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ABSTRACT

Multi-Turn Composed Image Retrieval (MTCIR) addresses a real-world scenario
where users iteratively refine retrieval results by providing additional information
until a target meeting all their requirements is found. Existing methods primar-
ily achieve MTCIR through a “multiple single-turn” paradigm, wherein methods
incorrectly converge on shortcuts that only utilize the most recent turn’s image, ig-
noring attributes from historical turns. Consequently, retrieval failures occur when
modification requests involve historical information. We argue that explicitly in-
corporating historical information into the modified text is crucial to addressing
this issue. To this end, we build a new retrospective-based MTCIR dataset, Fash-
ionMT, wherein modification demands are highly associated with historical turns.
We also propose a Multi-turn Aggregation-Iteration (MAI) model, emphasizing
efficient aggregation of multimodal semantics and optimization of information
propagation in multi-turn retrieval. Specifically, we propose a new Two-stage Se-
mantic Aggregation (TSA) paradigm coupled with a Cyclic Combination Loss
(CCL), achieving improved semantic consistency and modality alignment by pro-
gressively interacting the reference image with its caption and the modified text.
In addition, we design a Multi-turn Iterative Optimization (MIO) mechanism that
dynamically selects representative tokens and reduces redundancy during multi-
turn iterations. Extensive experiments demonstrate that the proposed MAI model
achieves substantial improvements over state-of-the-art methods.

1 INTRODUCTION

Image retrieval remains a longstanding task in computer vision Sain et al. (2023); Levy et al. (2024a),
gaining continuous attention in practical applications such as e-commerce in recent years Jin et al.
(2023); Park et al. (2019). However, relying solely on images may fall short of practical needs, as
users often modify these images better to match their requirements Chen et al. (2020); Guo et al.
(2018). In response, Composed Image Retrieval (CIR) has been introduced to locate target images
by combining reference images and modified text Wen et al. (2023); Shoib et al. (2023). Due to
the interactive nature of retrieval scenario Xu & Sundar (2014); Adhikari et al. (2018), multi-turn
systems can leverage more user feedback, fulfilling user needs better than single-turn systems Ag-
nolucci et al. (2023); Chen et al. (2023a). Therefore, Multi-turn Composed Image Retrieval (MT-
CIR), which aims to retrieve the most suitable target image by allowing users to iteratively select
images and provide modification feedback, as illustrated in Figure 1, has garnered increasing atten-
tion in recent years Guo et al. (2018); Yuan & Lam (2021); Liu et al. (2024b).

Due to the lack of dedicated datasets for the MTCIR task Pal et al. (2023), existing methods typically
construct multi-turn datasets by concatenating single-turn CIR datasets Wu et al. (2021); Guo et al.
(2018), using the target image from the historical turn as the reference image for the next turn.
However, datasets constructed in this manner exhibit the following limitations: (i) Lack of historical
context. Modified text in existing MTCIR datasets lacks image information from historical turns,
resembling “multiple single-turn” retrievals and deviating from real-world scenarios. (ii) Small data
scale. Existing single-turn datasets face challenges due to their limited scale Saito et al. (2023); Feng
et al. (2024); Zhao et al. (2024b). Moreover, this concatenation method further diminishes the size
of multi-turn datasets, lagging behind current trends Chen et al. (2023b); Baldrati et al. (2023).
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I don't like V-neck
design and prefer 
longer sleeves.

Turn

How about this one? Then what about this dress? What about this dress?I want to buy a dress.

I prefer a one-
piece dress, and
lighter in color.

keep first two turns' color
style and I also like to keep
this shoulder design.

Turn

Thanks FashionMAI.
This dress is exactly 
what I want to buy.

Turn Turn

321 4

Retrospective phenomenon

Figure 1: The definition of Multi-Turn Composed Image Retrieval (MTCIR). The retrospective
phenomenon is common in the MTCIR task, wherein a user’s new turn modification request often
involves the attributes of images from historical turns.

The deficiencies outlined in existing MTCIR datasets have hindered the development of methods
in this domain. Existing methods typically employ a “multiple single-turn” paradigm for multi-
turn retrieval. However, this paradigm causes methods to incorrectly converge on shortcuts that
only utilize the most recent turn’s image, neglecting attributes from previous turns. Consequently,
retrieval failures arise when modification requests involve attributes or modifications from previous
images. Additionally, existing methods lack designs to leverage inherent multimodal information in
images Chen et al. (2023b); Li et al. (2024a), and to store multi-turn information effectively.

To address these issues and align with existing MTCIR datasets, we construct a new dataset, Fash-
ionMT, tailored for e-commerce scenarios characterized by typical multi-turn interactions. Fash-
ionMT has the following characteristics: (i) Retrospective-based. It simulates real-world MTCIR
scenarios, where the modified text in each new turn may involve information from historical refer-
ence images, such as preserving certain attributes. This necessitates retrieval algorithms to utilize
multi-turn historical information retrospectively. (ii) Massive and diverse. FashionMT contains 14
times more fashion images and 30 times more categories than MT FashionIQ Yuan & Lam (2021).
Our Modification Generation Framework generates multi-turn transactions nearly 27 times larger
than MT FashionIQ, offering rich multimodal data, including images, text, attributes, etc.

We further propose a multi-turn key information-aware approach, the Multi-turn Aggregation-
Iteration (MAI) model, which focuses on two challenges in MTCIR: (i) multimodal semantics
aggregation and (ii) multi-turn information optimization. Specifically, MAI introduces a new
Two-stage Semantic Aggregation (TSA) paradigm coupled with a Cyclic Combination Loss (CCL).
TSA introduces captions as a transition, progressively aggregating the image with its caption and
then with the modified text. The CCL’s cyclic structure further enhances semantic consistency and
modality alignment. We also provide theoretical insights into the rationale behind introducing cap-
tions for two-stage fusion. Furthermore, we design a parameter-free Multi-turn Iterative Optimiza-
tion (MIO) mechanism that dynamically selects representative tokens with high semantic diversity,
effectively reducing the storage space for historical information tokens.

