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Abstract

We propose a novel diffusion-based model, CompoDiff, for
solving zero-shot Composed Image Retrieval (ZS-CIR) with
latent diffusion. This paper also introduces a new synthetic
dataset, named SynthTriplets18M, with 18.8 million refer-
ence images, conditions, and corresponding target image
triplets. CompoDiff and SynthTriplets18M tackle the short-
ages of the previous CIR approaches, such as poor gen-
eralizability due to the small dataset scale and the lim-
ited types of conditions. CompoDiff not only achieves a
new state-of-the-art on four ZS-CIR benchmarks, includ-
ing FashionIQ, CIRR, CIRCO, and GeneCIS, but also en-
ables a more versatile and controllable CIR by accepting
various conditions, such as negative text, and image mask
conditions. Code and dataset are available at https:
//github.com/navervision/CompoDiff

1. Introduction
Imagine a customer seeking a captivating cloth serendip-
itously found on social media but not the most appealing
materials and colors. In this scenario, the customer needs a
search engine that can process composed queries, e.g., the
reference garment image along with text specifying the pre-
ferred material and color. This task has been recently for-
mulated as Composed Image Retrieval (CIR). CIR systems
offer the benefits of searching for visually similar items
while providing a high degree of freedom to depict text
queries as text-to-image retrieval. CIR can also improve
the search quality by iteratively taking user feedback.

The existing CIR methods address the problem by com-
bining image and text features using additional fusion mod-
els, e.g., zi = fusion(ziR , zc) where zi, zc, ziR are
the target image, conditioning text, and reference image
features, respectively. Although the fusion methods have
shown great success, they have fundamental limitations.
First, the fusion module is not flexible; it cannot handle
versatile conditions beyond a limited textual one. For in-
stance, a user might want to include a negative text that is
not desired for the search (xcT - ) (e.g., an image + “with
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Figure 1. CIR scenarios. (a) A standard CIR scenario. (b-d) Our
versatile CIR scenarios with mixed conditions (e.g., negative text
and mask). Results by CompoDiff on LAION-2B.

cherry blossom” − “France”, as in Fig. 1 (b)), indicate
where (xcM ) the condition is applied (e.g., an image + “bal-
loon” + indicator, as in Fig. 1 (c)), or construct a complex
condition with a mixture of them. Furthermore, once the
fusion model is trained, it will always produce the same
zi for the given ziR and zc to users. However, a practi-
cal retrieval system needs to control the strength of condi-
tions by its applications or control the level of serendipity.
Second, they need a pre-collected human-verified dataset of
triplets ⟨xiR , xc, xi⟩ consisting of a reference image (xiR ),
a text condition (xc), and the corresponding target image
(xi). However, obtaining such triplets is costly and some-
times impossible; therefore, the existing CIR datasets are
small-scale (e.g., 30K [30] or 36K [16] triplets), resulting
in a lack of generalizability to other datasets.

We aim to achieve a generalizable CIR model with di-
verse and versatile conditions by using latent diffusion. We
treat the CIR task as a conditional image editing task on the
latent space, i.e., zi = Edit(ziR |zc, . . .). Our diffusion-
based CIR model, named CompoDiff, can easily deal with
versatile and complex conditions, benefiting from the flex-
ibility of the latent diffusion model [23] and the classifier-
free guidance [10]. We train a latent diffusion model that
translates the embedding of the reference image (ziR ) into
the embedding of the target image (zi) guided by the em-
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Figure 2. Training overview. Stage 1 is trained on LAION-2B with text-to-image generation. For stage 2, we alternatively update
Denoising Transformer ϵθ on LAION-2B with text-to-image generation and SynthTriplets18M.

bedding of the given text condition (zc). As shown in Fig. 1,
CompoDiff can handle various conditions, which is not pos-
sible with the standard CIR scenario with the limited text
condition xcT . Although our method has an advantage over
the existing fusion-based CIR methods in terms of versatil-
ity, CompoDiff also needs to be trained with triplet datasets.

