VORTA: Efficient Video Diffusion via Routing Sparse
Attention

Wenhao Sun Rong-Cheng Tu® Yifu Ding Zhao Jin
Jingyi Liao Shunyu Liu Dacheng Tao®

College of Computing and Data Science, Nanyang Technological University, Singapore

{wenhao006, rongcheng.tu, n2409547h, zhao. jin}@ntu.edu.sg
{jingyi012, shunyu.liu, dacheng.tao}@ntu.edu.sg

O HunyuanVideo avg. latency 1044s original
! \ \ = ' A \ = %
avg. latency 594s 176% speedup
z-
; mE_ e I \i.“ \’
) VORTA + PAB avg. latency 444s 235% speedup

b Paia B

avg. latency 72s 1441% speedup

2 e - A i ﬂ ﬂ

prompt: a joyful Corgi with a fluffy coat and perky ears prompt: a young woman with curly hair and a bright smile ...
bounds through a sunlit park ... wearing a yellow sweater ...
Figure 1: VORTA enables lossless acceleration of video diffusion transformers [16, 43], and remains
compatible with other acceleration methods such as PAB [60] and PCD [44] for additional speedups.

Abstract

Video diffusion transformers have achieved remarkable progress in high-quality
video generation, but remain computationally expensive due to the quadratic com-
plexity of attention over high-dimensional video sequences. Recent acceleration
methods enhance the efficiency by exploiting the local sparsity of attention scores;
yet they often struggle with accelerating the long-range computation. To address
this problem, we propose VORTA, an acceleration framework with two novel
components: (1) a sparse attention mechanism that efficiently captures long-range
dependencies, and (2) a routing strategy that adaptively replaces full 3D attention
with specialized sparse attention variants. VORTA achieves an end-to-end speedup
1.76x without loss of quality on VBench. Furthermore, it can seamlessly inte-
grate with various other acceleration methods, such as model caching and step
distillation, reaching up to speedup 14.41 x with negligible performance degrada-
tion. VORTA demonstrates its efficiency and enhances the practicality of video

¥ Co-corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



diffusion transformers in real-world settings. Codes and weights are available at
https://github.com/wenhao728/VORTA.

1 Introduction

Video Diffusion Transformers (VDiTs) have demonstrated impressive video generation performance,
producing realistic and dynamic content [16, 33, 43, 51]. Despite this progress, VDiTs remain
computationally expensive due to the inherently high-dimensional nature of video data, compounded
by the quadratic complexity of attention operations. For example, recent HunyuanVideo [16] requires
almost 1000 seconds (500 PFLOPS) to generate a 5-second 720p video at 24 frames per second
(FPS) on an H100 GPU. To mitigate the high sampling cost, few-step sampling methods [39, 44, 52]
leverage distillation on the self-consistency property of the probability flow ODE (PF-ODE) [38],
achieving up to an 8x reduction in sampling steps [56]. Other research [22, 26, 60] introduces
intermediate feature caching to accelerate sampling without additional training.

Another promising direction investigates miti-
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tal attention score as shown in Figure 2 (left).
The remaining distant 96% keys, which domi-
nate the computational cost, contribute less than  Figure 2: Attention scores recalled by the nearest
20%. Approaches [1, 50, 53, 55] to mitigate this keys. (leff) Attention scores are predominantly
inefficiency in attention with local behavior re-  concentrated within a local neighborhood. (right)
strict interactions to nearby tokens and discard  The locality is less pronounced at earlier sampling
distant ones. The second regime, long-range at- steps. Results are from the 20th (of 60) layer in
tention, distributes interactions across the entire  HunyuanVideo [16]. Only 8 out of the 24 attention
sequence to capture global context and long- heads are shown for clarity.

range dependencies. In these attention heads,

the closest keys account for less than 40% of the total attention score as shown in Figure 2 (right).
Directly imposing local attention constraint on these inherently nonlocal heads for acceleration
compromises the critical global context modeling necessary for effective video generation [51].
Many works [47, 55] resort to dense operation in nonlocal heads, which severely limits the overall
acceleration gain. Alternative unstructured or semi-structured attention pruning methods [40, 46, 54]
also struggle with quadratic-time sparsity detection or profiling, introducing substantial overhead
during the forward pass. Therefore, effectively and efficiently accelerating the long-range attention
components in VDiTs remains a critical, unresolved challenge.

nearest 4,000 keys out of the total 108,000 keys (= 4%)

We observed that components exhibiting long-
range dependencies are associated with high
intra-sequence redundancy, whose tokens are
highly similar. In this scenario, interactions with
such redundant tokens are inefficient, as a few
representative tokens can summarize their in-
formation. An example is provided in Figure 3 , -
(middle), which depicts an intermediate gener- generation at step 50 generation at step 10 °neration a {hi‘i,‘;;;’,c“;ﬁ:
ation result after the first few sampling steps. i .

While high-level semantic structures, like spa- Figure 3: (left) Ger'lerauon with the complete sam-
tial layouts and object motions, are primarily Pling process. (middle) Intermediate generation
formed, the tokens have not acquired sufficient result. (right) Inte_rm.edlate generation result with
distinctiveness (i.e.highly redundant). This moti- ©nly core-set predictions.

vates our design of a token-level sparse attention
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to substitute the full-sequence computation when a compact core-set is sufficient to capture all
necessary information. We propose a bucketed core-set selection (BCS) strategy to remove similar,
redundant tokens and retain only the most representative ones for attention computation. As illustrated
in Figure 3 (right), the output generated with core-set tokens retains semantic accuracy. Given that
the core-set contains fewer tokens (e.g., 50% of the full sequence), the attention cost is reduced
quadratically (e.g., to 25% of the original cost of the full sequence).

