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Abstract

We present Cross-Client Label Propagation (XCLP), a new method for transductive and
semi-supervised federated learning. XCLP estimates a data graph jointly from the data of
multiple clients and computes labels for the unlabeled data by propagating label information
across the graph. To avoid clients having to share their data with anyone, XCLP employs
two cryptographically secure protocols: secure Hamming distance computation and secure
summation. We demonstrate two distinct applications of XCLP within federated learning. In
the first, we use it in a one-shot way to predict labels for unseen test points. In the second,
we use it to repeatedly pseudo-label unlabeled training data in a federated semi-supervised
setting. Experiments on both real federated and standard benchmark datasets show that in
both applications XCLP achieves higher classification accuracy than alternative approaches.

1 Introduction

Federated Learning (FL) (McMahan et al., 2017) is a machine learning paradigm in which multiple clients,
each owning their own data, cooperate to jointly solve a learning task. The process is typically coordinated
by a central server. The defining restriction of FL is that client data must remain on device and cannot be
shared with either the server or other clients. In practice this is usually not due to the server being viewed as
a hostile party but rather to comply with external privacy and legal constraints that require client data to
remain stored on-device. To date, the vast majority of research within FL has been focused on the supervised
setting, in which client data is fully labeled and the goal is to train a predictive model. In this setting a
well-defined template has emerged: first proposed as federated averaging (McMahan et al., 2017), this consists
of alternating between local model training at the clients and model aggregation at the server.

However, in many real-world settings fully labeled data may not be available. For instance, in cross-device
FL, smartphone users are not likely to be interested in annotating more than a handful of the photos on
their devices (Song et al., 2022). Similarly, in a cross-silo setting the labeling of medical imaging data may
be both costly and time consuming (Dehaene et al., 2020). As such, in recent years there has been growing
interest in developing algorithms that can learn from partly labeled or fully unlabeled data in a federated
setting (Kairouz et al., 2021). For such algorithms it can be beneficial, or even essential, to go beyond
the standard federated framework of model-centric learning and develop techniques that directly leverage
client data interactions. Examples include federated clustering (Dennis et al., 2021) and dimensionality
reduction (Grammenos et al., 2020), where clients compute statistics based on their data and the server
computes with aggregates of these statistics.
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Contribution In this work we propose Cross-Client Label Propagation (XCLP) which follows a data-centric
approach. XCLP allows multiple clients, each with labeled and unlabeled data, to cooperatively compute
labels for their unlabeled data. This is done using a transductive approach, where the goal is label inference
restricted to some predefined set of unlabeled examples. In particular this approach does not require a model
to be trained in order to infer labels. Specifically, XCLP takes a graph-based approach to directly assign
labels to the unlabeled data. It builds a joint data graph of a group of clients and propagates the clients’
label information along the edges. Naively, this approach would require the clients to centrally share their
data. That, however, would violate the constraints of federated learning.

XCLP allows for multiple clients to jointly infer labels from a cross-client data graph without them having to
share their data. We refer to this privacy guarantee, in which a client’s data never leaves their own device, as
data confidentiality. To achieve this XCLP exploits the modular and distributed nature of the problem. It uses
locality-sensitive hashing and secure Hamming distance computation to efficiently estimate the cross-client
data graph. It then distributes the label propagation computation across clients and aggregates the results
using a customized variant of secure summation. The key benefits of this approach are:

• XCLP enables the data of multiple clients to be leveraged when estimating the graph and propagating
labels. This is beneficial as the prediction quality of label propagation increases substantially when
more data is used.

• XCLP achieves data confidentiality, since it does not require clients to share their data with anyone
else. Instead clients only have to share approximate data point similarities with the server.

• XCLP is communication efficient as it does not require training a model over multiple communication
rounds but requires only a single round of communication.

As a technique to transfer label information from labeled to unlabeled points, XCLP is versatile enough to
be used in a variety of contexts. We illustrate this by providing two applications within federated learning.
In the first we employ XCLP purely for making predictions at inference time. We demonstrate empirically
on a real-world, highly heterogeneous, federated medical image dataset that XCLP is able to assign high
quality labels to unlabeled data. When all clients are partly labeled we observe XCLP to outperform purely
local label propagation, which illustrates the benefits of leveraging more data. XCLP also obtains strong
results when using fully labeled clients to infer labels on different, fully unlabeled clients, even when these
clients have very different data distributions. In both these scenarios we find that running XCLP on features
obtained from models trained using FederatedAveraging gives significantly better accuracy than purely using
the model predictions.

In the second application we tackle the problem of federated semi-supervised learning. In this scenario clients
possess only partly labeled data and the goal is to train a classifier by leveraging both labeled and unlabeled
client data. In this setting we employ XCLP in the training process by integrating it into a standard federated
learning pipeline. Specifically, during each round of FederatedAveraging we use XCLP to assign pseudo-labels
and weights to the unlabeled data of the current batch of clients. These are then used to train with a
weighted supervised loss function. Our experiments show that this pseudo-labelling approach outperforms all
existing methods for federated semi-supervised learning, as well as a range of natural baselines in the standard
federated CIFAR-10 benchmark. Going beyond prior work, we also evaluate on more challenging datasets,
namely CIFAR-100 and Mini-ImageNet, where we also observe substantial improvements in accuracy.

2 Related Work

Federated Learning Federated learning (FL) (McMahan et al., 2017) was originally proposed for learning
on private fully labeled data split across multiple clients. For a survey on developments in the field see
(Kairouz et al., 2021). A number of recent works propose federated learning in the absence of fully labeled
data. Methods for cluster analysis and dimensionality reduction have been proposed (Dennis et al., 2021;
Grammenos et al., 2020), in which the server acts on aggregates of the client data, as opposed to client models.
Other works have focused on a model based approach to federated semi-supervised learning (SSL). Jeong
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Algorithm 1: Cross-ClientLabelPropagation

Input: set of participating clients P , client data (V (j), Y (j))j∈P // data stored on-device at clients
1-XS: Setup: clients exchange private and public keys, agree on random seed s
2-CS: for client j ∈ P in parallel do
3-CS: Π ∈ RL×d with Πij

i.i.d.∼ Nseed=s(0, 1) // same Π for each client
4-CS: B(j) ← sign(Π (V (j))>) // LSH projection
5-XS: H ← SecureHamming((B(j))j∈P ) // server gets Hamming matrix
6-SS: A← cos( πLH) // estimate cosine similarity matrix
7-SS: B ← sparsify(A) // keep k largest entries per row, set others to 0
8-SS: W = B +B> // symmetrize
9-SS: W ← D− 1

2WD− 1
2 for D = diag(d1, . . . , dn) with di =

∑
jWij // normalize

10-SS: S ← (Idn×n − αW)−1 // influence matrix
11-CS: for client j ∈ P in parallel do
12-CS: S

