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ABSTRACT

Opening black boxes and revealing the inner mechanism of deep models is vital
in applying them to real-world tasks. As one of the most intuitive and straightfor-
ward explanations for deep models, attributive explanation methods have been ex-
tensively studied. Existing attribution methods typically assign attribution scores
to each individual feature as an explanation. However, when we use or evalu-
ate the explanations in practice, what really matters is not the attribution scores,
but the rank order of features (e.g., identifying the top-contributing features, or
checking for changes in the model output by masking features in order). In
other words, achieving attribution scores is a redundant step in achieving expla-
nations. To address this, we propose a novel framework TRAjectory importanCE
(TRACE) which directly provides feature ranking explanations. Our method in-
troduces several improvements. First, TRACE greatly reduces the set of feasi-
ble explanations, allowing us to actually solve for the best explanation. Second,
TRACE is able to achieve the theoretically-grounded best possible explanation in
commonly used deletion evaluations. Third, we provide extensive experiments to
validate that TRACE outperforms attribution methods with a significant margin.

1 INTRODUCTION

With the rapid increase in computational power, deep neural networks (DNNs) have achieved great
performance in various tasks, especially in those with high complexity, such as computer vision
(CV), natural language processing (NLP), etc. However, DNNs are also notorious for their black-
box essence, and DNNs’ capability is achieved at the expense of algorithmic transparency. Language
models have reached trillions of parameters (BAAI, 2020). Commonly used CNN models, although
much smaller, also have hundreds of millions of parameters (Simonyan & Zisserman, 2014). This
makes it impossible to track the inner mechanism of the models. However, without adequate expla-
nations, such capable models are hindered to be deployed in reality, especially in high-stake areas.

To reveal the inner mechanism of DNNs, various forms of explanation methods have been proposed
(Arrieta et al., 2020). Among these explanation forms, attribution methods are the most extensively
studied form since they are very straightforward. Given an input with d features (pixels, tokens, pixel
patches, etc.) and the output, attribution methods assign an attribution score for each input feature,
representing the contribution (or sensitivity, etc.) of the feature w.r.t. the output. This form also
enables appealing visualization since they can be visualized as heatmaps, which is a preferable form
of presentation to humans (Leavitt & Morcos, 2020). Because different forms of explanations differ
too much to be universally studied together, in this paper, we mainly focus on attribution methods.

Attribution methods provide explanations by assigning attribution scores for features. However, we
argue that this is redundant in explanations. First, in real applications, attribution explanations are
mostly used to inspect if the most important features are properly highlighted. Second, in evalu-
ation metrics of explanations, the focus is not on the attribution scores, but on feature rankings.
Alignment metrics like pointing game (Zhang et al., 2018) only check if the top ranked features cor-
respond with prior knowledge (segmentations, bounding boxes, etc.). And performance metrics like
deletion/insertion metrics 1 perturb (deletes, inserts, etc.) features w.r.t. the rankings of attribution
scores. Third, recent human-involved experiments also give the same results. (Kaur et al., 2020)

1The deletion metric is especially extensively used in evaluating explanations and has many variants, includ-
ing feature ablation/occlusion, top-k masking, ROAR, image degradation, etc. Here for the sake of consistency
we use the term “deletion”.
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show that even for data scientists, the compatibility between the feature rankings and the intuition
contributes greatly to the trust towards black-box models. (Krishna et al., 2022) further demonstrate
that when it comes to the “disagreement” of attribution methods, all participants (data scientists) can
only think of problems related to the ranking of features.

According to the above observation in attribution explanations, we can find that what is actually
used/evaluated is ranking all the features, where assigning the concrete attribution scores is barely a
means to fulfill this goal. And this means introducing too much redundant information that entangles
the analysis of explanations. As a result, according to Occam’s razor, we propose to simplify attribu-
tions into trajectories of features, where the features are traversed based on the rankings. There are
many advantages of using feature trajectories instead of attributions as the explanations. The most
significant one is that by aggregating “equivalent” attributions (where attribution scores are highly
distinct in values, but keep the same feature ordering), the set of feasible explanations for an input
degenerates significantly from the infinite Euclidean space Rd to the symmetric group Sd, which is
finite. This improvement enables us to actually solve for the best explanation. Based on this, we
introduce TRAjectory importanCE (TRACE), a novel framework to generate high-quality trajectory
(ranking) explanations that outperform existing attribution methods in terms of ablation tests by a
large margin. The contribution of this paper can be briefly summarized as follows.

