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ABSTRACT

We address the challenge of explaining counterfactual outcomes in multi-agent
Markov decision processes. In particular, we aim to explain the total counter-
factual effect of an agent’s action on the outcome of a realized scenario through
its influence on the environment dynamics and the agents’ behavior. To achieve
this, we introduce a novel causal explanation formula that decomposes the coun-
terfactual effect by attributing to each agent and state variable a score reflecting
their respective contributions to the effect. First, we show that the total counter-
factual effect of an agent’s action can be decomposed into two components: one
measuring the effect that propagates through all subsequent agents’ actions and
another related to the effect that propagates through the state transitions. Build-
ing on recent advancements in causal contribution analysis, we further decompose
these two effects as follows. For the former, we consider agent-specific effects —
a causal concept that quantifies the counterfactual effect of an agent’s action that
propagates through a subset of agents. Based on this notion, we use Shapley value
to attribute the effect to individual agents. For the latter, we consider the con-
cept of structure-preserving interventions and attribute the effect to state variables
based on their “intrinsic” contributions. Through extensive experimentation, we
demonstrate the interpretability of our decomposition approach in a Gridworld
environment with LLM-assisted agents and a sepsis management simulator.

1 INTRODUCTION

Applying counterfactual reasoning to retrospectively analyze the impact of different actions in deci-
sion making scenarios is fundamental for accountability. For instance, counterfactual reasoning can
be employed to identify actual causes (Halpernl, 2016} Triantafyllou et al., |2022), attribute responsi-
bility (Chockler & Halpern, 2004; |[Friedenberg & Halpern, |2019), generate explanations (Madumal
et al., |2020; Tsirtsis et al., [2021), evaluate fairness (Kusner et al., 2017} [Huang et al.| 2022) and
measure harm (Richens et al.l [2022; Beckers et al.| [2022). To achieve such objectives, many stud-
ies often rely on the notion of rotal counterfactual effects, which quantifies the extent to which an
alternative action would have affected the outcome of a realized scenario.

In multi-agent sequential decision making, an agent’s action typically affects the outcome indirectly.
To illustrate this, consider the problem of Al-assisted decision making in healthcare (Lynn, |2019),
where a clinician and their Al assistant treat a patient over a period of time. Fig.[Ta]depicts a specific
example, where treatment fails. We estimate that if the clinician had not followed the AI’s recom-
mendation at step 10 and administered vasopressors (V) instead of mechanical ventilation (E), the
treatment would have been successful with an 82% likelihood. Therefore, the considered alterna-
tive action admits a high total counterfactual effect. This effect, however, propagates through all
subsequent actions of the clinician and the Al, as well as all the changes in the patient’s state. This
makes the interpretability of the effect more nuanced, as the change from action to outcome can be
transmitted by multiple distinct causal mechanisms. In this work, we ask:

How to explain an action’s total counterfactual effect in multi-agent sequential decision making?

Much prior work in causality has focused on decomposing causal effects (Pearl, 2001; Zhang &
Bareinboim, |2018aib) under the rubric of mediation analysis (Imai et al. |2010; 2011; [Hicks &
Tingleyl, [201 1} VanderWeele, 2016), which aims to understand how effects propagate through causal
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Figure 1: Fig. [la| depicts (part of) a simulated scenario from the two-agent Sepsis environment in
Section[6.2] where the patient’s treatment fails. In the same figure, we have also included the values
from a sampled counterfactual scenario (values that are different are shown in orange), where the
clinician’s action is fixed to override the AI’s action at step 10. Hence, the patient receives treatment
instead of A&E. Plot@ shows the results of our decomposition approach for this scenario.

paths. However, such an approach would not yield interpretability in multi-agent sequential decision
making. There can be exponentially many paths connecting an action to the outcome, and not all of
them have a clear operational meaning to help explain the effect intuitively. We instead posit that it
is more natural to interpret the effect of an action in terms of its influence on the agents’ behavior
and the environment dynamics. Therefore, we need to analyze how the effect propagates through:
(a) the subsequent agents’ actions and (b) the state transitions of the environment. In the previous
example, the total counterfactual effect of the considered action can be decomposed as shown in
Plot[Tb} This approach explains the effect by attributing a score to each doctor (clinician and Al)
and patient state, reflecting their respective contributions to the overall effect.

Contributions. Focusing on Multi-Agent Markov Decision Processes and Structural Causal Mod-
els, we provide a systematic approach to attributing the total counterfactual effect of an agent’s
action on the outcome of a given trajectory, based on the following bi-level decomposition.

(Level 1) We first introduce a causal explanation formula, which decomposes the total counterfac-
tual effect of an agent’s action into the fotal agent-specific effect and the reverse state-specific effect.
The former refers to the effect that propagates through all subsequent agents’ actions, and is for-
mulated via the recently introduced notion of agent-specific effects (Triantafyllou et all,[2024). The
latter refers to the effect that would have been lost or gained had the action not been propagated

through the state transitions, and it is a special case of path-specific effects (Avin et al.l 2005)).

(Level 2a) To further decompose the total agent-specific effect (tot-ASE), we propose an axiomatic
framework based on agent-specific effects for attributing the total effect to individual agents. The set
of axioms includes efficiency, which requires that the agents’ contributions sum up to tot-ASE. We
show how to operationalize Shapley value with agent-specific effects, in order to obtain a method
for decomposing tot-ASE, which uniquely satisfies the set of proposed axioms.

(Level 2b) To further decompose the reverse state-specific effect (r--SSE), we utilize the notion of
intrinsic causal contributions (ICC) (Janzing et al, 2024). ICC enables us to quantify the infor-
mativeness of individual state variables regarding the counterfactual outcomes needed for the com-
putation of r-SSE. We propose a method for decomposing r-SSE that is efficient under a relatively
mild assumption that at least one state variable has non-zero ICC (i.e., is informative about the
counterfactual outcomes).

We experimentally validate the interpretability of our approach using two multi-agent environments
with heterogeneous agents: a grid-world environment, where two RL actors are instructed by an
LLM planner to complete a sequence of tasks, and the sepsis management simulator from Fig. [T}

1.1 ADDITIONAL RELATED WORK

This paper is related to works on mediation analysis and especially to those that consider multiple
(sequential) mediators (Daniel et al 2015}, Steen et al.l 2017; [VanderWeele & Vansteelandt, 2014}
Chiappa, 2019). As mentioned earlier, the main distinction between this line of work and ours
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is that we analyze how effects propagate through agents and state variables in an MMDP, instead
of causal paths in general SCMs. In a similar sense, our work also relates to the areas of causal
contributions (Janzing et al.l|2024; |Jung et al., 2022; Heskes et al., [2020) and flow-based attribution
methods (Singal et al.||2021; Wang et al.,[2021)). The former studies how to attribute a target effect to
different causes (often model features) based on their degree of some notion of contribution to that
effect. The latter considers the problem of assigning credit to the edges of a causal graph, instead of
the nodes, for explaining causal effects.

2 BACKGROUND AND FORMAL FRAMEWORK

In this section, we present our formal framework, which is adopted from Triantafyllou et al.| (2024)
and builds on Multi-Agent Markov Decision Processes (MMDPs) (Boutilier, |1996) and Structural
Causal Models (SCMs) (Pearl, [2009). A table summarizing the notation is provided in Appendix [B]
Appendix [N] provides a graphical illustration of all counterfactual effects discussed in this section
and the next, using the 2-step Sepsis example from Triantafyllou et al.| (2024).

2.1 MULTI-AGENT MARKOV DECISION PROCESSES

An MMDP is represented as a tuple (S, {1, ...,n}, A, T, h, o), where: S is the state space; {1, ...,n}
is the set of agents; A = x]'_; .4, is the joint action space, with .4; being the action space of agent i;
T:8xAxS — [0,1] is the transitions probability function; & is the finite time horizon; o is
the initial state distribution Each agent i € {1,...,n} has a stationary decision-making policy ;,
with the joint policy of all agents represented as 7. The probability of agents jointly taking action
a; = (ai1,,...,an,¢) in state s; at time ¢ is thus given by m(a;|s;) = mi(a1,¢|se) - Tn(an,e|st),
while the probability of transitioning from state s; to state s,y is determined by T'(s¢41]|s¢, ar).
A sequence of such state-action pairs {(s¢,as)}seqo,...,n—1} and final state sy, is called a trajectory.
With 7(X), we denote the value of variable X in trajectory 7.