(j)
L ← labeled-colsj(S) // client gets columns corresponding to labeled data

13-CS: Z̄(j) ← S
(j)
L Y

(j)
L // compute local contribution to overall label propagation

14-XS: Z(j) ← SecureRowSums
(
(Z̄(k))k∈P

)
j

// client gets its part of aggregated contributions
15-CS: ŷ(j) ←

(
arg maxc=1,...,C Z

(j)
i,c

)
i=1,...,n(j) // predict labels

16-CS: ω(j) ←
(

1− entropy
( (Z(j)

i,c
)c=1,...,C∑C

c=1
Z

(j)
i,c

)
/ logC

)
i=1,...,n(j)

// predicted label confidences

Output: predicted labels and confidences (ŷ(j), ω(j))j∈P // available only to respective clients

et al. (2021) propose inter-client consistency and parameter decomposition to separately learn from labeled
and unlabeled data. Long et al. (2020) apply consistency locally through client based teacher models. Liang
et al. (2022) combine local semi-supervised training with an enhanced aggregation scheme which re-weights
client models based on their distance from the mean model. Zhang et al. (2021b) and Diao et al. (2022) focus
on a setting in which the server has access to labeled data. In this setting Zhang et al. (2021b) combine local
consistency with grouping of client updates to reduce gradient diversity while Diao et al. (2022) combine
consistency, through strong data augmentation, with pseudo-labeling unlabeled client data. Our approach to
federated SSL is to iteratively apply XCLP to pseudo-label unlabeled client data. This approach differs from
prior work by making use of data interactions between multiple clients to propagate label information over
a cross client data graph. Related to this idea is the notion of federated learning on graphs (Zhang et al.,
2021a; Xie et al., 2021; Wang et al., 2020). However, these works are primarily interested in learning from
data that is already a graph. In contrast XCLP estimates a graph based on similarities between data points,
in order to spread label information over the edges.

Label Propagation Label Propagation (Zhu & Ghahramani, 2002; Zhou et al., 2004) was originally
proposed as a tool for transductive learning with partly labeled data. Over time it has proven to be a versatile
tool for a wide range of problems. Several works have applied LP to the problem of domain adaptation. Liu
et al. (2019) apply LP over a learned graph for few shot learning. Cai et al. (2021) develop a framework for
domain adaptation by combining LP with a teacher trained on the source. Khamis & Lampert (2014) use
LP as a prediction-time regularizer for collective classification tasks. In the context of deep semi-supervised
learning Iscen et al. (2019) make use of LP as a means of obtaining pseudo-labels for unlabeled data which
are then used in supervised training. Several works apply LP to problems with graphical data. Huang et al.
(2021) observe that combining linear or shallow models with LP can lead to performance that is on par
with or better than complex and computationally expensive GNNs. Wang & Leskovec (2022) apply LP as a
regularizer for graph convolutional neural networks when learning edge weights and quantify the theoretical
connection between them in terms of smoothing.
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3 Method

In this section we begin by introducing the problem setting. In Section 3.1 we present our method XCLP, in
Section 3.2 we describe the cryptographic protocols we make use of and in Section 3.3 we provide an analysis
of XCLP.

Let P be a set of client devices for which labels should be propagated. Note that we place no restrictions on
P . It could be all clients in a federated learning scenario, a randomly chosen subset, or a strategically chosen
subset, e.g. based on client similarity, diversity or data set sizes.

Each client j ∈ P possesses a set of n(j) d-dimensional data vectors, of which l(j) are labeled, i.e. V (j) =
(v(j)

1 , . . . v
(j)
l(j) , v

(j)
l(j)+1, . . . v

(j)
n(j))> ∈ Rn(j)×d, with partial labels {y(j)

1 , . . . , y
(j)
l(j)} from C classes, which we encode

in zero-or-one-hot matrix form: Y (j) ∈ {0, 1}n(j)×C with Y
(j)
ic = 1{y(j)

i = c} for 1 ≤ i ≤ l(j) and Y
(j)
ic = 0

otherwise. Note that this setup includes the possibility for a client to have only labeled data, n(j) = l(j) or
only unlabeled data, l(j) = 0. We denote the total amount of data by n :=

∑
j∈P n

(j). Our goal is to assign
labels to the unlabeled data points, i.e., transductive learning (Vapnik, 1982). The process is coordinated
by a central server, which we assume to be non-hostile. That means, we trust the server to operate on
non-revealing aggregate data and to return correct results of computations.1 At the same time, we treat
clients and server as curious, i.e., we want to prevent that at any point in the process any client’s data is
revealed to the server, or to any other client.

Our main contribution in this work is, Cross-Client Label Propagation (XCLP), an algorithm for assigning
labels to the unlabeled data points. XCLP works by propagating label information across a neighborhood
graph that is built jointly from the data of all participating clients without revealing their data. Before
explaining the individual steps in detail, we provide a high level overview of the method.

XCLP consists of three phases: 1) the clients jointly compute similarity values between all of their data points
and transfer them to the server, 2) the server uses these similarities to construct a neighborhood graph and
infers an influence matrix from this, which it distributes back to the clients, 3) the clients locally compute
how their data influences others, aggregate this information, and infer labels for their data.

The key challenge is how to do these steps without the clients having to share their data and labels with each
other or with the server. XCLP manages this by formulating the problem in a way that allows us to use only
light-weight cryptographic protocols for the steps of computing similarities and aggregating label information.

3.1 Cross-Client Label Propagation (XCLP)

Algorithm 1 shows pseudocode for XCLP. To reflect the distributed nature of XCLP we mark the execution
type of each step: client steps (CS) are steps that clients do locally using only their own data, server steps
(SS) are steps that the server executes on aggregated data, cross steps (XS) are steps that require cross-client
or client-server interactions.

As a setup step (line 1) the clients use a secure key exchange procedure to agree on a shared random seed
that remains unknown to the server. This is a common step in FL when cryptographic methods, such as
secure model aggregation, are employed, see Bonawitz et al. (2017).

Phase 1. The clients use the agreed-on random seed to generate a common matrix Π ∈ RL×d with unit
Gaussian random entries (line 3). Each client, j, then multiplies its data matrix V (j) by Π and takes the
component-wise sign of the result, thereby obtaining a matrix of n(j) L-dimensional binary vectors, B(j) (line
4). In combination, both steps constitute a local locality-sensitive hashing (LSH) (Indyk & Motwani, 1998)
step for each client. A crucial property of this encoding is that the (cosine) similarity between any two data
vectors, v, v′, can be recovered from their binary encodings b, b′: sim(v, v′) := 〈v,v′〉

‖v‖‖v′‖ ≈ cos(πh(b, b′)/L),
where h(b, b′) =

∑L
l=1 bl ⊕ b′

l is the Hamming distance (number of bits that differ) between binary vectors

1In particular we exclude malicious servers in the cryptographic sense that would, e.g., be allowed to employ attacks such as
model poisoning or generating fake clients in order to break the protocol.
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and ⊕ is the XOR-operation. Since all clients use identical random projections, this identity holds even for
data points located on different clients. See Appendix C.2 for details on LSH.

