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Figure 1: Our method achieves task-specific functional dexterous grasping for different robot hands
with single human grasp RGBD images as input.

Abstract: Functional grasping is essential for humans to perform specific tasks,1

such as grasping scissors by the finger holes to cut materials or by the blade to2

safely hand them over. Enabling dexterous robot hands with functional grasp-3

ing capabilities is crucial for their deployment to accomplish diverse real-world4

tasks. Recent research in dexterous grasping, however, often focuses on power5

grasps while overlooking task- and object-specific functional grasping poses. In6

this paper, we introduce FunGrasp, a system that enables functional dexterous7

grasping across various robot hands and performs one-shot transfer to unseen ob-8

jects. Given a single RGBD image of functional human grasping, our system9

estimates the hand pose and transfers it to different robotic hands via a human-to-10

robot (H2R) grasp retargeting module. Guided by the retargeted grasping poses, a11

policy is trained through reinforcement learning in simulation for dynamic grasp-12

ing control. To achieve robust sim-to-real transfer, we employ several techniques13

including privileged learning, system identification, domain randomization, and14

gravity compensation. In our experiments, we demonstrate that our system en-15

ables diverse functional grasping of unseen objects using single RGBD images,16

and can be successfully deployed across various dexterous robot hands. The sig-17

nificance of the components is validated through comprehensive ablation studies.18

Keywords: Dexterous Manipulation, Grasping, Reinforcement Learning19

1 Introduction20

Humans naturally consider task-specific functions when grasping objects, such as holding a mug by21

its handle when drinking and by its body when washing it. Enhancing dexterous robot hands with22

human-like functional grasping capabilities and the ability to quickly adapt to new objects could23

effectively support humans in various areas, from healthcare to everyday household tasks.24
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Achieving such kind of human-like functional grasping capabilities brings up several challenges.25

First, functional grasping requires guidance from humans such as providing task-specific poses,26

which are difficult to transfer to dexterous robot hands due to differences in morphology, including27

finger numbers, knuckle sizes, and degrees of freedom (DoF). As a result, most existing works focus28

on reaching stable power grasps, often overlooking the integration of human guidance for achieving29

diverse functional poses [1, 2, 3]. Second, the robot must be able to handle various object shapes30

and generalize to unseen objects, which requires an efficient and general method for capturing ob-31

ject shape features. Nevertheless, previous methods often train category-level policies with limited32

generalization ability to novel objects [2, 3]. Finally, robot finger motors have limited power and33

precision due to size constraints, which makes them susceptible to disturbances and complicates34

sim-to-real transfer due to inaccurate joint dynamic models. As a result, current dexterous grasp-35

ing approaches that accommodate diverse poses and objects remain largely confined to simulation,36

lacking validation for their sim-to-real capabilities[4, 5, 6, 7]. Overall, a functional dexterous robot37

grasping system capable of grasping diverse unseen objects in a human-like manner in real-world38

settings is still missing.39

In this paper, we present FunGrasp, a system for functional dexterous robot grasping that utilizes40

task-specific human grasping poses as priors. By leveraging single RGBD images of human grasps,41

our system achieves one-shot generalization to unseen objects. Furthermore, it can be deployed on42

various robotic hand platforms. Our system consists of three stages introduced in Section 2: static43

functional grasp retargeting, dynamic dexterous grasping, and sim-to-real transfer.44

In our experiments, we first demonstrate that our system can successfully achieve task-specific func-45

tional dexterous robot grasping of unseen objects in the real world, given single RGBD images of46

human grasps. We further provide rich qualitative results to showcase the diversity of the gener-47

ated task-specific functional robot grasps. Next, we evaluate the generalization ability of our system48

across different dexterous robot hands in both simulation and real-world settings. Finally, we con-49

duct an ablation study on the components of our system to demonstrate their effectiveness.50

In summary, our contributions are: 1) FunGrasp, a system that achieves functional dexterous robot51

grasping in the real world and performs one-shot generalization to unseen objects from a single52