We address the dataset scale issue by synthesizing a
vast set of high-quality 18.8M triplets of ⟨xiR , xc, xi⟩.
Our approach is fully automated without human verifica-
tion; hence, it is scalable even to 18.8M. We follow In-
structPix2Pix (IP2P) [4] for synthesizing triplets, while
our dataset contains ×40 more triplets and ×12.5 more
keywords (e.g., objects, background details, or textures)
than IP2P. Our SynthTriplets18M dataset is over 500
times larger than existing CIR datasets and covers a di-
verse and extensive range of conditioning cases, resulting
in a notable performance improvement for any CIR model.
For example, ARTEMIS [7] trained exclusively with Syn-
thTriplets18M shows outperforming zero-shot performance
even than its FashionIQ-trained counterpart (40.6 vs. 38.2).

To show the generalizability of the models, we evaluate
the models on the “zero-shot” (ZS) CIR scenario using four
CIR benchmarks: FashionIQ [30], CIRR [16], CIRCO [3],
and GeneCIS [29]; i.e., we report the retrieval results by the
models trained on our SynthTriplets18M and a large-scale
image-text paired dataset without access to the target triplet
datasets. In all experiments, CompoDiff achieves the best
zero-shot performances with significant gaps (See Tab. 3).
Moreover, we observe that the fusion-based approaches
solely trained on SynthTriplets18M (e.g., Combiner [2])
show comparable or outperforming zero-shot CIR perfor-
mances compared to the previous SOTA ZS-CIR methods
[3, 24]. Furthermore, we qualitatively observe that the re-
trieval results of CompoDiff are semantically better than
previous zero-shot CIR methods, such as Pic2Word, on a
large-scale image database, e.g., LAION-2B.

Another notable advantage of CompoDiff is the control-

lability of various conditions during inference, which is in-
herited from the nature of diffusion models. Users can ad-
just the weight of conditions to make the model focus on
their preference. Users can also manipulate randomness to
vary the degree of serendipity. In addition, CompoDiff can
control the speed of inference with minimal sacrifice in re-
trieval performance, accomplished by adjusting the num-
ber of sampling steps in the diffusion model. As a result,
CompoDiff can be deployed in various scenarios with dif-
ferent computational budgets. All of these controllability
features are achievable by controlling the inference param-
eters of classifier-free guidance without any model training.

2. CompoDiff: CIR with Latent Diffusion
2.1. Training

CompoDiff uses a two-stage training strategy (Fig. 2). In
stage 1, we train a text-to-image latent diffusion model on
LAION-2B. In stage 2, we fine-tune the model on our syn-
thetic triplet dataset, SynthTriplets18M, and LAION-2B.
Below, we describe the details of each stage.

In stage 1, we train a transformer decoder to convert
CLIP textual embeddings into CLIP visual embeddings.
This stage is similar to training the Dalle-2 prior, but our
model takes only two tokens; a noised CLIP image embed-
ding and a diffusion timestep embedding. The Dalle-2 prior
model is computationally inefficient because it also takes
77 encoded CLIP text embeddings as an input. However,
CompoDiff uses the encoded text embeddings as conditions
through cross-attention mechanisms, which speeds up the
process by a factor of three while maintaining similar per-
formance (See Sec. 4.4). Instead of using the noise predic-
tion of Ho et al. [11], we train the transformer decoder to
predict the denoised zi directly due to the stability.

Now, we introduce the objective of the first stage with
CLIP image embeddings of an input image zi, encoded
CLIP text embeddings for text condition zcT , and the de-
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noising Transformer ϵθ:

Et∼[1,T ]∥zi − ϵθ(z
(t)
i , t|zcT )∥2 (1)

During training, we randomly drop the text condition by
replacing zcT with a null text embedding ∅cT in order to
induce CFG. We use the empty text CLIP embedding (“”)
for the null embedding.

In stage 2, we incorporate condition embeddings, in-
jected by cross-attention, into CLIP text embeddings, along
with CLIP reference image visual embeddings and mask
embeddings (See Fig. 2). We fine-tune the model with three
different tasks: a conversion task that converts textual em-
beddings into visual embeddings, a mask-based conversion
task, and the triplet-based CIR task. The first two tasks are
trained on LAION-2B, and the last on SynthTriplets18M.