The implicit relationship between the VDiT’s attention behaviors (i.e., local or long-range dependen-
cies) and the sampling steps, which correlates with the input signal strength, presents a challenge
for the principled integration of sparse attention variants. Several approaches [47, 55] log attention
score distributions through a reverse diffusion sampling process and reuse them. However, this is
impractical in real-world settings where sampling configurations (e.g., video size, sampling steps, or
reverse diffusion solvers) frequently change, rendering the logged patterns obsolete and requiring
re-tuning. To overcome this, we introduce a VORTA routing mechanism that dynamically selects
the optimal sparse attention variant by leveraging the input signal-to-noise level. It provides precise
control and adaptable support for diverse diffusion configurations, offering greater flexibility.

To conclude, our contributions are summarized as follows:

* We propose a novel core-set attention that effectively models long-range dependencies while
theoretically reducing the attention cost by 75%.

* We introduce VORTA, an approach that integrates multiple sparse attentions into VDiTs for
end-to-end acceleration without sacrificing performance. VORTA is compatible with various
SDE/ODE solvers and network backbones.

* VORTA achieves a 1.76x end-to-end speedup on VBench [11]. It is also compatible with other
acceleration techniques, achieving overall speedups of up to 2.35x with feature caching [60] and
14.41 x with consistency distillation [44].

2 Preliminary and related work

Flow matching and diffusion models. Flow Matching (FM) [21, 23] builds upon Continuous
Normalizing Flows (CNFs) [5] and has since been integrated with the diffusion paradigm [10, 38],
forming the foundation of many recent diffusion models [9, 12, 16, 32, 43, 61]. The core concept
of FM involves a time-dependent velocity field (VF) v, and a time-dependent diffeomorphism
x¢ = tx1 + (1 —t)x0, known as a flow. The VF governs the evolution of the flow through an ordinary
differential equation (ODE) dx; = v; (x;) dt, where the flow x; defines a probability density path p;,
starting from the simple prior py = N(0,I) and evolving towards the intractable target density p;.

Lipman et al. [21] introduced Conditional Flow Matching (CFM) to optimize the neural network
v?(x;) (i.e.-VDiTs in this context) as follows:

Lorm = Bt (x1),p0(x0) 107 (x¢) — (x1 — x0) || )]

Once optimized, it can start from x¢ ~ po and follow the ODE trajectory to generate samples.

3D self-attention of video diffusion transformers. Recent VDiTs [16, 18, 19, 33, 43, 51] employ
3D attention to capture spatio-temporal dependencies in video data. Given a video with F' frames at a
resolution of H x W, the input is flattened into a sequence of length L = F' x H x W, denoted as
H € RE*4 where each token is a d-dimensional vector. The self-attention is formulated as:

attn(H) = softmax (HW¢o)(HWg) ') (HWy,), )

where W, W, Wy € R4 are the linear projection matrices. The attention operation is of
complexity O(L?d) + O(Ld?). In the context of high-resolution video processing, where the
embedding dimension d is significantly smaller than the sequence length L, the overall complexity
is dominated by the first term O(L?d), which scales unfavorably with sequence length. Despite
employing techniques such as Variational Autoencoders (VAEs) [15, 34] and patchification [31],
the sequence length L still reaches up to 100K for a 5-second 720p video in HunyuanVideo [16].
Consequently, attention operations dominate the computational cost, accounting for over 75% of the
computation cost. Optimizing the attention computation is crucial for the efficiency of VDiTs.



Video diffusion acceleration. General diffusion acceleration methods include step distillation
[24, 28, 35, 36, 39, 44], which reduces the number of sampling steps to as few as 4 to 8 with sufficient
tuning, and feature caching [14, 22, 26, 58, 60], which avoids redundant computation by reusing
intermediate features. In the case of VDiTs, the long sequence length leads to high attention costs.
As a result, many studies have focused on optimizing attention for long sequences. Some recent
approaches [47, 55] apply predefined sparse attention patterns to reduce computational overhead.
Others [40, 46, 54] adopt online profiling to dynamically select attention patterns during inference.
However, these sparse attention techniques depend on careful hyperparameter tuning for different
configurations and/or introduce additional forward-pass complexity that offsets their speed benefits.
VORTA addresses these challenges with a flexible design that is compatible with various diffusion
configurations and model backbones, without incurring any additional inference-time overhead.

Acceleration by conditional computing. The concept of conditional computation has emerged
as a powerful paradigm to accelerate neural networks by selectively activating only a subset of the
parameters or operations for a given input. Bengio et al. [3] first introduced stochastic neurons in
which parameter activation is conditional on their output. Subsequent methods selectively drop or
gate layers [2, 27, 29, 37, 41, 45, 49], effectively utilizing a different, sparser network structure
for each sample. In contrast to these prior efforts, our proposed VORTA integrates operation- and
token-level sparsity and uses diffusion temporal dynamics to adaptively route computation.

3 VORTA: efficient video diffusion via routing sparse attention

This section introduces VORTA to accelerate VDiTs. We begin with a taxonomy of attentions in
Section 3.1. Next, we present two core components: i) sparse attention variants that speed up specific
attentions in Section 3.2; ii) a routing strategy that integrates these sparse attentions into pretrained
VDiTs for end-to-end acceleration (Section 3.3).

3.1 Taxonomy of VDiT attentions

The attention sparsity has been briefly discussed in Section 1. We formally categorize attentions in
VDiTs into three types:

* Local attentions focus on short-range interactions without attending to distant tokens. They are
primarily responsible for fine-grained details during generation.

* Long-range attentions distribute their attention scores across the entire sequence. These atten-
tions mainly capture high-level semantic information, including coarse layout and motion. Minor
perturbations, such as merging similar tokens, are acceptable.

* Pivotal attentions maintain a global perceptual field while simultaneously refining local details.
Small perturbations to these attentions can result in noticeable quality degradation.

All three types of attention coexist in VDiTs and are not mutually exclusive during the sampling:
local attention may transition into nonlocal attention as the diffusion process evolves, and vice versa.
We will provide supporting evidence for this taxonomy through experimental results in Figure 9.