Our contributions are summarized as follows:

• We build the first dataset specifically designed for multi-turn composed image retrieval, named
FashionMT, characterized by its retrospective-based nature and massive diversity.

• We propose the Multi-turn Aggregation-Iteration (MAI) model, focusing on efficient aggregation
and iterative optimization of multimodal semantics in multi-turn composed image retrieval.

• We provide theoretical insights that our modality fusion approach effectively bridges the modality
and semantic gaps, which informs the design of our loss function.

• Extensive experiments demonstrate that our proposed MAI model obtains substantial improve-
ments and achieves state-of-the-art performance.

2 RELATED WORK

Single-turn Composed Image Retrieval. In existing works on composed image retrieval, the
focus has mainly been on single-turn retrieval Wen et al. (2023); Chen et al. (2024c), which can be
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categorized based on the amount of training data into fully trained on all data Goenka et al. (2022);
Levy et al. (2024b) and zero-shot Karthik et al. (2024); Gu et al. (2023); Chen & Lai (2023) or
few-shot Wu et al. (2023) settings. Currently, composed image retrieval methods can be broadly
categorized into two paradigms Bai et al. (2024): late fusion Chen et al. (2024b); Zhang et al.
(2024) or pseudo-word embedding methods Baldrati et al. (2023); Liu et al. (2024b); Suo et al.
(2024). In the first paradigm type, Baldrati et al. (2022) propose a simple yet effective fusion model,
Combiner, to combine features extracted by the CLIP Radford et al. (2021) model. In the second
paradigm type, Saito et al. (2023) propose an LLAVA-like Liu et al. (2024a) method to convert visual
features into tokens for a text encoder. Bai et al. (2024) propose a method similar to the BLIP-2 Li
et al. (2023) to learn sentence-level prompts, achieving state-of-the-art results. However, the above
methods are limited to single-turn retrieval scenarios and are challenging to apply directly to the
more user-demand-oriented MTCIR tasks.

MTCIR Methods. Several recent methods have emerged in the fusion of visual and textual in-
puts across multiple exchanges of information Zhu et al. (2024); Li et al. (2024b); Hu et al. (2024).
Due to the inherent multi-turn nature of dialogues Zhang et al. (2022); Yu et al. (2019), a com-
mon application scenario is multi-turn dialogue systems Zolkepli et al. (2024); Zheng et al. (2022).
In the prevalent retrieval tasks of the fashion domain, multi-turn retrieval has emerged as a more
comprehensive approach compared to single-turn retrieval, offering enhanced user interaction and
feedback to better cater to user needs Zhang et al. (2019); Agnolucci et al. (2023). There have been
several groundbreaking studies in multi-turn composed image retrieval in recent years. Guo et al.
(2018) propose modeling images and text using CNN networks, capturing sequential information
with RNNs, and employing reinforcement learning for constraint. Yuan & Lam (2021) construct the
first multi-turn composed retrieval dataset based on the single-turn retrieval dataset FashionIQ Wu
et al. (2021). Pal et al. (2023) introduce a memory network to retain historical retrieval information
and further develop a multi-turn retrieval dataset based on the single-turn dataset Shoes Guo et al.
(2018). However, the above methods fail to leverage the multimodal content naturally present in
fashion images, such as captions and titles. Additionally, these methods do not consider optimizing
the storage overhead of multi-turn representations.

Fashion Datasets. In the past few years, a large number of datasets have been proposed for re-
trieval Corbiere et al. (2017); Ge et al. (2019); Rostamzadeh et al. (2018); Han et al. (2017); Zhan
et al. (2021). Due to the inherent inclusion of a vast amount of data and extensive user interactions
in the e-commerce domain, existing fashion datasets exhibit a large scale. The Product1M Zhan
et al. (2021) contains 1,182,083 cosmetic samples. The M5Product Dong et al. (2022) encompasses
6,131,064 samples with 5 modalities. A massive amount of data also contributes to the model acquir-
ing capabilities closer to practical usage Chen et al. (2023b). In the composed image retrieval task,
FashionIQ Wu et al. (2021) and Shoes Guo et al. (2018) represent pioneering works, being more
user-friendly compared to direct image retrieval. However, the MTCIR task still lacks a dedicated
custom dataset. Constructing modifications by concatenating single-turn datasets fails to capture
the historical context crucial for multi-turn scenarios. Our proposed FashionMT offers essential and
timely data support to advance this task.

3 THE FASHIONMT DATASET

Table 1: Comparison with other MTCIR datasets. MT stands for Multi-turn. In a transaction,
there are multiple turns. Length denotes the modified text’s average length. Categories denotes the
number of finest subcategories, while Product type lists the typical product categories.

Datasets # Images # Transactions # Turns # Categories Length Product type

MT FashionIQ
Yuan & Lam 74,381 11,505 26,506 3 10.7 shirt, top-tee, dress

MT Shoes
Pal et al. 15,661 4,097 11,346 10 5.2 boots, sneakers, clogs, etc.

FashionMT
(ours)) 1,067,688 247,911 743,733 95 24.3 shirt, top-tee, dress, shoes, coat,

pants, bag, ornament, etc.

3
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Main Product Categories (12)

Product Subcategories (Top 56)

ShirtsDress Skirts Jacket OrnamentOutdoor

BagsWinter UnderwearTops ShoesPants

Hat: 12360 Parka: 17960Straight: 22020Ring: 14260

Long: 46044 Blazers: 29470Mid length: 26820 Rain: 137900

Jeans: 126340Camisole: 35440 Bag: 13120 Scarf: 36060

Short: 39442 Leather: 28208Knee length: 26166 Sandal: 89740
Cocktail: 25796 Casual: 26540Mini: 24882 Mule: 57560
Casual: 25528 Waist: 22826Maxi: 22346 Loafer: 32900
Formal: 25006 Padded: 17438Backpack: 13540 Bracelet: 27580

Denim: 13528Gowns: 31194 Trunk: 18560 Sweater: 41120

Shorts: 59360Robe: 18200 T-shirts: 38820 Coat: 33720
Bra: 36060 Jumpsuit: 35860Sleeveless: 31194 Sock: 29520
Cardigan: 17840 Wide-leg: 26662Polo: 23758 Tunic: 27500
Chemise: 30060 Leggings: 24216Case: 46760 Tank: 18420
Sunglasses: 13540 Cropped: 22988Belt: 45840 Vest: 18400
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Figure 2: Top categories and distribution in our proposed FashionMT dataset. We have listed 12
main product categories and the top 56 product subcategories to provide a clearer presentation.