RGBD image of a human grasp. 2) A retargeting module that effectively transfers task-specific53

functional grasp poses from humans to diverse dexterous robot hand models while preserving both54

human-like postures and precise contact points. 3) A system identification module that provides55

accurate joint dynamic models for dexterous robot hands, facilitating robust sim-to-real transfer. 4)56

Experiments demonstrating that our system can effectively generalize to various dexterous robot57

hands in both simulation and real-world settings.58

2 Methods59

In this paper, we address the challenge of functional dexterous robot grasping. To effectively draw60

guidance from human grasping behavior, we utilize a single RGB-D image to extract a static refer-61

ence of a functional human hand grasp Gh = (qh,Th,To, c), where Th and To represent the 6D62

global hand and object poses, respectively, while qh indicates the target finger joint angles, and c63

specifies the target binary contact states of each finger link with the object which are derived by64

distances. We assume Gh can be obtained from existing datasets or extracted utilizing off-the-shelf65

pose estimators. With the given Gh, the goal is to accordingly control the robot hand with an arm to66

grasp the object in a human-like functional manner. This is accomplished through the observation67

of the wrist 6D pose Tr and velocity Ṫr, object 6D pose To and velocity ˙̃To, and robot hand finger68

joint angles qr.69

Fig. 2 outlines our system, which comprises three modules: (A) H2R Grasp Retargeting, (B) Dy-70

namic Grasp Control, and (C) Sim-to-Real Transfer. Given the human hand grasp reference Gh, we71

first retarget it to a static robot hand grasp reference Gr, ensuring that the human-like posture and72

precise contact positions are preserved. Next, we train a policy using reinforcement learning (RL) in73

a simulation environment to enable the robot hand to perform dynamic grasping in accordance with74

Gr. Finally, we transfer the policy developed in simulation to real robot hands.75
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Figure 2: System Overview.

1) Static Functional Grasp Retargeting: We utilize off-the-shelf hand-object pose estimation mod-76

els [8, 9] to obtain functional human grasp poses from single RGBD images with known object77

meshes. To effectively transfer these functional grasping poses to dexterous robot hands, we pro-78

pose a retargeting module without requirements for specific hand morphologies. We initialize the79

robot hand poses with the human grasping poses by aligning the corresponding link directions in80

the object frame. Then we optimize the poses to preserve precise contact positions and human-like81

postures for functional grasping. We also consider the undesired collision and penetrations, joint82

constraints, and force closure grasps during optimization.83

2) Dynamic Dexterous Grasping: We adopt a reinforcement learning (RL) framework to achieve84

dynamic functional grasping for diverse dexterous robot hands from static grasping poses. To handle85

diverse object shapes with a single policy and generalize to unseen object geometry, we utilize the86

implicit object shape feature similar to [4], described by the grasp pose reference and local contact87

information, as the target joint positions and contacts indicate the object’s local shape around the88

contact points. The robot hand further leverages proprioception and real-time hand-object contact89

states, which can be either privileged information or reconstructed from proprioception, to refine the90

implicit perception of object shapes.91

3) Sim-to-Real Transfer: We utilize several techniques to enable effective sim-to-real transfer.92

Specifically, we utilize privileged learning that distills the policy trained with privileged contact93

information into a policy that relies on the information available in the real world. We employ system94

identification to model accurate actuator dynamics by optimizing the joint stiffness and damping95

factors. We first train a grasping policy in simulation with rough initial parameter values. The policy96

is then deployed on the hardware in an open-loop manner to gather diverse action-state trajectories.97

Then we apply the recorded action trajectories in the simulation and optimize the parameters by98

minimizing the discrepancies between the states in the simulation and the states recorded from the99

hardware. Finally, we fine-tune the pre-trained policy with the optimized parameters.100

3 Experimental Results101

Our default setup uses a UR5 [10] robotic arm equipped with an Allegro Hand [11] as shown in102

Fig. 3. Additionally, we utilize the Inspire Hand [12] to verify our system’s generalization ability103

across morphologies. We deploy a static RealSense D435i camera to perform object tracking.104

We follow the definitions of metrics provided in [4, 5]. 1) Success Rate (Suc. R.): A grasp is105

considered successful if the object can be lifted higher than 0.1 m and does not fall for 3 seconds.106