2.2 MMDPSs AND STRUCTURAL CAUSAL MODELS

We utilize the MMDP-SCM framework (Triantafyllou et al., [2024) to express an MMDP coupled
with a joint policy 7 as an SCM. Specifically, an MMDP-SCM (V, U, P(u), F) consists of

(i) atuple V. = (Sp, A1,0,..., An 0, ..., Sp) of the observed variables whose causal relations
are modelled, i.e., all state and action variables of the MMDP;

(i) atuple U = (U0, UAro, .. UAno ... USr) of mutually independent unobserved noise
variables which capture any underlying stochasticity of the MMDP and agents’ policies;

(iii) A joint probability distribution P(u) = [] P(u?) over U;

(iv) A collection F of deterministic functions that determine the values of all observed variables
in 'V via the following structural equations

So = FRU); Spom= [¥ (S, A, US); - Ay o= fR(S5,U4). (1)

utEu

Note that any context u ~ P(u) induces a unique trajectory 7, such that VX € V it holds that 7(X)
is the solution of X, for the particular u, in the MMDP-SCM. Furthermore, similar to general SCMs,
the MMDP-SCM induces a directed causal graph, which can be found in Appendix [D| Appendix
also describes the conditions under which the observational distribution of an MMDP-SCM is
consistent with some MMDP and joint policy. In this paper, we focus on categorical MMDP-SCMs.

2.3 INTERVENTIONS AND COUNTERFACTUALS

Consider an MMDP-SCM M. An intervention on the action variable A; ; of M corresponds to the
process of modifying the structural equation A; ; := f4i¢(S* U4it) from Eq. |1} More specifically,
a hard intervention do(A; ; := a;) fixes the value of A, , to the constant a, ;, resulting in a new
MMDP-SCM denoted by M do(Ai+:=ai.t)  Similar to |Correa et al. (2021), when random variables
have subscripts we will use square brackets to denote interventions.

"For ease of notation, rewards are considered part of the states.
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Letnow Z € V and u ~ P(u). We denote with Zj,(4, ,:=a, ,)(0) or Z,, ,(u) for short, the

solution of Z for u in Mdo(Aii=ai.t) and with Z,, , the random variable induced by averaging
over U. Typically, Z,, ,(u) is referred to as the potential response of Z to do(A;; = a;z). A
natural intervention do(A; i := A; 4[4, ,]) replaces the structural equation of A; s in M with the
potential response of A; ; to the (hard) intervention do(A; + 1= a; ¢).

Given a trajectory 7 and a response variable Y € V, the counterfactual probability P(Y,,, =
Y|7)ar or P(ya, ,|7) s for short, measures the probability of Y taking the value y in 7 had A; ; been
set to a; ¢. Subscript M here implies that the probability is defined over the MMDP-SCM M. When

necessary, P(-|7; M) is used to denote that 7 was generated by M. Next, we define a standard causal
notion that is used to quantify the counterfactual impact of intervention do(A; ¢+ := a;+) on Y

Definition 2.1 (TCFE). Given an MMDP-SCM M and a trajectory 7 of M, the fotal counterfactual
effect of intervention do(A; + 1= a; ;) onY € 'V, relative to reference 7(A4, ;), is defined as

TCFE&i,t7T(A1:,z)(Y|T)M = E[Yai,t T]M - E[YT(Ai,t) ‘T]M
= E[Ya, [ = 7(Y).

Assumptions and counterfactual identifiability. Note that there might be multiple MMDP-SCMs
whose observational distribution is consistent with some MMDP-joint policy pair, but yield different
counterfactuals, e.g., different values for TCFE. This means that without further assumptions, coun-
terfactuals cannot be identified from observations alone. To enable counterfactual identifiability,
we thus make the following assumptions. First, we consider unobserved variables to be mutually
independent. Second, we assume that MMDP-SCMs satisfy the (weak) noise monotonicity condi-
tion introduced by Triantafyllou et al.|(2024)). Note that the latter assumption is not limiting for the
MMDP distribution or the agents’ policies, i.e., every MMDP can be consistently represented by a
noise-monotonic MMDP-SCM. What is restricted instead is the expressivity of the model’s counter-
factual distribution. These assumptions suffice to render all counterfactuals discussed in this paper
identifiable from observational data. Details about noise monotonicity can be found in Appendix [E]

3  DECOMPOSING THE TOTAL COUNTERFACTUAL EFFECT

The total counterfactual effect can inform us about the extent to which an alternative action would
have affected the outcome of a trajectory. However, this measure alone does not provide any further
insights on why or how that action would have affected the outcome. In this section, we introduce
a novel causal explanation formula that decomposes TCFE w.r.t. the two building blocks of an
MMDP - its states and its agents. First, based on prior work we define two causal quantities for
measuring how much of the total counterfactual effect of an agent’s action on some response variable
is mediated by (a) all future agents’ actions and (b) the subsequent MMDP’s state transitions.

Definition 3.1 (tot-ASE). Given an MMDP-SCM M and a trajectory 7 of M, the fotal agent-specific
effect of intervention do(A; + 1= a; ;) onY € 'V, relative to reference 7(A4, ;), is defined as
1,..., n
ASEL (VP = EIY |7 Moy — E[Yr(a, ) |7]n
= E[Y|r; M]paory — 7(Y),
where [ = {Ai’,t/ = Ai’,t’[ai,t]}i’e{l,...,n},t’>t'

Definition 3.2 (SSE). Given an MMDP-SCM M and a trajectory 7 of M, the state-specific effect
of intervention do(4,; ; := a;;) on'Y € V, relative to reference 7(A; ;), is defined as

SSEq, , r(a:0)(Y|T)m = EYa, |75 M]ppaoy — E[Yr(a, )I7Im
= E[Ya T3 M]Mdom - T(Y)a

it

where I = {Ai’,t’ = Ai,,t’[T(Ai/yt/)}}i’E{l,..‘,n},t,>t'

In words, Deﬁnitionmeasures the difference between the factual value of Y, i.e., 7(Y), and the
(expected) counterfactual value of Y had all agents taken the actions that they would naturally take

’In this paper, we consider counterfactual effects mostly relative to the factual action 7(A; ;). However, we
note that generally any valid action can be used as a reference value.
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under intervention do(A; ; := a; ) after time-step ¢. On the other hand, Deﬁnitionmeasures the
counterfactual effect of intervention do(A4; ; := a; ) onY in a modified model where all subsequent
agents’ actions are fixed to their factual values, i.e., their actions in 7. Definition @]is in line with
the notion of agent-specific effects introduced by [Triantafyllou et al.| (2024) and revisited here in
Section[5] while SSE can be seen as a special case of path-specific effects (Avin et al, 2005).

Perhaps counter to intuition, TCFE is not always decomposed into tot-ASE and SSE, i.e., the rela-

tionship TCFE,, , -(a,,)(Y|T)a = ASEL"0 (V|r)ar + SSEq, , (4, (Y]7)a is not nec-
essarily true. An empirical counter-example for this is provided in Section However, by com-
paring Definitions [3.1) and [3.2] we observe that the total agent-specific effect associated with the
transition from the factual action 7(A; ;) to the counterfactual action a;, is closely related to the

state-specific effect associated with the reverse transition, i.e., the effect
SSEr(a; )00 (YT = E[Yr(a, )75 M]pgaoay — E[Y, 7] ar
=E[Y|7; M]ppaor — E[Ya, | 7]ar, @)

where I = {Ayy = Ay pla, ) ire{1,...n}.o>t- We will refer to the latter as the reverse state-
specific effect or r-SSE for short, to clearly distinguish it from SSE. In words, r-SSE measures the
difference in the counterfactual value of Y under intervention do(A; ; := a; ), assuming that the
state Sy41 had not been affected by the intervention, but all subsequent agents’ actions had. Based
on this observation, we derive the following decomposition of the total counterfactual effect.

Theorem 3.3. The total counterfactual effect, total agent-specific effect and reverse state-specific
effect obey the following relationship

TCFE,, , ~(a, ) (Y|")m = ASEL 00 (VIP)ar = SSEr(a, v, (YI7) - 3)

Theorem states that the total counterfactual effect of do(A;; := a;) on Y equals to the effect
that propagates only through the agents minus the effect that would have been lost or gained had the
intervention not been propagated through the states.

Connection to prior work. Our result is similar in principle with the well-known causal mediation
Sformula for arbitrary SCMs (Pearl, [2001)), which decomposes the tofal causal effect of an interven-
tion into the natural direct and indirect effects. Thus, Theorem can be viewed as an extension
of Theorem 3 from |Pearl| (2001)), applied to the problem of counterfactual effect decomposition in
multi-agent MDPs. More details on the interpretation of this result can be found in Pearl| (2014).

Sepsis example. Going back to our example scenario from the introduction, the result of our de-
composition can be interpreted as follows: (a) 45.6% of the TCFE is attributed to how the Al and
the clinician would have responded to the intervention (tot-ASE ~ 0.374); (b) the remaining 54.4%
is attributed to the influence that the intervention has on the patient state (—r-SSE ~ 0.446).

Recap. We decompose TCFE, i.e., the difference between the expected counterfactual value of ¥’
under intervention do(A; ; := a; ), Ya, ,, and the factual value of Y, 7(Y"), into tot-ASE and r-SSE.
tot-ASE measures the difference between the expected counterfactual value of Y, had all subsequent
agents’ actions been fixed to the values they would naturally take under do(A; ; := a; ), and 7(Y").
r-SSE is defined as the difference between the two counterfactual quantities measured in TCFE and
tot-ASE. We have also introduced SSE, which measures the difference between the expected value
of Y, ,, had all subsequent agents’ actions been fixed to their factual values, and 7(Y").