3.1 DATA COLLECTIONS AND CONSTRUCTION

Our data primarily originates from two sources: (i) Gathering images and associated text from
existing single-turn composed image retrieval datasets Wu et al. (2021); Guo et al. (2018); Han et al.
(2017). (ii) Crawling images and related text from multiple e-commerce platforms. We clean the
scraped images, including removing damaged, unclear, and non-product images.

Inspired by the manual annotation process of modified text Wu et al. (2021); Liu et al. (2021), we
propose a Modification Generation Framework (MGF) to automate the construction of our dataset
by capturing the distinctions between reference and target image pairs. The framework consists of
the following steps: (i) Image Selection: Selecting N +1 images from a product subcategory for N
turns in a transaction. (ii) Caption Generation: Generating captions for these images using an image
captioning model. (iii) Base Modification Generation: Employing a large language model (LLM)
to describe the differences between image captions from adjacent turns. (iv) Retrospective Modi-
fication Generation: Determining the specific turns requiring retrospective analysis and generating
corresponding modified text based on the intersection of attributes between the most recent image
and images from previous turns.

Specifically, we generate the captions using the prompt: “Question: Describe the product. Answer:”.
For generating base modified text, the prompt is: “The reference depicts {REF}, and the target
depicts {TAR}. Describe the modifications to transform the reference into the target”, where REF
and TAR represent the captions of the reference and target images within a single turn, respectively.

To better align with retrospective needs in real-world scenarios, we have established two scenarios
for generating retrospective-based modified text: rollback and combination. In the rollback setting,
similar to base transaction generation, modifications are generated between a specified reference and
the target by rolling back. An example under this setup is: “Compared to the most recent turn, I
still prefer the item from the second turn. Building on that, I like...”. In the combination setting,
users combine attributes from multiple images in historical turns to formulate modification requests.
An example under this setup would be: “I like ... from the first turn, and ... from the second turn”.
In this setup, the modified text consists of two parts: the initial segment encompasses common at-
tributes earmarked for retention, prefaced by the prompt “Keep the {Attr} in the {ID} turn” where
Attr represents common properties like color, logo, pattern, etc., and ID signifies the turns sharing
commonalities with the target. Meanwhile, the subsequent segment delineates additional modifica-
tion requisites, prefaced by the prompt “the reference images depict REFs, the target depicts TAR.
Describe the distinctiveness of the target:”.
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3.2 DATASET STATISTICS

The data distribution of FashionMT is illustrated in Figure 2. Detailed information and a compari-
son with existing datasets, MT FashionIQ Yuan & Lam (2021) and MT Shoes Pal et al. (2023), are
presented in Table 1. FashionMT significantly surpasses existing datasets in both scale and richness,
featuring 14 times more images than MT FashionIQ and nearly 10 times more categories than MT
Shoes. By leveraging the Modification Generation Framework, FashionMT enables the efficient
construction of high-quality transactions, resulting in a dataset that is 27 times larger than MT Fash-
ionIQ. Additionally, FashionMT provides more detailed modified text, with an average length twice
that of MT FashionIQ. As a dataset tailored specifically for MTCIR task, FashionMT offers more
comprehensive and realistic data support. For more details on our proposed dataset, including setup
explanations and quality control, please refer to Section 7.3.

4 APPROACH

MIO

Modified text embedding

Turn 1 Turn N ( Target )
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Figure 3: The architecture of the MAI model. For each turn, images, captions, and modified text
are progressively aggregated through BSA and MSA, with MIO preserving core information across
turns, and CCL constraining the training process. For simplicity, we illustrate two retrieval turns.

4.1 PROBLEM FORMULATION

In our task setup, we provide the previous N−1 turns’ multimodal data, which consists of predefined
reference images with captions and modified text, aiming to retrieve the most suitable target image
based on the final modified text. We represent the image patch embedding, caption embedding,
and modified text embedding of the n-th turn as vn ∈ V , cn ∈ C, and mn ∈ M respectively.
Furthermore, we distinguish among the reference image embedding, reference caption embedding,
target image embedding, and target caption embedding as vrn, crn, vtn, and ctn respectively.

4.2 MULTI-TURN AGGREGATION-ITERATION (MAI) MODEL

The architecture of MAI is depicted in Figure 3. We will introduce Bimodal Semantic Aggregation
(BSA) and Modification Semantic Aggregation (MSA), which are part of the Two-stage Semantic
Aggregation (TSA), along with the Multi-turn Iterative Optimization (MIO).

Bimodal Semantic Aggregation (BSA). In the n-th turn, we first conduct a lexical analysis on
the modified text to determine if there is a rollback operation. We established a template for auto-
matically generating modified text with Rollback instructions to facilitate benchmark construction.
The template includes phrases such as: “Compared to this one I prefer the {}, and”, “I would
rather choose the {}, and”, where {} denotes rollback turn descriptions, such as “Turn 2: White
off-shoulder lace short sleeve.” Rollback operations are executed when modified text match the tem-
plate. If so, the reference image is designated as the image from the specified rollback turn. If not,

5
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the default reference image for the n-th turn is adopted. We extract visual patch embeddings vn
of images using a frozen visual encoder. The effectiveness of the Q-Former architecture Li et al.
(2023) in integrating vision-text embeddings has been validated in prior studies Bai et al. (2024);
Hu et al. (2024). Hence, our BSA transfers this framework to adapt to the MTCIR task. Through
learned tokens tn, BSA initially learns the bimodal semantics of images and their corresponding
captions before interacting with modified text. This strategy employs captions as a transition, en-
hancing modality relevance during interaction with modified text, as elaborated in Section 4.3. A
fixed text encoder extracts caption embeddings cn, interacting with learned tokens tn in BSA’s self-
attention layers. In the cross-attention layers, they engage with visual patch embeddings vn. After
BSA, learned tokens aggregate multimodal semantics from reference images and captions, denoted
as tr,BSA

n . As the target side lacks modified text, this embedding is directly used for training loss
constraints and inference distance measurement.

