
Recurrent Interpolants for Probabilistic Time Series
Prediction

Yu Chen 1 ∗ Marin Biloš 1∗

Sarthak Mittal 2∗ Wei Deng 1 Kashif Rasul 1 Anderson Schneider 1

Abstract

Sequential models such as recurrent neural networks or transformer-based models
became de facto tools for multivariate time series forecasting in a probabilistic
fashion, with applications to a wide range of datasets, such as finance, biology,
medicine, etc. Despite their adeptness in capturing dependencies, assessing pre-
diction uncertainty, and efficiency in training, challenges emerge in modeling
high-dimensional complex distributions and cross-feature dependencies. To tackle
these issues, recent works delve into generative modeling by employing diffusion
or flow-based models. Notably, the integration of stochastic differential equations
or probability flow successfully extends these methods to probabilistic time series
imputation and forecasting. However, scalability issues necessitate a computational-
friendly framework for large-scale generative model-based predictions. This work
proposes a novel approach by blending the computational efficiency of recurrent
neural networks with the high-quality probabilistic modeling of the diffusion model,
which addresses challenges and advances generative models’ application in time
series forecasting. Our method relies on the foundation of stochastic interpolants
and the extension to a broader conditional generation framework with additional
control features, offering insights for future developments in this dynamic field.

1 Introduction

Autoregression models [Box et al., 2015], such as recurrent neural networks [Graves, 2013, Sutskever
et al., 2014, Hochreiter and Schmidhuber, 1997] or transformer models [Vaswani et al., 2017], have
been the go-to methods for time series forecasting in various datasets [Morrill et al., 2021]. These
methods can also provide an assessment of prediction uncertainty through probabilistic forecasting
by incorporating specific parametric probabilistic models into the output layer of the neural network.
However, the probabilistic output layer is confined within a simple probability family because the
density needs to be parameterized by neural networks, and the loss must be differentiable with respect
to neural network parameters.

To better capture sophisticated distributions in time series modeling and learn both the temporal and
cross-feature dependencies, a common strategy involves exploring the generative modeling of time
series using efficient distribution transportation plans, especially via diffusion or flow based models.
For example, recent works such as Li et al. [2020] propose using latent neural SDE as latent state
for modeling time series in a stochastic manner, while Spantini et al. [2022] summarize non-linear
extensions of state space models using both deterministic and stochastic transformation plans. Tashiro
et al. [2021], Biloš et al. [2023], Chen et al. [2023], Miguel et al. [2022], Li et al. [2022], Deng et al.
[2024a,b], Chen et al. [2024] studied the application of diffusion models in probabilistic time series

∗Equal Contributions. 1 Machine Learning Research, Morgan Stanley, 2 Mila, Université de Montréal. Mittal
completed part of the work while interning at Morgan Stanley. Correspondence: weideng056@gmail.com

NeurIPS 2024 Third Table Representation Learning Workshop .

imputation and forecasting. Compared to recurrent model, a more computational friendly framework
is needed for large scale generative model-based time series prediction problems.

These observations inspire the creation of a time series prediction model under the generative
framework that maps between dependent data points: Initiating the prediction of future time point’s
distribution with the current time point is more straightforward and yields better quality; meanwhile,
the longer temporal dependency is encoded by a recurrent neural network and the embedded history
is passed to the generative model as the guidance of the prediction for the future time points. The
new framework benefits from the efficient training and computation inherited from the recurrent
neural network, while enjoying the high quality of probabilistic modeling empowered by the diffusion
model. In this paper, we first extend the theory of stochastic interpolants to more general conditional
generation framework with extra control features. Then we describe the proposed method, which
we adopt a conditional stochastic interpolants module for the sequential modeling and time series
prediction, which is computational-friendly and achieves high quality modeling of the future time
point’s distribution.

2 Stochastic Interpolants for Time Series Prediction

RNN

...

RNN

...

