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Abstract

Large Language Models (LLMs) play pow-
erful, black-box readers in the retrieve-then-
read pipeline, making remarkable progress
in knowledge-intensive tasks. This work in-
troduces a new framework, Rewrite-Retrieve-
Read instead of the previous retrieve-then-read
for the retrieval-augmented LLMs from the per-
spective of the query rewriting. Unlike prior
studies focusing on adapting either the retriever
or the reader, our approach pays attention to
the adaptation of the search query itself, for
there is inevitably a gap between the input text
and the needed knowledge in retrieval. We
first prompt an LLM to generate the query,
then use a web search engine to retrieve con-
texts. Furthermore, to better align the query
to the frozen modules, we propose a trainable
scheme for our pipeline. A small language
model is adopted as a trainable rewriter to cater
to the black-box LLM reader. The rewriter is
trained using the feedback of the LLM reader
by reinforcement learning. Evaluation is con-
ducted on downstream tasks, open-domain QA
and multiple-choice QA. Experiments results
show consistent performance improvement, in-
dicating that our framework is proven effective
and scalable, and brings a new framework for
retrieval-augmented LLM 1.

1 Introduction

Large Language Models (LLMs) have shown re-
markable abilities for human language processing
and extraordinary scalability and adaptability in
few- or zero-shot settings.(Ouyang et al., 2022;
Brown et al., 2020; Chowdhery et al., 2022). How-
ever, the training process depends on large-scale
high-quality corpora but without the perception
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of the real world. Thus, LLMs still have to face
the issue of hallucination (Yao et al., 2023; Bang
et al., 2023) and temporal misalignment (Röttger
and Pierrehumbert, 2021; Luu et al., 2022; Jang
et al., 2022). This affects the reliability of LLMs
and hinders wider practical application, because
the consistency between the LLM responses with
the real world needs further validation. Exist-
ing work has proved that incorporating external
knowledge (i.e., non-parametric knowledge) with
internal knowledge (i.e., parametric knowledge)
can effectively alleviate hallucination, especially
for knowledge-intensive tasks. In fact, retrieval-
augmented LLMs have been shown so effective
that they have been regarded as a standard solu-
tion to alleviate the factuality drawbacks in naive
LLM generations. Retrieval augmentation is ap-
plied to select relative passages as external contexts
for the language model, which is retrieve-then-read
framework (Lewis et al., 2020b; Karpukhin et al.,
2020; Izacard et al., 2022). Take the open-domain
Question-Answering task (open-domain QA) as
an example, a retriever first searches for related
documents for a question. Then the LLM receives
the question and the documents, then predicts an
answer.

As most LLMs are only accessible through infer-
ence APIs, they play the part of black-box frozen
readers in the pipeline. This makes previous re-
trieval augmentation methods that require complete
access (Lewis et al., 2020b; Guu et al., 2020; Izac-
ard et al., 2022) no longer feasible. Recent studies
on retrieval-augmented language models lean more
on the LLM-oriented adaptation. An idea is to train
a dense retrieval model to cater to the frozen lan-
guage model (Shi et al., 2023). By using feedback
from the LLM as a training objective, the retrieval
model is tuned for better LLM input contexts. An-
other research line focuses on the design of inter-
actions between the retriever and the reader (Yao
et al., 2023; Khattab et al., 2022), where both the



retriever and the reader are usually frozen. The idea
is to trigger the emergent ability through carefully
crafted prompts or a sophisticated prompt pipeline.
Multiple interactions with external knowledge al-
low the LLM to approach the correct answer step
by step.

However, there are still problems remaining to
be solved. Existing approaches overlook the adap-
tation of the query, i.e., the input of the retrieve-
then-read pipeline. The retrieval query is either
original from datasets or directly determined by the
black-box generation, thus is always fixed. How-
ever, there is inevitably a gap between the input
text and the knowledge that is really needed to
query. This limits performance and places a burden
on retrieval capability enhancement and prompt
engineering.

In consideration of this issue, this paper pro-
poses Rewrite-Retrieve-Read, a new framework for
retrieval augmentation, which can be further tuned
for adapting to LLMs. In front of the retriever, a
step of rewriting the input is added, filling the gap
between the given input and retrieval need, as is
shown in Figure 1. We adopt the off-the-shelf tool,
an internet search engine, as the retriever, which
avoids the maintenance of the search index and
can access up-to-date knowledge (Lazaridou et al.,
2022). Different from previous studies (Khattab
et al., 2022; Yao et al., 2023) that require the mem-
ory of multiple interaction rounds between the re-
triever and the LLM for each sample, the motiva-
tion of our rewriting step is to clarify the retrieval
need from the input text.