Multi-turn Iterative Optimization (MIO). Despite learned tokens being more space-efficient
than visual embeddings Li et al. (2023), storing these tokens for each turn still results in significant
space consumption. Additionally, fashion images encompass various attributes such as color, style,
size, etc Tian et al. (2023); Chen et al. (2023b); Han et al. (2023). Multi-turn retrieval often revolves
around the same subcategory of products, resulting in similar attributes across the images involved
in multiple turns. Therefore, we propose a parameter-free mechanism to optimize and retain the key
attributes throughout multi-turn interactions.

Specifically, we concatenate tr,MIO
n−1 from the previous turn with tr,BSA

n from the current turn to
obtain tr,MIO

n . Our objective is to preserve key semantic tokens while discarding redundant ones
from the learned tokens tcn. This process involves several steps. (i) Clustering. We apply an efficient
density peaks clustering based on k-nearest neighbors (DPC-kNN) algorithm Du et al. (2016). The
learned tokens tcn are clustered into k groups and the clustering operation is formulated as follows:

cluster(tcn, k) = argmin
C

k∑
i=1

∑
v∈Ci

||v − ci||2 (1)

where C represents the clusters, Ci represents the i-th cluster, and ci represents the centroid of the
i-th cluster. (ii) Density Estimation. After clustering, the density of each cluster is estimated based
on the distances between the tokens within the cluster and learned tokens with lower densities are
filtered out to enhance clustering efficiency. The density estimation is calculated as follows:

density(v) = exp(−1

k

∑
u∈Nei(v)

||v − u||2) (2)

where Nei(v) represents the neighboring tokens of v. (iii) Pruning. Tokens with low density are
eliminated to ensure that only the most semantically significant tokens are retained. To achieve this,
each token is assigned a score, computed as the product of its density and its distance to the nearest
neighbor. The top k tokens with the highest scores are then selected as the optimized tokens.

score(v) = density(v)× dist(v) (3)

where dist(v) represents the distance of token v to its nearest neighbor. The final tokens, denoted as
tr,MIO
n , are obtained by selecting the tokens with the top-k scores. Through the optimization process

described above, MIO effectively preserves learned tokens carrying discriminative semantics while
discarding tokens with relatively less semantic importance, thereby saving computational resources.

Modification Semantic Aggregation (MSA). During the MSA stage, we engage the tokens
tr,MIO
n , which encapsulate reference semantics, with the modified text embedding mn. By em-

ploying a frozen text encoder to extract embeddings mn, we concatenate them with learned tokens
tr,MIO
n before feeding them into the self-attention layer. Subsequently, we employ a linear and nor-

malization layer on the learned tokens to map them, producing a reference-side embedding trn. This
embedding concurrently embodies multimodal semantics from the reference and modified text.

It is important to note that in the combination setting, due to the involvement of multiple historical
images, BSA aggregates the bimodal embeddings by concatenating the learned tokens from previous
turns with their corresponding image captions. Subsequently, these embeddings are semantically
aggregated with the modified text in the MSA.
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4.3 THEORETICAL INSIGHTS

In this section, we justify the rationale behind introducing captions for bimodal semantic aggregation
and explain how our approach outperforms a naive solution. In the MTCIR task, we hypothesize that
the transition from the initial image to the final target image occurs by gradually introducing specific
attributes related to the modified text in each turn, denoted as vtn − vrn ∼ N (mn,

1
N I). Ideally, the

visual increments vtn − vrn should correspond to the textual modifications mn, i.e., vrn +mn = vtn,
which can be supervised using the following similarity loss:

Lsim =
1

B

B∑
i=1

(
1− |vrin |+ |mi

n|
2

· |vtin |
)

(4)

where for simplicity, given an embedding x, |x| stands for the normalized form x
||x|| .

However, the effectiveness of the aforementioned supervision is constrained by: (i) the inherent
modality gap between texts and images; (ii) the semantic disparity between the additional textual
attributes and visual items. To mitigate these gaps, we propose leveraging image captions to (i) align
with the modality of modified texts; (ii) match the semantics of visual items. We can adopt a naive
method Huang et al. (2023), replacing the visual embeddings in Eq. 4 with the corresponding caption
text embeddings for cross-modal constraints. This results in the following naive cross-modal loss
by replacing images with their corresponding captions:

Lnaive = Lsim +
1

B

B∑
i=1

[
1− 1

2

( |vrin |+ |mi
n|

2
· |ctin |+

|crin |+ |mi
n|

2
· |vtin |

)]
(5)

Although Lnaive aligns visual increments with textual modifications, bridging both modality and
semantic gaps in the meantime, the separate optimization in modality and semantic space may affect
each other in the training process. To make further efforts, we propose that the reference and target
images should undergo pre-fusion with caption text to achieve an intermediate state that is closer in
modality and semantics to the modified text. The paradigm of this process is represented as follows:

Lpre = Lsim +
1

B

B∑
i=1

(
1− (|vrin |+ |mi

n|) + (|crin |+ |mi
n|)

4
· |v

ti
n |+ |ctin |

2

)
(6)

Furthermore, we give theoretical justifications for the effectiveness of the proposed pre-fusion loss:

Proposition 1: Let O(GError(Lpre)) and O(GError(Lnaive)) be the upper bound of generalization
error of the above two losses. Then for any hypothesis Lpre,Lnaive in H : V × C ×M → [0, 1] and
1 > δ > 0, it holds that:

O(GError(Lpre)) ≤ O(GError(Lnaive)) (7)
with probability at least 1− δ, given that the visual and textual encoders are reliable for generating
positively correlated embeddings in the n-th turn and clustering embeddings with the same modality.