Figure 1: Model architecture for recur-
rent interpolant models.

We formulate time series prediction tasks through the con-
ditional probability p(xt+1|xt−P :t). The model diagram
is illustrated in Figure 1. Here, xt ∈ RD represents the
multivariate time series at time t with D dimensions, xt+1

is the prediction target, and xt−P :t is the context window,
where P denotes the length of the context window.

For this problem, we employ the conditional Stochas-
tic Interpolants (SI) method as follows. In the training
phase, the generative model learns the joint distribution
p(xt+1,xt|xt−P :t−1) of the pair (xt+1,xt) given the past
observations xt−P :t−1. where xt ∼ ρ0 and xt+1 ∼ ρ1
for all t, so the marginal distributions are equal ρ0 = ρ1.
The model aims to learn the coupling relation between
xt+1 and xt conditioning on the context xt−P :t−1. This
is achieved by training the conditional velocity and score
functions in equation 1.

As the sample spaces of ρ0 and ρ1 must be the same, the generative model can not directly map the
whole context window xt−P :t to the target xt+1 due to different vector sizes. Instead, a recurrent
neural network is used to encode the context xt−P :t−1 into a history prompt ht. Subsequently,
the score function and velocity function perform conditional generation diffusing from xt with the
condition input ht.

2.1 Training of Conditional Stochastic Interpolant

Regarding the conditional stochastic interpolants, the inference using forward or backward SDEs are
the following:

dxs =[b(s,xs, ξ) + ϵ(s)s(s,xs, ξ)]ds+
√
2ϵ(s)dws (1)

dxs =[b(s,xs, ξ)− ϵ(s)s(s,xs, ξ)]ds+
√
2ϵ(s)dwB

s (2)

where both velocity and score functions depend on the condition ξ.

The SI model is trained to match the equations in equation 8 and equation 9 by minimizing the mean
squared error loss functions,

Lb =

∫ 1

0

E
[1
2
∥b̂(s,xs)∥2 −

(
α̇(s)x0 + β̇(s)x1 + γ̇(s)z

)T
b̂(s,xs)

]
ds (3)

Ls =

∫ 1

0

E
[1
2
∥ŝ(s,xs)∥2 + γ−1zT ŝ(s,xs)

]
ds (4)

2

Algorithm 1 Training algorithm. i is the sample index.

Input: Sample 3-tuples (xti+1,xti ,xti−P :ti−1). Interpolant schedules: α(s), β(s), γ(s). Models:
velocity b̂, score ŝ, RNN.
for iteration = 1 to total iterations do
si ∼ Beta(0.1, 0.1).
xs,i = α(si)xti + β(si)xti+1 + γ(si)zi
hi = RNN(xti−P :ti−1)

Lb =

batch size∑
i=1

1

pBeta(si)

[1
2
∥b̂(si,xs,i,hi)∥2 −

(
α̇(si)xti + β̇(si)xti+1 + γ̇(si)zi

)T
b̂(si,xs,i,hi)

]
Ls =

batch size∑
i=1

1

pBeta(si)

[1
2
∥ŝi(si,xs,i)∥2 + γ−1zi

T ŝi(si,xs,i)
]

Perform back-propagation by minimizing Lb and Ls.
end for

The training dataset consists of tuple (xt+1,xt,xt−P :t−1). It is worth noting that the loss values
become larger when s is close to two ends. To address this, importance sampling is leveraged to better
handle the integral over diffusion time in the loss functions equation 3 and equation 4 to stabilize
the training, where we use Beta distribution for our proposal distribution. The algorithm is outlined
in Algorithm 1. We stabilize the training using importance sampling methods. Demonstration of
importance sampling is shown in Appendix C.

2.2 Inference of Conditional Stochastic Interpolant

The RNN first encodes the context xt−P :t−1 into the history prompt ht, then SI transports the context
vector xt to the target distribution with the condition ht, following the forward SDE. Regarding the
multiple steps prediction, we recursively run the step-by-step prediction.