In line 5 the necessary Hamming distance computations take place using a cryptographic subroutine that
we detail in Section 3.2. Note that cryptographic protocols operate most efficiently on binary vectors, and
Hamming distance is particularly simple to compute. In fact, this is the reason why we transform the data
using LSH in the first place. Ultimately, from this step the server obtains the matrix of all pairwise Hamming
distances, H ∈ Zn×n, but no other information about the data.

Phase 2. Having obtained H the server executes a number of steps by itself. First, it converts H to a
(cosine) similarity matrix A ∈ Rn×n (line 6). It sparsifies each row of A by keeping the k largest values and
setting the others to 0 (line 7). From the resulting matrix, B, it constructs a weighted adjacency matrix of
the data graph, W by symmetrization (line 8) and normalization (line 9).

If not for the aspect of data confidentiality, we could now achieve our goal of propagating label information
along the graph edges from labeled to unlabeled points in the following way: form the concatenation of all
partial label matrices, Y = (Y (j))j∈P ∈ {0, 1}n×C , and compute Z = SY ∈ Rn×C , where S = (Id−αW)−1 is
the influence matrix, and α ∈ (0, 1) is a hyperparameter. See Appendix C.1 for an explanation how this step
corresponds to the propagation of labels over the graph.

XCLP is able to perform the computation of the unnormalized class scores, Z, without having to form
Y , thereby preserving the confidentiality of the labels. Instead, it computes only the influence matrix, S,
centrally on the server (line 10), while the multiplication with the labels will be performed in a distributed
way across the clients.

Phase 3. Observe that the computation of Z can also be written as Z =
∑
j∈P S

(j)Y (j), where S(j) ∈ Rn×n(j)

is the sub-matrix of S consisting of only the columns that correspond to the data of client j. We can refine
this further, note that all rows of Y (j) that correspond to the unlabeled data of client j are identically 0 by
construction and hence do not contribute to the multiplication. Therefore, writing Y (j)

L ∈ Rl(j)×C for the
rows of Y (j) that correspond to labeled points and S

(j)
L ∈ Rn×l(j) for the corresponding columns of S(j), it

also holds that Z =
∑
j∈P S

(j)
L Y

(j)
L .

Using this observation, Algorithm 1 continues by each client j receiving S(j)
L from the server (line 12). It

then locally computes Z̄(j) = S
(j)
L Y

(j)
L ∈ Rn×C (line 13), which reflects the influence of j’s labels on all other

data points.

By now, the clients have essentially computed Z, but the result is additively split between them: Z =∑
j∈P Z̄

(j). To compute the sum while preserving data confidentiality, XCLP uses a secure summation routine
(line 14), as commonly used in FL for model averaging (Bonawitz et al., 2017). However, to increase its
efficiency we tailor it to the task, see Section 3.2 for details. As a result, each client j receives only those
rows of Z that correspond to its own data, Z(j) ∈ Rn(j)×C (line 13). From these, it computes labels and
confidence values for its data (lines 15-16).

3.2 Cryptographic Subroutines

In this section we describe the proposed cryptographic protocols for secure summation and secure Hamming
distance computation that allow clients to run XCLP without having to share their data.

SecureRowSums We propose a variation of the secure summation that is commonly used in FL (Bonawitz
et al., 2017). For simplicity we describe the case where all values belong to Zl for some l ∈ N, though
extensions to fixed-point or floating-point arithmetic also exist (Catrina & Saxena, 2010; Aliasgari et al.,
2013).

Given a set of clients P , each with some matrix Z(j) ∈ Zn×c
l , ordinary SecureSum computes

∑
j∈P Z

(j) at
the server in such a way that the server learns only the sum but nothing about the Z(j) matrices. The main
idea is as follows: using agreed upon random seeds clients jointly create random matrices M (j) ∈ Zn×c

l with
the property that

∑
j∈P M

(j) = 0. Each client j then obfuscates its data by computing Z̃(j) := Z(j) +M (j)
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and sends this to the server. From the perspective of the server each Z̃(j) is indistinguishable from uniformly
random noise. However, when all parts are summed, the obfuscations cancel out and what remains is the
desired answer:

∑
j∈P Z̃

(j) =
∑
j∈P Z

(j). For technical details see Bonawitz et al. (2017).

For XCLP, we propose a modification of the above construction. Suppose we have a partition of the rows,
(Rj)j∈P , where each Rj ⊂ [n]. Each client j knows its own Rj and the server knows all Rj . SecureRowSums’s
task is to compute Z :=

∑
j∈P Z

(j) in a distributed form in which each client j ∈ P learns only the rows of Z
indexed by Rj , denoted Z[Rj ], and the server learns nothing.

For this, let M (j) and Z̃(j) be defined as above. In addition, let Ẑ(j) be equal to the obfuscated Z̃(j), except
that the rows indexed by Rj are completely set to 0. Each client now instead sends Ẑ(j) to the server, which
computes Ẑ :=

∑
j∈P Ẑ

(j). The server then redistributes Ẑ among the clients, i.e. each client j receives Ẑ[Rj ].
Note that Ẑ[Rj ] =

∑
k∈P\{j} Z̃

(k)[Rj ] = Z[Rj ]− Z̃(j)[Rj ]. Consequently, each client obtains the part of Z
corresponding to its own data by computing Z[Rj ] = Ẑ[Rj ] + Z̃(j)[Rj ]. By construction the shared quantities
leak nothing to the server. Specifically Ẑ(j) is random noise with rows Rj set to 0 and Ẑ is random noise
since each block Ẑ[Rj ] remains obfuscated due to client j not sending M (j)[Rj ].

SecureHamming Several cryptographic protocols for computing the Hamming distances between binary
vectors exist. Here we propose two variants that are tailored to the setting of XCLP: one is based on the
SHADE protocol (Bringer et al., 2013), which is easy to implement as it only requires only an oblivious
transfer (OT) (Naor & Pinkas, 2001) routine as cryptographic primitive. The other is based on partially
homomorphic encryption (PHE) and comes with lower communication cost.

OT-based secure Hamming distance: Let b = (b1, . . . , bL) and b′ = (b′
1, . . . , b

′
L) be the bit vectors, for which

the Hamming distance should be computed, where b is stored on a client j and b′ on a client k.

1) client j creates L random numbers r1, . . . , rL uniformly in the range [0, L− 1]. For each l = 1, . . . , L, it
then offers two values to be transferred to client k: z0

l = rl + bl or z1
l = rl + b̄l, for b̄l = 1− bl (here and in

the following all calculations are performed in ZL, i.e. in the integers modulo L).

2) Client k initiates an OT operation with input b′
l and result tl. That means, if b′

l = 0 it will receive tl = z0
l

and if b′
l = 1 it will receive tl = z1

l , but client i will obtain no information which of the two cases occurred.
Note that in both cases, it holds that tl = rl + bl ⊕ b′

l. However, client k gains no information about the
value of bl from this, because of the uniformly random shift rl that is unknown to it.

3) Clients j and k now compute R =
∑L
l=1 rl and T =

∑L
l=1 tl, respectively, and send these values to the

server.

4) From R and T , the server can infer the Hamming distance between b and b′ as T−R =
∑L
l=1 bl⊕b′

l = h(b, b′).