4.4 OPTIMIZATION AND INFERENCE

Training. Given the guiding role of modified text in retrieval Chen et al. (2024a), we design the
Cyclic Combination Loss (CCL) to align semantically similar fused modality with text modality,
thereby preserving the critical semantics within the textual modality. Specifically, we employ a
batch-based classification loss commonly used in CIR and MTCIR tasks Pal et al. (2023); Wen et al.
(2024); Chen et al. (2024a), which is defined as:

LB(rq, rt) =
1

B

B∑
i=1

−log
expκ(riq, r

i
t)∑B

j=1 expκ(r
i
q, r

j
t )

(8)

where B represents the batch size, the kernel κ() is the inner product resulting in cosine similarity.
rq denotes the reference-side representation, and rt signifies the target-side representation.

Inspired by Lpre’s paradigm in Section 4.3 and 7.1, our loss function incorporates three constraints
on embeddings after Bimodal Semantic Aggregation pre-fusion, along with an additional constraint
on the text modality. For the n-th turn, the cyclic constraints involve the following four sets of
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embeddings: learned tokens trn from MSA, encompassing semantics of the reference image, caption,
and modified text; learned tokens ttgn from BSA, containing semantics of the target image and its
caption; the modified text embedding mn and the caption text feature of the target image ctgn .

In line with previous works in the MTCIR task, our overall Cyclic Combination Loss LCCL for N
turns is composed of the cumulative losses from each turn:

LCCL =

N∑
n=1

LB(t
r
n, t

tg
n ) + LB(t

tg
n ,mn) + LB(mn, c

tg
n ) + LB(c

tg
n , trn) (9)

Inference. At the conclusive N -th turn, tr,MIO
N−1 encompasses key multimodal semantics from prior

turns. Upon interacting with the modified text through MSA, we derive the reference-side embed-
ding trN . Meanwhile, on the gallery side, the bimodal embedding of the image and its caption, ttgN ,
is computed. Retrieval matching ensues by evaluating the similarity between trN and ttgN .

5 EXPERIMENT

5.1 EXPERIMENTAL SETTING

Implementation Details. We adopt BLIP-2 Li et al. (2023) with the Flan-t5-xxl language
model Chung et al. (2024) for image captioning and Xwin-13B-V0.2 Ni et al. (2024) as the LLM.
Optimization is performed using AdamW Loshchilov & Hutter (2019) with a batch size of 16, an
initial learning rate of 1e-5, and cosine annealing. Training runs for 50 epochs, while inference uses
a batch size of 2048. All model training and inference are conducted on 8 V100 GPUs. The number
of learned tokens is fixed at 32, and 32 tokens are retained each turn through the MIO. Q-Former
parameters are initialized with blip2 pretrain vitL, consistent with SPRC Bai et al. (2024).

Representative Methods. We select representative methods from five different categories for
comprehensive performance comparison: (i) MTCIR methods including FashionNTM Pal et al.
(2023) and CFIR Yuan & Lam (2021). (ii) STFIR+NTM: DQU-CIR Wen et al. (2024), single-turn
methods FashionERN Chen et al. (2024a), and SPRC Bai et al. (2024), integrated with the multi-turn
method FashionNTM. (iii) ZS-CIR: Pic2word Saito et al. (2023), Context-I2W Tang et al. (2024),
and Image2Sentence Du et al. (2024), also integrated with FashionNTM. Additionally, since LLMs
inherently support multi-turn interactions, we select several MLLMs as stronger baselines for com-
parison and fine-tune them on FashionMT using their original training methods. The selected base-
lines include: (iv) Retrieval-capable MLLMs: Fromage Koh et al. (2023), GILL Koh et al. (2024).
We use the [IMG] and [RET] tags provided by these methods for retrieval. (v) Interleaved MLLM:
MLLMs designed for interleaved multiple images and text, including MMICL Zhao et al. (2024a)
and Flamingo Alayrac et al. (2022)-9B. For these methods, we perform retrieval by encoding the
target’s description text with the final-round LLM. All methods use ViT-L Radford et al. (2021) as
the visual backbone for fair comparison.

Evaluation Metrics. Consistent with existing multimodal retrieval tasks Pal et al. (2023); Wen
et al. (2024), we use the standard top-K recall metric to evaluate models’ performance, denoted as
R@K. Specifically, we adopt R@1, R@5, R@10, R@20 and their mean as the evaluation metrics.

5.2 RESULTS

Quantitative Analysis. Experimental results on FashionMT are shown in Table 2. Benefiting from
the strong multimodal fusion capability of the BLIP-2 architecture, methods such SPRC Bai et al.
(2024) demonstrate performance advantages. Building upon this, our TSA and CCL incorporate
captions as a transition, leveraging their semantic alignment with references and consistency with
modified text. Furthermore, the proposed MIO effectively retains key semantics across multiple
turns. Consequently, MAI significantly outperforms existing methods, achieving a remarkable 8.63
improvement in the Mean metric over the SOTA method SPRC.

Qualitative Analyses. In Figure 4, we compare MAI with two representative methods, Fashion-
NTM and SPRC. MAI effectively handles fine-grained demands by leveraging TSA and CCL for
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Table 2: Results on our proposed FashionMT dataset.