We also propose a trainable scheme for our
rewrite-retrieve-read framework (Figure 1 (c)).
The black-box retriever and the reader form a
frozen system. To further smooth the steps of
our pipeline, we apply a small, trainable language
model to perform the rewriting step, denoted as the
rewriter. The rewriter is trained by reinforcement
learning using the LLM performance as a reward,
learning to adapt the retrieval query to improve the
reader on downstream tasks.

Our proposed methods are evaluated on
knowledge-intensive downstream tasks including
open-domain QA (HotpoQA (Yang et al., 2018),
AmbigNQ (Min et al., 2020), PopQA (Mallen
et al., 2022)) and multiple choice QA (MMLU
(Hendrycks et al., 2021)). The experiments are
implemented on T5-large (Raffel et al., 2020) as
the rewriter, ChatGPT (Ouyang et al., 2022) and

Vicuna-13B (Chiang et al., 2023) as the LLM
reader. The results show that query rewriting con-
sistently improves the retrieve-augmented LLM
performance. The results also indicate that the
smaller language model can be competent for query
rewriting.

To sum up, our proposed novel retrieval-
augmentation method, rewrite-retrieve-read is the
first framework where the input text is adapted for
the frozen retriever and LLM reader. We introduce
a tuneable scheme with a small, trainable model,
achieving performance gains with less resource
consumption.

2 Related Work

2.1 Retrieval Augmentation

Language models require external knowledge to al-
leviate the factuality drawbacks. Retrieval augmen-
tation has been regarded as the standard effective
solution. With a retrieval module, related passages
are provided to the language model as the context
of the original input. Thus factual information like
common sense or real-time news helps with output
prediction through contextualized reading compre-
hension.

Earlier studies use sparse retriever (Chen et al.,
2017) or dense retriever (Karpukhin et al., 2020)
in front of a pre-trained language model (PrLM).
The neural retriever and reader are both PrLMs
of trainable size like BERT (Devlin et al., 2019)
or BART (Lewis et al., 2020a). Hence, the whole
retrieve-then-reader framework is a tuneable end-
to-end system, where the retrieved contexts can
be regarded as the intermediate results (Karpukhin
et al., 2020; Lewis et al., 2020b). Approaches to
smooth the two-step framework are proposed to op-
timize the retrieval and the reading comprehension
(Sachan et al., 2021; Lee et al., 2022; Jiang et al.,
2022). More recently, retrieval remains a powerful
enhancement as the size of models and data scales
rapidly (Mallen et al., 2022; Shi et al., 2023; Brown
et al., 2020). On the other hand, retrieval enhance-
ment can compensate for the shortfall in parameter
size, compared to large-scale language models. For
example, by jointly training the retriever and the
reader, Atlas (Izacard et al., 2022) shows few-shot
performance on par with 540B PalM (Chowdhery
et al., 2022) but be of 50× smaller size.
The Internet as a knowledge base More related
to our work, the search engine can assume the role
of the retriever and use the Internet as the source of
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Figure 1: Overview of our proposed pipeline. From left to right, we show (a) standard retrieve-then-read method,
(b) LLM as a query rewriter for our rewrite-retrieve-read pipeline, and (c) our pipeline with a trainable rewriter.

external knowledge. Komeili et al. (2022) use an
internet search for relevant information based on
the dialogue history to perform dialogue response
generation. SeeKeR (Shuster et al., 2022) use a
single Transformer to iteratively perform search
query generation, then knowledge extraction for
dialogue generation and sentence completion. For
large-scale models, web search still shows effec-
tive for knowledge augmentation (Lazaridou et al.,
2022), fact-checking (Menick et al., 2022), and
LLM agent enhancement (Yao et al., 2023).

2.2 Cooperation with Black-box LLMs

Large Language Models, such as ChatGPT
(Ouyang et al., 2022), Codex (Chen et al., 2021),
PaLM (Chowdhery et al., 2022), emerge impres-
sive natural language processing ability as well as
remarkable scalability. This leads to a tendency
to embrace LLMs on a wide range of NLP tasks.
However, LLMs are only accessible as a black box
in most cases, which is because (i) Some like Chat-
GPT are not open-source and kept private; (ii) The
large parameter scale requires computational re-
sources that are not always affordable to users. This
constraint means nothing is available except input
and output texts.