3.2 Sparse attentions

Sliding window for local attentions. Sliding
window attention [1, 53] proposes restricting
each query token at position ¢ to attend to its lo-
cal neighborhood within the range (i —w, i +w),
where w is the window size. It provides an ef- | [

ficient alternative when the attention distribu-  sliding window [+ moved o form tied layout sliding tile
tion is highly localized. However, its zigzag- attention {1 outofrange entiis clamped attention
shaped attention mask introduces computation
bubbles in block-wise kernel implementations
(e.g., FlashAttention [6, 7]). This problem be-
comes more severe in three-dimensional video
data, where the number of computation bubbles
grows cubically. Zhang et al. [55] proposed sliding tile attention to tackle this problem. The 1D atten-

Figure 4: Illustration of converting a sliding win-
dow mask into a sliding tile mask. A 1D attention
mask is shown for simplicity, with both the window
size and tile size set to 2.
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Figure 5: Bucketed Core-set Selection (BCS). For clarity, the 2D image is used for illustration; the
actual inputs and buckets operate on 3D video data within the latent space. In this example, the top
k = 4 tokens from each bucket are dropped.

tion mask is defined as: M = {m; ;} = {j € (7(4) — w, 7(2) + w]}, where 7(¢) = [i/t] -t + [t/2]
is the tile center, and ¢ is the tile size. It can be interpreted as shifting the window of non-center queries
to align with the query in the center of the tile, as illustrated in Figure 4. The attention mask for
sliding tile attention is block-wise dense and offers greater hardware efficiency. Our implementation
employs 3D sliding tile attention to model local interactions of quality attentions with detailed pseudo
code in Appendix A.1.

Core-set selection for long-range attentions. It is observed that many attentions with large
perceptual fields are less sensitive to perturbations [40], corresponding to the long-range attentions
defined earlier. Based on this inherent token-level sparsity, we introduce core-set attention to
drastically accelerate computation by actively pruning redundant tokens during the attention operation.
A prototype core-set attention operation is defined as follows:

coreset-attn(H) = unpool o attn o pool (H) , 3)

where o denotes the composition operator, meaning the connected operators are applied sequentially
from right to left. pool(+) and unpool(-) operations compress a long sequence into a compact core-set
and recover the original sequence length, respectively.

Direct application of standard average pooling often results in a significant degradation of generation
quality (see Section 4.2), because its core assumption, that all tokens within the pooling kernel
are sufficiently similar, is often violated. As an alternative, we implement the pool(-) operation
using Bucketed Core-set Selection (BCS), as outlined in Figure 5. It introduces a novel, buketed
approach to achieve token-level sparsity. BCS first divides the tokens into buckets. Intra-bucket
similarity is computed exclusively between a designated center token (token ‘5’ in this example) and
its neighboring tokens. Tokens with the top-k highest similarity to the center are then pruned, and
their representational information is merged into the center. Crucially, by eliminating inter-bucket
similarity calculations, BCS achieves linear complexity O(L) for sequence length L, offering a
significant computational advantage over O(L?) sequence length pruning methods [4, 40] while
maintaining competitive performance. A detailed complexity analysis is provided in Appendix A.1.

After applying the attention operation on the core-set tokens, we retrieve the original sequence length
by scattering the center token back to the pruned tokens for the subsequent operations.

3.3 Signal-aware attention routing and detection

Attention router. Accurately identifying the optimal sparse attention variant is the remaining
technical hurdle. We observe that attention behavior correlates strongly with the signal-to-noise ratio
(SNR) of input features in Figure 2. To address this, we introduce a router implemented as a linear
layer with diffusion timestep embedding T € R as input, following a softmax activation to output
the gate values a(™ for dynamic attention variant selection:

a™ = softmax(TW (), )
where Wg) € R*3 denotes the linear projection matrix of the n-th transformer block. The

gate values (™ = [agn), ag"), aén)} quantify the suitability of full, sliding-window, and core-set
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(a) routing between attention branches (b) attention pattern detection

Figure 6: Overview of VORTA. 1D masks are used to represent the attention branches for simplicity.
(a) During inference, the router takes the condition embedding as input and selects the appropriate
attention branch. In this example, it activates sliding attention. (b) During pattern detection, all
attention branches are activated, and their outputs are aggregated using gate values from the router.
The divergence between the full attention output and the routed output is used to update the router.

attention operations, respectively. This lightweight design adds just 0.1% to the model’s parameters,
while enabling the router to adaptively modulate gate values based on the current signal-to-noise ratio
(SNR), without directly operating on the full set of diffusion tokens.

Inference-time routing strategy. The router activates the attention branch with the highest gate
value, as illustrated in Figure 6 (a). It is formalized as a hard selection, defined as follows:

sliding-attn(H™) if agn) > agn) and aén) > aé")

H D = coreset-attn(H™) if Oz;(),n) > agn) and O‘Z(’)n) > O‘gn) ’ )
attn(H (™) otherwise

where H(™ represents the input features to the n-th transformer block. attn(-) is the standard
full attention. sliding-attn(-) and coreset-attn(-) represent the sliding and core-set attentions,
respectively, as defined in Section 3.2. Some operations, such as RoPE and FFN, have been omitted
for clarity. Activating sparse attention branches yields a substantial speedup in attention computation.
Although the full attention branch is activated in fewer than 0.2% of cases, it remains important for
preserving model performance. We will empirically investigate these design choices in Section 4.2.

Router optimization. Inspired by recent advances in language modeling [49], we adopt a self-
supervised optimization strategy, as illustrated in Figure 6 (b). In the forward process, the gate values
are employed to weight the outputs of the three branches:

HD = o - attn(H™) + o - sliding-attn(H™) + " - coreset-attn(H™).  (6)

We introduce a distillation loss Lgisti11, defined as the MSE between the routed output H®™) and the
original output Héﬁ? of the final block, to ensure that the routed outputs remain close to the original
model outputs to preserve the pretrained performance. In addition, we adopt the conditional flow
matching loss Lcpy from the VDIT pretraining stage as detailed in Section 2. To promote sparsity in
routing decisions, we apply an L2 regularization term to gate values. The final loss function combines
the conditional flow matching loss, the distillation loss, and the regularization term, weighted by

hyperparameters Agisin and Areg, respectively:
L = LorMm + Adistill * Laistill T Areg - Lregs @)

org

N
where »Cdistill = MSE (H(N) H(N)> and ﬁreg = Z ||C¥gn) ||2 (8)
n=1

Notably, the original parameters of the VDiTs are always frozen, and only the router is updated. We
set Agisiiit = 20 and Aeg = 0.02 to balance the losses at a similar scale in our experiments. A detailed
analysis of these hyperparameters is provided in Appendix B.1.