Method Combination Rollback Mean
R@1 R@5 R@10 R@20 R@1 R@5 R@10 R@20

CFIR (SIGIR’21) 11.70 23.09 30.89 40.14 8.25 22.63 31.04 41.79 26.19
Pic2word (CVPR’23) 13.35 27.12 35.42 45.40 8.69 23.98 33.15 44.41 28.94
GILL (NeurIPS’23) 19.54 38.17 47.63 56.14 9.12 24.56 33.62 42.77 33.95
Fromage (ICML’23) 19.45 39.12 49.00 59.65 10.12 26.54 34.97 45.61 35.56
FashionNTM (ICCV’23) 18.98 38.51 48.35 58.30 10.73 27.71 37.66 49.85 36.26
FashionERN (AAAI’24) 20.36 41.37 50.18 60.51 11.42 29.67 41.02 52.98 38.44
Flamingo (NeurIPS’22) 21.38 44.17 55.16 63.09 11.55 28.18 37.81 48.76 38.76
DQU-CIR (SIGIR’24) 20.57 42.32 52.33 62.03 12.59 31.69 42.79 54.68 39.88
Context-I2W (AAAI’24) 30.62 51.84 62.50 71.75 12.63 32.98 45.48 59.30 45.89
Image2Sentence (ICLR’24) 32.44 53.71 65.16 74.52 15.79 36.87 50.17 64.56 49.15
MMICL (ICLR’24) 39.17 60.89 70.28 79.89 18.46 43.53 57.05 69.66 54.87
SPRC (ICLR’24) 39.28 62.42 72.11 80.23 23.31 49.79 62.11 74.82 58.01
MAI (ours) 51.51 74.67 80.66 86.52 28.94 58.89 70.42 81.50 66.64

efficient aggregation of image-caption semantics, making it responsive to domain-specific terms
like “crepe fabric” and “vintage design.” Furthermore, MAI addresses retrospective-based needs
by utilizing the MIO component to retain multi-turn historical key information, enabling precise
interpretation of vague expressions such as “strap design.”

Turn 1 Turn 2 Turn 3

is light blue and
has subtle ruffled
shoulder design

is a zip-front top
with a leopard-
spot print style

is crepe fabric, keep the 
Initial’s shoulder style &
Second’s vintage design

Initial query GT target

is a champagne 
strap sandal and
with higher heel

is a white faux 
leather platform
high heel sandal

is cream-colored, keep 
the Initial’s strap design
& Second’s heel design

Initial query GT target

Fashion
-NTM

SPRC

MAI
(Ours)

Rank 1 2 3 4 5

Turn 1 Turn 2 Turn 3

1 2 3 4 5

Figure 4: Qualitative results for the last turn in the FashionMT dataset. The top 5 retrieval results of
MAI compared with two representative methods are shown.

Table 3: Ablation study on different components of the MAI model. Mean-Combination and Mean-
Rollback denote the mean recall under the combination and rollback settings.

Settings Mean-Combination Mean-Rollback Mean

Base 58.69 41.49 50.04
Base + TSA 69.22 55.74 62.48
Base + MIO 64.17 47.03 55.60
Base + TSA + CCL 72.31 58.83 65.57
Base + TSA + MIO 71.19 58.19 64.69
Base + TSA + CCL + MIO (MAI) 73.34 59.94 66.64

5.3 ABLATION STUDIES

Effects of Different Components. Our baseline method employs Q-Former from BLIP-2 Li et al.
(2023) for reference and modified text semantic fusion and adopts the multi-turn information aggre-
gation model from FashionNTM for task adaptation. We gradually add the TSA, CCL and MIO,
comparing their performance in both combination and rollback settings. Table 3 demonstrates the
positive contribution of each component to performance improvement in both settings.
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Table 4: Effects of TSA and CCL. Mean-C and
Mean-S denote using caption adaptation and
single-turn results.

Method Mean-C Mean-S

FashionERN 2024a 44.47 50.29
Image2Sentence 2024 47.61 51.64
FashionNTM 2023 48.03 45.75
MMICL 2024a 58.67 47.28
SPRC 2024 62.90 52.66
TSA + CCL 65.57 53.73

Table 5: The comparison between MIO and
other methods on memory cost and average re-
trieval metrics. “N” represents # turns.

Method Memory Cost (MB) Mean

None 0 50.04
Concat 64×N 50.56
LSTM 2012 957 + 64×N 52.08
GRU 2017 858 + 64×N 51.80
NTM 2023 1270 + 64×N 53.19
MIO 64 55.60

Table 6: Effects of each loss in CCL. For simplicity, we denote LB(x, y) as L(x, y).

Settings w/ CCL (total) w/o CCL w/o L(trn, ttgn ) w/o L(ttgn ,mn) w/o L(mn, c
tg
n ) w/o L(ctgn , trn)

Recall 65.57 62.48 63.54 64.39 64.51 64.90
∆ - -3.09 -2.03 -1.18 -1.06 -0.67

Effects of TSA and CCL. We further conduct two sets of experiments, as shown in Table 4 with
Mean-C and Mean-S. (i) Caption adaptation. We adapt several representative methods to a two-stage
fusion process, allowing the reference image to interact with both the caption text and the modified
text. Specifically, FashionERN, Image2Sentence, and FashionNTM utilize the Combiner Baldrati
et al. (2022) widely employed in this field, for interaction with caption embeddings. (ii) Single-turn
retrieval. We evaluate performance using the first turn from FashionMT. The results in Table 4 indi-
cate that the two-stage fusion significantly improves the performance of the methods. Additionally,
the combination of TSA and CCL effectively integrates the critical semantics from the modified
text. Consequently, it achieves superior retrieval performance compared to existing methods in both
settings, shown in Table 4. We also conduct ablation experiments for each loss in CCL. Since CCL
computes losses based on the outputs from TSA, it requires TSA to be present, resulting in 6 settings.
Results in Table 6 show that each loss contributes to performance gains.

Effects of MIO. Due to the extensive storage of historical tokens in multi-turn retrieval, Table 5
presents the memory cost and mean retrieval performance of various methods. None denotes ran-
domly initialized learned tokens tN , Concat is concatenating all tMIO

n , n ∈ [1, N − 1], and LSTM
and GRU respectively indicate using LSTM Graves & Graves (2012) and GRU Dey & Salem (2017)
to aggregate all tMIO

n . To adapt baselines to multi-step settings, we incorporate the multi-turn aggre-
gation module NTM from the SOTA multi-turn method FashionNTM Pal et al. (2023). This module
outperforms alternatives like LSTM or GRU. Since our parameter-free MIO can adaptively retain
key semantics from historical turns and iterate over a set of learned tokens, it significantly reduces
memory usage by converting linear memory cost into constants, while enhancing performance.

For further ablation studies on performance in existing datasets, reducing modality gap, and rollback
setting, please refer to Section 7.1.