Performing these steps for all pairs of data points, the server obtains the Hamming matrix, H ∈ Nn×n, but
no other information about the data. The clients obtain no information about each others’ data at all during
the computation.

PHE-based secure Hamming distance: Homomorphic encryption is a framework that allows computing
functions on encrypted arguments (Acar et al., 2018). The outcome is an encryption of the value that would
have been the result of evaluating the target function on the plaintext arguments, but the computational
devices gain no information about the actual plaintext. Fully homomorphic encryption(FHE), which allows
arbitrary functions to be computed this way, is not efficient enough for practical usage so far (Jiang & Ju,
2022). However, efficient implementation exist for the setting where cyphertexts only have to be added
or subtracted, for example Paillier ’s (Paillier, 1999). We exploit this paradigm of partially homomorphic
encryption (PHE) to compute the Hamming distances of a binary vector from clients j with all binary vectors
from a client k in the following way:

1) Client j encrypts its own data vector b(j) ∈ {0, 1}L, using its own public key and transfers the resulting
vector y := enc(b(j)) (boxes indicate encrypted quantities) to client k. Because the data is encrypted, client
k can extract no information about client j’s data from this.
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2) For any of its own data vectors b(k) ∈ {0, 1}L, client k creates a uniformly random value r ∈ [0, L − 1].
It then computes the following function in a homomorphic way with encrypted input y = y and plaintext
input x = b(k):

f(y;x) = r +
∑
l:xl=1

yl −
∑
l:xl=0

yl

Because of the identity h(x, y) =
∑
l[xlyl+x̄lȳl] =

∑
l:xl=1 yl+

∑
l:xl=0 ȳl =

∑
l:xl=1 yl−

∑
l:xl=0 yl+n−

∑
l xl,

the result, T = f( y ;x), is the value T = h(b(j), b(k)) + r − n+
∑
l bl in encrypted form.

4) Client j send the value R = r−n+
∑
l bl to the server, and the value T to client j. Client j decrypts T

using its own secret key and sends the resulting value T to the server. It gains no information about client
k’s data or the Hamming distance, because the added randomness gives T a uniformly random distribution.

5) The server recovers H(b(j), b(k)) = T −R without gaining any other information about the clients’ data.

Note that for computing single Hamming distances, this protocol has no advantage over the OT-based variant.
However, for computing all pairwise Hamming distances between the data of two clients, the PHE-based
protocol saves a factor n(k) in communication cost, because y has to be transferred only once and can then
be used repeatedly by client k to compute the distances to all of its vectors.

3.3 Analysis

In this section, we analyze the efficacy, privacy, efficiency and robustness of Algorithm 1.

Efficacy Algorithm 1 performs label propagation along the data graph, as the classical LP algorithm (Zhu,
2005) does when data is centralized. The similarity measure used is cosine similarity estimated via the
Hamming distance of the LSH binary vectors. How close this is to the actual cosine similarity is determined
by L, the LSH vector length. In practice, we observe no difference in behavior between them already for
reasonably small values, e.g. L = 4096.

Privacy The main insight is that Algorithm 1 adheres to the federated learning principle that clients do
not have to share their data or labels with any other party. This is ensured by the fact that all cross-steps are
computed using cryptographically secure methods. There are two potential places where clients share some
information relating to their data. The first is the matrix of Hamming distances H that is sent to the server,
and from which the server can approximately recover the matrix of cosine similarities W . While certainly
influenced by the client data, we consider W (and therefore H) a rather benign object for a non-hostile server
to have access to because cosine similarity depends only on angles, hence any rescaling and rotation of the
client input vectors would result in the same W matrix. A second source of information sharing is during
phase 3 where each client receives the columns of S that correspond to their data. Such columns reflect how
their labeled data can influence all other data points according to the data graph as estimated from the
participating clients’ vectors. However, we stress that this influence is unnormalized and hence the influence
relative to other clients cannot be known.

Computational Complexity The computational cost of XCLP is determined by factors: the cryptographic
subroutines and the numeric operation. The contribution of the former depends heavily on the underlying
implementation and available hardware support, so we do not discuss it here. The cost of the numeric
operations can be derived in explicit form. Assume that the number of clients per batch is p. Each client
has n data points in total, out of which m are labeled (for simplicity, we assume n and m to be identical
across clients here). Let the feature dimensionality be d and the number of classes C. Then, to run XCLP
with L-dimensional bit vectors, each client computes an n × L binary data matrix, which has complexity
O(dnL). Then, the clients jointly compute all p2n2/2 pairwise Hamming distances, which requires O(Lp2n2)
operations and has overall complexity O(Lpn2) if run in parallel by the clients. The server inverts the matrix
at cost O(p3n3). Then, each client multiplies an pn×m sized part of the resulting matrix with their m× C
label matrix, which costs O(Cpnm) per client, and also has overall complexity O(Cpnm) if run on the clients
in parallel. Overall, the most costly step is the matrix inversion, but that is done on the server, which
we assume to have much higher compute capabilities. Assuming L > C and np > d, the clients costs are
dominated by the O(Lpn2) term.
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Table 1: XCLP for prediction (Fed-ISIC2019 dataset): Classification accuracy [in %] with two different
preprocessing functions (pretrained and finetuned) and training sets of different size (average and standard
deviation across three runs).

pretrained finetuned
training set size per-client LP XCLP FedAvg per-client LP XCLP

n = 954 30.70 ± 1.25 34.00 ± 1.12 43.78 ± 0.88 45.35 ± 1.25 47.48 ± 1.12
n = 1882 31.40 ± 1.18 34.61 ± 0.93 46.83 ± 0.75 48.10 ± 1.18 52.34 ± 0.93
n = 3744 37.41 ± 0.20 38.49 ± 0.88 52.87 ± 0.14 56.98 ± 0.20 59.49 ± 0.88
n = 18597 55.10 ± 0.51 53.38 ± 0.67 63.78 ± 0.20 73.30 ± 0.51 74.22 ± 0.67

For comparison, to run per-client LP, each client has to compute n2/2 d-dimensional inner products, invert
the resulting n× n matrix, and multiply a sub-matrix of size m× n it with a label matrix of size m×C. The
complexity per client is O(dn2 + n3 + Cmn), which is also the total complexity, if all clients can operate in
parallel. In practice, we expect d > n > C, so the dominant term is O(dn2). The server does not contribute
any computation. Consequently, with a typical trade-off of, e.g. L = 8d, XCLP requires 8p times more
numeric operations than local LP. Note, however, that one has good control over the total cost, as L and p
(and potentially d) are design choices.

On an absolute scale„ all of these values are rather small. For example, with p = 10, d = 512, and L = 4096,
the number of numeric operations a client has to perform per datapoint is in the order of 107. In many
settings, this can be expected to be less than the the operations needed to compute the datapoints feature
representation in the first place, e.g. when using a (even small) neural network for that purpose.