• We extract the essence of current usage/evaluation of attribution methods and introduce a
novel simplified form of explanation.

• We propose a new framework TRACE targeting at the simplified explanation form.
TRACE is able to achieve the best possible explanation in commonly used deletion evalua-
tion for explanation methods.

• To the best of our knowledge, we are the first to formulate perturbation-based explanations
as combinatorial optimization problems, where a rich family of tools are available.

• We provide extensive experimental results to validate that TRACE outperform attribution
explanation methods with significant margin.

2 RELATED WORK

In order to explain DNNs, numerous attribution methods have been developed. Based on the ways
explanations are generated, they can be roughly separated into propagation methods and perturbation
methods. Propagation methods back-propagate gradients or modified/pseudo gradients in the top-
down fashion, while perturbation methods usually generate explanations by modifying the input data
and observe the change in the output. Generally, perturbation methods are model-agnostic, meaning
that they do not require any information of the explained model. On the contrary, propagation
methods need access to the models (layers, parameters, etc.) to perform the propagation. There
are also self-interpretable models with attribution scores (Chen et al., 2019; Agarwal et al., 2021a;
Wang & Wang, 2021; Li et al., 2021a), where instead of explaining an existing black-box model,
they propose entire new models that generate explanations and predictions at the same time. In
addition, feature ranking explanations should be distinguished from local feature selection, which
aims at selecting a portion of features of given a specific sample. The goal of feature selection is to
reduce the dimensionality of the data by selecting the most representative features, while TRACE is
an explanation method that aims at explaining the feature importance to a specific black-box model
instead of the data itself (Chen et al., 2020).

Propagation Methods. Saliency (Simonyan et al., 2013) makes use of the gradient of input as the
attribution scores. Guided back-propagation (Springenberg et al., 2014) modifies the behaviour of
ReLU layers in backpropagations. LRP (Bach et al., 2015) and DeepLift Shrikumar et al. (2017)
change the back-propagation rule to propagate attribution scores layer-wise in the top-down fashion.
Input × Gradient (Shrikumar et al., 2016) uses the Hadamard product between input and its gradient
as attributions. Sundararajan et al. (2017) propose axioms for attribution methods and introduce In-
tegrated Gradient, which is the line integral of the input gradient. Grad-CAM (Selvaraju et al., 2017)
generalizes the class activation mapping to all CNNs through the gradient of the CNN activations.

Perturbation Methods. LIME (Ribeiro et al., 2016) locally approximates the prediction with a
simple surrogate model. Occlusion (Zeiler & Fergus, 2014) identifies the object locations by re-
placing different portions of image with gray squares. SHAP (Lundberg & Lee, 2017) utilizes the
approximated Shapley values (Shapley, 1953) as attribution scores. RISE (Petsiuk et al., 2018) de-
fines attribution scores based on many randomly sampled masks. IBA (Schulz et al., 2020) generates
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Table 1: The deletion/insertion tests with MoRF and LeRF criteria. The first row is the k-th point
values of the corresponding curve showing the change in model output when k features are perturbed
(0 ≤ k ≤ d). The second row is the corresponding AUCs estimated by Riemann sum (i.e. the
summation of all point values). The third row is the desiderata for the corresponding AUCs.

Criteria Del-Mo Del-Le Ins-Mo Ins-Le

k-th Point f(x\σ′[:k]) f(x\σ[:k]) f(xσ′[:k]) f(xσ[:k])

AUC
∑d

k=0 f(x\σ′[:k])
∑d

k=0 f(x\σ[:k])
∑d

k=0 f(xσ′[:k])
∑d

k=0 f(xσ[:k])
Desiderata min max max min

explanations via per-sample information bottleneck. I-GOS (Qi et al., 2019; Khorram et al., 2021)
optimizes small masks to maximally decrease prediction scores. (Agarwal et al., 2021b) formulate
attribution generation as a Markov Decision Process and use reinforcement learning to solve it.