6 CONCLUSION AND DISCUSSION

In this paper, we have constructed the first dataset specifically designed for Multi-turn Composed
Image Retrieval, named FashionMT. We also propose MAI model, a multi-turn key information-
aware approach that uses paired captions as a transition for better semantic consistency and modality
alignment while adaptively filtering and preserving significant attributes to reduce spatial occupancy.
We have conducted extensive experiments on FashionMT and observed that MAI achieves state-of-
the-art performance, demonstrating its usefulness and effectiveness.

Limitations. As the first dedicated MTCIR dataset, we standardize the number of turns to 3 for
method comparison. However, real-world scenarios may involve more diverse transactions and
cover more general contexts beyond e-commerce, aligning with our ongoing development efforts.
Furthermore, we aim to upgrade our model with integrated dialogue and retrieval capabilities.
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7 APPENDIX

7.1 PROOF OF PROPOSITION 1

For simplicity, given two representations x, y, we denote their similarity score as s(x, y) = x · y.
We first compare the i-th similarity score terms in Lsim and Lpre respectively:

Si
naive =

1

2
(
|vrin |+ |mri

n |
2

· |ctin |+
|crin |+ |mri

n |
2

· |vtin |)

=
1

4
[s(|vrin |+ |mri

n |, |ctin |) + s(|crin |+ |mri
n |, |vtin |)],

Si
pre − Si

naive =
1

8
[s(|vrin |, |vtin |) + s(|crin |, |ctin |)− s(|vrin |, |ctin |)− s(|crin |, |vtin |)].

The modality gaps between visual images and textual captions indicate that representations within
the same modality are closer to each other, leading to higher similarity scores, i.e., s(|vrin |, |vtin |) >
s(|vrin |, |ctin |), and s(|crin |, |ctin |) > s(|crin |, |vtin |). Therefore, Si

pre − Si
naive > 0. Notice that:
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Lnaive =Lsim +
1

B

B∑
i=1

(1− Si
naive),

Lpre =Lsim +
1

B

B∑
i=1

(1− Si
pre),

where Lnaive > Lpre. Furthermore, based on the Rademacher Complexity Theory Mohri (2018),
the upper bound of generalization errors is estimated as follows, with probability at least 1− δ:

E[Lnaive] ≤E[Lsim] +
1

B

B∑
i=1

(1− Si
naive) + 2RB(G) +

√
log 1

δ

2B

:=O(GError(Lnaive)),

E[Lpre] ≤E[Lsim] +
1

B

B∑
i=1

(1− Si
pre) + 2RB(G) +

√
log 1

δ

2B

:=O(GError(Lpre)),

where RB(G) is the Rademacher Complexity of the family of all possible loss functions, inde-
pendent of our design for loss functions. From the above analysis, we have O(GError(Lpre)) <
O(GError(Lnaive)), which indicates the superiority of our pre loss Lpre to the original naive cross-
modal loss Lnaive. □

7.2 MORE ABLATION STUDIES

Validation on Existing Datasets. Despite the limitations of existing datasets, we further validate
the effectiveness and generalization of our approach by adding performance comparisons on the
real datasets MT FashionIQ Yuan & Lam (2021) and MT Shoes Pal et al. (2023). The results from
Table 7 shows that our proposed approach, MAI, achieves the best performance in all settings due
to its fine-grained semantic capture and efficient modality alignment.

Table 7: Validation on existing datasets MT FashionIQ and MT Shoes.

Method Train on FashionMT
Test on MT FashionIQ

Train on FashionMT
Test on MT Shoes

Train on FashionMT
Test on FashionMT Means

FashionNTM Pal et al. 42.3 25.6 36.26 34.72
Image2Sentence Du et al. 43.8 28.2 49.15 40.38
MMICL Zhao et al. 46.9 29.8 54.87 43.86
SPRC Bai et al. 48.0 28.2 58.01 44.74
MAI (ours) 50.6 33.8 66.64 50.35

Modality Gap. We observe that recent works enhance feature-level representations to reduce
modality gaps. We compare our approach with these methods, shown in the Table 8. The re-
sults show that noise addition methods are effective for large modality gaps, but once our approach
reduces the gap through aligning modalities and semantics, the gains are limited.

Table 8: Comparison of various methods for reducing modality gaps.

Settings Recall Settings Recall

Base 50.04 Base 50.04
+ Mixing Vouitsis et al. 49.87 + ours 65.57
+ N(0, 1) 52.17 + ours + N(0, 1) 65.23
+ U(−1, 1) 52.09 + ours + U(−1, 1) 65.30
+ N(0, 1)× U(−1, 1) Gu et al. 54.88 + ours + N(0, 1)× U(−1, 1) 65.66
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Ablation Study on Rollback. In the current setup for handling Rollback operations, the reference
image for the current turn is replaced with the specified rollback image. We conduct comparative
experiments under various Rollback settings: (1) Replace: the current setting. (2) Ignore: no re-
placement is performed. (3) Random: selecting randomly from previous turns. (4) Blend: using
the PIL library’s Image.blend() to merge two images into one. The results from Table 9 indicate
that since the Rollback operation approximates redefining the current local optimal point, the setting
Replace achieves the best performance.

Table 9: Ablation study on Rollback setting

Settings Replace Ignore Random Blend

Recall 59.94 49.59 53.62 57.80

7.3 FURTHER CLARIFICATION ON THE FASHIONMT DATASET

We further clarify the setting, utility, quality control, and benefits of our FashionMT dataset below.

Explanation of Modified Text in Multi-turn. Our current approach for constructing modified
text is based on two main reasons:

• User Target Ambiguity. Humans often make decisions heuristically, so selecting while browsing
aligns with human intuition Todd & Gigerenzer (2000); Schubert (2023). In the e-commerce
domain, our analysis of multi-turn interaction data from a well-known platform shows that users
frequently experience “target ambiguity” during online shopping. Initially, users are unsure of
the exact target and its details, and they need to select and refine attributes throughout the multi-
turn interaction process. This behavior is also supported by psychological studies Yoo & Sarin
(2018); Sung et al. (2023). To simulate this, we use combination and rollback settings to better
mirror real-world scenarios.