2) Simulated Distance (SimD.) (simulation only): Similar to [4], we report the mean displacement107

of the object in mm per second to evaluate the stability of the grasp. 3) Contact Ratio (Con. R.)108

(simulation only): To evaluate the precision of the actual grasps, we measure the ratio between the109

achieved contacts in the simulation and the target contacts defined via the grasp reference Gr.110

3.1 Generalization Across Diverse Robot Hands111

To demonstrate our generalization ability across various dexterous robot hands, we conduct a quan-112

titative evaluation with three robotic hands [11, 13, 14] in simulation and further perform qualitative113

assessments on two real robot hands [11, 12] in the real world. We train a policy for each hand114
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Model Suc. R. ↑ SimD. [mm/s] ↓ Con. R. ↑
Shadow Hand 75% 1.6 0.75

Faive Hand 81% 1.9 0.80
Allegro Hand 85% 1.6 0.79

Table 1: Generalization to different robot hands (Sim).

Figure 3: A) Hardware setup. B) The grasping motions of different hands with the same references.

model with the training set of 75% DexYCB grasp references and evaluate with the remaining 25%115

references. We 3D-print the YCB objects [15] for real-world experiments.116

We first quantitatively evaluate the performance in simulation with Shadow [13], Faive [14], and117

Allegro [11], with the results shown in Tab. 1. Although the hands exhibit significant variations in118

size and morphology (e.g., DoF and finger numbers), our system achieves success rates of 75%+119

consistently across all the hand models. Specifically, Allegro Hand shows the best performance due120

to its larger size that facilitates easier wrapping and grasping of the objects, while Shadow Hand121

exhibits a lower success rate, attributed to its smaller size and the limited range of its finger swing122

joints, making it challenging to grasp larger objects. We also qualitatively show the results on real123

Allegro and Inspire Hands in Fig. 3. Our system achieves diverse human-like functional grasps124

for the two hands. Notably, both hands can precisely follow the same human grasp references and125

successfully grasp thin and small objects lying on the table. This is challenging due to the potential126

collisions between the hands and the table, indicating the effectiveness of our system in leveraging127

and preserving the precise postures and contacts from human grasp references.128

3.2 One-shot Functional Grasping of Unseen Objects129

We evaluate the one-shot generalization capability of our system for task-specific functional grasp-130

ing of unseen objects in the real world, using single RGBD images of human grasps. We select 20131

common daily objects for evaluation as shown in Fig. 4, which were not seen by the policy during132

training. For each reference, we place the object on the table with two different poses and perform133

grasps, resulting in six grasps per object.134

Our method achieves comparable high success rates for both hands in the real world, with 73% for135

Inspire Hand and 74% for Allegro Hand. It can successfully grasps unseen objects with diverse136

shapes, sizes, and masses, ranging from a long, heavy hammer to a large, light basket. Notably, it137

can effectively grasp a deformable loopy doll that has completely different physical features from the138

training objects. The results verify the generalization ability of our system. Fig. 1 and Fig. 5 shows139

various human-like functional grasps of our system with provided human grasp RGBD images.140

4 Limitations and Conclusion141

In this work, we present FunGrasp, a system capable of performing one-shot functional dexterous142

robot grasping of unseen objects from single human grasp RGBD images. We have developed a143

comprehensive system that transitions from human grasp images to dexterous robot dynamic func-144

tional grasping, demonstrating generalization across diverse task-specific grasping poses, various145

object shapes, and different dexterous robot hands. A current limitation of our system is its reliance146

on known object meshes for off-the-shelf pose estimation models, which are used to extract hu-147

man grasping poses from RGBD images and obtain object state observations from the camera. An148

integrated model with image inputs could enhance further generalization capabilities. Finally, our149

system cannot handle robot hands with rather different morphologies such as two-finger grippers.150
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A Extended Related Work273

For a better comparison of existing dexterous robot grasping works and ours, we list the differences274

in Tab. 2.

Table 2: Comparison with existing dexterous robot grasping works. Our method achieves functional
grasping with diverse task-specific poses, and can generalize to diverse real robot hands and unseen
objects.