Existing studies have proved that LLMs’ abili-
ties can be better leveraged by carefully designed
interaction methods. GenRead (Yu et al., 2023)
prompts an LLM to generate context instead of
deploying a retriever, showing that LLMs can re-
trieve internal knowledge by prompting. ReAct

(Yao et al., 2023) and Self-Ask (Press et al., 2022)
combines the Chain-of-Thought (CoT) (Wei et al.,
2022; Wang et al., 2022) and inter-actions with web
APIs. Only relying on prompt construction, Re-
Act provides novel baselines for interactive tasks.
Demonstrate–Search–Predict (DSP) (Khattab et al.,
2022) defines a sophisticated pipeline between an
LLM and a retriever. Unlike ReAct, DSP integrates
prompts for demonstration bootstrap besides multi-
hop breakdown and retrieval.

Despite the promising performance in the zero or
few-shot setting, the behavior of LLMs sometimes
needs adjustments. A feasible approach is to ap-
pend trainable small models in front of or after the
LLM. The small models, as a part of the parameters
of the system, can be fine-tuned for optimization.
RePlug (Shi et al., 2023) is proposed to fine-tune a
dense retriever for the frozen LLM in the retrieve-
then-read pipeline. The retriever is trained under
the LLM’s supervision to retrieve documents that
are suitable for the LLM. With the same purpose,
Directional Stimulus Prompting (Li et al., 2023)
deploys a small model to provide the LLM with
stimulus (e.g., keywords for summarization, or di-
alogue actions for response generation), which is
updated according to the LLM reward.

Different from the inspiring work mentioned
above, our proposed pipeline contains a query
rewriting step in front of the retrieve-then-read
module. We further propose a trainable scheme
with a small rewriting model, which is a novel
enhancement for retrieval-augmented LLM by re-



constructing the search query.

3 Methodology

We present Rewrite-Retrieve-Read, a pipeline that
improves the retrieval-augmented LLM from the
perspective of query rewriting. Figure 1 shows an
overview. This section first introduces the pipeline
framework in section 3.1, then the trainable scheme
in section 3.2.

3.1 Rewrite-Retrieve-Read
A task with retrieval augmentation can be de-
noted as follows. Given a dataset of a knowledge-
intensive task (e.g., open-domain QA), D =
{(x, y)i}, i = 0, 1, 2, . . . , N , x (e.g., a question)
is the input to the pipeline, y is the expected output
(e.g., the correct answer). Our pipeline consists of
three steps. (i) Query rewrite: generate a query x̃
for required knowledge based on the original input
x. (ii) Retrieve: search for related context, doc. (iii)
Read: comprehend the input along with contexts
[doc, x] and predict the output ŷ.

A straightforward but effective method is to ask
an LLM to rewrite queries to search for informa-
tion that is potentially needed. We use a few-shot
prompt to encourage the LLM to think, and the
output can be none, one or more queries to search.

3.2 Trainable Scheme
Besides, total reliance on a frozen LLM has shown
some drawbacks. Reasoning errors or invalid
search hinders the performance (Yao et al., 2023;
BehnamGhader et al., 2022). On the other hand,
retrieved knowledge may sometimes mislead and
compromise the language model (Mallen et al.,
2022). To better align to the frozen modules, it is
feasible to add a trainable model and adapt it by
taking the LLM reader feedback as a reward.

Based on our framework, we further propose to
utilize a trainable small language model to take
over the rewriting step, as is shown in the right
part of Figure 1. The trainable model is initial-
ized with the pre-trained T5-large (770M) (Raffel
et al., 2020), denoted as trainable rewriter, Gθ. The
rewriter is first trained on pseudo data to warm up
(§3.2.1), then continually trained by reinforcement
learning (§3.2.2).

3.2.1 Rewriter Warm-up
The task, query rewriting, is quite different from
the pre-training objective of sequence-to-sequence
generative models like T5. First, we construct a

pseudo dataset for the query rewriting task. In-
spired by recent distillation methods (Hsieh et al.,
2023; Ho et al., 2022), we prompt the LLM to
rewrite the original questions x in the training set
and collect the generated queries x̃ as pseudo la-
bels. The collected samples are then filtered: Those
that get correct predictions from the LLM reader
are selected into the warm-up dataset, denoted as
DTrain = {(x, x̃)|ŷ = y}. The rewriter Gθ is fine-
tuned on DTrain with the standard log-likelihood
as the training objective, denoted as

Lwarm = −
∑
t

logpθ( ˆ̃xt | x̃<t, x ). (1)

The rewriter model after warm-up shows mod-
est performance, which depends on the pseudo
data quality and rewriter capability. Highly relying
on the human-written prompt line, x̃ can be sub-
optimal. The relatively small scale of the rewriter
size is also a limitation of the performance after the
warm-up. Then we turn to reinforcement learning
to align the rewriter to the following retriever and
LLM reader.