3 METHODOLOGY

Notations. Let f : Rd → R be the black-box model to be explained. Here the output is constrained
in scalars. This is valid since even for multi-class tasks, explanations are generated w.r.t. one class of
interest. Given such a model f and an input x ∈ Rd, an attribution method is defined as a mapping
ϕf : Rd → Rd. Here the RGB channels are omitted and only the spatial dimension is considered.
[d] = {1, · · · , d} denotes the index set of features. Given f, ϕ, a unique trajectory that traverses from
the least important feature (w.r.t. f ) to the most important feature is defined for input x based on the
attribution ϕf (x). We denote it by σ(f, ϕ;x) and simplify it as σ(x) or σ for brevity since f, ϕ and
x are general. Here σ(x)[i] ∈ [d] is the index of the i-th non-important feature, and ∀i ∈ [d − 1],
xσ(x)[i] is seen as less important than xσ(x)[i+1] to model f . And σ is thereby a permutation of [d].

For any index subset τ ⊂ [d], let xτ ,x\τ denote when only the features indexed by τ are preserved
or deleted, respectively. And for an ordered index set such as σ, we denote by σ[: i], σ[i : j], σ[j :]
the subset of σ consisting of the first i, the i-th to the j-th, and the j-th to the last elements of σ,
respectively. All endpoints are included. In addition, σ′ represents the reverse of the trajectory σ.

Insertion/Deletion Measures v.s. Perturbation Methods. As the most popularly and widely used
evaluation metrics for attribution explanations, insertion/deletion measure the output change w.r.t.
the input perturbations. The insertion metric gradually inserts features to a null input (e.g. zeros,
means, etc.) while the deletion metric gradually deletes features from the original input. These
processes actually correspond to the essence of perturbation methods. Existing perturbation methods
tend to optimize masks according to f(x⊙m+ r ⊙ (1−m)), where ⊙ stands for the Hadamard
product, r is some reference values (zeros, means, etc.), and m ∈ {0, 1}d represents a binary
mask. Sometimes m is relaxed in [0, 1]d for continuity and smoothness. The objective function of
perturbation methods can be formulated as2:

m∗ = arg min
m∈{0,1}d

f(x⊙m+ r ⊙ (1−m)), s.t. Ω(m), (1)

where Ω is some imposed constraints. we denote by m∗
k if ∥m∗∥1 = k. Given k ∈ [d], m∗

k
represents the group of informative features when exactly k features are kept. This choice can be
distinct for m∗

j , j ̸= k. This is where perturbation methods do not align with deletion test, which
requires features to be deleted in a trajectory. We deduce that this might be the reason why even
perturbation methods are more closely related to the deletion test than back-propagation methods,
they still show no significant advantages under such metric (Li et al., 2021b).

Our Explanation Method: Trajectory Importance (TRACE). In order to dominate the deletion
test, the perturbation should be based trajectories, which means m∗

k ≤ m∗
k+1. This is exactly

compatible with the observation that only trajectories (rankings) of attribution methods are made
use of. In fact, when the explanations degenerate to trajectories σ(x), we can optimize for an
explanation that aces the insertion/deletion test. Note that by differentiating between acting on
the most or the least relevant feature first (MoRF/LeRF), there are totally four different ways in
evaluating explanations by combining insertion/deletion and most/least together. We denote them
by Ins/Del-Mo/Le3. In other words, the MoRF criterion includes Ins/Del-Mo and the LeRF criterion

2This simple form is of course not the exact form of perturbation methods. But it is indeed the basic factor
of most perturbation methods.

3For example, in Del-Mo, important features are deleted first and the desired curve should drop fast.
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includes Ins/Del-Le. Formally, when the top k features are deleted, the input becomes x\σ′(x)[:k].
Then by deleting/inserting d features, four curves regarding the change in model output can be drawn
respectively. Details of the four curves are shown in table 1. According to the desiderata, when Del-
Mo is used to evaluate explanation methods ϕf , it is desired that the curve to drop fast (min AUC).
Therefore, when we have access to the trajectory σ directly, it it natural to optimize σ directly:

TRACE-Del-Mo : min
σ

d∑
k=0

f(x\σ′[:k]), (2)

and the three other cases can be optimized similarly. In the remaining context, notations like Del-
Mo or MoRF refer to the metrics. And we add the prefix TRACE ahead (e.g. TRACE-Del-Mo,
TRACE-Mo, TRACE-p, etc.) to represent the proposed method TRACE and variants.