Method Hardware Functional Cross-category Diverse Diverse
Deployment Grasping Generalization Robot Hands Poses

D-Grasp [4] × ✓ ✓ × ✓
UniDexGrasp [6] × × ✓ × ✓
UniDexGrasp++ [7] × × ✓ × ×
GraspXL [5] × ✓ ✓ ✓ ✓
DexPoint [2] ✓ ✓ × × ×
DexTransfer [16] ✓ ✓ × × ✓
Agarwal et al.[3] ✓ ✓ × × ×
FunGrasp (Ours) ✓ ✓ ✓ ✓ ✓

275

A.1 Dynamic Dexterous Grasping276

Dexterous manipulation is a long-standing research topic in robotics [2, 3, 4, 5, 17, 18, 19, 20, 21,277

22, 23, 24, 25, 26, 27, 28, 29]. Among all the manipulation tasks, dexterous grasping is one of the278

most fundamental skills [4, 5, 6, 7, 27, 28, 29, 30, 31, 32, 33, 34]. Some studies have attempted279

to use reinforcement learning to train dynamic dexterous grasping policies [4, 5, 6, 7, 35] and have280

shown promising results in simulation. Specifically, we follow [4] to design the dynamic dexterous281

grasping module, as [4] is verified to be effective to train dynamic grasping policies from static282

references. However, compared to our system, their method focuses on generating human hand283

grasping motions without considering different robot hand morphologies and hardware deployment.284

Additionally, their policy is trained with access to ground-truth states, which are not accessible on285

a real robot. Some studies attempt to predict the static grasping poses and deploy them on real286

robots [27, 28], but these approaches lack the dynamic adaptation ability to disturbances due to287

open-loop static-pose execution. Some other works [2, 3] achieve dynamic dexterous grasping on288

real robots with RL, but focus on category-level policies and therefore only generalize within the289

same categories. In contrast, our system can deal with diverse objects with one single policy and290

generalize to unseen categories through the use of an image prior. Besides, most of the above-291

mentioned methods focus on power grasps without considering the functional aspects of the objects,292

while our system can achieve diverse human-like task-specific functional grasping poses precisely.293

Recently, some works have utilized teleoperation to collect data directly on real robots for imita-294

tion learning [36, 37, 38], which fundamentally solves the problem caused by the sim-to-real gap.295

Furthermore, through the collected motion trajectories, these methods can deal with more manipula-296

tion tasks beyond grasping. However, the expensive teleoperation process leads to limited available297

data, and the data collected with one hand model cannot be used for another hand, which further in-298

creases the cost of data collection and limits their generalization ability. In contrast to these works,299

our system has a specific focus on dexterous grasping. We utilize RL to achieve robust grasping on300

real robots without real robot manipulation data, and can be deployed on various dexterous robot301

platforms with no hand morphology assumption.302

A.2 Human-to-Robot Grasp Retargeting303

Enabling robot hands with human-like manipulation capabilities requires prior knowledge about the304

way in which humans interact with environments and manipulate objects, such as how to grasp305
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objects in a task-specific functional manner. Recent works attempt to extract such kind of prior from306

human manipulation data by retargeting the human grasping poses to dexterous robot poses [16, 39,307

40, 41, 42, 43]. Some works focus on mimicking the hand postures by mapping the corresponding308

joint angles from the human hand to the robot hand [41, 44]. These works can efficiently preserve309

human-like grasp postures but usually lead to inaccurate contacts, which limits their precision in310

functional grasping. Instead of joint-to-joint retargeting, some other works focus on the fingertips311

which are usually more important for achieving robust grasping [45, 46, 47]. These methods simplify312

the retargeting process as they only consider fingertip positions, which makes them easier to deploy313

on different robot hands. However, the simplified retargeting leads to inaccurate postures without314

human likeness which sometimes even breaks the joint limits, making downstream joint control315

difficult. In contrast, with consideration of both human-like postures and precise contact points, our316

retargeting module can effectively maps human grasping poses to different dexterous robot hands to317

grasp objects in a task-specific functional manner.318

B Extended Methods319

B.1 H2R Grasp Retargeting320

Robot hands exhibit a variety of structures that differ from human hands, including variations in321