3.2.2 Reinforcement Learning

To further fine-tune the rewriter to cater to the LLM
reader, we adopt a policy gradient reinforcement
learning framework.
Task Formulation In the context of reinforce-
ment learning, the rewriter optimization is for-
mulated as a Markov Decision Process 5-tuple
⟨S,A, P,R, γ⟩. (i) The state space S is a finite set
limited by the vocabulary and the sequence length.
(ii) The action space A is equals to the vocabulary.
(iii) The transition probability P is determined by
the policy network, which is the rewriter model
Gθ. (iv) The reward function R gives a reward
value that depends on the current state. The pol-
icy gradient is derived from rewards, used as the
training objective. (v) γ denotes the discount fac-
tor. More specifically, the rewriter Gθ after the
warm-up is the initial policy model π0. At each
step t, the action at is to generate the next token
ˆ̃xt based on the observation of the present state,
st = [x, ˆ̃x<t]. When the generation is stopped by
the End-Of-Sentence token, one episode is ended.
After finishing the retrieval and reading, a reward
is computed by evaluating the final output, i.e., a
score for the LLM reader prediction.
Policy Optimization We adopt Proximal Policy
Optimization (PPO) (Schulman et al., 2017), fol-
lowing (Ramamurthy et al., 2022). Maximization



of the expectation of the reward R is formulated as

max
θ

Eˆ̃x∼pθ(·|x)[R(x, ˆ̃x)],

max
θ

E(st,at)∼πθ′
[min{kt,θAθ′ (st, at) ;

clip (kt,θ, 1− ε, 1 + ε)Aθ′ (st, at)}],

kt,θ =
pθ (at | st)
pθ′ (at | st)

,

(2)

where θ′ is the temporarily fixed policy for sam-
pling and θ is updated. A denotes the advantage
function, which is formulated based on the estima-
tion of value network Vϕ. The value network Vϕ is
initialized from the policy network π0. The formu-
lation follows Generalized Advantage Estimation
(GAE) (Schulman et al., 2015).

δt = R (st, at) + Vϕ (st+1)− Vϕ (st) ,

Âθ
t (st, at) =

∞∑
t′=0

λt′δt+t′ ,
(3)

where λ is the bias-variance trade-off parameter.
The reward function R reflects the quality of the

generated queries, which needs to be consistent
with the final evaluation of the task. ˆ̃x is fed to the
retriever and the reader for a final prediction ŷ. A
part of the reward function is the measures of ŷ
compared to the golden label y (e.g., exact match
and F1 of the predicted answers), denoted as Rlm.
Besides, a KL-divergence regularization is added
to prevent the model from deviating too far from
the initialization (Ramamurthy et al., 2022; Ziegler
et al., 2019).

R (st, at) = Rlm(ˆ̃x, y)− βKL (πθ∥π0) . (4)

The final loss function is composed of policy loss
and value loss.

Lθ = − 1

|S|T
∑
τ∈S

T∑
t=0

min(kt,θA
θ′ , clipAθ′),

Lϕ =
1

|S|T
∑
τ∈S

T∑
t=0

(Vϕ (st)−Rt)
2 ,

Lppo = Lθ + λvLϕ.

(5)

Here, S denotes the sampled set, and T is for step
numbers.

4 Implementation

Rewriter For the frozen pipeline in §3.1, we
prompt an LLM to rewrite the query with few-shot

in-context learning (Brown et al., 2020; Min et al.,
2022). Our prompt follows the formulation of [in-
struction, demonstrations, input], where the input
is x. The instruction is straightforward and demon-
strations are 1-3 random examples from training
sets and are kept constant across all runs, mainly
for the task-specific output format illustration, i.e.,
a short phrase as an answer for HotpotQA, and an
option as an answer for MMLU. For the training
scheme in §3.2, we fine-tuning a T5 as the rewriter.
Retriever We use the Bing search engine as the
retriever. It requires no candidate index construc-
tion like a dense retriever, nor candidates like a
textbook. But it allows for a wide knowledge scope
and up-to-time factuality. With Bing API, the re-
trieval is performed in two approaches. (i) For all
retrieved web pages, we concatenate the snippets
that are related sentences selected by Bing. This
method is similar to using a search engine in a
browser, input a query and press Enter, then col-
lect the texts shown on the search result page. (ii)
For retrieved web pages, we request the URLs and
parser to get all the texts. This is similar to clicking
on items on the search result page. Then we use
BM25 to keep those with higher relevance scores
with the query, reducing the document length.
Reader The reader is a frozen LLM, where we
adopt ChatGPT (gpt-3.5-turbo) and Vicuna-13B.
It performs reading comprehension and prediction
with few-shot in-context learning. In our prompt,
following the brief instruction and the demonstra-
tions, the input is x or [doc, ˆ̃x] with retrieval aug-
mentation.