Algorithm 2 Inference algorithm

Input: Sample 2-tuples (xt,xt−P :t−1). Trained models: Velocity b̂, score ŝ, RNN. Diffusion
variance ϵ.
Set x̃0 = xt. h = RNN(xt−P :t−1).
Run SDE integral for s ∈ [0, 1] following

dx̃s = [b(s, x̃s,h) + ϵs(s, x̃s,h)]ds+
√
2ϵdws

Output: x̃1 as prediction of xt+1.

3 Experiments

We study our method on four real-world time series forecasting tasks. The time series datasets
include: SolarLai et al. [2018], ExchangeLai et al. [2018], Traffic2, and Wikipedia3. We follow the
preprocessing steps as in Salinas et al. [2019].

We empirically verify that: 1) SI is a suitable generative module for the prediction compared with
other baselines with different generative methods under the same framework; 2) the whole framework
can achieve competitive performance in time series forecasting.

Results. The results for CRPS-sum, ND-sum, and NRMSE-sum are shown in Table 1, 3, 4. We
outperform or match other models on three out of four datasets, only on Traffic FM model achieves

2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
35https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets

3

https://archive.ics.uci.edu/ml/datasets/PEMS-SF
5https://github.com/mbohlkeschneider/gluon-ts/tree/mv_release/datasets

Exchange rate Solar Traffic Wiki

Vec-LSTM 0.008±0.001 0.391±0.017 0.087±0.041 0.133±0.002
DDPM 0.009±0.004 0.359±0.061 0.058±0.014 0.084±0.023
FM 0.009±0.001 0.419±0.027 0.038±0.002 64.256±62.596
SGM 0.008±0.002 0.364±0.029 0.071±0.05 0.108±0.026
SI 0.007±0.001 0.359±0.06 0.083±0.005 0.080±0.007

Table 1: CRPS-sum metric on multivariate probabilistic forecasting. A smaller number indicates
better performance.

better performance. Note that on Wiki data FM cannot capture the data distribution. We ran a search
over flow matching hyperparameters without being able to get satisfying results. Therefore, we
conclude that stochastic interpolants are a strong candidate for conditional generation, in particular for
multivariate probabilistic forecasting. By comparing to the RNN-based model Vec-LSTM, our model
and other baselines such as SGM and DDPM get better performance, which implies that carefully
model the probability distribution is critical for large dimension time series prediction. Figure 2
demonstrates the quality of the forecast on Solar dataset. We can see that our model can make precise
prediction and capture the uncertainty, even when the scale of the different dimensions varies a lot.

00:00
20-Oct
2006

00:00
21-Oct

0

200

400

600

800
Dimension 0

Observations
Median prediction
90.0% prediction interval
50.0% prediction interval

00:00
20-Oct
2006

00:00
21-Oct

0

100

200

300

400

500

600

700
Dimension 5

00:00
20-Oct
2006

00:00
21-Oct

0

20

40

60

80

100

Dimension 10

00:00
20-Oct
2006

00:00
21-Oct

0

25

50

75

100

125

150

Dimension 15

00:00
20-Oct
2006

00:00
21-Oct

0

20

40

60

80
Dimension 25

00:00
20-Oct
2006

00:00
21-Oct

0

25

50

75

100

125

150

175

Dimension 30

Figure 2: Example forecast paths for SI on Solar dataset. Showing median prediction and confidence
intervals calculated from model samples, on 6 out of 137 variate dimensions.

4 Conclusions

This study presents an innovative method that effectively merges the computational efficiency of
recurrent neural networks with the high-quality probabilistic modeling of the diffusion model,
specifically applied to probabilistic time series forecasting. Grounded in stochastic interpolants and
an expanded conditional generation framework featuring control features, the method undergoes
empirical evaluation on both synthetic and real datasets, showcasing its compelling performance.