4 REMARKS ON TRAJECTORY EXPLANATIONS AND TRACE

Deletion v.s. Insertion. It is worth noticing that deletion and insertion tests works from different
directions of the trajectory. However, when summarizing all point values together to calculate the
Riemann sum, the influence of such directional difference will be omitted. In fact, we have:
Theorem 1 Ins-Le and Ins-Mo are equivalent to Del-Mo and Del-Le up to AUCs, respectively.
Please refer to appendix A for the proof. As a result, we only consider the deletion test, and denote
the two criteria only by Mo and Le for brevity. And eq. (2) is thereby denoted as TRACE-Mo.

Mo v.s. Le. As two criteria of the deletion test, Mo and Le have very distinct interpretations. Del-
Mo defines important features as those affecting the performance the most when we delete them,
while Del-Le defines important features as those maintaining the performance the most when we
only keep them. A desired trajectory σ should correspond to both directions, i.e., achieving Mo
and Le on the same feature trajectory. Hence a better metric that evaluate the two desiderata at the
same time is

∑d
k=1

(
f(x\σ[:k])−f(x\σ′[:k])

)
, which is also known as the normalized AUC (Schulz

et al., 2020). Here we denote the metric as (Le−Mo) and the method as TRACE-(Le−Mo). In the
following context, if not specified, TRACE refers to TRACE-(Le−Mo).
The Out-of-Distribution Problem. The feature deletion test is also affected by the out-of-
distribution issue (Hooker et al., 2019; Wang & Wang, 2022a). It is suspected that finer deletions
break the input distribution, which contributes more to the performance decay. Besides, pixel-wise
attributions tend to lose semantic information present by the image (Rieger et al., 2020). Grouping
pixels and dealing with patches have also been demonstrated to achieve great success (Dosovitskiy
et al., 2020; Tolstikhin et al., 2021; Yu et al., 2022). As a result, instead of performing deletion pixel-
wise over x ∈ Rd, we operate on t superpixel square patches. By comparing different t values, we
observe that the out-of-distribution issue is alleviated by decreasing the resolution t of the deletion
process. Smaller t results in less noisy trajectories, but coarser explanations, while larger t leads to
finer but more noisy explanations. Also, a large t brings more difficulties to the optimization as the
feasible set is of size t!. In order to balance these issues above, we set t = 72 = 49 in our main
experiments. And we will abuse the notations a little to denote by x\σ′[:k] the input image with the
top k patches (instead of pixels) deleted. We put more results with other t values in appendix B

Logit v.s. Probability. The output of the model, which is represented by f(x), can have different
meanings. As a classifier, the standard output of the model is the predicted logit of the last linear
layer, while the predicted probability is the softmax activation. Perturbations w.r.t. the logits and
probabilities have different behaviours since a perturbation increases the logit of class i may also
increase that of class j ̸= i, resulting drop of the probability of class i (Wang & Wang, 2022b). We
distinguish the two variants of our TRACE method by suffix -y (explanation w.r.t. logits) and -p
(explanation w.r.t. probabilities), respectively.

Trajectories to Attributions. The mapping from the attributions ϕf (x) to the corresponding
trajectory σ(x) is a surjective, but σ(x) can still be mapped back to attributions as ϕ(x) =
bilinear((σ−1(x)/p)α) ∈ [0, 1]d, where σ−1 = argsort(σ) is the ranking of features in
the trajectory σ. And σ−1[i] is the rank of the feature xi in the less-important-first manner. The
power α > 0 is a smoothing factor to constrain the portion of the highlighted area, and the de-
nominator t is to normalize the rankings to [0, 1]. This is only to visualize trajectories as heatmaps
so that we can have conventional qualitative comparisons with attribution methods. The converted
visualizations are shown in fig. 1(a), where α ∈ {1, 2, 5}. Here we use the power function family
for simplicity. Any monotonic continuous mapping [d] → [0, 1] can achieve this task. This further
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Figure 1: Explanations from our method TRACE-y and TRACE-p on the “sea snake” image of
ILSVRC2012 validation set. (a) The converted heatmap explanations with different smooth factor
α. (b) The deletion process based on the trajectory σ from our method.

shows the redundancy of attribution scores in attribution methods. Also, compared with deletion
trajectories (b), which lucidly shows how these patches interact, the converted attribution heatmaps
shown in (a) can not properly reflect all the details contained in the trajectory σ, even visually.

5 ALGORITHMS FOR TRACE

Despite the promising properties of TRACE, the optimization of trajectory in TRACE is not trivial
(and is NP-hard). Here we propose the algorithm based on combinatorial optimization.