4 Experiments

Baselines. This section presents the evaluation of the text-to-video generation task. We evaluate
VORTA with two recently open-sourced VDiTs: HunyuanVideo [16] and Wan 2.1 [43]. Our



Table 1: Quantitative comparison under standard baseline settings (bf16, 720p, 5s). (€): caching;

D : step distillation; 'S : sparse attention.

Models Type VBench 1 Quality T Semantict LPIPS| Latency(s) Speedup Mem. (GB)
HunyuanVideo [16] - 82.26 83.68 76.60 - 1043.85 1.00x 47.64
+ ARnR [40] S 82.39 83.85 76.56 0.211 790.55 1.32x 78.15
+ STA [55] S 82.33 83.56 77.39 0.201 676.39 1.54% 51.79
+ PAB [60] C 82.40 83.80 76.81 0.186 815.51 1.28x > 80
+ VORTA S 82.59 83.74 77.95 0.185 594.23 1.76x 51.15
+ VORTA & PAB S &I(C 82.56 83.60 78.38 0.195 444.19 2.35x > 80
+ PCD [44] D 81.17 82.56 75.35 0.564 125.98 8.29% 47.64
+ VORTA & PCD S &(D 81.49 82.78 76.31 0.575 72.46 14.41 % 51.15
Wan 2.1 (14B) [43] - 82.36 83.05 79.60 - 1304.82 1.00x 41.77
+ VORTA N 82.85 83.45 80.44 0.222 856.50 1.52% 43.97

comparisons include sparse attention acceleration methods: STA [55], which adopts a predefined
sparse attention pattern, and ARnR [40], which performs online profiling to determine the sparse
attention pattern dynamically. We also compare VORTA against two orthogonal approaches: the
caching-based method PAB [60] and the step distillation method PCD [44]. Additionally, we report
results for VORTA combined with PAB and PCD, as these methods can be integrated. For the Wan
2.1 [43], we only compare the pretrained baseline and VORTA, since other methods have not yet
released code to support this model.

Benchmarks and evaluation metrics. Following prior works [40, 60], we evaluate on the standard
VBench prompt suite [11], which contains over 900 text prompts across 16 dimensions. The primary
performance metric is the aggregated VBench score. We also report the VBench quality and semantic
subscores to provide a more detailed breakdown. To assess the deviation of generation from the
pretrained models, we use LPIPS [57] as a reference metric. For efficiency analysis, we measure video
sampling latency of the VDiTs, excluding the time required for text encoding and VAE decoding. We
report the relative speedup as Alatency/(latency + 1). Additionally, we record peak memory usage,
which impacts practical deployment due to hardware constraints.

Implementation. We implement VORTA in PyTorch [30], using FlexAttention kernel for sliding
attention and FlashAttention [6, 7] kernel for all other attention operations. Video samples are
generated in 50 steps, except for PCD [44], which uses 6 steps. The videos are 5 seconds long at
720p resolution. Due to out-of-memory issues with PAB [60] at this resolution, we adopt sequential
CPU offloading [42]. For fair comparison, the latency introduced by model loading and offloading is
excluded in the experiment results. For router optimization, we use the MixKkit dataset [20], training
for 100 steps with a learning rate of 10~2 and a batch size of 4. All experiments are conducted on
H100 GPUs with 80GB of memory. Additional implementation details are provided in Appendix A.2.

4.1 Main results

Performance. Table 1 presents the quantitative evaluation results of the baseline methods and
VORTA. The key observations are: i) All methods maintain high VBench scores, except PCD, which
shows a 1-point drop due to aggressive compression of generation steps. ii) VORTA, with and without
PAB, ranks first and second in VBench score and LPIPS on HunyuanVideo, respectively. iii) The
good performance of VORTA on both the MMDiT-based [9] HunyuanVideo and DiT-based [31] Wan
2.1 demonstrates its generalizability across diffusion backbones. Figures 1 and 7 quantitatively depict
the generations produced by ARnR [40], STA [55], VORTA, VORTA & PAB [60], and VORTA &
PCD [44] on HunyuanVideo. All variants maintain high visual quality with vivid appearance and
coherent motion, consistent with the quantitative metrics. More qualitative comparisons and complete
VBench dimensional scores are provided in Appendix B.4 and Appendix B.5, respectively.

Efficiency. Among the sparse attention approaches, VORTA achieves the highest efficiency on
HunyuanVideo, with a 1.76x speedup. For the other line of work, PAB achieves a 1.28x speedup on
HunyuanVideo, but it requires over 1.7 x additional memory, which makes it less practical for large
models or high-resolution videos. In practice, running PAB on an 80GB GPU necessitates sequential
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prompt: a fluffy white sheep ... leisurely strolls through a
picturesque meadow ...

Figure 7: Qualitative comparison of sparse attention methods: ARnR [40], STA [55], and VORTA.

prompt: Gwen Stacy is reading a book ...

CPU offloading. The latency introduced by parameter loading and offloading nearly offsets the
benefits of computation. The step distillation approach, PCD, achieves an 8.29x speedup using only
6 sampling steps, with a mild drop in performance. While these methods offer different trade-offs in
efficiency and performance, both can be effectively integrated with VORTA. When combined with
PAB and PCD, VORTA achieves total speedups of 2.35x and 14.41 X, respectively.

Table 2: Quantitative comparison on Wan 2.1 [43] with different sampling configurations.