4 DECOMPOSING THE REVERSE STATE-SPECIFIC EFFECT

In this section, we focus on further decomposing the reverse state-specific effect. More specifically,
our goal is to attribute to each state variable a score reflecting its contribution to r-SSE. Our approach
utilizes the notion of intrinsic causal contributions (ICC) introduced by Janzing et al.[(2024). For
general SCMs, the ICC of an observed variable X to a target variable Y measures the reduction of
uncertainty in Y when conditioning on the noise variable U*. In our work, we model uncertainty
using the expected conditional variance and modify the ICC definition to quantify the influence of
state variables on the variation of r-SSE.

Let £ € {0,....h}. We denote with U the set (U U4tk .. UAnr) for k < h, and with
U>* the set (U°"). We also denote with U<* the set of noise terms associated with the observed
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variables preceding (chronologically) Sj. Note that r-SSE essentially measures the expected value
of the difference AY7 4, , = Y7 — Yg, , in M, when noise terms U are sampled from the posterior
distribution P(u|7). Thus, the ICC can be defined in our context as follows

ICC(Sk = AY7 4, ,|7) = E[Var(AY; 4, , |7, US)|7] — E[Var(AY] 4, , |7, U, US)|7], (@)

where I = {A; v = Az‘f,t/[ai,t]}i/e{l,..,,n},t'>t- In words, Eq. ¥{measures the reduction of variance
in AY7 4, , caused by conditioning on the noise variables associated with state Sj, and the agents’
actions taken therein. Based on this, we can now define our attribution method for r-SSE.

Definition 4.1 (r-SSE-ICC). Given an MMDP-SCM M and a trajectory 7 of M, r-SSE-ICC assigns

to each state variable Sy, for k € {0, ..., h} a contribution score for the reverse state-specific effect

SSE;(a; )i, (Y|7) s, equal to

¢ L ICC(Sk — AYI,a,;,,,
ST T Var(AY g, [7)

if the unconditional variance Var(AY7 4, ,|7) > 0, and equal to 0 otherwise.

st

7)

y. SSET(Ai,t)-,ai,t (Y|T)M’

According to Definition the reverse state-specific effect is allocated among state variables in
proportion to their intrinsic contribution to the effect. Intuitively, this means that the influence of a
state variable to the r-SSE is represented by the relative degree to which we can more precisely esti-
mate the effect if we could also predict the counterfactual value of that state under the interventions
do(I) and do(A; ; := a;). Thus, if knowing what would have happened in state S}, is pivotal for
the accuracy of our counterfactual prediction then contribution score s, would be high, whereas if
it has small influence then 15, would be closer to zero. In the case where we can exactly compute
SSE+ (4, 1),a:., (Y|7) s without conditioning on any noise term, e.g., if environment and policies are
deterministic, then our approach does not decompose the r-SSE any further.

Algorithm. Appendix [G]includes an algorithm for the approximation of the expected conditional
variance of AY7 4, ,. Our algorithm follows the standard abduction-action-prediction methodol-
ogy for counterfactual inference (Pearl, [2009): it samples conditioning and non-conditioning noise
variables independently from the posterior distribution, estimates the noise-conditional variance for
r-SSE and returns the average value.

Causal interpretation. The attribution method described in Definition 4. T|relies on do interventions
that are performed only on agents’ actions, meaning that the causal mechanisms of the environment
remain intact. Conditioning on noise terms can be considered as a form of structure-preserving
interventions, i.e., interventions that depend on the values of the parents of the exposure variable
(here previous state and actions), and do not perturb the observed distribution. For a more detailed
discussion on the causal meaning of ICC we refer the reader to Section 3.1 inJanzing et al.|(2024).

Plain ICC. Since there is a unique causal order among the state variables of an MMDP-SCM, the
time order, there is no arbitrariness due to order-dependence. For that reason, we consider the “plain”
ICC for our approach instead of the Shapley based symmeterization used inJanzing et al.|(2024).

Finally, we show that r-SSE-ICC fully allocates r-SSE among the states following the intervention.

Theorem 4.2. Let ty denote the time-step of response variable Y and 1 be the output of r-SSE-ICC
for the reverse state-specific effect SSE. (4, ).a, (Y |T)nr. If Var(AY7 q, ,|7) > 0, then it holds that

Zke[t+1,ty] Vs, = SSET(Ai,,t,),(li,t(Y|T)JVI'

Sepsis example. The result of the r-SSE-ICC method in the introductory example can be interpreted
as follows: if we knew the counterfactual state of the patient at step 13, following the intervention
at step 10, we could estimate the reverse state-specific effect of that intervention on the treatment
with almost no uncertainty. On the other hand, knowing the exact counterfactual value for any of
the previous states would not lead to a comparable reduction in uncertainty.

5 DECOMPOSING THE TOTAL AGENT-SPECIFIC EFFECT

In this section, we focus on further decomposing the total agent-specific effect. More specifically,
our goal is to attribute to each agent a score reflecting its contribution to tot-ASE. Our approach is
based on a well-established solution concept in cooperative game theory, the Shapley value (Shapley,
1953)), and it utilizes the notion of agent-specific effects introduced by [Triantafyllou et al.[(2024).
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Definition 5.1 (ASE). Given an MMDP-SCM M, a non-empty subset of agents N in M and a
trajectory 7 of M, the N-specific effect of intervention do(A;; := a;;) on Y € V, relative to
reference 7(A; ¢), is defined as

ASEg,t,T(Ai,t)(Y|T)J\4 = E[Y|r; M]praory — E[Yr(a, )|T]n
= ]E[Y‘T; M]Mdo([) - T(Y),
where I = {Ajr ¢ = 7(Ai 1) birgNorse U{ A v i= Ayt (e, ) FireN o>t}

In contrast to the total ASE, the IN-specific effect quantifies the counterfactual effect of an interven-
tion that propagates only through a subset of agents in the system, the effect agents, instead of all
agents. Compared to Definition [3.1] here the actions of the non-effect agents are set to their factual
values. In the context of agent-specific effects studied here, Shapley value can be defined as follows.

Definition 5.2 (ASE-SV). Given an MMDP-SCM M and a trajectory 7 of M, ASE-SV as-
signs to each agent j € {1,..,n} a contribution score for the total agent-specific effect

ASEL{lltT?jt) (Y'|7) s, equal to
SUi
¢; = Z ws - [ASEa:ii}(Ai,t)(Y‘T)M - ASEi,t,T(AiTt)(YlT)ML
SC{L,....n}\ {5}

_ |S\!(n—\|S|—1)! )

where coefficients wg are set to wg —

Next, we define a number of desirable properties for the attribution of the total agent-specific effect.
These properties are inspired from the game theory literature (Jain & Mahdian| 2007 [Shoham &
Leyton-Brown, [2008}; |Young, [1985) and translated to our setting.

Efficiency: The total sum of agents’ contribution scores is equal to tot-ASE.
Invariance: Agents who do not contribute to tot-ASE are assigned a zero contribution score.
Symmetry: Agents who contribute equally to tot-ASE are assigned the same contribution score.

Contribution monotonicity: The contribution score assigned to an agent depends only on its
marginal contributions to tot-ASE and monotonically so.

We formally state these properties in Appendix [F] We now restate in the setting of agent-specific
effects studied here an existing uniqueness result for Shapley value.

Theorem 5.3. [Young| (1985) ASE-SV is a unique attribution method for the total agent-specific
effect that satisfies efficiency, invariance, symmetry and contribution monotonicity.

Sepsis example. The ASE-SV method in this example attributes the total agent-specific effect to
both the Al agent and the clinician. As illustrated in Plot[Ib} a larger portion of the effect is attributed
to how the Al would have responded to the intervention.

6 EXPERIMENTS

In this section, we empirically evaluate our approach to counterfactual effect decomposition using
two environments, Gridworld and Sepsis. We refer the reader to Appendix [J]| for more details on our
experimental setup and implementation, and to Appendix [K] for additional results. Throughout both
experiments, we use 100 posterior samples for estimating counterfactual effects and 20 additional
ones for the conditional variance. Additional experiments evaluating the estimation error (resp.
robustness to noise monotonicity) of our results are provided in Appendix [[] (resp. [M]).

6.1 GRIDWORLD EXPERIMENTS WITH LLM-ASSISTED RL AGENTS

Environment. We consider the gridworld depicted in Fig. [2a] where two actors, A; and As, are
tasked with delivering objects. In the beginning of each trajectory, two randomly sampled objects
spawn in each of the boxes located on the rightmost corners of the gridworld. The color of each
object determines its value. Colored cells indicate areas of large stochastic penalty, which is signifi-
cantly reduced when actors carry an object of a matching color. Cells denoted with stars are delivery
locations. If an object is delivered to the location with the matching color, then its value is rewarded.
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Figure 2: [2a| depicts the actors’ movements in both the factual and counterfactual trajectory used in
our experiments. Initially, both A; and A5 (represented by solid circles) are instructed to pickup the
pink object and deliver it to the pink delivery location. In the counterfactual trajectory, As is forced
to pickup the green object instead, prompting Planner to issue an alternative instruction for delivery
to the green location. This intervention does not affect .A;’s behavior. A textual depiction of both
trajectories is provided in Appendix Plot[2b] shows the values of various counterfactual effects
computed on the trajectory’s discounted total reward. The minus sign indicates that the negative
of these values are plotted. Plot[2c|shows the contribution ratios attributed to all state variables by
r-SSE-ICC. Averages and standard errors are reported for 5 different seeds.