The mask-based conversion task learns a diffusion pro-
cess that recovers the full image embedding from a masked
image embedding. As we do not have mask annotations, we
extract masks using a zero-shot text-conditioned segmenta-
tion model, CLIPSeg [18]. We use the nouns of the given
caption for the CLIPSeg conditions. Then, we add a Gaus-
sian random noise to the mask region of the image and ex-
tract zi,masked. We also introduce mask embedding zcM by
projecting a 64×64 resized mask to the CLIP embedding
dimension using an MLP, where zcM is used for CFG. Now,
the mask-based conversion task is defined as follows:

Et∼[1,T ]∥zi − ϵθ(z
(t)
i,masked, t|zcT , zi,masked, zcM )∥2, (2)

Finally, we introduce the triplet-based training objective to
solve CIR tasks on SynthTriplets18M as follows:

Et∼[1,T ]∥ziT − ϵθ(z
(t)
iT

, t|zcT , ziR , zcM )∥2, (3)

where ziR is a reference image feature and ziT is a modified
target image feature.

We update the model by randomly using one of the con-
version task, the mask-based conversion task, or the triplet-
based CIR task with the proportions 30%, 30%, 40%. As
stage 1, the stage 2 conditions are randomly dropped except
for the mask conditions. We use an all-zero mask condition
for the tasks that do not use a mask condition.

2.2. Inference

As shown in Fig. 3, given a reference image feature ziR , a
text condition feature zcT , and a mask embedding zcM , we
apply a denoising diffusion process as follows:

ϵ̃θ(z
(t)
i , t|zcT , ziR , zcM ) = ϵθ(z

(t)
i , t|∅cT ,∅iR , zcM )

+wI(ϵθ(z
(t)
i , t|∅cT , ziR , zcM )− ϵθ(z

(t)
i , t|∅cT ,∅iR , zcM ))

+wT (ϵθ(z
(t)
i , t|zcT , ziR , zcM )− ϵθ(z

(t)
i , t|∅cT , ziR , zcM ))

(4)
where ∅ denotes null embeddings, i.e., the empty text (“”)
CLIP textual embedding for the text null embedding and
an all-zero vector for the image null embedding. One of
the advantages of Eq. (4) is the ability to handle various
conditions at the same time. When using negative text, we
simply replace ∅iT with the CLIP text embeddings cT− for
the negative text.

Another advantage of CFG is the controllability of the
queries without training, e.g., it allows to control the degree
of focus on image features to preserve the visual similarity
with the reference by simply adjusting the weights wI or
wT . In practice, we use (wI , wT ) = (1.5, 7.5).

As CompoDiff is based on a diffusion process, we can
easily control the balance between the inference time and
the retrieval quality of the modified feature by varying step
size. In practice, we set the step size to 5 or 10.

3. SynthTriplets18M: Massive High-Quality
Synthesized Dataset

CIR requires a dataset of triplets ⟨xiR , xc, xi⟩ of a refer-
ence image (xiR ), a condition (xc), and the corresponding
target image (xi). Instead of collecting a dataset by humans,
we propose to automatically generate massive triplets by
using generative models. We follow the main idea of In-
stuct Pix2Pix (IP2P) [4]. First, we generate ⟨xtR , xc, xt⟩
where xtR is a reference caption, xc is a modification in-
struction text, and xt is the caption modified by xc. We use
two strategies to generate ⟨xtR , xc, xt⟩: (1) We collect mas-
sive captions from the existing caption datasets and gen-
erate the modified captions by replacing the keywords in
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IP2P SynthTriplets18M

⟨xtR , xc, xt⟩(before filtering) 452k 500M
⟨xtR , xc, xt⟩(after filtering) 313k 60M
Unique object terms 47,345 586,369

⟨xiR , xc, xi⟩ (Keyword-based) - 11.4M
⟨xiR , xc, xi⟩ (LLM-based) 1M 7.4M

⟨xiR , xc, xi⟩ (Total) 1M 18.8M

Table 1. Dataset statistics. ⟨xtR , xc, xt⟩ denotes the triplet
of captions, i.e., {original caption, modification instruction, and
modified caption}, and ⟨xiR , xc, xi⟩ denotes the CIR triplet of
{original image, modification instruction, and modified image}.

the reference caption (Sec. 3.1). (2) We fine-tune a large
language model, OPT-6.7B [31], on the generated caption
triplets from Brooks et al. [4] (Sec. 3.2). After generating
massive triplets of ⟨xtR , xc, xt⟩, we generate images from
the caption triplets using StableDiffusion (SD) and Prompt-
to-Prompt Hertz et al. [9] following IP2P (Sec. 3.3). We
employ CLIP-based filtering to ensure high-quality triplets
(Sec. 3.4). The entire generation process is shown in Fig. 4.