VBench

Models Configuration Latency (s) Mem. (GB)
Subject T Consistency T Aesthetic T Imaging 1

Wan 2.1 (14B) [43] ... 9121 75.49 6333 63.99 1359.76 4177

+ VORTA Lo B COS e T 75.09 63.79 63.07 791.02 4397

Wan 2.1 (14B) [43] 89.72 7454 64.43 63.99 817.00 4177

+ VORTA DPM++ (30step) [25]  gy'gp 75.13 6432 63.95 440.76 4397

Generalization to various schedulers. Unlike sparsity-inducing techniques that rely on offline
profiling or hand-crafted heuristics to define a sparse execution strategy [40, 55], VORTA is designed
to possess scheduler and step-count generalization, mirroring the flexibility of the baseline dense
model. This obviates the need for costly re-profiling or hyperparameter re-tuning when changing
sampling configurations. We demonstrate this capability by comparing the performance on the Wan
2.1 [43] using both the 50-step UniPC [59] and 30-step DPM++ [25] schedulers.

Table 2 presents the VBench dimensions [11] and efficiency metrics from these experiments, which
were conducted on B200 GPUs. The consistent, lossless performance of VORTA relative to the dense
model confirms its ability to generalize efficiently without added cost, an advantage enabled by its
lightweight training, which heuristic-based methods like STA [55] and ARnR [40] do not achieve.

Runtime breakdown. Figure 8 further presents the average latency of individual components for
the sparse attention methods. Here, “attn.” denotes the isolated attention operation latency, whereas
“attn. related” includes associated operations such as projections, RoPE, layer normalization, and
other computations within the attention module.

Compared to ARnR [40], VORTA demonstrates superior efficiency. To preserve lossless generation,
ARnR adopts a more conservative sparsity, resulting in higher latency in its “attn.” component.
Furthermore, its O(L?) similarity computation introduces additional latency, as evidenced by the
larger latency in its “attn. related” component. In contrast, VORTA adaptively identifies efficient
sparse patterns and allows greater speedups. Its core-set attention also involves similarity computation;
however, BCS has only O(L) complexity, incurring negligible additional cost.



VORTA also outperforms STA [55], which uses a predefined sliding attention pattern. The main
bottleneck of STA occurs during the first 15 sampling steps (see bottom two bars), when it must
expand the window size to capture long-range dependencies. Consequently, these steps do not benefit
from attention sparsity. In contrast, VORTA adaptively routes attention branches to accommodate
diverse interaction types while maintaining near-constant latency across all diffusion steps.

attn. attn. related W ffn  EEE other Table 3: Evaluation of each VORTA component
on Wan 2.1 (1.3B) [43].
org. 1

arnr 4 | R Models VBench 1 Latency (s) Speedup
sta I 55! Wan 2.1 (1.3B) 81.20 73.24 1.00x
ours l: w/o Sliding Attn. 80.25 65.14 1.12x
sta | 7 w/o Coreset Attn. 79.89 66.10 1.11x
(1[-)}]-:*5) - - w/o Full Attn. 77.14 59.34 1.23x%
115 ] 4 w/o Timestep Cond.  81.03 65.00 1.13x
00 25 50 7.5 100 125 150 17.5 20.0 w/ APsq 77.08 57.53 1.27x
avg. latency (s) per sampling step w/ AP19; 76.01 57.64 1.27x
w/ AP112 75.94 57.55 1.27x

Figure 8: Runtime breakdown for sparse atten-
tion methods on HunyuanVideo [16].

VORTA 81.06 58.42 1.25%

4.2 Ablation study

We conduct ablation studies on the Wan 2.1 (1.3B) [43] at its pretrained 480p resolution. All other
experimental settings are identical to those used in the main experiment. At 480p, attention operation
accounts for a smaller portion of the overall latency compared to 720p, resulting in less pronounced
acceleration. Nevertheless, we adopt this smaller model and resolution to reduce the computational
cost of benchmarking. The results are summarized in Table 3.

Attention branches. We evaluate the contribution of the attention branches individually by remov-
ing them. When the sliding attention branch is disabled, the router shifts more selections toward
the full attention expert to preserve performance, resulting in an over 10% runtime increase, despite
applying the same regularization level. Similarly, removing the core-set attention branch increases
the latency by 14%. These results highlight the importance of both sparse branches in improving
efficiency through the adaptive selection of attention patterns tailored to specific characteristics.

Given that the router selects the full attention branch in only 0.2% cases in VORTA (will be detailed
in Section 4.3), we assess whether retaining it is necessary. As shown in Table 3, the removal of the
full attention branch leads to a 4-point drop in the VBench score without any additional speedup.
This suggests that the full attention branch remains crucial and validates the existence of the pivotal
attention patterns defined in Section 3.1.

Timestep condition for signal-aware routing. We also examine the impact of including timestep
information in attention routing. Removing the timestep embedding from the router input results in
uniform attention branch selection across all diffusion steps, leading to slower 12%. In the absence
of timestep conditioning, the router consistently selects the same attention expert. To maintain
performance, the model predominantly routes to the full attention expert.

Bucketed core-set selection (BCS). We evaluate how much BCS improves performance compared
to conventional average pooling. BCS sets the core-set size to 50% of the original sequence length.
To ensure a fair comparison, we apply the same reduction ratio in the average pooling cases by
configuring the pooling kernel sizes such that their product equals 2. To isolate the effect of
compression along different dimensions, we evaluate three pooling kernel configurations: (2,1, 1),
(1,2,1),and (1,1, 2), denoted as AP211, AP121, and AP112, respectively. Although average pooling
offers slightly lower latency by being free from similarity computations, its performance drops
significantly. When adjacent tokens differ significantly, naive merging causes information loss, often
resulting in artifacts such as pixelation or blurring in the generation.