It has been proved that both the phrasing of
prompt lines (Zhang et al., 2023a) and the selection
of demonstrations show effects on the in-context
learning performance (Su et al., 2022; Zhang et al.,
2023b). As it is not the focus of this work, we pay
no more attention to prompt editing.

5 Experiments

5.1 Task Settings
5.1.1 Open-domain QA
Three open-domain QA datasets are used for evalu-
ation. (i) HotPotQA (Yang et al., 2018) consists of
complex questions that require multi-hop reason-
ing. We evaluate the full test set. (ii) AmbigNQ
(Min et al., 2020) provides a disambiguated version
of Natural Questions (NQ) (Kwiatkowski et al.,
2019). For ambiguous questions in NQ, minimal
constraints are added to break it into several similar



Direct prompt

Answer the question in the following format, end the answer with ’**’. {demonstration} Question: {x} Answer:

Reader prompt in retrieval-augment pipelines

Answer the question in the following format, end the answer with ’**’. {demonstration} Question: {doc} {x}
Answer:

Prompts for LLM as a frozen rewriter

Open-domain QA: Think step by step to answer this question, and provide search engine queries for knowledge
that you need. Split the queries with ’;’ and end the queries with ’**’. {demonstration} Question: {x} Answer:
Multiple choice QA: Provide a better search query for web search engine to answer the given question, end the
queries with ’**’. {demonstration} Question: {x} Answer:

Table 1: Prompt lines used for the LLMs.

but specific questions. The first 1000 samples are
evaluated in the test set. (iii) PopQA (Mallen et al.,
2022) includes long-tail distributions as it contains
more low-popularity knowledge than other popular
QA tasks. We split the dataset into 13k for training
and 714 for testing.

Open-domain QA benchmarks are sets of
question-answer pairs denoted as {(q, a)i}. We use
ChatGPT for both the reader and the frozen rewriter.
The evaluation metrics are Exact Match (EM ) and
F1 scores. For the reward function in RL, we use
an indicator to reward if the retrieved content hits
the answer and penalize if misses the answer, de-
noted as Hit. The total reward is a weighted sum
of EM, F1, and Hit.

Hit =

{
1 a in doc,

−1 else

Rlm = EM + λfF1 + λhHit.

(6)

5.1.2 Multiple-choice QA
For multiple-choice QA, our evaluation is con-
ducted on Massive Multi-task Language Under-
standing (MMLU) (Hendrycks et al., 2021), an
exam question dataset including 4 categories: Hu-
manities, STEM, Social Sciences, and Other. Each
category is split into 80% for the training set and
20% for the test set.

Multiple-choice QA can be formulated as
{(q′, a)i}, where q′ = [q, c0, c1, c2, c3]. c denotes
the options, generally there are four for each ques-
tion. The retrieved documents that are included
in the officially provided contaminated lists are
ignored. The questions with options are rewritten
into search queries. The answer is one option. EM
is reported as metrics and used for the reward.

Rlm = EM. (7)

We use ChatGPT as a frozen rewriter and the reader.

We also use Vicuna-13B as the reader for evalua-
tion due to the rate limit issue of ChatGPT. More
information on datasets and training setup are pre-
sented in the appendix.

5.2 Baselines

The following settings are implemented to eval-
uate and support our methods. (i) Direct: The
standard in-context learning without any augmen-
tations. (ii) Retrieve-then-read: The standard
retrieval-augmented method. Retrieved documents
are concatenated with the question. (iii) LLM
as a frozen rewriter: As is introduced in §3.1,
we prompt a frozen LLM to reason and generate
queries by few-shot in-context learning. (iv) Train-
able rewriter: Applying the fine-tuned rewriter,
the output queries are used by the retriever and the
reader. Table 1 presents prompt line forms. Please
note that the prompts for prediction are kept the
same for each task.