Implementation. We adopt a Planner-Actor-Reporter system akin to [Dasgupta et al.| (2023).
Planner is implemented using a pre-trained LLM and few-shot learning, to provide actors with in-
structions. More specifically, Planner can instruct actors to: examine a box, pickup an object and
deliver that object to a specific destination. Furthermore, we assume an optimal Reporter whose task
is to report to Planner the necessary information about the state of the environment. In particular,
Reporter provides information about the boxes’ contents and which objects were picked up by the
actors. Finally, the two actors are trained with deep RL to follow the Planner’s instructions.

Setup. For our demonstration purposes, we consider the (factual) trajectory illustrated in Fig. 24|
We intervene on the pickup action of actor A, forcing it to disobey Planner and choose the green
object. The resulting counterfactual trajectory can be seen in Fig.[2a]as well. Additional results from
a second experiment, where we intervene on the Planner’s action, can be found in Appendix

Counterfactual effects. To measure the total counterfactual effect in this scenario, we estimate the
value of the total reward collected in the counterfactual trajectory, and subtract from it the observed
return. For the total agent-specific effect (Definition [3.I)), we need to isolate the effect of the inter-
vention that propagates only through the agents (A;, A2 and Planner). Compared to TCFE, we thus
estimate the return of the counterfactual trajectory in which the stochastic penalties are realized as
if A carries the pink object. For the state-specific effect (Definition [3.2), we have to isolate the
effect of the intervention that propagates only through the states. Therefore, we estimate the return
of the counterfactual trajectory in which agents take their factual actions, but stochastic penalties are
realized as if A, carries the green object. For the reverse SSE (Eq. [2), it suffices to compute the
difference between the returns of the counterfactual trajectories considered for tot-ASE and TCFE.

Causal explanation formula. Plot[2b]indicates that indeed TCFE is not decomposed into tot-ASE
and SSE. Theorem [3.3] on the other hand, is empirically validated in this scenario.

ASE-SV. According to Plot |7_5L the ASE-SV attributes zero scores to both A; and Planner, while
assigning the full tot-ASE to As. A;’s lack of contribution to the effect is due to its unresponsiveness
to Ay’s actions. Although the Planner does respond to As, it is unable to directly influence the
environment’s state. As a result, the effect of our intervention on the total reward does not propagate
through the Planner’s actions. These represent two distinct mechanisms by which agents can be
excluded from contributing to the total agent-specific effect.

r-SSE-ICC. Plot[2c|shows that r-SSE-ICC pinpoints four state variables with non-zero contributions
to the reverse state-specific effect. As expected, the time-steps of these variables coincide with the
time-steps at which Ay traverses the colored cells in the counterfactual trajectory, as these are the
only sources of stochasticity in the environment. Moreover, we observe that the scores attributed to
the four states decrease over time. Since penalties are sampled independently, this can be interpreted
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Figure 3: Plotsan@ show the average percentage decomposition of -r-SSE and scores ¢ and ¢,
attributed by ASE-SV w.r.t. TCFE, for interventions on the actions of Al and clinician, respectively,
while varying trust parameter p. Plot [3c| shows the Gini coefficient distribution over the scores
attributed to state variables by the r-SSE-ICC method. The x-axis displays how many rounds after
the considered intervention the trajectory terminates.

as follows: the uncertainty over the counterfactual penalty estimates is greater in earlier time-steps.
The latter can be confirmed by comparing the penalty distributions from Table 2]in Appendix [J}

6.2 EXPERIMENTS ON SEPSIS

Environment. The two-agent variant of the sepsis treatment setting (Triantafyllou et al., [2024)) we
consider here involves a clinician and an Al agent who take sequential actions in a turn-based manner
for treating an ICU patient. At each round, the Al recommends one of 8 possible treatments, which is
then reviewed and potentially overridden by the clinician. The likelihood of the clinician overriding
the AI’s treatment at any given state is modeled by a parameter u, which is varied in our experiment.
Intuitively, i serves as a proxy for the clinician’s level of trust in the AI’s recommendations: higher
values of . correspond to greater levels of trust. If the AI’s action is not overridden, then its selected
treatment is applied. Otherwise, a new treatment selected by the clinician is applied. The outcome of
a trajectory is deemed successful if the patient is kept alive for 20 rounds or gets discharged earlier.

Evaluation of ASE-SV. We generate 600 trajectories with unsuccessful outcomes. We then measure
the total counterfactual effect of all possible alternative actions on the final state of these trajectories
and keep those that exhibit TCFE > 0.8. Through that process, 8728 alternative actions are selected
for the evaluation of ASE-SV. For all selected actions, we compute their total agent-specific effect,
clinician-specific effect and Al-specific effect. As expected, the sum of the two individual effects
does not equal the total one, with discrepancies of up to 95%. In contrast, in our experiments,
ASE-SV always attributes the effect efficiently to the clinician and Al, as supported by Theorem[5.3}

Plots [3a] and [3b] show the average percentage composition of the reverse state-specific effect and the
agent scores attributed by ASE-SV w.r.t. the total counterfactual effect, for different trust levels. Plot
[3a] (resp. Plot[3b) considers the average over all selected Al (resp. clinician) actions. Results reveal
that our method demonstrates a trend similar to the one described in [Triantafyllou et al.| (2024). In
particular, the amount of tot-ASE attributed to the clinician (resp. Al) decreases (resp. increases) as
the level of trust rises, eventually reaching zero (resp. full) when the clinician completely trusts the
ATl’s recommendations. This observation is intuitive, since the clinician is expected to contribute
less to the effect as it acts more infrequently in the environment, while at the same time the Al
is expected to contribute more as it assumes greater agency. Thus, we conclude that ASE-SV can
efficiently attribute tot-ASE without sacrificing the conceptual power of agent-specific effects.

Evaluation of r-SSE-ICC. We consider the same setup as before and categorize all selected actions
based on the difference between the round that they were taken and the final round of their respective
trajectory. For instance, if the action we consider was taken by the Al at the third round of a
trajectory with 8 rounds in total then the round difference for that action is 5. For our analysis, we
maintain actions with round difference between 4 and 10. For all selected actions, we compute their
reverse state-specific effect together with its variance. We keep those with absolute r-SSE > 0.1 and
variance > 0.01, which yields a total of 437 alternative actions for the evaluation of r-SSE-ICC.
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For each selected action and its reverse state-specific effect, we compute the contribution scores
assigned to all state variables by the r-SSE-ICC method. We are interested in seeing how spread the
scores are across the states, i.e., if our method attributes the effect equally or if it assigns larger scores
to few states. To achieve this, we depict the Gini coefficient distribution (Gini, |1936) of these scores
for various round differences in Plot 3c[| Our results indicate that, independently of the trajectory
size, -SSE-ICC pinpoints for most trajectories only a small subset of state variables with significant
(intrinsic) contribution to the reverse state-specific effect. In practice, this means that for this setting
we actually need to infer the counterfactual values of only a few key states in each trajectory in
order to accurately estimate r-SSE. This is an interesting observation, as it implies that given a set
of trajectories, r-SSE-ICC can reveal aspects of the underlying counterfactual distribution.

7 DISCUSSION

In this paper, we introduce a causal explanation framework tailored to multi-agent MDPs. Specifi-
cally, we decompose the total counterfactual effect of an agent’s action by attributing it to the agents’
behavior or environment dynamics. Our experimental results demonstrate that our decomposition
provides valuable insights into the distinct roles that agents and environment play in influencing the
effect. To the best of our knowledge, this is the first work that looks into the problem of counter-
factual effect decomposition in the context of multi-agent sequential decision making. While our
findings are promising, there are several directions for future exploration, which we outline below.

Computational complexity. The computational complexity of our decomposition approach de-
pends on the total number of agents and the length of the MMDP’s time horizon. In our experiments,
we use a relatively small number of agents and a horizon of a few dozen time-steps. We believe that
many interesting multi-agent settings belong to this regime, e.g., human-Al collaboration. Neverthe-
less, there are settings in which computational complexity considerations can be important, and we
see this as an interesting future research direction to explore. In Appendix[[, we analyze the compu-
tational complexity of the ASE-SV and r-SSE-ICC methods, and discuss some potential mitigation
strategies for when the number of agents or the time horizon are prohibitively large.