The Relation to TSP. The most well-known problem related to TRACE optimization is classic
traveling salesman problem (TSP), where a salesman is supposed to traverse all t cities, and the
minimal cost is sought. It is defined by a cost matrix ∆ = [δij ]p×p where δij is the cost going from
city i to j. Given a trajectory σ, the cost function is defined as ftsp(σ) =

∑t
i=1 δσ[i]σ[i+1], where

we extend σ[p+ 1] := σ[1]. Based on this, we have the following theorem (proved in appendix C):

Theorem 2 The optimization problem TRACE-Mo ({minσ
∑d

k=0 f(x\σ′[:k])}) is NP-hard.

Simulated Annealing. Optimization over all permutations is a typical combinatorial optimization
problem. For TRACE, since the objective is dependent on the DNN model f , whose analytical for-
mulae is not available, meta-heuristic algorithms are the judicious choice. They have been demon-
strated effective over combinatorial optimization problems (Baghel et al., 2012). Among them,
simulated annealing (SA) (Kirkpatrick et al., 1983) has been successfully applied to problems such
as TSP to to generate sufficiently good sub-optimal results (Geng et al., 2011). Therefore, we too
employ SA as the tool. The pseudo-code can be found in appendix D.

It should be noticed that developing better tools for combinatorial optimization is beyond the scope
of this paper. TRACE is introduced as a pipeline to formulate perturbation explanations as a com-
binatorial optimization problem so that they can be solved directly with a rich family of tools. We
employ SA because it is efficient, effective and theoretically sound. Provided with better tools,
TRACE can generate explanations of higher quality. We also test other algorithms in appendix E.

Neighbor Sets. As a searching algorithm, one of the most important factors of SA is the choice of
neighbors, which is not trivial on a discrete feasible set, given that the objective function is a black
box. Meanwhile, closely related to TSP as it is, TRACE is essentially a harder problem. In TSP, the
directly connected cities can determine the total cost, while in TRACE, not only the consecutively
deleted patches, but also the overall ordering of deleting patches matter. For example, if a block in
the trajectory is reversed, then in (symmetric) TSP, the only values that change are the connections
to the two endpoints of the block. However, in TRACE, all the values after the first point of the
reverse block will change. Therefore, common neighbors for TSP such as the vertex insertion, block
insertion, and block reverse (Geng et al., 2011) do not apply to TRACE trivially. We thus explore
valid and efficient neighbors for TRACE.
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Note that σ can be any permutation of length t, which corresponds to St, the symmetric group of
order t. Specifically, since i = σ[σ−1[i]] = σ−1[σ[i]], we have ∀σ, ∃s ∈ St s.t.

s =

(
1 2 · · · d

σ−1[1] σ−1[2] · · · σ−1[d]

)
= s(σ), (3)

which is a bijective. Since the feasible set St is a discrete space, SA is modeled as a search method
over a graph, where the vertices are feasible states, and the edges are possible movements between
corresponding states, i.e. neighboring relations. Besides, it is also desired that each state has exactly
the same number of neighbors. For the symmetric group St, such graph is perfectly modeled by
Cayley’s graph (Cayley, 1878). Given a generating set S ⊂ St, the Cayley graph is defined as a
directed graph Cay(St, S) = G(V,E) where the set of vertices V are the same as St, and the arcs
are defined by E = {[s1, s2]|∃g ∈ S, gs1 = s2}, which results in an |S|-regular graph. Therefore,
from any state ∀s ∈ St, we can move to |S| other states. And there are also |S| states that can move
directly to s. For neighbors, we expect: 1) sufficiently small change between neighbored states
and 2) the neighboring should be symmetric (i.e. [s1, s2] ∈ E ⇔ [s2, s1] ∈ E). Hence we only
include transpositions (permutations that only exchange two elements) in S (known as transposition
set). For a transposition set S, we have ∀s ∈ S, s = s−1, which means that Cay(St, S) is a
symmetric directed graph and hence can be seen as undirected. In this case G([t], S) is known as
the transposition graph, where the vertices are [t], and the edges are the transpositions in S. Then

Proposition 1. (Hahn & Sabidussi, 2013) S generates St if and only if G(S) is connected.