4

References
Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic Interpolants: A Unifying

Framework for Flows and Diffusions. In arXiv:2303.08797v3, 2023a.

Michael S. Albergo, Mark Goldstein, Nicholas M. Boffi, Rajesh Ranganath, and Eric Vanden-Eijnden.
Stochastic Interpolants with Data-Dependent Couplings. arXiv:2310.03725v2, 2023b.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, et al. Gluonts: Probabilistic time series models in python. arXiv preprint arXiv:1906.05264,
2019.

Marin Biloš, Kashif Rasul, Anderson Schneider, Yuriy Nevmyvaka, and Stephan Günnemann.
Modeling Temporal Data as Continuous Functions with Process Diffusion. In Proc. of the
International Conference on Machine Learning (ICML), 2023.

George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time Series Analysis:
Forecasting and Control. WILEY, 2015.

Yifan Chen, Mark Goldstein, Mengjian Hua, Michael S. Albergo, Nicholas M. Boff, and Eric Vanden-
Eijnden. Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes. In Proc. of
the International Conference on Machine Learning (ICML), 2024.

Yu Chen, Wei Deng, Shikai Fang, Fengpei Li, Nicole Tianjiao Yang, Yikai Zhang, Kashif Rasul,
Shandian Zhe, Anderson Schneider, and Yuriy Nevmyvaka. Provably convergent schr\" odinger
bridge with applications to probabilistic time series imputation. 2023.

Wei Deng, Yu Chen, Nicole Tianjiao Yang, Hengrong Du, Qi Feng, and Ricky T. Q. Chen. Re-
flected Schrödinger Bridge for Constrained Generative Modeling. In Proc. of the Conference on
Uncertainty in Artificial Intelligence (UAI), 2024a.

Wei Deng, Weijian Luo, Yixin Tan, Marin Biloš, Yu Chen, Yuriy Nevmyvaka, and Ricky T. Q. Chen.
Variational Schrödinger Diffusion Models. In Proc. of the International Conference on Machine
Learning (ICML), 2024b.

Alex Graves. Generating Sequences with Recurrent Neural Networks. 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8),
1997.

Alireza Koochali, Peter Schichtel, Andreas Dengel, and Sheraz Ahmed. Random noise vs. state-of-
the-art probabilistic forecasting methods: A case study on crps-sum discrimination ability. Applied
Sciences, 12(10):5104, 2022.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term
temporal patterns with deep neural networks. In The 41st international ACM SIGIR conference on
research & development in information retrieval, pages 95–104, 2018.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable Gradients
for Stochastic Differential Equations. In Proc. of the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2020.

Yan Li, Xinjiang Lu, Yaqing Wan, and Dejing Do. Generative Time Series Forecasting with Diffusion,
Denoise, and Disentanglement. In Advances in Neural Information Processing Systems (NeurIPS),
2022.

Juan Miguel, Lopez Alcaraz, and Nils Strodthoff. Diffusion-based Time Series Imputation and
Forecasting with Structured State Space Models. In Transactions on Machine Learning Research,
2022.

James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, and Terry Lyons. Neural Rough
Differential Equations for Long Time Series. In Proc. of the International Conference on Machine
Learning (ICML), 2021.

5

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015.

David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. Advances in neural
information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR), 2021.

Alessio Spantini, Ricardo Baptista, and Youssef Marzouk. Coupling Techniques for Nonlinear
Ensemble Filtering. In SIAM Review, volume 64:4, page 10.1137, 2022.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural Networks.
In NIPS, 2014.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional Score-based
Diffusion Models for Probabilistic Time Series Imputation. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

6

A Preliminaries on Stochastic Interpolants (SI)