Causal assumptions. Making causal assumptions in order to enable counterfactual identifiability is
quite common in the literature. There is a plethora of works at the intersection of decision making
and counterfactual reasoning that assumes exogeneity alongside additional causal properties, such as
weak (Triantafyllou et al.,|2024) or strong (Tsirtsis & Rodriguez, 2024) noise monotonicity, counter-
factual stability (Oberst & Sontag,2019), or access to the ground-truth causal model (Richens et al.}
2022). However, these assumptions are often violated in practice. Thus, extending the applicability
of our proposed approach to domains where our theoretical assumptions (exogeneity and weak noise
monotonicity) do not hold would be of significant practical importance.

Applications to accountable decision making. We deem the problem of decomposing counter-
factual effects particularly relevant for multi-agent decision-making settings where accountability is
paramount. Our approach can be applied in these settings, by integrating it into existing causal tools
for retrospectively analyzing decision-making failures. For instance, consider methods for blame at-
tribution in multi-agent systems (Halpern & Kleiman-Weiner, |2018; [Friedenberg & Halpernl [2019).
Typically, these methods first identify the agents’ actions that were critical to the outcome, i.e., those
that, had they been different, would have likely prevented failure. Next, they assess the agents’ epis-
temic states, determining to what extent each agent could or should have predicted the consequences
of acting differently. Our approach can enhance these methods by offering a more granular notion
of blame. In the Sepsis scenario described in Section[I] for example, the clinician may be expected
to predict how their actions directly affect the patient’s state, but may not be expected to predict the
AT’s responses, especially if they have never worked with the current version of the model before.
According to the output of our decomposition approach (Plot[Ib), the clinician would then receive
73.5% of the total blame for their action, rather than bearing full responsibility. We see significant
potential in combining our approach with existing works on blame attribution and related concepts
in accountable decision making, offering practical benefits across various multi-agent domains.

3In measuring the Gini coefficient we consider only the state variables that follow the intervention. These
are the only states that can be attributed a non-zero contribution by r-SSE-ICC, according to Theorem@

10
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REPRODUCIBILITY STATEMENT

Code to reproduce our experiments can be found in the Supplementary Material. Additional in-
formation on the experimental setup and implementation, including instructions on how to generate
data and train the models as well as details about the compute resources that were used, can be found
in Appendix [J]] All proofs are stated in Appendix [H} The theoretical assumptions made in our work
are clearly explained in Section[2]and Appendix
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A LIST OF APPENDICES

In this section, we provide a brief description of the content provided in the appendices of the paper.

* Appendix B]contains a table that summarizes the most important notation used in the paper.
* Appendix [C]provides additional information on MMDP-SCMs.

* Appendix [D]contains the causal graph of the MMDP-SCM from Section 2.2}

* Appendix [E| provides additional information on noise monotonicity.

* Appendix [F formally states the properties defined in Section [5]for the ASE-SV method.

* Appendix [Goutlines an algorithm for approximating the conditional variance from Eq. 4]
» Appendix [H] contains the proofs of Theorems [3.3|and 4.2

* Appendix [[] provides a discussion on the computational complexity of the ASE-SV and
r-SSE-ICC methods.

* Appendix [J]provides additional information on the experimental setup and implementation
details.

* Appendix [K]includes additional experimental results.

* Appendix [ includes additional experiments supporting the reliability of our empirical re-
sults.

* Appendix [M]includes additional experiments assessing the robustness of our empirical re-
sults to the noise monotonicity assumption.

* Appendix [N] provides a graphical illustration of all counterfactual effects introduced in
Sections [2] and B using the Sepsis example from [Triantafyllou et al| (2024).
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B NOTATION SUMMARIZATION TABLE

Table 1: Summarizes the most important notation used in the paper.

Notation Meaning
M MMDP-SCM
P()m Probability defined over M
{1,...,n} Set of agents
h Time horizon
Si, st €S State variable and value at time-step ¢
Aivaic €A Action variable and value of agent ¢ at time-step ¢
7, 7(X) Trajectory and value of variable X in 7
P(|m; M)y Probability conditioned on trajectory 7 generated by M’
U,u Vector of noise variables and vector of noise values
P(u), P(u]r) Prior and posterior noise distributions
do(A; 1 :=aiy) Hard intervention on A4, ;
Moiii=ais) Modified MMDP-SCM
Y Response/Outcome variable
Yo, Potential response of Y to do(A; ¢ := a; )
do(Y :=Ya,,,) Natural intervention on Y’
P(Ya, ,|T)M Counterfactual probability of Y = y under do(A4; ; := a; )
TCFE,, , 4, )(Y[T)m Definition 2.1} Total counterfactual effect (TCFE)

1 A set of interventions on action variables
ASEE?TE’L ) (YT Deﬁnition Total agent-specific effect (tot-ASE)
SSEq, , r(4:0) Y1T) M Definition 3.2} State-specific effect (SSE)
SSE- (4, )00 Y1T) Equation[2} Reverse state-specific effect (r-SSE)

AYra,, Difference in potential responses Y; — Y, ,
ICC(Sk — AYr,,,I7) Equation 4} Intrinsic causal contribution (ICC)
Vs, Score assigned to state Sy, by the r-SSE-ICC (Definition 4. 1)
ASEaNi oras ) YT M Deﬁnition Agent-specific effect (ASE)
oy Score assigned to agent ¢ by the ASE-SV (Definition|5.2)

C ADDITIONAL INFORMATION ON MMDP-SCMS

Consider an MMDP-SCM M = (V, U, P(u), F). For the observational distribution of M, P(V),
to be consistent with an MMDP (S, {1,...,n}, A, T, h, o) and a joint policy 7, functions in F and
noise distribution P(u) need to satisfy the following conditions for every (s, a, s’) triplet:

/ P(u™) = P(So = s|o); / P(u®) =T(s'|s,a);
uS0: f50 (uS0)=s uSt: fSt(s,a,uSt)=s’

P(u®it) = m;(a;]s). 5
/ o, P = el )

The first two conditions in Eq. [5] guarantee that M induces the initial state distribution and state
transition dynamics of the MMDP. The third condition makes sure that the action variables in M
agree with the joint policy 7.

D CAUSAL GRAPH OF MMDP-SCM

This section contains the causal graph of the MMDP-SCM described in Section 2.2] The causal
graph is shown in Fig.

14
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Figure 4: The causal graph of an MMDP-SCM with n agents and horizon h. Exogenous variables
are omitted.

E ADDITIONAL INFORMATION ON NOISE MONOTONICITY

In this section, we define the (weak) noise monotonicity property for categorical SCMs. It has
been shown that noise monotonicity enables counterfactual identifiability. For more details on noise
monotonicity and its connection to the identifiability problem, we refer the interested reader to
Triantafyllou et al.|(2024).

Definition E.1 (Noise Monotonicity). Given an SCM M with causal graph G, we say that vari-
able VvVt e Vy is noise-monotonic in M w.rt a tqtal ordering <; on de{Vl}l, if}for' any
pa’ € dom{Pa’(G)} and v}, ub ~ P(U") s.t. u} < ub, it holds that f*(pa’,u}) <; f*(pa’, ub).

Essentially, noise monotonicity assumes that all observed variables in an SCM, or MMDP-SCM in
our paper, are monotonic w.r.t. their corresponding noise variable (for some specified total order-
ing). Note that noise monotonicity is not limiting for the MMDPs or agents’ policies. In simple
words, what noise monotonicity assumption restricts is the expressivity of counterfactual distribu-
tions. There can be many MMDP-SCMs whose observational distribution is consistent with the
MMDP, but admit different counterfactual distributions. Theorem 4.3 in Triantafyllou et al.| (2024
shows that by limiting the class of possible MMDP-SCMs to the ones that satisfy noise monotonic-
ity, counterfactual identifiability is guaranteed.

F PROPERTIES FOR ASE-SV

In this section, we formally state the properties defined in Section [5]for the ASE-SV method.

Efficiency: The total sum of agents’ contribution scores is equal to the total agent-specific effect.
Formally,

Soogy=asell (vinw

Invariance: Agents who do not marginally contribute to the total agent-specific effect are assigned
a zero contribution score. Formally, if for every S C {1,...,n}\{j}

ASEffjﬁAM)(Yh)M ~ASES 4o (YIT)a =0,

then (bj =0.

Symmetry: Agents who contribute equally to the total agent-specific effect are assigned the same
contribution score. Formally, if for every S C {1,...,n}\{j, k}

ASESUY (Vir)a — ASES

ai¢,7(Ast) @i t,

then ¢; = ¢.

Contribution monotonicity: The contribution score assigned to an agent depends only on its
marginal contributions to the total agent-specific effect and monotonically so. Formally, let M;
and M> be two MMDP-SCMs with n agents, if for every S C {1,...,n}\{j}

Su{k
(YT = ASES P (v im) g — ASES o (YT,

ASESUYY (V[T as, — ASES | a, o (Y|T)a, > ASESCD) J(Y|7)an, — ASES, 4y (Y 17) s,

a;t,T(Ait) Qit, a;t,T(Adt

then (béwl > (bévb.
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G ALGORITHM FOR CONDITIONAL VARIANCE

In this section, we present our approach for approximating the expected conditional variance from
Eq. l Algorithm 1] iesnmates E[Var(AY7,, |7, U<%)|r] 5. To estimate the conditional variance

E[Var(AY7,q, |7, U<k US%)|7] )y, it suffices to modify Algorithm I 1 to sampling conditioning
noise variables from P(u<S’€, u”#|7) and non-conditioning ones from P(u="%+1|r).