5.3 Results

Experimental results on open-domain QA are re-
ported in Table 2. For the three datasets, query
rewriting consistently brings performance gain
with both a frozen rewriter and a trainable rewriter.
On AmbigNQ and PopQA, the standard retrieval
augments the reader, indicating useful external
knowledge is retrieved. On HotpotQA, the stan-
dard retrieval hurts the reader. This shows that
using complex questions as queries cannot com-
pensate for the parametric knowledge, but bring
noises instead (Mallen et al., 2022). This suggests
that multi-hop questions are not suitable queries
for the web search engine. The scores increase by
adding the rewriting step. On PopQA, our trainable
rewriter surpasses standard retrieval while being
inferior to the LLM rewriter. This indicates that the



distillation of query rewriting is sub-optimal.
The scores on multiple-choice QA are presented

in Table 3. With ChatGPT as a reader, it can be ob-
served that query rewriting improves the scores in
most of the settings, except for the social sciences
category. With Vicuna as a reader, our method
achieves more gains on the four categories com-
pared to ChatGPT. This agrees with the intuition
that a more powerful reader has more parametric
memories, thus more difficult to compensate with
external knowledge.

Model EM F1

HotpotQA
Direct 32.36 43.05
Retrieve-then-read 30.47 41.34
LLM rewriter 32.80 43.85
Trainable rewriter 34.38 45.97

AmbigNQ
Direct 42.10 53.05
Retrieve-then-read 45.80 58.50
LLM rewriter 46.40 58.74
Trainable rewriter 47.80 60.71

PopQA
Direct 41.94 44.61
Retrieve-then-read 43.20 47.53
LLM rewriter 46.00 49.74
Trainable rewriter 45.72 49.51

Table 2: Metrics of open-domain QA.

MMLU EM

Human. STEM Other Social

ChatGPT
Direct 75.6 58.8 69.0 71.6
Retrieve-then-read 76.7 63.3 70.0 78.2
LLM rewriter 77.0 63.5 72.6 76.4

Vicuna-13B
Direct 39.8 34.9 50.2 46.6
Retrieve-then-read 40.2 39.8 55.2 50.6
LLM rewriter 42.0 41.5 57.1 52.2
Trainable rewriter 43.2 40.9 59.3 51.2

Table 3: Metrics of multiple choice QA.

6 Analysis

6.1 Training Process
The training process includes two stages, warm-up
and reinforcement learning. This section shows
the validation scores of the three open-domain QA
datasets for further analysis. Figure 2 presents
the metric scores through training iterations in the
process of reinforcement learning. As the rewriting
models have been warmed up on the pseudo data
before RL, scores at “0 iteration” denote the ability
acquired from the warm-up training.
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Figure 2: Reinforcement learning validation scores of
(a)HotpotQA, (b)AmbigNQ, and (c)PopQA. The solid
lines show EM (red) and F1 (blue) numbers through
training iterations. The dashed lines are EM scores
of the standard retrieve-then-read method (orange) and
retrieval with an LLM as the rewriter (green).

It can be observed that the curves show upward
trends with some fluctuations on all the datasets. (i)
For multi-hop questions in HotpotQA, the standard
retrieval is relatively weaker. Complex questions
can be not specific search queries and show a larger
gap from rewritten queries, i.e., the green and red
lines. (ii) On AmbigNQ and PopQA, our method
surpasses the baselines after several iterations (3
or 4). This indicates that the RL training stage can
compensate for the insufficiency of the distillation
on the pseudo data during warm-up training. (iii)
In particular, on PopQA, the trainable rewriter re-
mains inferior to the LLM rewriter. This can be
explained as the dataset is constructed for adaptive
retrieval (Mallen et al., 2022), which only uses re-
trieval where it helps to avoid harmful redundant
retrieval. Thus, “None” is a possible query that
means no retrieval. This causes more complex-
ity and uncertainty. LLM rewriter knows better
when the retrieval is needed for itself as a reader,
although the rewriting step is not concatenated as



the input context of the reader.
We calculate the performance of query “None”.

The questions that can be correctly answered with-
out retrieval (i.e., the “Direct” method) are those
samples that need no more context. Comparing this
retrieval-free set with those that are rewritten to
be“None” query, the F1 score of the LLM rewriter
is 71.9% and the T5 rewriter score is 67.1%. If
we consider the questions that can be correctly an-
swered without retrieval but go wrong with retrieval
as the retrieval-free set, the F1 scores are 78.7% for
LLM rewriter and 77.4% for T5.

Model EM F1 Hit ratio

No retrieval 42.10 53.05 –
Upper bound 58.40 69.45 100

Retrieve-then-read
w/ snippet 38.70 50.50 61.1
w/ BM25 45.80 58.50 76.4

LLM rewriter
w/ snippet 39.80 52.64 63.5
w/ BM25 46.40 58.74 77.5

Trainable rewriter
w/ BM252 47.80 60.71 82.2

Table 4: Retrieval analysis on AmbigNQ.