4.3 Attention patterns in VDiTs.
attn. variant

Figure 9 illustrates the routed attention branch @ sliding coreset M full
assigned to each head, layer, and sampling step.
It reveals a clear temporal pattern: earlier time
steps tend to use more corset attention, while
later time steps increasingly rely on sliding at-
tention. Only a small fraction (about 0.2%) of
attention heads are assigned to the full attention
branch, highlighting the sparsity. As intuitively
expected, earlier time steps likely focus on con-
structing high-level semantics rather than fine-
grained details, whereas later time steps empha-
size local interactions. Unlike auto-regressive
or discriminative models [8, 13], VDiTs ex-
hibit weaker layer-wise specialization; attention
heads within the same layer are more evenly
distributed across branches. A minor tendency
is observed in later time steps where sliding
attention is more frequently assigned to inter-
mediate layers, while corset attention is more
often assigned to the initial and final layers. One

sampling step

. . . . 30 0
plausible explanation is that intermediate layers layer index 0 @

capture local details, while subsequent layers re-
fine the overall representation quality. Step-wise
visualizations and results for other models are

Figure 9: Optimized gate values for Wan 2.1 (14B)
. . . [43]. We visualize snapshots at sampling steps 5,
provided in Appendix B.3. 15, 25, 35, and 45 out of total 50 steps.

5 Conclusion

In this work, we presented VORTA, an efficient and generalized framework for accelerating diffusion
transformers in video generation. VORTA reduces attention overhead by dynamically identifying
attention patterns and routing them through appropriate sparse attention mechanisms. To further
enhance efficiency, we introduced a bucketed coreset selection (BCS) strategy that improves the
modeling of long-range dependencies. VORTA achieves a 1.76 x end-to-end speedup without com-
promising generation quality. Moreover, its high compatibility with existing acceleration techniques
enables a combined speedup of up to 14.41x. We believe VORTA offers a practical and extensible
solution, paving the way for broader adoption and future research in video generation.

Limitations. VORTA targets the attention mechanism, which accounts for over 75% of the total
computation in high-resolution video generation. However, for tasks with short sequence lengths,
such as image or low-resolution video generation, the attention overhead becomes less dominant.
As aresult, the potential acceleration achievable is limited. Additionally, this work focuses on the
bidirectional generation paradigm. Other paradigms, such as autoregressive generation, are not
directly supported and may require substantial adaptation. Additional discussion on failure cases,
limitations, and border impacts is provided in Appendix C.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The technical contributions highlighted in the abstract and introduction are
as follows: (1) VORTA, an end-to-end acceleration framework for Vision DiTs (VDiTs),
and (2) Coreset Attention, a sparse attention mechanism designed for efficient modeling
of long-range dependencies. Both contributions are thoroughly detailed and empirically
validated in the manuscript.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the current method are discussed in the main manuscript
and will be further elaborated in the appendix and supplementary materials. These materials
include suitable application scenarios, compatible methods, and failure cases.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
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If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
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tant role in developing norms that preserve the integrity of the community. Reviewers
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include formal results such as lemmas, theorems, corollar-
ies, or proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup and implementation details are disclosed in the main
manuscript. Additional code and supplementary information will be provided in the appendix
to facilitate reproducibility. However, even with identical software environments and
fixed random seeds, minor variations in results may occur due to differences in hardware
conditions.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: As previously noted, the code and open-sourced dependencies (e.g., model
weights) will be included in the appendix to support reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings, datasets, pretrained model weights, and related
implementation details are provided in the main manuscript and supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The primary evaluation metric in this study, running latency, remains consistent
across repeated runs. Minor variations may arise from hardware-level factors, which are
difficult to isolate with our available computational resources. The benchmark requires over
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1,000 H100 GPU hours per run and is a widely accepted metric for the target task. Due to
the exceptionally high computational cost, performing statistical significance tests is not
feasible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental settings, datasets, pretrained model weights, and related
implementation details are provided in the main manuscript and supplementary materials.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We affirm compliance with the NeurIPS Code of Ethics after thorough review.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a thorough analysis and claim the potential societal impacts in the
appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our acceleration method is not directly related to the risks of misuse. Refer-
ences to safeguards for compatible models will be included in the code if available.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets (e.g., code, data, models) used in this paper comply with their
respective licenses and are credited.
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13.

14.

15.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new code and model weights are released under the CC-BY 4.0 license
and are accompanied by a README file included in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Methodology and implementation details

A.1 Methodological details

Sliding tile attention. Section 3.2 introduced the sliding tile attention [55], the sparse attention
pattern we used to model local interactions. To keep the main text concise, we explained only the 1D
case. Here, we present the 3D version of the sliding tile attention mask used in our implementation,
as detailed in Algorithm 1.

Bucketed coreset selection (BCS). Section 3.2 also introduced the bucketed coreset selection
(BCS) method, designed to reduce the computational overhead of modeling long-range interactions.
In the naive setting, computing pairwise similarities across an input sequence of length L incurs a
quadratic complexity of O(L?). Bolya and Hoffman [4], Sun et al. [40] select a subset of tokens
(e.g., 25%) as anchors and computing similarities between these anchors and the remaining tokens.
This reduces the number of comparisons but still results in O((3L/4) - (L/4)) = O(L?) complexity.

In contrast, BCS achieves linear complexity O(L) by employing a bucketing strategy. Each bucket,
of size (¢, h, w), computes similarities between a central token and the remaining (thw — 1) tokens,
yielding a per-bucket cost of O(thw). With L/(thw) such buckets, the total cost becomes
O((L/(thw)) - thw) = O(L). No inter-bucket comparisons are performed, and the emperical
results in Section 4.1 show that this approach is effective enough in selecting a representative subset
of tokens for long-range interactions. Compared to global pairwise methods [4, 40], which require
O(L?) operations, BCS offers a substantially more efficient O(L) alternative.

A.2 Implementation details

Implementation details for our VORTA. Besides the implementation introduced in Section 4, we
also provide the implementation details for our VORTA model.