Stochastic interpolants [Albergo et al., 2023b] aim to model the dependent couplings between (x0,x1)
with their joint density ρ(x0,x1), and establish a two-way generative SDEs mapping from one data
distribution to another. The method constructs a straightforward stochastic mapping from t = 0 to
t = 1 given the values at two ends x0 ∼ ρ0 to x1 ∼ ρ1, which provides a transport between two
densities ρ0 and ρ1, while maintaining the dependency between x0 and x1.

xs = α(s)x0 + β(s)x1 + γ(s)z, s ∈ [0, 1], z ∼ N (0, I) (5)

where ρ(s,x) is the marginal density of xs at diffusion time s. Such a stochastic mapping is
characterized by a pair of functions: velocity function b(s,x) and score function s(s,x).

s(s,x) := ∇ log ρ(s,x) (6)

b(s,x) := Ex0,x1,z[α̇(s)x0 + β̇(s)x1 + γ̇(s)z|xs = x] (7)

b(s,x), ρ(s,x), and s(s,x) satisfy the equality below,

∂tρ(s,x) +∇ · (b(s,x)ρ(s,x)) = 0 (8)

s(s,x) = −γ−1(s)Ez[z|xt = x] (9)

where α(s) and β(s) schedule the deterministic interpolant. We set α(0) = 1, α(1) = 0, β(0) =
0, β(1) = 1. γ(s) schedules the variance of the stochastic component z. We set γ(0) = γ(1) = 0, so
the two ends of the interpolant are fixed at x0 and x1. The velocity function b(s,x) and the score
function s(s,x) can be modeled by a rich family of functions, such as deep neural networks. The
model is trained to match the above equality by minimizing the mean squared error loss functions.

During inference, usually, one side of the diffusion trajectory at t = 0 or t = 1 is given, the goal
is to infer the sample distribution on the other side. The interpolant in equation 5 results in elegant
forward and backward SDEs and corresponding Fokker-Planck equations, which offer convenient
tools for inference. The SDEs are composed of b(s,xs) and s(s,xs), which are learned from the
data. For any ϵ(s) ≥ 0, define the forward and backward SDEs

dxs =[b(s,x) + ϵ(s)s(s,x)]ds+
√
2ϵ(s)dws (10)

dxs =[b(s,x)− ϵ(s)s(s,x)]ds+
√
2ϵ(s)dwB

s (11)

where wB
s is the backward Brownian motion. The SDEs satisfy the forward and backward Fokker-

Plank equations,

∂sρ+∇ · (bFρ) = ϵ(s)∆ρ, ρ(0) = ρ0 (12)
∂sρ+∇ · (bBρ) = −ϵ(s)∆ρ, ρ(1) = ρ1 (13)

These properties imply that one can draw samples from the conditional intensity ρ(x1|x0) following
the forward SDE in equation 10 starting from x0 at s = 0. It can also draw samples from the joint
density ρ(x0,x1) by initially drawing a sample x0 ∼ ρ0 (if feasible, for example, pick one sample
from the dataset), then using the forward SDE to generate a samples x1 at s = 1. The method
guarantees that x1 follows marginal distribution ρ1 and the sample pair (x0,x1) satisfies the joint
density ρ(x0,x1). Drawing samples using the backward SDE is similar: one can draw samples from
ρ(x0|x1) and the joint density ρ(x0,x1) as well. Details of inference will be shown in section A.

SI can be expanded for conditional generation by substituting the velocity function and score function
with b(xs, s, ξ) and s(xs, s, ξ) [Albergo et al., 2023b]. The model is trained using samples of tuples
(x0,x1, ξ), where ξ is the extra condition feature. Theoretical justifications are shown in Appendix B
with two Theorems. Regarding the time series prediction task, we will encode a large context window
as the conditional information, and the prediction or generation of future time points will rely on such
conditional generation mechanism.

B Conditional Stochastic Interpolants

Next, we demonstrate that the probability distribution of xt as simulated by equation 14, results
in a dynamic density function. This density serves as a solution to a transport equation 15, which
smoothly transitions between ρ0 and ρ1.