Compared to manual dataset collections [16, 30], our ap-
proach can easily generate more diverse triplets even if a
triplet rarely occurs in reality (See the examples in Fig. 4).

Compared to the synthetic dataset of IP2P, our generation
process is more scalable due to the keyword-based diverse
caption generation process: Our caption triplets are synthe-
sized based on keywords, SynthTriplets18M covers more
diverse keywords than IP2P (47k vs. 586k as shown in
Tab. 1). As a result, SynthTriplets18M contains more mas-
sive triplets (1M vs. 18M), and CIR models trained on our
dataset achieve better scores even in the same scale (1M).

3.1. Keyword-based diverse caption generation

As the first approach to generating caption triplets, we col-
lect captions from the existing caption datasets and mod-
ify the captions by replacing the object terms in the cap-
tions, e.g., ⟨“a strawberry tart is ...”, “covert strawberry
to pak choi”, “a pak choi tart is ...”⟩ in Fig. 4. For the
caption dataset, We use the captions from COYO 700M
[5], StableDiffusion Prompts (user-generated prompts that
make the quality of StableDiffusion better), LAION-2B-en-
aesthetic (a subset of LAION-5B [25]) and LAION-COCO
datasets [26] (synthetic captions for LAION-5B subsets
with COCO style captions [6]. LAION-COCO less uses
proper nouns than the real web texts).

We extract the object terms from the captions using the
part-of-speech (POS) tagger provided by Spacy. After fre-
quency filtering, we have 586k unique object terms (Tab. 1).
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To make the caption triplet ⟨xtR , xc, xt⟩, we replace the ob-
ject term of each caption with other similar keywords by
using the CLIP similarity score. More specifically, we ex-
tract the textual feature of keywords using the CLIP ViT-
L/14 text encoder [20], and we choose an alternative key-
word from keywords with a CLIP similarity between 0.5
and 0.7. By converting the original object to a similar ob-
ject, we have caption pairs of ⟨xtR , xt⟩.

Using the caption pair ⟨xtR , xt⟩, we generate the modifi-
cation instruction text xcT based on a randomly chosen tem-
plate from 48 pre-defined templates shown in Tab. 2. After
this process, we have the triplet of ⟨xtR , xc, xt⟩. We gen-
erate ≈30M caption triplets by the keyword-based method.

3.2. Amplifying IP2P triplets by LLM

We also re-use the generated ⟨xtR , xc, xt⟩ by IP2P. We am-
plify the number of IP2P triplets by applying the efficient
LoRA fine-tuning [12] to OPT-6.7B [31] on the generated
452k caption triplets provided by Brooks et al. [4]. Using
the fine-tuned OPT, we generate ≈30M caption triplets.

3.3. Triplet generation from caption triplets

We generate 60M caption triplets ⟨xtR , xc, xt⟩ by the
keyword-based generation process (Sec. 3.1) and the LLM-
based generation process (Sec. 3.2). We generate images
for xtR (original caption) and xt (modified caption) using
state-of-the-art text-to-image generation models, such as
StableDiffusion (SD) 1.5, 2.0, 2.1, and SD Anime. Follow-
ing Brooks et al. [4], we apply Prompt-to-Prompt [9], which
aims to generate similar images while keeping the identity
of the original image (e.g., the examples in Fig. 4). As a re-
sult, we generate 60M ⟨xiR , xc, xi⟩ (zcT is given; xiR and
xi are generated by xtR and xt, respectively). While IP2P

generates the samples only using SD 1.5, our generation
process uses multiple DMs, for more diverse images not bi-
ased towards a specific model.

3.4. CLIP-based filtering

Our generation process can include low-quality triplets,
e.g., broken images or non-related image-text pairs. To pre-
vent the issue, we apply a filtering process following Brooks
et al. [4] to remove the low-quality ⟨xiR , xc, xi⟩. First,
we filter the generated images for an image-to-image CLIP
threshold of 0.70 (between xiR and xi) to ensure that the
images are not too different, an image-caption CLIP thresh-
old of 0.2 to ensure that the images correspond to their cap-
tions (i.e., between xtR and xiR , and between xt and xi),
and a directional CLIP similarity [8] of 0.2 (Ldirection :=
1 − sim(xiR , xi) · sim(xtR , xt), where sim(·) is the CLIP
similarity) to ensure that the change in before/after captions
correspond with the change in before/after images. For
keyword-based data generation, we filter out for a keyword-
image CLIP threshold of 0.20 to ensure that images con-
tain the keyword (e.g., image-text CLIP similarity between
the strawberry tart image and the keyword “strawberry” in
Fig. 4). For instruction-based data generation, we filter out
for an instruction-modified image CLIP threshold of 0.20 to
ensure consistency with the given instructions.

