compared to
a vanilla GNN, though it is much more efficient than spectral methods.

D Analysis of SRF Embedding Dimension and Projection Count
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Figure 4: Hyperparameter sensitivity analysis on REDDIT-M using (Elinear, S
(k)
AG). (a) Performance

(accuracy %) vs. projection count k with D = 64 fixed. (b) Performance (accuracy %) vs. total
sketch dimension k ·D with k = 8 fixed.

The SRF framework introduces two hyperparameters that control the quality and computational cost
of the sketched embeddings: embedding dimension D and projection count k 3. Understanding the
sensitivity of SRF performance to these parameters is helpful for practical deployment.

The embedding dimension D governs the fidelity of the underlying kernel approximation as estab-
lished in the main manuscript. Larger D provides more accurate kernel estimates but increases
computational overhead. The projection count k determines the rank approximation of the random
projection, with higher k potentially improving the quality of cross-node information encoding at the
cost of increased overhead.

In this Appendix, we evaluate the impact of these hyperparameters with a simple case-study experi-
ment. To isolate the effect of projection count k, we fix D = 64 and vary k ∈ {1, 2, 4, 8, 16, 32, 64}.
To assess the impact of embedding dimension D while controlling for total sketch dimensionality,
we fix the total sketched feature size k ·D ∈ {8, 16, 32, 64, 128} and set k = 8, allowing D to vary
accordingly.

Our hyperparameter sensitivity results are presented in Figure 4 for the REDDIT-M dataset using
operator (Elinear, S

(k)
AG). Due to computational limitations, we focus the analysis on this single

dataset-operator combination.

Projection Count Analysis (Figure 4a). The results demonstrate a performance trade-off when
varying the projection count k and maintaining fixed total sketch dimensionality. Performance peaks
at k = 4 and subsequently declines as k increases. This pattern is likely due to an underlying trade-off
between the number of independent projections and the quality of said individual projections: with
fixed D = 64, increasing k provides more diverse cross-node information but at the cost of lower-
dimensional kernel feature representations. The decline in performance at high k values suggests
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that the degradation in kernel approximation quality eventually outweighs the benefits of additional
projections.

SRF Dimension Analysis (Figure 4b). When varying the total sketch dimension k ·D with fixed
k = 8, we observe a modest performance increase from k · D = 8 to k · D = 64, followed by
diminishing returns at higher dimensions. However, the substantial variance across runs suggest these
differences may not be statistically significant. The performance decline at k ·D = 128 indicates that
excessive sketch dimensionality may lead to overfitting on this moderately-sized dataset. Future work
should investigate scaling properties more thoroughly on larger datasets where overfitting concerns
are mitigated.

Practical Guidance on Hyperparameter Tuning. Based on our empirical study of SRF hyperpa-
rameters and the complexity analysis, we provide the following practical guidance for selecting SRF
configurations. For kernel selection, we recommend RBF embeddings ERBF when computational
constraints prevent extensive kernel sweeps. The projection count k typically exhibits an inverted-U
effect on performance: accuracy improves up to a point before declining; across evaluated datasets we
find k = 4 to be a reasonable default. Finally, increasing the total sketch dimension k ·D improves
performance with linear memory/runtime cost but shows diminishing returns; we suggest k ·D = 64
as a practical starting point, with adjustments based on dataset size and available compute.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our analytical claims are justified in Section 3. Our empirical claims are
demonstrated with experiments in Section 4.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are explicitly discussed in Appendix C.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All propositions and accompanying proofs (Section 3) clearly state assump-
tions, are numbered, and cross referenced in the text.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our method clearly and with detail in Section 3, including with
an algorithm block (Algorithm 1). Our experiments (Section 4) also are described in detail,
with additional details to facilitate reproducibility in Appendix C. Finally, we release open
source code which is linked in the main manuscript.

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All experiments were conducted on existing and publicly available datasets,
with detailed descriptions in Appendix C. A link to our open source code is also available in
the main manuscript.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training and test details necessary to understand the results are provided in
Appendix C.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Relevant experiments report error bars, either in Section 4 or in Appendix C.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about computer resources used for experiments are in Appendix
C.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms to the NeurIPS Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our work contributes to foundational research in machine learning and is not
tied to particular applications. Thus, we follow the guidelines below and do not explicitly
discuss societal impacts.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
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out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not release new datasets or sensitive models.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators of assets, including code, data, and models, are credited via citation
in the manuscript and licenses and terms are discussed for appropriate assets (e.g. datasets)
in Appendix C.

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All pertinent details of the models and code are described in Section 3,
Appendices A, and C, and the instructions in our open source code repository.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
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Justification: Our work does not involve LLMs.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.
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