7

Theorem 1 (Extension of Stochastic Interpolants to Arbitrary Joint Distributions). Let ρ01 be the
joint distribution (x0, x1) ∼ ρ01 and let the stochastic interpolant be

xt = αtx0 + βtx1 + γtz, (14)

where α0 = β1 = 1, α1 = β0 = γ0 = γ1 = 0, and α2
t + β2

t + γ2
t > 0 for all t ∈ [0, 1]. We define ρt

to be the time-dependent density of xt, which satisfies the boundary conditions at t = 0, 1 and the
transport equation follows that

ρ̇t +∇ · (btρt) = 0 (15)

for all t ∈ [0, 1] with the velocity defined as

bt(x|ξ) = E
[
α̇tx0 + β̇tx1 + γ̇t z|xt = x, ξ

]
, (16)

where the expectation is based on the density ρ01 given xs = x and the extra information ξ.

The score function follows the relation such that

∇ log ρt(x) = −γ−1
t E [z|xt = x, ξ] .

The proof is in a spirit similar to Theorem 2 in [Albergo et al., 2023b]. The key difference is that we
consider a continuous-time interpretation and avoid using characteristic functions, which makes the
analysis more friendly to users. Additionally, the score function ∇ log ρt(x) is optimized in a simple
quadratic objective function.

Proof [Proof of Theorem 1]

Given the conditional information ξ and xs = x simulated from equation 14, the conditional stochastic
interpolant for equation 14 follows that

E[xt|xs = x, ξ] = E[αtx0 + βtx1 + γtz|xs = x, ξ], (17)

where the expectation takes over the density for (x0, x1) ∼ ρ(x0, x1|ξ), ξ ∼ η(ξ), and z ∼ N(0, I).

We next show equation 17 is a solution of a stochastic differential equation as follows

dE[xt|xs = x, ξ] = ft(x)dt+ σtdwt, (18)

where ft(x) = E[α̇tx0 + β̇tx1|xs = x, ξ] and σt =
√
2γtγ̇t.

To prove the above argument, we proceed to verify the drift and diffusion terms respectively:

• Drift: It is straightforward to verify the drift ft by taking the gradient of the conditional
expectation E[αtx0 + βtx1|xs = x, ξ] with respect to t.

• Diffusion: For the diffusion term, the proof hinges on showing σt =
√
2γtγ̇t, which

boils down to prove the stochastic calculus follows that
∫ t

0

√
2γsγ̇sdws = γtz. Note

that E[
∫ t

0

√
2γsγ̇sdws] = 0. Invoking the Itô isometry, we have Var(

∫ t

0

√
2γsγ̇sdws) =∫ t

0
2γsγ̇sds =

∫ t

0
(γs

2)′ds = γ2
t (given γ0 = 0). In other words,

∫ t

0

√
2γsγ̇sdws is a normal

random variable with mean 0 and variable γ2
t , which proves that equation 17 is a solution of

the stochastic differential equation 18.

Define Σt = 2γtγ̇t, we know the Fokker-Planck equation associated with equation 18 follows that

0 =
∂ρt
∂t

+∇ ·
(
ftρt −

1

2
Σt∇ρt

)
=

∂ρt
∂t

+∇ ·
((

ft −
1

2
Σt∇ log ρt

)
ρt

)
=

∂ρt
∂t

+∇ ·
((

E[α̇tx0 + β̇tx1|xs = x, ξ]− γtγ̇t∇ log ρt

)
ρt

)
=

∂ρt
∂t

+∇ ·
(
bt|s(x, ξ)ρt

)
,

(19)

8

where bt|s(x|ξ) = E[α̇tx0 + β̇tx1 − γtγ̇t∇ log ρt|xs = x, ξ].