After the filtering, we have 11.4M ⟨xiR , xc, xi⟩ from the
keyword-based generated captions and 7.4M ⟨xiR , xc, xi⟩
from the LLM-based generated captions. It implies that the
fidelity of our keyword-based method is higher than OPT
fine-tuning in terms of T2I generation. As a result, Syn-
thTriplets18M contains 18.8M synthetic ⟨xiR , xc, xi⟩. Ex-
amples of our dataset are shown in Fig. 7.

3.5. Dataset Statistics

We show the statistics of our generated caption dataset (i.e.,
before T2I generation, xtR and xt). We use the CLIP tok-
enizer to measure the statistics of the captions. Fig. 5 shows
the cumulative ratio of captions with tokens less than X.
About half of the captions have less than 13 tokens, and
90% of the captions have less than 20 tokens. Only 0.8% of
the captions have more than 40 tokens.

We also compare SynthTriplets18M, FashionIQ, and
CIRR in the instruction tokens (i.e., xc). Fig. 6 shows that
the instruction statistics vary across different datasets. We
presume that this is why the zero-shot CIR is still difficult
to outperform the task-specific supervised CIR methods.

4. Experiments
4.1. Implementation details

Encoders. We use three different CLIP models for image
encoder (Fig. 3 “CLIP Img Enc”), the official CLIP ResNet-
50 and ViT-L/14 [20], and CLIP ViT-G/14 by OpenCLIP
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“4k high resolution images is the new choice”

“have the person be a dog”

Figure 7. Examples of SynthTriplets18M. We show examples of
⟨xiR , xc, xi⟩, i.e., {original image, modification instruction, and
modified image}, as well as the generation prompt for xiR and xi.

[13], whose feature dimensions are 768, 1024, and 1280,
respectively. Beyond the backbone size, we observe the
choice of the text condition encoder is also important (Fig. 3
“Txt Enc”). As shown Balaji et al. [1], using a text-
oriented model such as T5 [21] in addition to the CLIP
textual encoder results in improved performance of text-to-
image generation models. Motivated by this observation,
we also use both the CLIP textual encoder and the language-
oriented encoder for small image encoder (i.e., CLIP ViT-
L/14). We also observed the positive effect of the text-
oriented model and experiment results showed that T5-XL,
which has 3B parameters, could improve the performance
by a large margin in the overall evaluation metrics.

Denoiser. We use a simple Transformer architecture for
the denoising procedure, instead of the denoising U-Net
[23]. We empirically observe that our transformer archi-
tecture performs slightly better than the U-Net architecture,
but is much simpler. We use the multi-head self-attention
blocks as the original Transformer [28]. We set the depth,
the number of heads, and the dimensionality of each head to
12, 16, and 64, respectively. The hidden dimension of the
Transformer is set to 768 and 1280 for ViT-L and ViT-G,
respectively. The denoising Transformer takes two inputs:
a noisy visual embedding and a time-step embedding. The

conditions (e.g., text, mask and image conditions) are ap-
plied only to the cross-attention layer; thereby it is compu-
tationally efficient even using many conditions. CompoDiff
is similar to the “DiT with cross-attention” by Peebles and
Xie [19], but handles more various conditions.

Training details. For the efficient training, all visual
features are pre-extracted and frozen. All training text em-
beddings are extracted at every iteration. To improve com-
putational efficiency, we reduced the number of input to-
kens of the T5 models to 77, as in CLIP. A single-layer per-
ceptron was employed to align the dimension of text embed-
dings extracted from T5-XL with that of CLIP ViT-L/14.

4.2. Experiment settings

All models were trained using AdamW [17]. We used
DDIM [27] for the sampling variance method. We did not
apply any image augmentation but used pre-extracted CLIP
image features for computational efficiency; text features
were extracted on the fly as text conditions can vary.