DoF, finger numbers, and knuckle sizes. Consequently, the human hand grasp reference Gh should322

be retargeted to a robot hand reference Gr before it can effectively guide robotic grasping. Motivated323

by this, we first initialize Gr with the same fingertip positions and finger link directions as Gh in324

the object frame. For robot hands with fewer fingers (e.g., Allegro Hand [11]) or finger joints (e.g.,325

Inspire Hand [12]), we simply remove the pinky finger or joints close to the fingertips.326

After initialization, we optimize the retargeted pose by considering the hand-object interaction with327

several losses. We utilize the penetration energy loss Lpen from [48] and force closure loss Lfc from328

[49] to avoid hand-object penetration and encourage stable grasping. Additionally, we introduce the329

contact position loss Lpos to incentivize the robot hand to remain in contact with the object at the330

right position, with the formulation Lpos =
∑

cj=1

∥∥ph
j − pr

j

∥∥2, where ph
j and pr

j are the positions331

of the jth human hand joint and its corresponding robot hand joint, and cj = 1 indicates that the332

jth human hand joint is in contact with the object. To regularize the joint angles, we apply the limit333

loss Ljoints =
∑M

i=1

(
max(0, θi − θupper

i ) + max(0, θlower
i − θi)

)
, where M is the number of robot334

hand joints, θlower
i and θupper

i are the lower and upper limits of the ith joint. Finally, we introduce335

a collision loss Lcol =
∑M

i=1(
∑M

j=1|(i̸=j) max(τ − d(i, j), 0) + max(hi−table, 0)) to punish the336

collision between the robot hand with itself and the table, where M is the number of robot hand337

joints, d(i, j) is the distance between the ith and jth joints, τ is a threshold, and hi−table is the338

signed distance from ith joint to the table surface.339

B.2 Dynamic Grasp Control340

Following [4], we formulate dynamic grasp control guided by the retargeted pose reference Gr as341

a reinforcement learning problem. We remove the wrist guidance from [4] in both simulation and342

real-world deployment, as the additional torques applied to the hand wrist can lead to excessively343

rapid hand movements, which may compromise safety.344

B.2.1 Network Structure345

In simulation, the state space s = (qr,Tr, Ṫr,To, Ṫo, c, f,Gr) includes the robot’s joint angles qr,346

the hands’s 6D global wrist pose Tr and its velocity Ṫr, the object’s 6D pose To and its velocity Ṫo,347

per finger part binary contact states c and contact forces f, as well as the reference Gr. A feature348

extraction layer ϕ is applied such that ϕ(s) = (qr, T̃r,
˙̃Tr, T̃o,

˙̃To, p̃o, p̃z
r , f, g̃p, g̃r, gc). ∗̃ denotes349

variables expressed in the initial wrist frame, which helps the policy concentrate on hand-object350

interactions without being affected by global poses as verified in [4]. p̃o and p̃z
r represent the object351

displacement and the wrist-table distance, respectively. g̃p indicates the distance between the current352
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and the target 3D position of each joint, while g̃r represents the difference between the current and353

target wrist rotations. The term gc = [c|c − c] contains the binary target contacts and the difference354

between the target and the current contacts. With the extracted features as inputs, the policy outputs355

the action a, which is defined as the predicted finger joint angles and wrist 6D poses for the next356

frame. The predicted wrist 6D poses are used to calculate the arm joint angles through inverse357

kinematics, and the arm and finger joint angles are further fed into PD controllers to compute the358

joint torques.359

B.2.2 Reward Function360

To incentivize the policy to learn the desired behavior, we define the reward function as r = ωprp +361