Further setting s = t and rewrite bt ≡ bt|t, we have bt(x|ξ) = E[α̇tx0 + β̇tx1 − γtγ̇t∇ log ρt|xt =
x, ξ]

Further define g
(i)
t (x|ξ) = E[xi|xt = x, ξ], where i ∈ {0, 1} and g

(z)
t (x|ξ) = E[z|xt = x, ξ]. We

have that
bt(x|ξ) = E[α̇tx0 + β̇tx1 − γtγ̇t∇ log ρt|xt = x, ξ]

= α̇tg
(0) + β̇tg

(1) + γ̇tg
(z)

= E[α̇tx0 + β̇tx1 + γ̇tz|xt = x, ξ],

where the first equality follows by equation 19 and the last one follows by taking derivative to
equation 17 w.r.t. the time t.

We also observe that ∇ log ρt = −γ−1
t E[z|xt = x].

Theorem 2 The loss functions used for estimating the vector field follow that

Li(ĝ
(i)) =

∫ 1

0

E[|ĝ(i)|2 − 2xi · ĝ(i)]dt,

where i ∈ {0, 1, z}, the expectation takes over the density for (x0, x1) ∼ ρ(x0, x1|ξ), ξ ∼ η(ξ), and
z ∼ N(0, I).

Proof To show the loss is effective to estimate g(0), g(1), and g(z). It suffices to show

L0(ĝ
(0)) =

∫ 1

0

E[|ĝ(0)|2 − 2x0 · ĝ(0)]dt,

=

∫ 1

0

∫
Rd

[
|ĝ(0)|2 − 2E[x0|xt = x, ξ] · ĝ(0)

]
dxdt,

=

∫ 1

0

∫
Rd

[
|ĝ(0)|2 − 2g(0) · ĝ(0)

]
dxdt,

where the last equality follows by definition. The unique minimizer is attainable by setting ĝ(0) =
g(0).

The proof of g(1) and g(z) follows a similar fashion.

C Importance Sampling

The loss functions for training the velocity and score functions are

Lb =

∫ 1

0

E
[1
2
∥b̂(s,xs)∥2 −

(
α̇(s)x0 + β̇(s)x1 + γ̇(s)z

)T
b̂(s,xs)

]
ds

Ls =

∫ 1

0

E
[1
2
∥ŝ(s,xs)∥2 + γ−1zT ŝ(s,xs)

]
ds

(20)

Both loss functions involve the integral over diffusion time s ∈ [0, 1] in the form of

L =

∫ 1

0

l(s)ds ≈
∑
i

l(si), si ∼ Uniform[0, 1] (21)

However, the loss values l(s) has very large variance, especially when s is near 0 or 1. Figure 3
shows an example of the distribution of l(s) across multiple s. The large variance slows down the
convergence of training. To overcome this issue, we apply importance sampling, similar technique
used by [Song et al., 2021, Sec. 5.1], to stabilize the training. In stead of drawing diffusion time
from uniform distribution, importance sampling considers,

L =

∫ 1

0

l(s)ds ≈
∑
i

1

q̃(si)
l(si), si ∼ q̃(s) (22)

9

Ideally, one wants to keep 1
q̃(si)

l(si) as constant as possible such that the variance of the estimation
is minimum. The loss value l(s) is very large when s is close to 0 or 1, and l(s) is relatively flat
in the middle, and the domain of s is [0, 1], so we choose Beta distribution Beta(s; 0.1, 0.1) as the
proposal distribution q̃. As shown in Figure 3, the values of 1

q̃(si)
l(si) are plotted against their s,

which becomes more concentrated in a small range.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

lo
ss

Loss with uniform sampling.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.00

0.02

0.04

0.06

0.08

0.10

0.12

lo
ss

Weighted Loss with importance sampling.

Figure 3: Comparison between uniform sampling and importance sampling. Each dot represent the
loss of one sample with respect to the diffusion time.

D Experiments

D.1 Datasets and Settings

Details of the datasets are listed in Table 2.