We evaluate the zero-shot (ZS) capability of CompoDiff
on four CIR benchmarks, including FashionIQ [30], CIRR
[16], CIRCO [3] and GeneCIS [29]. We compare
CompoDiff to the recent ZS CIR methods, including
Pic2Word [24] and SEARLE [3]. We also reproduce the
fusion-based methods, such as ARTEMIS [7] and Combiner
[2], on SynthTriplets18M and report their ZS performances.
Note that the current CIR benchmarks are somewhat insuf-
ficient to evaluate the effectiveness of CompoDiff, particu-
larly considering real-world CIR queries. Our work is the
first study that shows the impact of the dataset scale and the
zero-shot CIR performances with various methods, such as
our method, ARTEMIS and Combiner.

4.3. Qualitative comparisons on four Zero-shot CIR
(ZS-CIR) benchmarks

Tab. 3 shows the overview of ZS-CIR comparison re-
sults. CLIP + IP2P denotes the naive editing-based ap-
proach by editing the reference image with the text con-
dition using IP2P and performing image-to-image retrieval
using CLIP ViT-L. In the table, CompoDiff outperforms
all the existing methods with significant gaps. The ta-
ble shows the effectiveness both of our diffusion-based
CIR approach and our massive synthetic dataset. In the
SynthTriplets18M-trained group, CompoDiff outperforms
previous SOTA fusion-based CIR methods with a large gap,
especially on CIRR and CIRCO, which focus on real-life
images and complex descriptions. Our improvement is not
main due to the architecture, as CompoDiff already outper-
forms the fusion methods in RN50. We also can observe
that the SynthTriplets18M-trained group also enables the
fusion-based methods to have the ZS capability competitive
to the SOTA ZS-CIR methods, Pic2Word and SEARLE.

Compared to the previous ZS-CIR methods (Pic2Word



Fashion IQ (Avg) CIRR CIRCO GeneCIS
Method Arch R@10 R@50 R@1 Rs@1 mAP@5 mAP@10 mAP@25 R@1

CLIP + IP2P† ViT-L 7.01 12.33 4.07 6.11 1.83 2.10 2.37 2.44

Previous zero-shot methods (without SynthTriplets18M)

Pic2Word† ViT-L 24.70 43.70 23.90 53.76 8.72 9.51 10.65 11.16
SEARLE-OTI† ViT-L 27.51 47.90 24.87 53.80 10.18 11.03 12.72 -
SEARLE† ViT-L 25.56 46.23 24.24 53.76 11.68 12.73 14.33 12.31

Zero-shot results with the models trained with SynthTriplets18M

ARTEMIS RN50 33.24 47.99 12.75 21.95 9.35 11.41 13.01 13.52
Combiner RN50 34.30 49.38 12.82 24.12 9.77 12.08 13.58 14.93
CompoDiff RN50 35.62 48.45 18.02 57.16 12.01 13.28 15.41 14.65
CompoDiff ViT-L 36.02 48.64 18.24 57.42 12.55 13.36 15.83 14.88
CompoDiff ViT-L & T5-XL 37.36 50.85 19.37 59.13 12.31 13.51 15.67 15.11
CompoDiff ViT-G 39.02 51.71 26.71 64.54 15.33 17.71 19.45 15.48

Table 3. Zero-shot CIR comparisons. † denotes the results by the official model weight, otherwise, models are trained on Syn-
thTriplets18M and LAION-2B (ARTEMIS and Combiner are trained solely on SynthTriplets18M, while CompoDiff is trained on both).

IP2P(1M) 1M 5M 10M 18.8M

FashionIQ Avg(R@10, R@50)

ARTEMIS 26.03 27.44 36.17 41.35 40.62
Combiner 29.83 29.64 35.23 41.81 41.84
CompoDiff 27.24 31.91 38.11 42.41 42.33

CIRR Avg(R@1, Rs@1)

ARTEMIS 14.91 15.12 15.84 17.56 17.35
Combiner 16.50 16.88 17.21 18.77 18.47
CompoDiff 27.42 28.32 31.50 37.25 37.83

Table 4. Impact of dataset scale. IP2P denotes the public 1M
synthetic dataset by [4].

and SEARLE), CompoDiff achieves remarkable improve-
ments on the same architecture scale (i.e., ViT-L), except
on CIRR. We argue that it is due to the noiseness of the
CIRR dataset. Instead, CompoDiff outperforms the other
methods on FashionIQ, CIRCO and GeneCIS with a sig-
nificant gap. We believe that it is because CompoDiff ex-
plicitly utilizes the diverse and massive synthetic triplets,
while Pic2Word and SEARLE only employ images and the
“a photo of” caption during training, resulting in a lack of
diversity and generalizability.