ωcrc+ωsrs+ωqrq . It comprises the joint position reward rp, contact reward rc, safety reward rs, and362

pose reward rq . Inspired by [4], we adopt the same formulation for rp and modify rc with a dynamic363

weight ωc = (
∑

cj=1 ||pr
j ||2)/(

∑
cj=1 ||p

r
j ||2) to facilitate accurate contact positions, where pr

j and364

pr
j represent the current and target contact positions. The safety reward rs =

∑L
i=1 |f i

colli| penalizes365

the undesired contact forces of the hand with the table and itself, where L is the number of links366

and f i
colli represents the undesired collision force of the ith link. The pose reward rq encourages367

the robot’s hands to maintain human-like postures, defined as rq = 1
F ·K

∑F
i=1

∑K
j=1(

vijvij
|vij ||vij | − 1)368

where F is the number of fingers, K is the number of links per finger, vij and vij are the current369

and target directions of the jth link on the ith finger in the object frame.370

B.3 Sim-to-Real Transfer371

Our work focuses on real robot hand grasping, making sim-to-real transfer a crucial aspect. To372

achieve this, we adopt a privileged learning framework to learn an effective policy without privileged373

information, utilize system identification methods to accurately model the robot’s joint dynamics,374

apply domain randomization to enhance model robustness, and incorporate gravity compensation to375

address the effects of hand gravity.376

B.3.1 Privileged Learning377

Tactile observation is crucial for learning robust functional grasping; however, such information is378

not available on real robots. Additionally, training the grasping policy while reconstructing tactile379

information in an end-to-end manner poses significant challenges, as proper contacts require effec-380

tive grasping while effective grasping requires contact observation. To address this, we employ a381

privileged learning framework. First, we train a teacher policy based on an MLP using ground-truth382

contact information obtained from simulation through reinforcement learning. Subsequently, we dis-383

till a student policy that utilizes only the information accessible in the real world. Specifically, we384

train the student policy incorporating an additional LSTM-based encoder to reconstruct the contacts385

from proprioceptive data while simultaneously imitating the teacher’s actions. The MLP of the stu-386

dent policy is initialized with the weights of the teacher. Specifically, the encoder takes state-action387

pairs of the past 10 frames as inputs, which include the finger joint angles qr, the difference between388

the current and target wrist 6D poses Tr and Tr, the target binary contact states c, and the actions389

a. It then predicts the contacts (ĉt and f̂t), which are subsequently input into the MLP alongside390

the other observations to predict the actions ât. Intuitively, the LSTM encoder can infer the torques391

applied to the joints through the actions and the state changes through the joint angle trajectories.392

The misalignment between the joint torques and state changes can further indicate external forces393

caused by contacts, which can be used to infer the contact states and forces of the finger links. To394

train the student policy, the contact reconstruction loss is defined as Lre = ||ĉt − ct||2 + ||̂ft − ft||2,395

while the action imitation loss is given by Lact = ∥ât − at∥2.396

B.3.2 System Identification397

To narrow the sim-to-real gap, we model the finger joint dynamics by identifying the actuator pa-398

rameters of the real robot hand, including joint stiffness and joint damping. Specifically, we first399
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pre-train a policy in simulation using rough initial values for these parameters. We then deploy400

this policy on the real robot in an open-loop manner to collect command-state trajectories. Next,401

we align the simulated and real hand state trajectories based on the collected action trajectories by402

optimizing the parameters in simulation. Finally, we fine-tune our pre-trained policy using the op-403

timized parameters. We adopt the CMA-ES[50] method to optimize the parameters in simulation404

using the MSE loss, defined as LSim-Real =
∑N

t=1 ∥qs
t − qr

t∥
2, where qs

t and qr
t represent the robot405

joint angles in simulation and in the real world under the same action at time step t, respectively,406

and N denotes the trajectory length.407

B.3.3 Domain Randomization408

To achieve robust sim-to-real transfer, we employ domain randomization during the training of our409

policies, similar to other works in the field [24, 51]. Specifically, we randomize several parameters,410

including the damping of each joint, the gains for the PD controller, the friction coefficients, the411

mass of the objects, the height of the table, and the hand state observations.412

B.3.4 Gravity Compensation413

To account for the effects of hand gravity on each finger joint, we calculate the physical attributes of414

each robot hand link, including mass distribution and center of mass locations, using the open-source415