Communication Efficiency XCLP incurs communication costs at two steps of Algorithm 1. With the
OT-based protocol for computing the n(j) × n(k) Hamming matrix between two clients j and k, client j
sends n(j)n(k)L integer values in ZL to client k. With the enhanced PHE-based protocol, this amount is
reduced to sending n(j)L encrypted values from j to k and n(j)n(k) in the opposite direction. Each of the two
clients sends n(j)n(k) integer values in ZL to the server. To propagate the labels via the distributed matrix
multiplication, each client j first receives from the server a matrix of size n× l(j). It transmits a matrix of
size n× C to the server, and receives a matrix of size n(j) × C back from it. In particular, XCLP requires
only a constant number of communication steps, which is in contrast to other methods that train iteratively.

Robustness In cross-device FL clients may be unreliable and prone to disconnecting spontaneously.
Therefore, it is important that FL algorithms can still execute even in the event of intermediate client
dropouts. This is indeed the case for Algorithm 1: a client dropping out before the SecureHamming step (line
5), is equivalent to it not having been in P in the first place. Since the Hamming computation is executed
pairwise, a client dropping out during this step has no effect on the computation of other clients. The result
will be missing entries in the matrix, H, which the server can remove, thereby leading to the same outcome
as if the client had dropped out earlier. If clients drop out after H has been computed, but before the
SecureRowSums step (line 14), they will have contributed to the estimate of the data graph, but they will
not contribute label information to the propagation step. This has the same effect as if the client only had
unlabeled data. If clients drop out within SecureRowSums, after the obfuscation matrices have been agreed
on but before the server has computed Ẑ, then the secure summation could not be completed. To recover,
the server can simply restart the SecureRowSums step without the dropped client. Any later dropout will
only result in that client not receiving labels for its data, but it will not affect the results for the other clients.

4 Experiments

In the following section we report experimental results for XCLP. We present two applications in the context
of federated learning. In Section 4.1 we illustrate how XCLP can be used in a one-shot way to infer labels at
prediction time. In Section 4.2 we show how XCLP can be used for federated semi-supervised learning by
integrating it into a federated averaging training loop. As our emphasis here is on accuracy, not real-world
efficiency, we use a simulated setting of federated learning, rather than physically distributing the clients
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Table 2: XCLP for prediction (Fed-ISIC2019 dataset): Classification accuracy [in %] for leave-one-client-out
experiments (average and standard deviation across three runs).

left-out client FedAvg XCLP
Client 1 35.15 ± 0.96 38.89 ± 1.34
Client 2 68.75 ± 0.72 67.05 ± 0.54
Client 3 51.94 ± 2.52 62.02 ± 1.13
Client 4 42.72 ± 0.79 54.84 ± 0.78
Client 5 41.53 ± 1.60 52.28 ± 0.58
Client 6 46.92 ± 3.69 61.27 ± 3.19

Table 3: XCLP for prediction (Fed-ISIC2019 dataset): Classification accuracy [in %] when different fractions,
α, of training data are labeled. FedAvg and XCLP (labeled) use only the labeled part of the training set,
XCLP (labeled+unlabeled) uses also the unlabeled part.

FedAvg XCLP (labeled) XCLP (labeled+unlabeled)
α = 0.05 43.78 ± 0.88 47.48 ± 1.12 49.50 ± 1.42
α = 0.1 46.83 ± 0.75 52.34 ± 0.93 53.78 ± 0.90
α = 0.2 52.87 ± 0.14 59.49 ± 0.88 61.09 ± 0.66
α = 1.0 63.78 ± 0.20 74.22 ± 0.67 74.22 ± 0.67

across multiple devices. Therefore, we also use plaintext placeholders for the cryptographic steps that have
identical output. Source code for our experiments can be found at https://github.com/jonnyascott/xclp.

4.1 XCLP for prediction

The most straightforward application of XCLP is as a method to predict labels for new data at inference
time. For this setting suppose a set of clients, P , possess training data X(j) ∈ Xn(j) from some input space
X , and a (potentially partial) label matrix Y (j) ∈ {0, 1}n(j)×C . The goal is to infer labels for new batches
of data, X(j)

new. Note that the above setting is general enough to encompass a number of settings, including
clients with fully labeled or fully unlabeled training data. Also included is the possibility that a client j has
no training data to contribute, X(j) = ∅, but has a batch of new data to be labeled, X(j)

new 6= ∅.

By h : X → Rd we denote a preprocessing function, such as a feature extractor. Each client applies h to all
their data points, train and new, to obtain their input vectors to the XCLP routine, V (j) := h

(
X(j) ∪X(j)

new
)
.

Running Algorithm 1 on (V (j), Y (j))j∈P , each client obtains Ŷ (j), which are label assignments for all of their
data points, in particular including X(j)

new as desired.

Experimental Setup We use the Fed-ISIC2019 dataset (Ogier du Terrail et al., 2022), a real-world
benchmark for federated classification of medical images. It consists of a total of 23247 images across 6
clients. The dataset is highly heterogeneous in terms of the amount of data per client, the classes present at
each client as well as visual content of the images. As baseline classifier, we follow (Ogier du Terrail et al.,
2022) and use an EfficientNet (Tan & Le, 2019), pretrained on ImageNet, which we finetune using federated
averaging. As preprocessing functions, h, we use the feature extraction layers of the network either at the
point of initialization (pretrained) or after the finetuning. Appendix A.1 gives full details of the experimental
setup.

Results Table 1 reports results for the setting in which all clients contribute fully-labeled training data
and have new data that should be classified. The left columns (“pretrained") illustrate the one-shot setting:
no network training is required, only features are extracted once using a pretrained network, and XCLP is
run once to infer labels. XCLP performs better than per-client label propagation here, except for the largest
dataset size, indicating that in the limited data regime, it is indeed beneficial to build the data graph jointly
from all data rather than separately on each clients. The other three columns (“finetuned") illustrate that
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Algorithm 2: FedAvg+XCLP
Input: partially labeled training data (X(j), Y (j))mj=1
1 θ = (φ, ψ)← InitializeModelParameters
2 for round t ∈ [1, . . . T ] do
3 P ← server randomly selects τm clients
4 Server broadcasts θ to each client in P
5 for client j ∈ P in parallel do
6 V (j) ← fφ(X(j))
7 ŷ(j), ω(j) ← XCLP(V (j), Y (j), P, Server)
8 θ(j) ← ClientUpdate(X(j), ŷ(j), ω(j); θ)
9 Client j sends θ(j) to the server

10 θ ← ServerUpdate
(
(θ(j))j∈P )

)
Output: model parameters θ

with a better –task-adapted– feature representation, XCLP still outperforms per-client LP, and also achieves
better accuracy than predicting labels using only the network.

Table 2 reports results for a more challenging setting. We adopt a leave-one-client-out setup in which one client
does not contribute labeled training but instead its data is meant to be classified. Given the heterogeneity
of the clients, this means the classifiers have to overcome a substantial distribution shift. XCLP achieves
better results than a network trained by federated averaging in all but one case, where in several cases the
advantage is quite substantial. Note that per-client LP is not applicable here, as the new data is all located
on a client that does not have labeled training data.