Algorithm 1 Estimates E[Var(AY7 ,, |7, U<%)|7]5,

Input: MMDP-SCM M, trajectory 7, action variable A, action a;; response vari-
able Y, state variable Sj, number of conditioning/non-conditioning posterior samples
H,/H,

1: hi < 0,hy <0

2: 1 0, u2 <0

3. while h; < H; do

4: Ueong ~ P(u<%|7) # Sample conditioning noise variables

5: hy1 < h1+1

6: Cc1 < 0, Co < 0

7: while hy < H> do

8: Upon ~ P(uZ%|7)  # Sample non-conditioning noise variables
9: ho < hy +1
10: u= (uconda unon)

11: 70~ P(V|u), ao(4; ,:=a;»  # Compute counterfactual trajectory
12: Yt 1Y) ‘
13: I <— {Ayy =T (A, ’7t')}i'€{1,‘..,n},t’>t

14: y! ~ P(Y|u) a0y  # Compute response to natural intervention
15: cp e+ -y f)

16: cg + co + (y! — yh)?

17:  end while

18: FN1+(;T12)2
190 pig < po + &
20: ho <+ 0

21: end while

22: return %

H PROOFS

H.1 PROOF OF THEOREM[3.3]

Proof. Eq.[3|follows directly from Definition 2.1] Definition[3.1]and Eq. [2}

TCFEaz‘,t,T(Ai,t)(Y|T>M = E[Yai ¢ ]M - T(Y>
= E[Y—a1 . ]M — T(Y) + E[Y|T, M]Mdo([) — E[Y|T, M]Mdo(])

= ASE{ 0 (V1T = SSEr(a, v, (VT

where I = {Az vo= Ay @i ] }z re{l,...,n},t'>t-
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H.2 PROOF OF THEOREM [4.2]

Proof. Tt holds that

Z 1)[} - E[Var(Avaaw|T7U<St+1)|T]M —E[Var(AY[)aLt‘T,U<StY7UStY)‘T]M
Sk — Var(AYI,ai,t T)

E[Var(AYI a |7-7 U<St+1>|T]M _ E[Var(AYI w7 U)|T]M
= — o SSSEy (4,0l (V
Var(AY7 4., |7) (Acsan (Y17 ar

_ E[Var(AYj,,, 7, U<Str1) |75
- Var(AY7 4, ,|T)

First step holds because E[Var(AY; 4, |7, U< U%)|7]5 = E[Var(AYy,,, , |7, USS1)|7],y,
for every k € {t + 1,....,ty — 1}. The second step follows from the fact that noise terms asso-
ciated with observed variables which (chronologically) proceed ¢y do not influence the value of
AY7 ., ,. The third step holds because the expected conditional variance satisfies calibration, i.e.,
E[Var(AY7,q, |7, U)|7]a = 0.

Let now X be any ancestor of S;; in the causal graph of M, apart from A; ;. Note that X is not
affected by interventions do(I) and do(A; ¢ := a;¢). Therefore, the solution of X in the MMDP-
SCMs M) and Mdo(Aiti=ai.) will be equal to its factual value in 7, i.e, 7(X), for every context
u sampled from the posterior P(u|7). Furthermore, A, ; is fixed to a; ; in M do(Air:=ai.t) while it
is also not affected by do(I). It follows that conditioning on the noise terms associated with X or
A; + does not reduce the variance of AYI,%,- Therefore, it holds that

’ SSET(Ai,t)vai,t (Y|T)JW

ke[t+1,ty]

’ SSET(A'i,t)aai,t (Y|T)1W-

T U<St+1)|T]M = Var(AYI,lli.t

E[Var(AY7,q,, T),

which concludes our proof.

I DISCUSSION ON COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of the ASE-SV (Definition[5.2) and r-SSE-
ICC (Definition[4.T)) methods, and discuss some potential mitigation strategies for when the number
of agents or the length of the time horizon are prohibitively large. We conclude the section with a
discussion about the effect of agents’ capabilities on the computational complexity of our approach.

1.1 COMPUTATIONAL COMPLEXITY OF ASE-SV

The number of agent-specific effect evaluations required by the exact ASE-SV calculation grows
exponentially with the number of agents n. One potential mitigation strategy for this problem is to
adapt to our setting sampling based approaches that efficiently approximate Shapley value without
violating efficiency, i.e., attributing the entire effect. [Jia et al.| (2019) propose such an algorithmic
approach, which requires O(n(logn)?) evaluations for any bounded utility. This means that their
algorithm is applicable to ASE-SV in settings where the value of agent-specific effects is bounded,
as is the case in both our experiments.

1.2 COMPUTATIONAL COMPLEXITY OF R-SSE-ICC

Computing the contribution scores assigned by the r-SSE-ICC method to all state variables requires
O(h), where h denotes the time horizon, executions of Algorithm Il When we deal with long-
horizon MMDPs, this linear dependence on the number of time-steps can slow down our method.
One intuitive strategy to reduce the number of computations in this case is by grouping together state
variables from consecutive time-steps. That way, the r-SSE-ICC method would attribute the effect
to sets of consecutive state variables instead of individual ones. If the time horizon (between action
and outcome) is partitioned in groups of the same fixed size k, except maybe for the last one, then
the modified r-SSE-ICC method would require O(%) executions of Algorithm
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In settings where it is reasonable to assume or empirically verify that r-SSE-ICC is sparse, in the
sense that only a few state variables have significant (intrinsic) contributions to the effect, as it is the
case in both our experiments, then we are able to further reduce the number of Algorithm [T execu-
tions. More specifically, we can utilize the fact that the expected noise-conditional variance measure
satisfies monotonicity, i.e., E[Var(AY7 o, , |7, U<%%)|7]pr > E[Var(AY7q, |7, U< USk)|7] ).
If we know, for example, that for most of the times there is at most one state variable with non-
negligible (intrinsic) contribution to the effect, we can simply use a binary search approach to pin-
point that state. This can reduce the complexity of r-SSE-ICC to O(log(h)) executions.

1.3 EFFECT OF AGENTS’ CAPABILITIES ON COMPUTATIONAL COMPLEXITY

The complexity of decision-making agents affects the computational complexity of our decomposi-
tion approach, assuming that increased capabilities imply increased inference time. The reasoning
is the following: our approach to estimating counterfactual effects involves sampling trajectories
from the posterior distribution and then averaging the values of the response variable across these
trajectories. Sampling a trajectory from the posterior distribution generally requires to prompt each
agent once for every counterfactual state in which they need to act.

For reference, in the Gridworld environment, more than 90% of the time required to sample one
counterfactual trajectory is spent on the inference of the LLM agent, while the remaining ~ 10% is
shared between the two RL agentsﬂ Consequently, if we were to use an LLM agent with reduced
cognitive capabilities, and hence less inference time, then the scalability of our approach in this
experiment would significantly improve.

J  EXPERIMENTAL SETUP AND IMPLEMENTATION

In this section, we provide additional information on the experimental setup and implementation.

J.1 GRIDWORLD EXPERIMENTS

Setup. Our setup is an adaptation of the Planner-Actor-Reporter system from |[Dasgupta et al.
(2023). The Planner is tasked with understanding the high-level steps necessary for the completion
of a task and then breaking it down to a sequence of instructions. Actors are RL agents pre-trained
to complete a set of simple instructions in the environment. Lastly, the Reporter is tasked with
translating environment observations into a textual representation comprehensible by the Planner.

Environment. We consider the gridworld environment depicted in Fig. 2a] with two actors, A; and
As. There are two boxes located on the rightmost corners, each of which contains two objects. Each
object has a color that determines its value, in particular, pink > green > yellow. The object’s color
is randomly sampled at the beginning of each trajectory. Objects can be picked up and carried by
the actors — each actor can pick up only one object, and only one object can be picked up from each
box. Grey-colored cells represent walls. Blank cells indicate areas of small negative cost. Colored
cells indicate areas of larger stochastic penalty, which is significantly reduced when actors carry
an object of a matching color. Penalties induced by cells of the same color share the same means,
but might differ in their underlying distributions. Moreover, in expectation, pink cells inflict higher
penalties than green ones, and green cells higher than yellow ones. Cells denoted with stars are
delivery locations. If an object is delivered to the location with the matching color, then the object’s
value is rewarded. The objective in this environment is to maximize the combined total return of
both actors. The full reward specification can be found in Table[2}

Instructions. The Gridworld environment supports a simplified set of 8 instructions: examine box
1, examine box 2, pickup pink, pickup green, pickup yellow, goto pink, goto green and, goto yel-
low. We pre-train both actors to learn a goal-conditioned policy for executing each of the available
instructions. During training, we sample a new instruction at the beginning of each trajectory. Addi-
tionally, we initialize an actor according to the instruction and randomize over its valid observation
space. For example, for the instruction goto pink, we initialize the actor to its respective position

“Raw values and additional details on the time compute of our experiments are included on the README
file of our code in the Supplemental Material.
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Table 2: Reward specification for Gridworld. An empty distribution column implies a determinis-
tic reward issued upon entering the cell. For the green corridor, penalties are specified on a per-cell
basis, identified by their zero-based indices into the associated row and column.