This indicates that t − 1 ≤ |S| ≤ t(t−1)
2 , where the two equalities hold at spanning trees of the

complete graph and the complete graph, respectively. (Lakshmivarahan et al., 1993) propose several
well-structured transposition generating set for St:

• Complete Transpositions: Scomplete = {(i j)|1 ≤ i < j ≤ d}
• Bubble-Sort Transpositions: Sbubble = {(i i+ 1)|1 ≤ i < t}
• Star Transpositions: Sstar,i = {(i j)|1 ≤ j ≤ d, j ̸= i}, 1 ≤ i ≤ t

When applying SA over St, the number of states t! is easy to explode compared with the neigh-
bor size. This requires: 1) sufficiently many movements from each state; 2) sufficiently few steps
between any two states. In fact, let diam(G) denote the diameter of the graph G, then we have

Theorem 3 diam(Cay(St, Scomplete)) ≤ t− 1.

Plese refer to appendix F for the proof. On the other hand, for the bubble-sort transposition and star
transposition, the diameters are (Akers & Krishnamurthy, 1989):

Proposition 2. diam(Cay(St, Sbubble)) =
t(t−1)

2 ; diam(Cay(St, Sstar)) = (⌊3(t− 1)⌋)/2
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Figure 2: The comparison of different neighbor sets.

As a result, even there are t! = 49! ≈
6.08× 1062, the distance between the any
pair of vertices is only t − 1 = 48 in the
complete graph. And this is the smallest
value among all transposition sets. Be-
cause Scomplete = ∪S is a transposition setS.

We present empirical results of differ-
ent neighbor settings, including complete
graph, bubble-sort graph, star-graph, ver-
tex insertion (VI), block reverse (BR),
block insertion (BI), and mix (89%BR +
10%VI + 1%BI) (Geng et al., 2011). The
SA optimization process for the first 100 images of the validation set of ILSVRC2012 on pretrained
ResNet-18 provided by torchvision are plotted. The results are shown in fig. 2. It can be found
that the complete graph outperform other neighbor sets.

6 EXPERIMENTS

In this section, we carry out multiple experiments to demonstrate the advantages of using TRACE as
the explanations to DNNs. Without specifically clarified, we use a ResNet-18 model as the black-
box f to be explained. Experiments are carried out on the ImageNet-1k (ILSVRC2012) dataset
(Deng et al., 2009). The input image are resized to 224 × 224. The explanations trajectory are
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TRACE-y TRACE-p GradCAM Excitation-BP Gradient Integrated Gradient Input x Gradient RISE Extremal Perturbation IBA

Figure 3: Visualizations of TRACE and popular attribution methods on images from ILSVRC2012.
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Figure 4: Sanity check using cascading randomization for TRACE. Convolutional layers of pre-
trained ResNet-18 are randomized in the independent (upper) and cascading (lower) manners. In
the independent randomization, other layers are kept at the pre-trained values. And in the cascading
randomization, layers are progressively randomized from left to right (top-down). Here “BaCb”
means the b-th convolutional layer in the a-th block.

generated using SA algorithm 1 to solve TRACE. As for parameters for SA, we use the complete
graph as the neighbor sets. The max iteration is K = 10000. The initial temperature is T0 = 2 for
-y and T0 = f(x)/10 for -p. And the cooling rate is η = 0.999. All experiments are carried out
over Intel(R) Core(TM) i9-9960X CPU @ 3.10GHz with Quadro RTX 6000 GPUs.

Visualizations. As a convention, we first present the heatmaps of TRACE and popular attribution
methods, including GradCAM, Excitation Back-Propagation, Gradient, Integrated Gradient, Input
× Gradient, RISE, Extremal Perturbation, and IBA. The results are shown in fig. 3. Please refer to
appendix G for the deletion trajectories. Although heatmaps are very preferred in the interpretable
machine learning community due to the intuitive and straightforward forms, it should be emphasized
that it can be dangerous to attach undue importance to them (Leavitt & Morcos, 2020). The model
can make correct prediction using biased/wrong features that we humans cannot understand. And
those explanations who do not highlight the objects in the image are not necessarily bad, and vice
versa. Thus heatmaps should be used only as a supplement for the evaluation of explanations.

Sanity Check. In order to make better use of visualizations given this situation, Adebayo et al.
(2018) propose the sanity check for visualizations, where a “ground truth” is created artificially as
“When the layers of the black-box model are randomized, the heatmaps should not stay invariant.”
We follow the criteria and present the sanity check results of TRACE with both the cascading and the
independent randomization. As shown in fig. 4, both TRACE-y and TRACE-p change immediately
once any layer is randomized, which indicates that TRACE successfully passes the sanity check. For
completeness, we present the sanity check results of other comparing methods in appendix H.