Finally, we also conduct on ablation study on the effect of unlabeled training data on XCLP, that is when
Y (j) is a (strictly) partial label matrix. In this case the unlabeled training data does not contribute label
information towards inference on X(j)

new, but does contribute to a more densely sampled graph. Table 3 shows
the results: the FedAvg column is identical to the one in Table 1, because the federated averaging training
does not benefit from the additionally available unlabeled training data. Similarly, the result for XCLP with
only labeled data are the same as for XCLP in Table 1. However, allowing XCLP to exploit the additional
unlabeled data, however, indeed improves the accuracy further. This results once again shows the benefits of
exploiting unlabeled data, especially when the amount of label data is small.

4.2 XCLP for federated semi-supervised learning

We now describe how XCLP can be applied iteratively during a training loop in the context of federated
semi-supervised learning. FedAvg+XCLP, shown in pseudocode in Algorithm 2, follows a general FL template
of alternating local and global model updates. As such, it is compatible with most existing FL optimization
schemes, such as FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), or SCAFFOLD (Karimireddy
et al., 2020). The choice of scheme determines the exact form of the ClientUpdate and ServerUpdate
routines.

The first step (line 1) is to initialize the model parameters, θ = (φ, ψ), where fφ : X → Rd is the feature
extraction part of a neural network and fψ : Rd → RC is the classifier head. The initialization could be
random, using weights of a pretrained network, by an unsupervised technique, such as contrastive learning,
or by a supervised step, such as federated training on only the labeled examples.

We then iterate the main training loop over T rounds. To start each round the server samples some fraction
τ of the m total clients. These clients receive the current model parameters from the server (line 4) and
embed their labeled and unlabeled data with the feature extractor, fφ (line 6). Clients and server then
collaboratively run XCLP on these feature vectors (line 7). As output of this step each client updates the
pseudo-labels and confidence values for their unlabeled data, which they then use for local supervised training
(line 8). Lastly, clients send the updated local models to the server (line 9) which aggregates them (line 10).
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Table 4: XCLP for federated SSL: classification accuracy [in %] on federated CIFAR-10. m is the number of
clients, mL the number of clients with labeled data, nL is the total number of labels across all clients. i.i.d.
and non-i.i.d. refer to how the data is split among the clients. For details, see the main text and Appendix A.2.

CIFAR-10, i.i.d. (m = 100)
mL = 100 mL = 50

Method nL = 1000 nL = 5000 nL = 1000 nL = 5000
FedAvg (labeled only) 55.46 ± 0.43 76.13 ± 0.46 56.97 ± 0.59 80.36 ± 0.07
FedAvg+perclientLP 61.75 ± 2.22 85.11 ± 0.73 65.29 ± 2.50 84.41 ± 0.25

FedAvg+network 60.12 ± 0.15 79.45 ± 0.31 59.14 ± 0.35 81.04 ± 0.20
FedMatch 50.93 ± 0.56 72.22 ± 0.14 57.10 ± 0.46 77.80 ± 0.32
FedSiam 67.02 ± 0.98 82.06 ± 0.56 62.98 ± 1.61 78.45 ± 0.34
FedSem+ 59.98 ± 0.49 79.49 ± 0.15 59.67 ± 0.47 80.94 ± 0.25

FedAvg+XCLP (ours) 70.91 ± 0.71 86.65 ± 0.16 70.81 ± 1.65 86.29 ± 0.34
CIFAR-10, non-i.i.d. (m = 100)

mL = 100 mL = 50
Method nL = 1000 nL = 5000 nL = 1000 nL = 5000

FedAvg (labeled only) 50.94 ± 0.14 75.34 ± 1.38 53.26 ± 0.69 79.65 ± 0.12
FedAvg+perclientLP 50.94 ± 0.14 76.61 ± 1.50 53.26 ± 0.69 79.65 ± 0.12

FedAvg+network 60.60 ± 0.60 80.07 ± 0.53 59.82 ± 1.05 81.14 ± 0.23
FedMatch 50.71 ± 1.57 71.99 ± 0.70 48.24 ± 0.86 66.37 ± 0.41
FedSiam 67.85 ± 0.26 82.23 ± 0.46 62.29 ± 1.84 78.84 ± 0.72
FedSem+ 60.93 ± 0.97 79.70 ± 0.78 59.74 ± 0.74 81.30 ± 0.09

FedAvg+XCLP (ours) 73.76 ± 0.71 85.53 ± 0.56 70.01 ± 1.29 85.42 ± 0.43

Table 5: XCLP for federated SSL: classification accuracy [in %] on federated CIFAR-100 and Mini-ImageNet.
m is the number of clients, mL the number of clients with labeled data, nL is the total number of labels
across all clients.

CIFAR-100, i.i.d. Mini-ImageNet, i.i.d.
m = mL = 50 m = mL = 100 m = mL = 50 m = mL = 100

Method nL = 5000 nL = 10000 nL = 5000 nL = 10000
FedAvg (labeled only) 43.80 ± 0.19 53.91 ± 0.25 23.39 ± 0.52 31.72 ± 0.54

FedAvg+network 43.80 ± 0.19 54.19 ± 0.21 23.98 ± 0.36 31.86 ± 0.57
FedAvg+perclientLP 43.82 ± 0.59 54.38 ± 0.36 25.53 ± 0.22 33.09 ± 0.62

FedAvg+XCLP (ours) 50.19 ± 0.60 57.00 ± 0.08 26.93 ± 0.41 35.78 ± 0.56

The motivation for this approach comes from the insight gained in Section 4.1, that XCLP assigns high
quality labels when run on features obtained from a trained network. Crucially, pseudo-labels assigned by
XCLP are always recomputed when a client is sampled. Thus as the network features improve so too does
the quality of the pseudo-labeling.

Experimental Setup We evaluate the accuracy of FedAvg+XCLP against other methods for federated
SSL as well as report on ablation studies. We adopt a standard federated averaging scheme, in which
ClientUpdate consists of running 5 epochs of SGD with confidence-weighted cross-entropy loss on the local
device and ServerUpdate simply averages the local client models.

We use three standard datasets: CIFAR-10 (Krizhevsky, 2009), which has 10 classes and is used in several
previous federated SSL works (Jeong et al., 2021; Long et al., 2020; Albaseer et al., 2020), as well as the more
difficult CIFAR-100 (Krizhevsky, 2009) and Mini-ImageNet (Vinyals et al., 2016) which have 100 classes.
To the best of our knowledge ours is the first work in this federated SSL setting to evaluate on these more
challenging datasets. The datasets are split in different ways (different number of clients, different amounts
of labeled data, i.i.d. vs non-i.i.d.) to simulate a diverse range of federated settings.