• Benchmark for Multi-turn. Initially, we explored constructing the dataset by describing the
difference between the current and target images. However, this “clear goal” setting resulted
in models achieving precise retrieval within 1-2 turns. This results in the multi-turn retrieval
task degrading into a single-turn retrieval task, thus failing to serve as a benchmark requiring
algorithms to integrate information from multiple historical interactions.

Utility. Although the FashionMT is synthetically constructed, we conduct an in-depth analysis of
user behaviors during multi-turn purchases on a famous e-commerce platform. We categorize these
behaviors into two representative scenarios: “combination” and “rollback”, aiming to replicate the
real-world process where users refine their choices through iterative comparisons. Compared to
existing datasets that concatenate single-turn retrieval data, FashionMT more accurately reflects
real-world scenarios.

Table 10: Quality assessments among multi-turn datasets.

Datasets Acc HA Gra Con Cov Mean

MT FashionIQ Yuan & Lam 93.3 43.1 67.2 86.4 70.2 72.0
MT Shoes Pal et al. 95.1 65.6 76.3 91.3 80.9 81.8
MAI (ours) 96.2 98.7 91.3 90.5 93.2 94.0

Quality Control. Additionally, to validate its utility, we conduct a quality assessment of Fash-
ionMT and existing datasets, scoring them on a scale from 1 to 5 in the following aspects:

• Accuracy (Acc): Whether the modified text reflects the actual differences between images, with 1
being very inaccurate and 5 being very accurate.

• Historical Awareness (HA): Whether the modified text involves attributes from previous turns,
with 1 being not involved and 5 being fully involved.
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Turn 1 Turn 2 Turn 3

is light blue and
has subtle ruffled
shoulder design

is a zip-front top
with a leopard-
spot print style

is crepe fabric, keep the 
Initial’s shoulder style &
Second’s vintage design

Initial query GT target

has a more formal 
appearance, with 
gold buttons

is a more vibrant 
color, such as a 
lime green blazer

compared to this, I still prefer the 
Initial, with floral patterns on 
the lining and a light blue color

Initial query GT target

Turn 1 Turn 2 Turn 3

Combination Setting

is a champagne 
strap sandal and
with higher heel

is a white faux 
leather platform
high heel sandal

is cream-colored, keep 
the Initial’s strap design
& Second’s heel design

Turn 1 Turn 2 Turn 3

Rollback Setting

is a sportier style 
and more fashion-
able design

is denim material 
with fewer 
patterns

is a slimmer fit, keeping Initial's 
light blue color, Second's sleeve 
design, and the LA logo

Turn 1 Turn 2 Turn 3

is wider with a 
smaller proportion 
of patterns

the patterns is 
more colorful and 
more fashionable

remove the text design
while keeping Initial's base 
color and Second's bag size

Turn 1 Turn 2 Turn 3

is a brown satin 
peep-toe 
wedding shoe

has higher heels 
and a more 
elegant style

compared to this, I still prefer the 
Second one, with an 
embellished strap on the instep

Turn 1 Turn 2 Turn 3

is a pleated skirt, 
not exceeding 
the knees

has white stripes, 
rather than a solid 
color design

compared to this, I still prefer the 
Second one, with white stripes 
added to the hem of the skirt

Turn 1 Turn 2 Turn 3

Turn 1 Turn 2 Turn 3

the neckline is 
round, with a 
ruffled hem

is white, with a 
higher neckline, a 
more stylish look

compared to this, I prefer the 
Initial, and has a warmer color 
tone and a lace round neckline

Figure 5: Examples of image sequences across multiple turns in the Combination and Rollback
settings from our proposed FashionMT dataset.

• Granularity (Gra): Whether the text provides enough detail to cover subtle differences between
images, with 1 being lacking detail and 5 being very detailed.

• Consistency (Con): Whether the differences between items in multi-turn retrieval are realistic,
with 1 being unrealistic and 5 being very realistic.

• Coverage (Cov): Whether the description covers all major differences between items, with 1 being
minimal coverage and 5 being comprehensive coverage.

We provided explanations of the rating requirements to 20 e-commerce platform staff members and
calculated the average scores independently. The scores were then converted into percentages, as
shown below. Specifically, we randomly selected 20% of the data from each dataset for manual
scoring without informing the evaluators of the data source. Quality assessments among multi-turn
datasets are shown in Table 10.

7.4 MORE VISUALIZATION

Dataset Examples. To facilitate a better understanding of our newly proposed dataset, Fash-
ionMT, we present data samples under the Combination and Rollback settings in Figure 5. In each
transaction, the Ground Truth is highlighted with a green bounding box, and the retrospective-based
modified text is marked in dark blue.

Dataset Statistics Visualizations. Figure 6 provides visualizations of various statistics in the
FashionMT dataset. (1) The proportions of Combination and Rollback settings and their respective
main categories. (2) The average length of modified text, along with separate averages for Com-
bination and Rollback settings, and the average caption length. (3) A scale comparison between
FashionMT and existing multi-turn datasets, MT FashionIQ and MT Shoes.

Modality gap. As shown in Figure 7, we visualize the modality gap between the query and target
sides in the final round using t-SNE on FashionMT and existing datasets. Leveraging captions as a
bridge between visual and textual modalities, our proposed MAI approach effectively reduces the
modality gap between the query and target sides.
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162938

84973

Combination Rollback

(c) Dataset scale comparison

Length
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(b) Average text length

(a) Distributions of the two settings and main categories

Dress Shirts Pants

Shoes Tops Others

Dress Shirts Pants

Shoes Winter Others

CombinationRollback

Figure 6: (1) Proportions of Combination and Rollback settings and main category distributions; (2)
Average lengths of Modified text and captions; (3) Scale comparison of FashionMT with existing
multi-turn datasets.

(a) Visualization on FashionMT

(b) Visualization on MT FashionIQ (c) Visualization on MT Shoes

Figure 7: Visualization of modality gaps in FashionMT and existing datasets. Our approach signifi-
cantly reduces the gap between the query and target sides.
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