Deletion Test. Here we demonstrate that TRACE outperforms attribution methods in the deletion
test, the most commonly used quantitative experiment. The input image is first split into t = 49
square patches. Then given an attribution map, patches are deleted following Most relevant Remove
First (MoRF) or Least relevant Remove First (LeRF). Under MoRF, the prediction is expected to
drop fast, and vice versa. From the plots in fig. 5 and AUCs in table 2, we find that since TRACE-y
and TRACE-p are optimized respectively, they outperform each other in the corresponding experi-
ments (logit v.s. probability). In (a)(b), TRACE-y achieves better results, while in (c)(d), TRACE-p
does. But both of them outperforms attribution methods by a significant margin. Besides, it is ar-
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TRACE-y TRACE-p Gradient GradCAM IBA RISE Extremal Perturbation Excitation Propagation Integrated Gradient Input x Gradient

Figure 5: Deletion results of the first 200 images from the validation set of ILSVRC2012. Each
image is split to t = 49 square patches. In (a)(c), patches are deleted following LeRF, and in (b)(d),
patches are deleted following MoRF. The y-axis of (a)(b) is the output logits of the network, and the
y-axis of (c)(d) is the predicted probability. x-axis is the number of masked patches.

Table 2: AUCs of curves shown in fig. 5. AUC values are computed by the Riemann sum of the
corresponding curves. T-y, T-p, Grad, GC, EP, EBP, IG, I×G are abbreviations for TRACE-y,
TRACE-p, Gradient, GradCAM, Extremal Perturbation, Excitation-BP, Integrated Gradient, Input
× Gradient, respectively. The (a)(b)(c)(d) rows correspond to subfigures from fig. 5 respectively.
(a-b) and (c-d) are differences between (a)(b) and (c)(d) respectively. For (a)(a-b)(c)(c-d), larger
values are desired, and for (b)(d) smaller values are desired.

T-y T-p Grad GC IBA RISE EP EBP IG I×G

(a) 740.30 687.76 499.83 566.15 571.36 534.46 533.41 554.74 488.42 460.45
(b) 98.31 207.07 263.34 225.94 215.64 221.77 270.17 232.22 272.87 292.31

(a-b) 641.99 480.69 236.49 340.21 355.72 312.70 263.24 322.52 211.55 168.14

(c) 27.20 33.99 17.44 20.85 21.61 18.59 19.82 20.16 16.98 15.65
(d) 2.93 2.49 6.79 5.22 4.57 5.41 6.55 5.40 7.17 8.00

(c-d) 24.27 31.50 10.65 15.63 17.04 13.18 13.27 14.76 9.81 7.65
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Figure 6: The deletion tests of variants of TRACE. The blue curves are the results of LeRF test,
while the dashed orange curves are the results of MoRF test. The value after each method in the
title is the difference between LeRF and MoRF (i.e., size of the gray area). The left three figures are
w.r.t. the logit and the right three figures are w.r.t. the probability.

gued that using MoRF or LeRF alone can be insufficient. (Schulz et al., 2020) propose to use the
difference between them as the metric. However, TRACE already outperforms other methods in both
directions, it automatically aces this test by a large margin as shown in (a-b) and (c-d) in table 2. We
visualize the results of attribution methods as the form in (Schulz et al., 2020) in appendix I

The Necessity of (Le−Mo). To demonstrate the necessity of solving TRACE-(Le−Mo) instead
of just TRACE-Le or TRACE-Mo, we compare them together in the MoRF and LeRF deletion tests
shown in fig. 6. Since TRACE-Mo and TRACE-Le are optimized w.r.t. the MoRF and LeRF, they per-
form better in the corresponding tests. However, the resulted trajectories of TRACE-Le/Mo perform
poorly in the other tests. This means: 1) when the patches recognized as important by TRACE-Le
are deleted, the prediction does not drop drastly; 2) when the patches recognized as important by
TRACE-Mo are preserved, the prediction can not be kept in a relatively high level. As a consequence,
the trajectories that only focus on MoRF or LeRF solely would not be sufficiently meaningful in the
semantic ways. And it can be found that TRACE-(Le−Mo) successfully combine these two aspects.