6.2 Retrieval Result

Our proposed method is a pipeline framework, in-
stead of an end-to-end system. The query rewrit-
ing first affects the retrieved context, then the con-
text makes a difference to the output of the reader.
Hence, QA metrics are indirect measurements. We
take a closer look at the retrieved context and the
reader capability through the retrieval metric, hit
ratio. After text normalization, the hit rate is com-
puted to measure whether the retrieved context con-
tains the correct answers.

Table 4 shows the scores on AmbigNQ. The
scores in the second line are computed on a selec-
tion of the samples whose retrieved contexts hit
correct answers (under the standard retrieve-then-
read setting). The scores show the approximate
upper bound ability of the reader with retrieval aug-
mentation, abbreviated as the “upper bound” score.
The effectiveness of retrieval is proved compared
to the no retrieval setting (the first line). For each
retrieval method, two settings are presented: (i)
collecting Bing snippets, (ii) selecting from URLs
by BM25. The metrics show that content selection
with BM25 recalls better documents than snippets,

2Our trainable rewriter is adapted to the retriever using
BM25 during RL training. Using the output queries of the test
set after training, the snippet hit rate is 73.4%.

Example 1: multi-hop question

Q0: The youngest daughter of Lady Mary-Gaye 

       Curzon stars with Douglas Smith and 

       Lucien Laviscount in what 2017 film?

Q1: the youngest daughter of Lady Mary-Gaye

       Curzon; 2017 film stars Douglas Smith 

       and Lucien Laviscount

Q2: Lady Mary-Gaye Curzon youngest daughter

       2017 film with Douglas Smith and Lucien 

       Laviscount

Example 2:

Q1: movie "All Star" 2000

Example 3: multiple choice

Hit Correct

Q0: A car-manufacturing factory is considering 

       a new site for its next plant. Which of the 

       following would community planners be 

       most concerned with before allowing the 

       plant to be built? Options: A. The amount 

       of materials stored in the plant B. The hours

       of operations of the new plant C. The effect 

       the plant will have on the environment D. 

       The work environment for the employees

       at the plant

Q1: What would community planners be most 

       concerned  with before allowing a car-

       manufacturing factory to be built?

Q2: 2000 movie "All Star" song

Q0: What 2000 movie does the song "All Star"

       appear in?

Figure 3: Examples for intuitive illustration. Q0 denotes
original input, Q1 is from the LLM rewriter, and Q2 is
from the trained T5 rewriter. Hit means retriever recall
the answer, while Correct is for the reader output.

while query rewriting makes progress on both set-
tings. We also observed that the improvement in
the hit rate of the retriever is more significant than
the improvement in the reader. This is consistent
with the findings in related search (Mallen et al.,
2022; Liu et al., 2023).

6.3 Case Study

To intuitively show how the query rewriting makes
a difference in the retrieved contexts and prediction
performance, we present examples in Figure 3 to
compare the original questions and the queries. In
example 1, the original question asks for a film that
the youngest daughter of Lady Mary-Gaye Curzon
co-stars with two certain actors. Both query 1 and
query 2 put the keyword film forward, closely fol-
lowing the youngest daughter of Lady Mary-Gaye
Curzon. With both, the actress Charlotte Calthorpe
and her movie information can be retrieved and
the answer is included. The second is an example
where the query from the LLM rewriter failed but



the query from T5 gets the correct answer. The
number 2000 is misunderstood in query 1, while
query 2 keeps 200 movie together, avoiding mean-
ingless retrieval. Example 3 is for multiple choice.
The query simplifies the background and enhances
the keyword community planner. The retrieve con-
texts are mainly about Introduction to Community
Planning where the answer environment appears
several times.

7 Conclusion

This paper introduces the Rewrite-Retrieve-Read
pipeline, where a query rewriting step is added
for the retrieval-augmented LLM. This approach
is applicable for adopting a frozen large language
model as the reader and a real-time web search
engine as the retriever. Further, we propose to ap-
ply a tuneable small language model the rewriter,
which can be trained to cater to the frozen retriever
and reader. The training implementation consists
of two stages, warm-up and reinforcement learn-
ing. Evaluation and analyses on open-domain QA
and multiple-choice QA show the effectiveness
of query rewriting. Our work proposes a novel
retrieval-augmented black-box LLM framework,
proves that the retrieval augmentation can be en-
hanced from the aspect of query rewriting, and
provides a new method for integrating trainable
modules into black-box LLMs.