We compare FedAvg+XCLP to a broad range of other methods. To enable a fair comparison of results,
all methods use the same network architecture, and hyper-parameters are chosen individually to maximize
each method’s performance. From the existing federated SSL literature, we report results for FedMatch
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(Jeong et al., 2021), FedSiam (Long et al., 2020) and FedSem+, which follows (Albaseer et al., 2020) but
additionally uses confidence-based sample weights, as we found these to consistently improve its accuracy.
Additional baselines are two methods that follow the same structure as Algorithm 2 but use alternative
ways to obtain pseudo-labels: from per-client label propagation (FedAvg+perclientLP) or from the network’s
classifier predictions (FedAvg+network). Finally, we also report results for training in a supervised manner
on only the available labeled examples, FedAvg (labeled only). Note that we do not include comparisons to
Zhang et al. (2021b) and Diao et al. (2022) as these methods address a different federated SSL scenario in
which the server has access to labeled data while the clients have no labels.

Results We report the results of our experiments in Tables 4 and 5 as the average accuracy and standard
deviation over three random splits of the data for each setting. Table 4 provides a comparison of XCLP to
other approaches and baselines in the standard setting of CIFAR-10 with 100 clients, which has been used
in prior work. In each case, we report results when 1,000 or 5,000 of the data points are labeled. Either
all or half of the clients have labels, with classes distributed either i.i.d. or non-i.i.d. across clients. Table 5
reports on the harder situation with many more classes, which prior work has not attempted. Across the
board, XCLP achieves the best results among all methods, while of the other methods, none has a consistent
advantage over the others. In addition to these general observations the results offer a number of more
specific insights.

Firstly, in nearly all cases semi-supervised methods outperformed the labeled only FedAvg baseline. This is
to be expected given the additional (unlabeled) data available to the SSL methods. A notable exception
to this, however, is FedAvg + perclientLP in the non-i.i.d. scenario. In this case in three of the four cases
perclient-LP actually degraded the performance of the initial supervised model, which caused automatic
model selection to deactivate it. A likely reason for this poor performance is the presence of classes in the
client test data which do not appear in the labeled portion of the clients training data. In this situation
perclient-LP is not able to predict for these classes on the test data. In contrast XCLP is unlikely to be
affected by this issue, as more clients are pooled together and hence more classes are present in the labeled
training data. This is reflected in the strong performance of FedAvg + XCLP in the non-i.i.d. setting.

Secondly, we observe that the biggest gains from incorporating XCLP occur in the regime where little labeled
data is available. In particular we see that with ample labeled data available per client, in the i.i.d. settings,
perclientLP performs not so much worse than XCLP. This is to be expected as when each client already has
ample labels available then the potential gain of collaboration with other clients is of course lower.

5 Conclusions and Limitations

In this work we introduced XCLP, a method for transductively predicting labels for unlabeled data points in a
federated setting, where the data is distributed across multiple clients. It makes use of cryptographic routines
to preserve data confidentiality when estimating a joint neighborhood graph over the data and propagates
label information across this graph by distributing the computation among the clients. We presented two
applications of XCLP, inferring labels for new (test) data, and training on partly labeled data in a federated
semi-supervised setting. In our experiments XCLP led to substantial improvements in classification accuracy
in both applications, especially in the most challenging (but often realistic) setting when the amount of
labeled data per client is limited.

XCLP ensures that a client’s data remains anonymous, in the sense that it is not directly exposed to or shared
with any other party, a notion of privacy we referred to as data confidentiality. This is achieved through the
guarantees provided by the cyryptographic subroutines. While data confidentiality is a fundamental building
block of private machine learning paradigms, such as federated learning, on its own it does not guarantee
that nothing can be learned about the clients or their data. Indeed it is common practice in private machine
learning to combine data confidentiality with other notions of privacy, such as differential privacy, in order to
obtain stronger privacy guarantees. Extending XCLP to integrate such notions of privacy is an interesting
direction for future work.
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A Experimental Details

A.1 XCLP for Prediction

Dataset We use the Fed-ISIC2019 (Ogier du Terrail et al., 2022) dataset which contains over 20, 000
images of skin lesions. The task is to predict melanoma (cancer) types. There are 6 clients, naturally defined
by hospital and scanner used. As a result the data of each client is highly heterogeneous in terms of the
amount of data per client (12413, 3954, 3363, 2259, 819, 439 examples for each client respectively), the classes
present at each client as well as visual content of the images. Due to the class imbalance in the dataset the
evaluation metric used is balanced accuracy.

Network Following Ogier du Terrail et al. (2022) we use an EfficientNet (Tan & Le, 2019) pretrained on
ImageNet, which we denote by f . We initialize a new final linear layer and fine-tune the whole network using
federated averaging as described in Ogier du Terrail et al. (2022).

Hyper-parameters We set all hyper-parameters for FederatedAveraging to the values specified in
Ogier du Terrail et al. (2022) except we increase the number of training rounds to T = 40 as we found that
the accuracy to improve with further training. Parameters for XCLP (LSH dimension, k-NN parameter) are
chosen using cross-validation. We use L = 1024 and k = 3. We fix the parameter α = 0.99.

A.2 XCLP for federated semi-supervised learning

Datasets We evaluate XCLP on three standard datasets for multi-class classification: CIFAR-10
(Krizhevsky, 2009), which has 10 classes and is used in previous federated SSL works, as well as the
more difficult CIFAR-100 (Krizhevsky, 2009) and Mini-ImageNet (Vinyals et al., 2016) which both have
100 classes. To the best of our knowledge ours is the first work in this federated SSL setting to evaluate on
these more challenging datasets. All three datasets consist of 60,000 images which we split into training
sets of size n := 50,000 and test sets of size 10,000. From the training set, nL examples are labeled and the
remaining n− nL are unlabeled. For CIFAR-10 we evaluate with nL = 1,000 and 5,000. For CIFAR-100 and
Mini-ImageNet we take nL = 5,000 and 10,000.

Federated Setup We simulate a FL scenario by splitting the training data (labeled and unlabeled)
between m clients. mL of these have partly labeled data, while the others have only unlabeled data. Each
client is assigned a total of n/m data points of which nL/mL are labeled if the client is one of the mL which
possess labels. We simulate statistical heterogeneity among the clients by controlling the number of classes
each client has access to. In the i.i.d. setting all clients have uniform class distributions and receive an equal
number of labels of each class. In the non-i.i.d. setting we assign a class distribution to each client and clients
receive labels according to their own distribution.

Networks Following prior work, we use 13-layer CNNs (Tarvainen & Valpola, 2017) for CIFAR-10 and
100 and a ResNet-18 (He et al., 2016) for Mini-ImageNet. Feature extractors are all layers except the last
fully connected one, thus embeddings have dimension 128 and 512, respectively.

Hyper-parameters We choose hyper-parameters for all methods based on training progress (LSH
dimension, k-NN parameter) or accuracy on a held-out validation set consisting of 10% of the training data
(batch size, learning rate).

Federated learning parameters We set the number of clients to m = 100, except for our experiments on
CIFAR-100 and Mini-ImageNet with nL = 5000. In these cases we set m = 50 as it is not possible to create
an i.i.d. split of the data over 100 clients since the number of classes (C=100) is too large. For CIFAR-10 we
set the number of clients which possess labels to mL = 100 and mL = 50. On CIFAR-100 and Mini-ImageNet
we set mL = m.