Error Analysis of TRACE. Solved using meta-heuristic algorithms, the resulting σ is not guaranteed
to be the global optimum. Although TRACE-Le and TRACE-Mo achieve the best results in LeRF
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Figure 7: Comparision between TRACE and Complete Search (CS). In (a), the red and blue curves
are the results of TRACE (solved by SA) and CS, respectively. Solid and dashed curves are -Le and
-Mo, respectively. The optimum of TRACE-Le and TRACE-Mo lie in the cyan and lime color areas,
respectively. In (b), TRACE

CS -Avg.IoU results are plotted for logit y (left) and probability t (right).

and MoRF tests respectively according to fig. 5 and fig. 6, the error between them and the global
optimum can still be large. In this section we empirically demonstrate that this error is very marginal.

Since |St| = t!, searching for the global optimum is impossible even for a small t = 42 case as
16! ≈ 2.1 × 1013. However, on the other hand, finding global optimum of eq. (1) for all fixed
k ∈ [t] requires only 2t states to search, which is feasible for t = 16. This can be written as∑t

k=0 minsk⊂[t],|sk|=k f(x\sk
), where the solved s∗k are independent from each other. This means

generally s∗k ̸⊂ s∗k+1. Hence the solved sequence {s∗k}tk=1 does not form a valid trajectory. How-
ever, since for each k the optimization is unconstrained, it is a lower bound for TRACE-Mo:

t∑
k=0

f(x\σ′[:k]) ≥
t∑

k=0

min
sk⊂[t],|sk|=k

f(x\sk
), ∀σ. (4)

The equality can hold for some σ∗ only if the minimizer {s∗k}tk=0 satisfies ∅ = s∗0 ⊂ · · · ⊂ s∗t = [t]

(i.e., the selected features in each k form a trajectory). Similarly,
∑t

k=0 maxsk⊂[t],|sk|=k f(xsk) is
an upper bound for TRACE-Le. We term this Complete Search (CS-Mo and CS-Le). The comparison
between CS and TRACE are shown in fig. 7(a). Bounded by CS, the optimum of TRACE-Le and
TRACE-Mo lie in the cyan and lime color area, which is very marginal to the SA results given the
already achieved improvement to attribution methods shown in fig. 5. In addition, since the extend
to which the sequence {s∗k} do not form a trajectory can affect the error of SA, we introduce the
average IoU to measure how distant the sequence {s∗k} is from a trajectory, which is defined as

Avg.IoU = E

[
1

t− 1

t−1∑
k=1

|s∗k ∩ s∗k+1|
|s∗k ∪ s∗k+1|

· k + 1

k

]
, (5)

where k+1
k is to balance each term as |s∗k| = k. The expectation is taken over input samples.

Obviously, Avg.IoU = 1 when s∗k ⊂ s∗k+1 and Avg.IoU = 0 when s∗k ∩ s∗k+1 = ∅,∀k ∈ [t − 1].
We plot TRACE

CS -Avg.IoU in fig. 7(b). Here the y-axis represents the ratio of (TRACE-Le)−(TRACE-
Mo) to (CS-Le)−(CS-Mo), which is 1 only if (but not if) TRACE reaches global optimum. Results
show that TRACE

CS does increase towards 1 when Avg.IoU approaches 1. It can also be found that even
when {s∗k} are far from a trajectory, TRACE may still approach the global minimum closely.

7 CONCLUSION

In this paper, we propose TRACE, a novel model-agnostic explanation framework based on trajecto-
ries. TRACE constrains the feasible set of perturbation-based methods from the Euclidean space into
a symmetric group, and introduces combinatorial optimization tools to solve for the problem. We
point out the problems in the existing studies of attribution methods – the meaning of attribution val-
ues are ambiguous and they are not made use of. As the essence of existing attribution methods, after
converted to attributions, TRACE not only outperforms attribution methods in the most commonly
used deletion/insertion metrics by a significant margin, but also is demonstrated to be potentially
able to achieve the optimality in the deletion/insertion test. That being said, either TRACE is recog-
nized as the best explanation, or this is a sanity check for the deletion/insertion metric that it does not
pass. In this way, with different objective functions, TRACE can be a guideline for developing better
metrics when concrete attribution scores are not involved. We leave this to the future work. Also, it
would be interesting to explore more efficient tools for the combinatorial optimization problem.
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