Limitations

We acknowledge the limitations of this work. (i)
There is still a trade-off between generalization and
specialization among downstream tasks. Adding
a training process, the scalability to direct transfer
is compromised, compared to few-shot in-context
learning. (ii) The research line of LLM agent has
shown impressive performance but relies on mul-
tiple calls to the LLM for each sample (Khattab
et al., 2022; Yao et al., 2023), where the LLM
plays as an agent to flexibly call the retriever multi-
ple times, reads the context in earlier hops, and
generates follow-up questions. Different from
these studies, our motivation is to enhance the one-
turn retriever-then-read framework with a trainable
query rewriter. (iii) Using a web search engine as
the retriever also leads to some limitations. Neu-
ral dense retrievers that are based on professional,
filtered knowledge bases may potentially achieve
better and controllable retrieval. More discussion
is included in the appendix.
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A Warm-up Dataset

For the warm-up training of the tuneable rewriter,
we construct a pseudo dataset for the query rewrit-
ing task. For benchmarks that provide official train-
ing and test splits (HotpotQA and AmbigNQ), we
use the whole training set. For those that have no
official splits (PopQA and MMLU), we randomly
split the full dataset. In detail, PopQA contains 16
types of questions, thus split into 13k for training
and 714 for testing following stratified sampling.
For MMLU, each of the 4 categories is randomly
split into 80% for the training set and 20% for
the test set. Then the training sets of each bench-
mark are used to derive the pseudo dataset for the
query rewriting, i.e., DTrain = {(x, x̃)|ŷ = y}.
We present the statistics of the splits and warm-up
dataset in Table 5.

B Setup Details

For warm-up, we train the T5-large with 3e-5 learn-
ing rate, {16, 20} batch size, for {6,8,12} epochs.
For reinforcement learning, we set the sampling

Task Training Set Warm-up Test Set

HotpotQA 90.4k 37.5k 7.4k
AmbigNQ 19.4k 8.6k 1k
PopQA 13.0k 6.0k 0.7k
Humanities 3.8k 1.5k 0.9k
STEM 2.4k 0.9k 0.6k
Other 2.6k 1.3k 0.6k
Social Science 2.4k 1.3k 0.6k

Table 5: Metrics of multiple choice QA.

steps to 5120, 10 threads, 512 steps for each. After
sampling, the policy network is trained for {2,3,4}
epochs, with learning rate as 2e-6 and batch size
as {8,16}. λf and λh are 1.0. β in Eq. 4 is dy-
namically adapted according to Ramamurthy et al.
(2022); Ziegler et al. (2019),

et = clip

(
KL (π∥π0)−KLtarget

KLtarget
,−0.2, 0.2

)
,

βt+1 = βt (1 + Kβet) ,

where KLtarget is set to 0.2, Kβ is set to 0.1. β0
is initialized to be 0.001. The generation strat-
egy follows the 4-beam search and returns the one
sequence. In the implementation of the BM25-
based retriever, the textboxes from searched URLs
are parsed from HTML code. We compute BM25
scores between the paragraph from each textbox
and the query following the scikit-learn package,
then keep those with higher scores until the re-
served context reaches a max length. In reinforce-
ment learning, the results of AmbigNQ are with
the BM25 method, while others use snippets as
context.

C Web Search: Tool Use

Our proposed pipeline integrates an externally built
web search engine as the retriever module. We
present more discussion on the advantages and dis-
advantages here.

The usage of external tools expands the abil-
ity boundary of language models, compensating
for the parametric knowledge, and grounding the
capabilities of language models to interact with en-
vironments (Qin et al., 2023; Schick et al., 2023).
Recent studies show a trend to leverage plug-and-
play tools like search engines to enhance language
agents (Lazaridou et al., 2022; Menick et al., 2022;
Shuster et al., 2022; Shen et al., 2023). Search
engine APIs are well-developed retrievers, saving
efforts to build and maintain another retriever, like
a Contriever. Accessible to the whole Internet, the
web search retrieves from a wide-range, up-to-date
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knowledge base. The temporal misalignment prob-
lem on a fixed candidate database can be alleviated.

On the other hand, web search APIs are commer-
cial products requiring subscriptions. Also, the vast
amount of knowledge on the web can be difficult
to control. The retrieved context from the Internet
can be occasionally inconsistent, redundant, and
toxic, which hinders the LLM reader.

Beyond retrieval augmentation, in a general
scope, other tools called by LLMs, like code in-
terpreters, online models, and expert applications,
are all similar to search engines, without trainable
parameters to optimize. There could be a gap be-
tween the LM and these tools. This paper proposes
an idea to align them through a trainable small
model.