For router optimization, we train on the Mixkit dataset [20] for 100 steps using a learning rate of
1072 and a batch size of 4. Training completes in approximately one day using two H100 GPUs.
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Algorithm 1 3D sliding tiled attention mask

Input: video size v = (F, H, W), tile size t = (tp, ty, tw ), window size w = (wp, wy, Wy ).
1: /] Total sequence length for self-attention
2L+~ FxHxW
3: M+ Op«r,
4: // The attention mask between the i-th query and the j-th key
5: fori < 1to L do

6 for j < 1to L do
7: /I Get tile id from token id
8: qr,qH, qw < get_tile_id_3d(i, v,t)
9: kp, kg, kw < get_tile_id_3d(j, v,t)
10: /I All queries within the same window share the same tile id as the window center tile id
11: qr,qH, qw < get_window_center_id(qr, qu, qw, W)
12: /I true if key tile is within the local window of query tile
13: m < bool(abs(¢r — kr) < wg/2)
14: m < m and bool(abs(qy — ki) < wp/2)
15: m < m and bool(abs(qw — kw) < wy /2)
16: /I Save the mask
17: M[i, j] + m
18:  end for
19: end for

Output: sliding tile attention mask M.

The sliding attention branch employs a window size of (18,27, 24), while the coreset attention
branch uses a bucket size of (2, 3, 2) with a coreset ratio of rcore = 0.5.

Regarding video configurations during both training and inference, HunyuanVideo [16] utilizes
videos with 117 frames at a resolution of 720 x 1280 (720p), while Wan 2.1 [43] uses 77-frame
videos at the same resolution. For rendering, HunyuanVideo outputs videos at 24 frames per second
(FPS), whereas Wan 2.1 generates videos at 15 FPS, as specified in their respective repositories.

Implementation details for baseline methods. To evaluate efficiency, the PAB [60] is tested on
720p videos from HunyuanVideo [16], aligning with the setup used in other methods. However,
processing at this resolution with PAB requires over 80 GB of GPU memory. To address this
limitation, we apply sequential CPU offloading [42]. For a fair comparison, we exclude the latency
caused by model loading and offloading from the reported results. Despite this, the end-to-end
runtime with CPU offloading exceeds 2000 seconds per video, which is substantially slower than the
original pretrained model and offers no practical efficiency advantage. The original STA kernel
supports video generation only at a fixed resolution of 768 x 1280, which exceeds the 720p
resolution used by the pretrained model. To ensure consistency in evaluation, we reimplemented the
kernel using FlexAttention to support 720p video generation.

Evaluation metrics. To evaluate how the generated outputs differ from those of pretrained models,
we use LPIPS [57] as a reference metric. However, since the pretrained models do not represent the
ground truth, divergence from them does not necessarily indicate degraded performance. Multiple
generated outputs may be equally valid, provided they align with the input prompts. LPIPS is only
used as a comparative reference. The primary evaluation of video quality and prompt alignment
should be based on VBench [11] scores.

The improved performance of acceleration methods. Interestingly, despite using less
computation, VORTA slightly outperforms the original pretrained models in terms of VBench score.
Similar findings have been reported in other acceleration methods [17, 48]. A possible explanation
lies in the redundancies present in overparameterized models, which can introduce marginal negative
effects. By pruning these redundancies, these acceleration methods may contribute to slight
performance gains, although they are not intended for this purpose.
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B Additional experimental results and findings

B.1 Hyperparameters analysis

Wan 2.1 (1.3B) avg. latency 73.24s

i

avg. latency 67.30s

i

avg. latency 58.42s

| #
|

avg. latency 58.06s

|l

prompt: a fluffy orange tabby cat ... eating from a ceramic bowl decorated with fish patterns ...

Figure 10: Qualitative evaluation of varying the regularization weight Ar,.

Figure 10 shows the effect of varying the regularization weight Ars. When Mg, is small

(Areg = 0.01), the speedup is limited, and in most scenarios, the router tends to select full attention.
In contrast, with a large A = 0.05, the video exhibits noticeable distortion (e.g., the cat’s head in

the final frame). A moderate value of A, = 0.02 achieves a good trade-off between acceleration and
output quality.

Figure 11 provides further analysis of alternative pooling strategies in the coreset attention branch.
Using average pooling with a r¢,e = 50% coreset ratio significantly underperforms compared to
BCS pooling, primarily because it lacks a selection mechanism. As the coreset ratio ¢ increases,
the VBench score improves; however, a ratio of reoe = 50% is sufficient to achieve strong
performance. Higher ratios yield marginal performance gains while introducing additional
computational overhead during generation.
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Figure 11: Effect of varying the coreset size in BCS and the kernel size in average pooling.

B.2 Runtime analysis
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Figure 12: Per-step sampling latency on HunyuanVideo [16]. ARnR [40] yields smaller speedups
overall. STA [55] shows no speedup in early timesteps.

Section 4.1 analyzed the average runtime (over diffusion steps) of each component, as shown in
Figure 8. Figure 12 further presents the runtime breakdown per diffusion step. Overall, ARnR
exhibits relatively high runtime, primarily due to limited acceleration in attention operations.
Additionally, its periodic global similarity computation, with O(L?) complexity, introduces a
bottleneck. This is evident from latency spikes every five steps. In contrast, STA shows significantly
higher runtime during the initial 15 steps due to the lack of early-stage acceleration, leading to
reduced overall efficiency. Our VORTA achieves near-constant runtime across all steps,
demonstrating stable and efficient performance.

B.3 Attention pattern analysis

Figures 13 and 14 show the router gate values for Hunyuan [16] and Wan 2.1 (14B) [43],
respectively, as supplementary results for Section 3.1.

B.4 Qualitative comparison

In addition to the qualitative results in Figures 1 and 7 and the quantitative results in Table 1, we
present further visualizations for Wan 2.1 (14B) in Figure 15. VORTA inherits the strong
performance of the pretrained ViTs while offering a significant speedup.

B.5 VBench dimensional scores

VBench evaluates the generated videos across 16 dimensions. Due to space constraints, we report
only three aggregated scores in Table 1, with the complete set of scores provided in Table 4 for
completeness.