Cell Values Distribution
All -0.2 -
Pink Penalty [-30, -50, -70] [1/3, 1/3, 1/3]
Pink Penalty (Reduced) [-5, -15, -25] [1/3, 1/3, 1/3]
Pink Delivery +180 -
Green Penalty C 4 [-30, -40, -50] [0.3,0.4, 0.3]
Green Penalty C'5 4 (Reduced) | [-5, -10, -15] [0.3,0.4, 0.3]
Green Penalty C 5 [-30, -40, -50] | [0.25, 0.5, 0.25]
Green Penalty C5 5 (Reduced) | [-5,-10,-15] | [0.25, 0.5, 0.25]
Green Penalty C ¢ [-30, -40, -50] [0.2, 0.6, 0.2]
Green Penalty C5 ¢ (Reduced) | [-5, -10, -15] [0.2,0.6,0.2]
Green Penalty C' 7 [-30, -40, -50] | [0.15, 0.7, 0.15]
Green Penalty C; 7 (Reduced) | [-5,-10,-15] | [0.15,0.7,0.15]
Green Delivery +150 -
Yellow Penalty [-25, -30, -35] [1/3, 1/3, 1/3]
Yellow Penalty (Reduced) [-2.5, -5, -7.5] [1/3, 1/3, 1/3]
Yellow Delivery +90 -

Table 3: Hyperparameters used for the Gridworld actors’ policies.

Parameter name Parameter value Tuning Range
Discount 0.99 [0.99, 0.9, 0.8]
Target Update Freq. 1000 [500, 1000, 1500]
Batch size 512 [256, 512, 1024, 2048]
Hidden Dim 128 [64, 128, 256]
Hidden Depth 3 [2, 3]
Learning Rate le-4 [1e-5, S5e-5, 1e-4, S5e-4, 1e-3]
Num. Estimation Step 1 [1, 3,5, 10, 15]

(under/above the first/second box for .A; and A, respectively) and randomly select the object it’s
carrying. The actor is rewarded positively whenever it completes the instruction.

Actors. Actors .4; and A spawn on the same fixed locations at the beginning of each trajectory.
Apart from movement actions, actors can also perform pickup actions when located next to a box.
The policies are represented via neural network parameters and are learned using double deep Q-
learning (Mnih et al., [2015; |Van Hasselt et al.| 2016). Both agents take as their input concatenated,
one-hot encoded vectors, which include their instruction, their current position and the color of the
object they are carrying. We provide a full list of hyperparameters in Table 3| The hyperparameter
optimization method was performed by randomly sampling 50 candidates from the specified ranges
and selecting the combination that yielded the best test reward, averaged over all instructions.

Planner and Reporter. Planner is implemented using a pre-trained LLama 2.7B model (Touvron
et al., 2023) and few-shot learning, to provide actors with instructions. More specifically, Planner
can instruct actors to: examine a box, pickup an object and deliver that object to a specific des-
tination. Furthermore, we assume an optimal Reporter whose task is to report to the Planner the
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(a) Counterfactual Effects

Figure 5: Gridworld: Plot|5a) shows the values of various counterfactual effects computed on the
trajectory’s total collected reward for the case when we intervene on the Planner’s action at Step 2,
forcing it to instruct Az to pick up the green object instead of the pink one. Averages and standard
errors are reported for 5 different seeds.

necessary information about the state of the environment. In particular, the Reporter provides infor-
mation about the boxes’ contents and which objects were picked up by the actors (see Trajectories|[I]
and 2 for an illustrative example).

J.2  SEPSIS EXPERIMENTS

Our experimental setup and implementation closely follow that of [Triantafyllou et al.| (2024)).

J.3 COMPUTE RESOURCE

All experiments were run on a 64bit Debian-based machine having 2x12 CPU cores clocked at
3GHz with access to 1 TB of DDR3 1600MHz RAM and an NVIDIA A40 GPU. The software stack
relied on Python 3.9.13, with installed standard scientific packages for numeric calculations and
visualization (we provide a full list of dependencies and their exact versions as part of our code).

K ADDITIONAL EXPERIMENTAL RESULTS

K.1 GRIDWORLD

Additional experiment. We repeat the experiment from Section [6.1] but instead of intervening on
As’s pickup action we intervene on the Planner’s action. In particular, we intervene on the Planner’s
action at Step 2, forcing it to instruct A5 to pick up the green object instead of the pink one. The
total counterfactual effect of this intervention is equal to that of the intervention on A5’s action.
However, the result of our decomposition approach for these two effects is different.

According to Plot[5a] the TCFE in this scenario is fully attributed to how the agents would respond
to the intervention, and more specifically to the response of agent 4. Both the SSE and the r-SSE
in this scenario are zero. This result is intuitive, as the Planner is not able to influence the state
transitions directly, and hence the effect of its actions do not propagate through the environment
dynamics. In contrast, the actions of .45 can influence the outcome through both the environment
and future agent actions, and hence the decomposition of their effect is more nuanced (see Plot 2b).

Trajectories. We provide a textual depiction of the factual (Trajectory[T)) and counterfactual (Trajec-
tory [2) trajectories from Fig. 2a] We also provide a textual depiction of the counterfactual trajectory
from the experiment described above (Trajectory [3).

K.2 SEPSIS

Fig. [f] illustrates the distribution of the r-SSE contribution scores computed by the r-SSE-ICC
method in Section
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Gridworld Trajectory 1 : Factual

Box 1: (PINK, GREEN); Box 2: (PINK, GREEN)

Step: 0; Reporter: A; respawn; Ao respawn;
Planner: (examine box 1, examine box 2); Reward 0.0;

Step: 1; Actors (A1, As): up, down; Reward: —0.4 (A;: —0.2, As: —0.2);

Step: 2; Reporter: A; (PINK GREEN); A5 (PINK GREEN);
Planner: (pickup pink, pickup pink); Reward 0.0;

Step: 3; Actors (A1, As): pickup pink, pickup pink; Reward: —0.4 (4;: —0.2, A: —0.2);

Step: 4; Reporter: A; has PINK; A, has PINK;
Planner: (goto pink, goto pink); Reward 0.0;

Step: 5; Actors (A1, As): down, up; Reward: —0.4 (A;1: —0.2, As: —0.2);
Step: 6; Actors (A1, As): left, up; Reward: —0.4 (4;1: —0.2, A5: —0.2);
Step: 7; Actors (A1, As): left, up; Reward: —0.4 (A4;: —0.2, A5: —0.2);
Step: 8; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 9; Actors (A1, As): left, left; Reward: —0.4 (A1: —0.2, Ay: —0.2);
Step: 10; Actors (A1, As): left, left; Reward: —5.4 (A;: —5.2, Ay: —0.2);
Step: 11; Actors (A1, As): left, left; Reward: —5.4 (A;: —5.2, As: —0.2);
Step: 12; Actors (Aq, As): left, left; Reward: —50.4 (A;: —25.2, Ay: —25.2);
Step: 13; Actors (A;, As): left, left; Reward: —30.4 (A1: —5.2, Ag: —25.2);
Step: 14; Actors (A1, A2): up, left; Reward: —25.4 (A1: —0.2, Ay: —25.2);
Step: 15; Actors (Ay, As): left, left; Reward: —25.4 (A1: —0.2, Ay: —25.2);
Step: 16; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, Ay: —0.2);
Step: 17; Actors (A1, As): left, up; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 18; Actors (A;, As): NULL, left; Reward: —0.4 (A;: —0.2, A5: —0.2);
Step: 19; Actors (A;, A2): NULL, left; Reward: —0.4 (A;: —0.2, A3: —0.2);

Step: 20; Goal Reward: 360.0; Total Reward: 213.2;

21



Under review as a conference paper at ICLR 2025

Gridworld Trajectory 2 : Counterfactual (4>’s action)

Box 1: (PINK, GREEN); Box 2: (PINK, GREEN)

Step: 0; Reporter: A; respawn; Ao respawn;
Planner: (examine box 1, examine box 2); Reward 0.0;

Step: 1; Actors (A1, As): up, down; Reward: —0.4 (A;: —0.2, As: —0.2);

Step: 2; Reporter: A; (PINK GREEN); A5 (PINK GREEN);
Planner: (pickup pink, pickup pink); Reward 0.0;

Step: 3; Actors (A1, As): pickup pink, pickup green; Reward: —0.4 (A;: —0.2, As: —0.2);

Step: 4; Reporter: A; has PINK; A5 has GREEN;
Planner: (goto pink, goto green); Reward 0.0;