Table 2: Properties of the datasets.
Datasets Dimension Frequency Total time points Context length

Exchange 8 Daily 6,071 30
Solar 137 Hourly 7,009 24
Traffic 963 Hourly 4,001 24
Wiki 2000 Daily 792 30

Baseline models such as DDPM, SGM, FM, and SI all involve modeling field functions, where the
inputs are the state vector (in the same space of the data samples), diffusion time, and condition
embedding, and the output is the generated sample. The field functions correspond to the noise
prediction function in DDPM; the score function in SGM; the vector field in FM; and the velocity
and score functions in SI. To make a fair comparison between these models, we use the same neural
networks for these models. In particular, DDPM and SGM-based models can only generate samples
by transporting Gaussian noise distribution to data distribution. So we modify the framework by
replacing the context time point xt with Gaussian noise. Flow matching can easily fit into this
framework by replacing the denoising objective with the flow matching objective. The modified
framework is shown in Figure 1. We model the map from the previous time series observation to the
next (forecasted) value. We argue this is a more natural choice than mapping from noise for each time
series prediction step. Recent Vec-LSTM from [Salinas et al., 2019] is compared as a pure recurrent
neural network model whose probabilistic layer is a multivariate Gaussian.

D.2 Metrics and Preprocessing

The probabilistic forecasting is evaluated by Continuous Ranked Probability Score (CRPS-sum)
Koochali et al. [2022], normalized root mean square error via the median of the samples (NRMSE),
and point-metrics normalized deviance (ND). The metrics calculation is provided by gluonts pack-
age Alexandrov et al. [2019] by calling module gluonts.evaluation.MultivariateEvaluator.
We follow the preprocessing steps as in [Salinas et al., 2019]. In all of the cases smaller values
indicate better performance.

10

The RNN for the history encoder has 1 layer and 128 latent dimension; The field function is modeled
with Unet-like structure Ronneberger et al. [2015] with 8 residual blocks, and each block has 64
dimensions. To stabilize the training, we also use paired-sampling for the stochastic interpolants
introduced by [Albergo et al., 2023a, Appendix C].

xs =α(s)x0 + β(s)x1 + γ(s)z

x′
s =α(s)x0 + β(s)x1 + γ(s)(−z)

s ∈ [0, 1], z ∼ N (0, I)

The baseline models are trained with 200 epochs and 64 batch size with learning rate 10−3. The SI
model is trained with 100 epochs and 128 batch size with learning rate 10−4. We find if the learning
rate is too large, SI may not converge properly.

D.3 Additional Results

Additional forecasting results using ND-sum and NRMSE-sum have also been presented in the tables
as follows.

Exchange rate Solar Traffic Wiki

DDPM 0.011±0.004 0.377±0.061 0.064±0.014 0.093±0.023
FM 0.011±0.001 0.445±0.031 0.041±0.002 80.624±89.804
SGM 0.01±0.002 0.388±0.026 0.08±0.053 0.122±0.026
SI 0.008±0.002 0.399±0.065 0.089±0.006 0.091±0.011

Table 3: ND-sum. A smaller number indicates better performance.

Exchange rate Solar Traffic Wiki

DDPM 0.013±0.005 0.72±0.08 0.094±0.029 0.123±0.026
FM 0.014±0.002 0.849±0.072 0.059±0.007 165.128±147.682
SGM 0.019±0.004 0.76±0.066 0.109±0.064 0.164±0.03
SI 0.01±0.003 0.722±0.132 0.127±0.003 0.117±0.011

Table 4: NRMSE-sum. A smaller number indicates better performance.

11

	Introduction
	Stochastic Interpolants for Time Series Prediction
	Training of Conditional Stochastic Interpolant
	Inference of Conditional Stochastic Interpolant

	Experiments
	Conclusions
	Preliminaries on Stochastic Interpolants (SI)
	Conditional Stochastic Interpolants
	Importance Sampling
	Experiments
	Datasets and Settings
	Metrics and Preprocessing
	Additional Results