4.4. Impact of dataset scale

Tab. 4 shows the impact of the dataset scale by Syn-
thTriplets18M on ARTEMIS, Combiner and CompoDiff.
First, at a scale of 1M, models trained on our 1M subset
significantly outperformed the IP2P triplets. This result in-
dicates that our dataset has a more diverse representation
capability. As the size of our dataset increases, the per-
formance gradually improves. Notably, SynthTriplets18M

shows consistent performance improvements from 1M to
18.8M, where manually collecting triplets in this scale is
infeasible and nontrivial. Thanks to our diversification strat-
egy, particularly keyword-based generation, we can scale up
the triplet to 18.8M without manual human labor.

Tab. 4 shows that the massive data points are not neces-
sary for training CompoDiff, but all methods are consis-
tently improved by scaling up the data points. Also, al-
though the FashionIQ and CIRR scores look somewhat sat-
urated after 10M, these scores cannot represent authentic
CIR performances due to the limitations of the datasets. As
far as we know, this is the first study that shows the impact
of the dataset scale on the ZS-CIR performances.

4.5. Qualitative examples

We qualitatively show the versatility of CompoDiff for han-
dling various conditions. For example, CompoDiff not only
can handle a text condition, but it can also handle a negative
text condition (e.g., removing specific objects or patterns in
the retrieval results), masked text condition (e.g., specifying
the area for applying the text condition). CompoDiff even
can handle all conditions simultaneously. To show the qual-
ity of the retrieval results, we conduct a zero-shot CIR on
the entire LAION-2B [25] using FAISS [14].

Fig. 8 shows qualitative comparsions of zero-shot CIR
results by Pic2Word and CompoDiff. CompoDiff results in
semantically high-quality retrieval results (e.g., understand-
ing the “crowdedness” of the query image and the meaning
of the query text at the same time). However, Pic2Word
shows poor understanding of the given queries, resulting in
unfortunate retrieval results (e.g., ignoring “grown up” of
text query, or the “crowdedness” of the query image).

Finally, it is worth noting that CompoDiff generates a
feature belonging to the CLIP visual latent space. It means



“Grown up”

Pic2Word:

Ours:

“A photo of * grown up”

“From minecraft”

Pic2Word:

Ours:

“A photo of * from minecraft”

Query Image

Figure 8. Qualitative comparison of zero-shot CIR for Pic2Word and CompoDiff. We conduct CIR on LAION. As Pic2Word cannot
take a simple instruction, we made a simple modification for the given instruction.

Reference Image Conditions unCLIP Generated LAION Top-1 Reference Image Conditions unCLIP Generated LAION Top-1

�As 4k image�

- �pink rabbit�

�As 4k image�

�meteor�

�meteor�

- �zoom out�

�make the

dog a cat�
“Make it

long sleeve”

Figure 9. Generated and retrieved images by CompoDiff. Images are generated by unCLIP decoder and retrieved from LAION using
transformed features by CompoDiff.

unCLIP [22], which decodes a CLIP image feature to an im-
age, can be applied to our composed features. We compare
the top-1 retrieval results from LAION and the generated
images in Fig. 9. We use the community version ViT-L un-
CLIP decoder [15], by replacing the original Prior module
to CompoDiff. As shown in the figures, CompoDiff can
manipulate the given input reflecting the given conditions.

5. Conclusion
We have introduced CompoDiff, a novel diffusion-based
method for solving complex CIR tasks. We have created
a large and diverse dataset named SynthTriplets18M, con-

sisting of 18.8M triplets of images, modification texts, and
modified images. CompoDiff has demonstrated impressive
ZS-CIR capabilities, as well as remarkable versatility in
handling diverse conditions, such as negative text or image
masks, and the controllability to enhance user experience,
such as adjusting image text query weights. Furthermore,
by training the existing CIR methods on SynthTriplets18M,
the models became comparable ZS predictors to the ZS-CIR
methods. We strongly encourage future researchers to lever-
age our dataset to advance the field of CIR.
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