Step: 5; Actors (A1, As): down, up; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 6; Actors (A1, As): left, left; Reward: —0.4 (A1: —0.2, Ay: —0.2);
Step: 7; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 8; Actors (A1, As): left, up; Reward: —0.4 (A1: —0.2, As: —0.2);
Step: 9; Actors (A1, As): left, left; Reward: —0.4 (A1: —0.2, Ay: —0.2);
Step: 10; Actors (A1, As): left, left; Reward: —5.4 (A;: —5.2, As: —0.2);
Step: 11; Actors (Ay, As): left, left; Reward: —10.4 (A1: —5.2, As: —5.2);
Step: 12; Actors (Aq, As): left, left; Reward: —40.4 (A;: —25.5, Ay: —15.2);
Step: 13; Actors (A1, As): left, left; Reward: —15.4 (A1: —5.2, As: —10.2);
Step: 14; Actors (A1, As): up, left; Reward: —15.4 (A1: —0.2, Ay: —15.2);
Step: 15; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, Ay: —0.2);
Step: 16; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 17; Actors (Ay, As): left, left; Reward: —0.4 (A;: —0.2, Ay: —0.2);

Step: 18; Goal Reward: 330.0; Total Reward: 239.0;
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Gridworld Trajectory 3 : Counterfactual (Planner’s action)

Box 1: (PINK, GREEN); Box 2: (PINK, GREEN)

Step: 0; Reporter: A; respawn; Ao respawn;
Planner: (examine box 1, examine box 2); Reward 0.0;

Step: 1; Actors (A1, As): up, down; Reward: —0.4 (A;: —0.2, As: —0.2);

Step: 2; Reporter: A; (PINK GREEN); A5 (PINK GREEN);
Planner: (pickup pink, pickup green); Reward 0.0;

Step: 3; Actors (A1, As): pickup pink, pickup green; Reward: —0.4 (A;: —0.2, As: —0.2);

Step: 4; Reporter: A; has PINK; A5 has GREEN;
Planner: (goto pink, goto green); Reward 0.0;

Step: 5; Actors (A1, As): down, up; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 6; Actors (A1, As): left, left; Reward: —0.4 (A1: —0.2, Ay: —0.2);
Step: 7; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, As: —0.2);
Step: 8; Actors (A1, As): left, up; Reward: —0.4 (A1: —0.2, As: —0.2);

Step: 9; Actors (A1, As): left, left; Reward: —0.4 (A1: —0.2, Ay: —0.2);
Step: 10; Actors (A1, As): left, left; Reward: —25.4 (A1: —25.2, A5: —0.2);
Step: 11; Actors (Ay, As): left, left; Reward: —20.4 (A1: —15.2, As: —5.2);
Step: 12; Actors (Aq, As): left, left; Reward: —30.4 (A;: —15.2, Ay: —15.2);
Step: 13; Actors (A1, As): left, left; Reward: —35.4 (A1: —25.2, Ay: —10.2);
Step: 14; Actors (A1, A2): up, left; Reward: —15.4 (A1: —0.2, Ay: —15.2);
Step: 15; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, Ay: —0.2);
Step: 16; Actors (A1, As): left, left; Reward: —0.4 (A;: —0.2, A5: —0.2);
Step: 17; Actors (Ay, As): left, left; Reward: —0.4 (A;: —0.2, Ay: —0.2);

Step: 18; Goal Reward: 330.0; Total Reward: 199.0;
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Figure 6: Sepsis: Plots @ - |g_g| show the average contribution ratios attributed to the different state
variables by the r-SSE-ICC method. Results are grouped based on the round difference of the se-
lected actions (see Section[6.2]for an explanation). We plot the contributions only for state variables
that correspond to rounds that follow the intervention. All other contributions are zero. Averages
and standard errors are reported for the 437 alternative actions chosen for the evaluation of r-SSE-

ICC following the process described in Section[6.2]
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Figure 7: Plots @ andreplicate the empirical results from Plots and respectively,
while additionally including the corresponding ground-truth values for all quantities. Estimated
values from the original plots are shown in blue, while the ground-truth values are depicted in green.

(b) Counterfactual Effects: LLM

L ADDITIONAL EXPERIMENTS EVALUATING RELIABILITY

To approximate counterfactual effects across all experiments presented in Section [6] and Appendix
we employ posterior sampling-based methods akin to Algorithm[T] This is a standard approach to
counterfactual inference (2009)). In this section, we present additional experiments to support
the reliability our empirical findings.

L.1 GRIDWORLD

Fig. [7]reproduces Plots 2] 2c|and [5a] now including the ground-truth values of all estimated quan-
tities for comparison. Notably, the ground-truth values (green) consistently lie within the standard
error bounds of the estimated quantities (blue). The ground-truth counterfactual distribution for this
experiment was obtained through direct computation.
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Figure 8: Box Plots [8al[8f] show the standard error distributions of all counterfactual estimates from
Section [6.2] over all 8728 alternative actions selected for the evaluation of ASE-SV in that section.
Box Plot[8g] shows the standard error distribution of the scores assigned by the r-SSE-ICC method
for a similar set of alternative actions as the one used in Section[6.2] for the evaluation of r-SSE-ICC.
Among the multiple standard errors associated with each alternative action (one for each assigned
score), we report the one with the largest value. Standard errors and absolute mean values are
measured across 10 different seeds.

L.2 SEPSIS

Compared to the Gridworld environment, acquiring ground-truth values for counterfactual quanti-
ties in the Sepsis setting is significantly more challenging. Instead, we analyze the standard error
distributions by repeating the experiment across 10 different seeds. Specifically, for each alterna-
tive action selected for the evaluation of ASE-SV and r-SSE-ICC in Section we perform the
evaluation process 10 times and compute the empirical standard error for all estimated quantities:
TCEFE, tot-ASE, SSE, r-SSE, ¢.;, ¢4, and r-SSE-ICC. Fig. Elillustrates the resulting standard error
distributions]

The plots from Fig. [8] reveal minimal variability in the estimates of our causal explanation formula
across seeds, with only a very small number of outliers. These results reinforce the reliability of our
findings from Section and support the robustness of our effect decomposition approach in the
Sepsis experiment.

M ADDITIONAL EXPERIMENTS EVALUATING ROBUSTNESS TO NOISE
MONOTONICITY

Throughout all experiments in this paper, we assume that noise monotonicity holds (see Appendix|[E]
for a formal definition) w.r.t. a chosen set of total orderings. In the Gridworld experiment, we design
the environment such that penalty variables are noise-monotonic w.r.t. the numerical ordering — all
other variables in this experiment are deterministic. In the Sepsis experiment, however, we lack
access to the underlying causal model and rely solely on observational distributions. Consequently,
the choice of total orderings for noise monotonicity in this experiment may influence the results. In
this section, we present additional experiments to evaluate the robustness of the empirical findings

>We chose to plot standard error distributions grouped by the absolute average means of their estimates
over other metrics of relative dispersion, such as Coefficient of Variation, due to the fact that for many of our
estimates their mean value centers close to zero.
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Figure 9: Repeats plots from Fig. for 5 additional total orderings.
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from Section [6.2]to variations in the choice of total ordering. We note that a similar evaluation was

conducted in|Triantafyllou et al.| (2024).

We repeat our experiments from Section [6.2] for 5 additional total orderings. The results from these
experiments are depicted in Fig.[9} From the plots corresponding to any of these total orderings, we
can draw similar conclusions to the ones we drew from Fig. [] especially from the plots that show
the average percentage decomposition. We can conclude then that the empirical findings in Section
6.2 are robust to the uncertainty over the correct underlying total ordering of the model.

N GRAPHICAL ILLUSTRATION OF COUNTERFACTUAL EFFECTS FROM
SECTIONS 2] AND[3]
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Figure 10: Depicts all counterfactual estimates appearing in Definitions (TCFE), (tot-ASE),
(SSE) and Equation [2] (r-SSE) using the Sepsis example from the introduction section of
antafyllou et al.[(2024). The decision-making setting of this example is the same as the one from
Section|I|and Se but restricted to only two time-steps. We repeat the premise of the exam-
ple and necessary notation for completeness. Squares in the graphs denote agents’ actions, A for Al
and H for clinician. Circles S are patient states, while S4 include both S and A, i.e., S4 = (S, A).
Y denotes the patient outcome after two time-steps. Edges that are striked through represent de-
activated edges. Exogenous arrows represent interventions on Ay that fix its value to one of two
actions, Treatment C' or Treatment £. In the considered scenario, the former represents the action
that was observed in the factual scenario (7), while the latter is the alternative treatment (a; ;) whose
counterfactual effect, on Y, we analyze. A cyan colored node signifies that the node is set to the
action that the agent took in the factual scenario, i.e., under treatment C'. A magenta colored node
signifies that the node is set to the (counterfactual) action that the agent would have naturally taken

under intervention E. Lastly, in Plot[T0b 1 = {Ais ¢ := Ais y(a, ) }ire(1,....n) 17> (Definition B.1),

,,,,,

while in PlOtI = {Ai’,t’ = A’L”,t’[T(Ai/J/)]}’L"E{l,..‘,n},t’>t (Deﬁnition.
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