B.6 Comparison with SVG

We evaluate Spare Video Gen (SVG) [46] on a B200 GPU and compare it with our VORTA, as
shown in Table 5. The comparison covers four VBench dimensions for quality and latency, as well as
peak memory usage for efficiency. Since both SVG and VORTA focus on attention sparsity, minor
non-attention optimizations (e.g.operator fusion and quantization) are disabled in SVG to ensure a
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head index

30
layer index

Figure 13: Optimized gate values for HunyuanVideo [16]. The 50 sampling steps are grouped into 5
equal intervals, and the averaged gate value within each interval is reported. Each color corresponds
to a distinct attention branch, with color intensity indicating confidence.

fair comparison. We define attention sparsity as the ratio of skipped query-key token multiplications
to the total number of query-key multiplications in standard dense attention. A higher sparsity
indicates better theoretical computational efficiency.

For both Hunyuan and Wan 2.1 models, the VBench scores are statistically indistinguishable,
indicating no significant differences in quality. However, VORTA consistently outperforms SVG in
latency and sparsity metrics. Additionally, SVG incurs substantially higher memory usage due to its
reliance on online profiling, which limits its applicability in resource-constrained environments.

C Limitations and border impact

C.1 Failure cases

VORTA does not modify the pretrained parameters of VDiTs, and therefore its performance
inherently depends on the quality of the underlying pretrained model. As illustrated in Figure 16,
when the pretrained VDiTs fail to generate high-quality videos, resulting in distortions or
non-physical outputs, VORTA exhibits similar deficiencies. In some cases, it even produces outputs
of lower quality than the original VDiTs. This degradation is attributed to computations on erroneous
generations, which amplify distortions in the resulting videos.

C.2 Border impact

Generative models pose risks of producing biased, privacy-invasive, or harmful content. While our
method accelerates video generation, it may also propagate such risks. It is imperative that
researchers, developers, and platform providers actively assess and mitigate these potential harms to
promote responsible use.
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Figure 14: Optimized gate values for Wan 2.1 (14B) [43].

@) Wan 2.1 (14B)

avg. latency 857s
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prompt: a black cat lounges on a sunlit poolside deck, prompt: a couple stands in a park during autumn ... their
wearing stylish, tiny sunglasses... eyes close as they share a tender kiss ...
O  Wan2.1(14B) avg. latency 1305s
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prompt: ... as the bicycle comes to a halt, fallen leaves prompt: ... rolling a large snowball to form the base of a
crunch softly under the tires ... snowman ...

Figure 15: Qualitative comparison on Wan 2.1 (14B) [43].
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Table 4: Quantitative results for VBench dimensions [11] for HunyuanVideo [16] and Wan (14B)
[43].

Method Aesthetic Appearance  Background Color 1 Dynamic Human Imaging Motion
Quality T Style 1 Consistency 1 Degree © Action T Quality T Smoothness

HunyuanVideo 62.05 77.88 93.80 91.35 38.89 96.00 63.33 96.98

+ ARnR 62.58 80.36 93.99 87.54 39.77 93.73 63.21 96.12

+STA 63.87 79.48 94.47 86.39 39.58 97.00 61.92 96.79

+ PAB 63.53 75.85 94.82 87.92 36.11 98.00 63.40 97.34

+ VORTA 62.33 80.63 94.62 92.13 37.50 97.00 63.16 95.84

+ VORTA & PAB 63.16 80.43 95.22 90.92 36.31 97.50 62.05 96.18

+PCD 62.69 76.21 94.44 85.94 31.94 94.00 63.08 96.46

+ VORTA & PCD 61.43 76.92 94.87 89.33 3542 98.00 62.42 95.11

Wan 2.1 (14B) 63.33 82.12 94.55 83.26 37.50 99.00 63.99 91.60

+ VORTA 63.79 83.32 95.28 87.04 39.58 100.00 63.07 92.17
Mutliple  Objects Overall Spatial Subject Temporal  Temporal

Method Objects T Class T Consistency 1 Scene 1 Relationship T Consistency 1  Flickering 1 Style T

HunyuanVideo 52.21 84.41 74.30 65.59 78.06 90.30 98.57 69.61

+ ARnR 52.09 87.49 69.88 69.21 80.89 90.55 99.28 70.70

+STA 56.55 87.82 75.01 64.08 80.60 88.12 98.40 69.59

+ PAB 56.86 84.97 74.97 63.91 78.34 90.89 98.61 70.50

+ VORTA 58.00 89.56 74.62 61.87 78.30 92.43 98.47 69.44

+ VORTA & PAB 59.17 89.90 75.82 62.99 77.43 92.27 97.96 70.29

+PCD 54.04 81.88 75.07 66.03 74.48 90.64 97.37 70.52

+ VORTA & PCD 51.07 85.05 74.93 67.09 73.70 91.34 97.50 70.69

Wan 2.1 (14B) 74.62 86.47 75.49 64.70 79.16 91.21 97.69 71.54

+ VORTA 75.76 88.45 75.09 63.29 80.28 90.76 97.78 70.70

Table 5: Quantitative comparison with SVG [46].
Models Sparsity (%) VBench Latency (s) Mem. (GB)
Subject T Consistency 1 Aesthetic T Imaging 1

HunyuanVideo [16] 0.00 90.30 74.30 62.05 63.33 1224.22 47.64

+ SVG [46] 80.00 90.59 75.11 62.73 63.17 664.48 71.38

+ VORTA 82.65 92.43 74.62 62.33 63.16 568.74 51.15

Wan 2.1 (14B) [43] 0.00 91.21 75.49 63.33 63.99 1359.76 41.77

+ SVG [46] 75.00 90.42 74.96 63.53 64.45 921.50 65.01

+ VORTA 81.68 90.76 75.09 63.79 63.07 791.02 43.97

O HunyuanVideo avg. latency 1044s

=T

prompt: ... as the bicycle comes to a halt, fallen leaves
crunch softly under the tires ...

prompt: a horse galloping across an open field...
issue: unexpected fragment segmentation and distortion issue: violation of physical laws
Figure 16: Failure cases. When the pretrained model exhibits distortions or non-physical phenomena,

VORTA inherits these issues. We refer the reader to the supplementary video for a more illustrative
example.
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