The ClientUpdate step corresponds to E epochs of stochastic gradient descent (SGD) of a loss function. We
set the number local epochs to E = 5 and the loss function is (per sample weighted) cross-entropy loss. The
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ServerUpdate step corresponds to averaging the model updates:

ServerUpdate(θ(j) for j ∈ P ) = 1
|P |

∑
j∈P

θ(j).

The number of training rounds is set to T = 1500 and the number of clients sampled by the server per
training round is set to 5, so τ = 0.05 when m = 100 and τ = 0.1 when m = 50. Note that when mL < m we
ensure that the server samples τmL clients from the labeled portion (and τ(m−mL) from the unlabeled) to
ensure that there are some labels present in the graph.

Network training parameters We use standard data augmentation following Tarvainen & Valpola (2017).
On CIFAR-10 and CIFAR-100 this is performed by 4Œ4 random translations followed by a random horizontal
flip. On Mini-ImageNet, each image is randomly rotated by 10 degrees before a random horizontal flip.
We use weight decay for all network parameters which is set to 2× 10−4. When carrying out SGD in the
ClientUpdate we use batches of data B = BL ∪BU where BL is a batch of labeled data and BU is a batch
of pseudo-labeled (previously unlabeled) data. We set |BL| according to how many labeled samples the client
has available, |BL| = min(50,#labels). We set |BU | = |BL|. Learning rate for SGD is set according to this
batch size. On CIFAR-10, for |BL| < 50 we set the learning rate to 0.1 and for |BL| = 50 we set the learning
rate to 0.3. On CIFAR-100 and Mini-ImageNet we always have |BL| = 50 and we set the learning rates to
0.5 and 1.0 respectively. We decay the learning rate using cosine annealing so that the learning rate would be
0 after 2000 rounds.

XCLP parameters We set the LSH dimension to L = 4096 as this gave near exact approximation of
the cosine similarities while still being computationally fast (less than 1 second per round). We set the
sparsification parameter to k = 10, so that each point is connected to its 10 most similar neighbors in the
graph, and the label propagation parameter to α = 0.99.

B Additional Experiments

B.1 XCLP for Prediction

We include extra experiments to test the performance of XCLP for prediction on an additional dataset. We
follow the notation and setup detailed in Section 4.1.

Dataset We use the FEMNIST Caldas et al. (2018) dataset. FEMNIST is a federated dataset for
handwritten character recognition, which has 62 classes (digits and lower/upper case letters). It has 817,851
samples and we keep the natural partition into 3597 clients based on the writer that wrote each character.
The clients are non-i.i.d., as they heterogeneous in the amount of data they possess, the classes they have, as
well as the data distributions themselves.

Experimental Setup We consider a setting where each client possesses partly labeled training data and
wishes to infer labels for their own unlabeled new data. We looks at a range of different labeling scenarios
based on what fraction, α, of each client’s training data is labeled. Furthermore, due to the large number of
clients and datapoints in FEMNIST we reduce communication overhead by partitioning the clients into large
groups (we use 50 groups, each with approximately 700 clients) and run XCLP separately on each groups of
clients. Per-client LP remains as described in 4.1.

We investigate two different choices for the preprocessing function h. For the first we simply use the identity
(i.e. no embedding) and run both per-client LP and XCLP directly on the raw data. For the second we use
a linear embedding that we trained over the client data. Specifically, following the low training overhead
approach of 4.1, we train a two layer linear MLP using Federated Averaging and use the first layer linear
embedding as our preprocessing function.

Results Table 6 reports the results obtained when different fractions α of each client’s training data are
labeled. The left columns ("identity") give results for the one-shot setting, where no training is required,
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Table 6: XCLP for prediction (FEMNIST dataset): Classification accuracy [in %] with two different
preprocessing functions (identity and linear embedding) and different fractions of labeled data available
(average and standard deviation across three runs).

identity linear
Fraction of labeled data per-client LP XCLP FedAvg per-client LP XCLP

α = 0.1 33.74 ± 0.20 49.29 ± 0.16 53.09 ± 0.19 37.27 ± 0.12 52.39 ± 0.30
α = 0.2 44.79 ± 0.03 53.93 ± 0.04 57.54 ± 0.46 50.89 ± 0.11 58.57 ± 0.13
α = 0.5 50.99 ± 0.06 59.37 ± 0.13 61.07 ± 0.49 59.20 ± 0.19 63.46 ± 0.11
α = 1.0 51.91 ± 0.07 62.35 ± 0.07 62.90 ± 0.31 59.42 ± 0.11 66.18 ± 0.20

and LP is run directly on the client features. The right columns ("linear") illustrate that by embedding the
features using a simple linear layer we are able to improve the performance of XCLP. In all cases XCLP
substantially outperforms per-client LP. The difference is even more noticeable than in 4.1, presumably due
to the smaller amount of data present at each client.

C Additional Background

C.1 Propagating values along a data graph

For a graph with n vertices and adjacency matrix W ∈ Rn×n of edge weights, a vector of values, y ∈ Rn, can
be propagated to neighboring vertices by forming z =Wy. By repeatedly multiplying with W values can be
propagated all along the graph structure (Zhu, 2005).

In the context of propagating labels, one wants not only to propagate the labels to unlabeled points, but also
to prevent the information at labeled points to be forgotten. For that, one can uses an extended update rule

zt+1 = αWzt + y (1)

where α ∈ (0, 1) is a trade-off hyperparameter. For ‖W‖ < 1/α, this process has the closed form expression

z∞ = (Id−αW)−1y, (2)

as its (t→∞)-limit. This can be seen from the fact that Equation 1 is a contraction with z∞ as fixed point.

In Section 3.1 we make use of this fact together with the observation that Equation 2 can readily be applied
to vectors-valued data with a matrix Y in place of y. However, the propagation step will not preserve
normalization, e.g. of the L1-norm. When such a property is required, e.g. for the calculation of entropy-based
confidence, normalization has to be performed explicitly post-hoc.

C.2 Computing similarity from hashed data

Locality-sensitive hashing (LSH) (Indyk & Motwani, 1998) is a procedure for hashing real-valued vectors
into binary vectors while preserving their pairwise similarity. Let v ∈ Rd be a vector. To encode v into a
binary vector b of length L, LSH randomly samples L hyperplanes in Rd. For each hyperplane it checks
whether v lies above or below it and sets the ith bit in b as 1 or 0 accordingly. Formally, bi = 1〈v,ui〉≥0,
where ui ∈ Rd is the normal vector of the ith hyperplane. A key property of LSH is that it approximately
preserves cosine-similarity. Concretely, for vectors v1, v2 with LSH encodings b1, b2 (compute with the same
projections), one has

〈v1, v2〉
‖v1‖‖v2‖

≈ cos(πh(b1, b2)/L) (3)

where h is the Hamming distance (number of bits that differ) between two binary vectors. The reason is that
the probability of b1 and b2 differing at any bit i is the probability that the i-th sampled hyperplane lies
between v1 and v2, which is equal to ](v1, v2)/π. By the law of large numbers, the more hyperplanes one
samples, the better the approximation quality.
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