Kinematics and Dynamics Library [52]. We then compute the gravity-induced torques on each finger416

joint in real-time based on current hand states, and compensate these torques with feedforward terms417

to the actuators. This module ensures precise maintenance of intended trajectories and postures by418

effectively compensating for gravitational forces in real time.419

C Extended Experiments420

C.1 Experiment Details421

C.1.1 Implementation Details422

We use RaiSim [53] as the simulation engine and PPO [54] for RL training. We train the policy using423

a single NVIDIA RTX 3090 GPU and 128 CPU cores, which takes approximately two days. We set424

the initial finger joint angles with 0.5 · qr, where qr is the target finger joint angles indicated by Gr.425

The arm joint angles are initialized by the inverse kinematics (IK) solver [55] to make the wrist 30426

cm away from the object center along the direction from the object center to the target wrist position.427

For hardware deployment, the arm and finger joints move to the initial angles under position control,428

and then a PD controller is deployed with a frequency of 10 Hz for grasping according to the policy429

and IK solver outputs. We limit the end-effector velocity to be smaller than 0.25 m/s and acceleration430

smaller than 0.3 m/s2 for safety.431

C.1.2 Data432

We utilize the right-handed sequences from the DexYCB dataset [56] for training. Specifically, we433

get the human hand grasp reference Gh from the hand-object state of the frame when the object434

displacement exceeds a predefined threshold. We use 75% of the data for training and 25% of the435

data for testing. We utilize FoundationPose [8] to estimate the object 6D pose To and velocity Ṫo of436

the objects with known object meshes. Additionally, we apply a low-pass filter to reduce the jitter437

in the estimated poses.438
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Figure 4: Objects used for one-shot generalization evaluation.

Hand Model Inspire Hand Allegro Hand

Success Rate 73% 74%
Table 3: One-shot generalization to unseen objects (Real).

C.2 One-shot Functional Grasping of Unseen Objects439

Figure 5: Diverse functional grasps from single RGBD images.

We select 20 common daily objects for evaluation as shown in Fig. 4, which were not seen by the440

policy during training. We use a commercial 3D scanner to obtain the meshes. For each object, we441

capture three RGBD images of human grasps with different poses and further utilize FoundationPose442

[8] to estimate the object pose, along with Metro [9] to estimate the hand poses. This process results443

in three human grasp references, denoted as Gh. For each reference, we place the object on the444

table with two different poses and perform grasps, resulting in six grasps per object. The results are445

presented in Tab. 3.446

C.3 Robustness Evaluation447

To verify the robustness of our system, we evaluate our method with extra noises added to the human448

reference poses Gh, using the unseen objects shown in Section C.2. Specifically, we introduced two449
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Setting Wrist Bias Joint Bias PD PD (Finger-closing) Ours

Success Rate 66% 69% 40% 53% 74%
Table 4: Robustness Evaluation (Real).

Model Suc. R. ↑ SimD. [mm/s] ↓ Con. R. ↑
Angle Reset + * 62% 1.6 0.65

DexGraspNet + * 65% 1.6 0.68
DexGraspNet (Tab. Col.) + * 74% 1.9 0.70

Ours 85% 1.6 0.79
Table 5: H2R Grasp Retargeting module ablation (Sim).

types of random disturbances: wrist positional bias within 5 cm (Wrist Bias), and joint angle bias450

within 0.09 rad applied on 4 randomly selected finger joints (Joint Bias). The results are shown in451

Tab. 4. Our method gets success rates degraded with 8% under wrist positional bias and 5% under452

finger joint angular bias. The performance drop is acceptable, considering 5 cm and 0.09 rad are453

around 10-20% of the object dimensions and finger joint movements. It is important to note that the454

reference poses Gh are already noisy and biased without extra disturbances, due to the imperfect455

reconstruction from single RGBD images. We also qualitatively demonstrate the robustness of our456

method against external forces and real-time adaptation behaviors under dynamic disturbances in457

the supplementary video.458

To further compare the advantage in robustness of our RL-based method, we compare the success459

rates of our method with non-RL-based methods, one with a PD controller to execute the reference460

poses Gr (PD) and the other one further closing the finger joints (except the swing joints) by 0.15461

rads for more tight grasps (PD (Finger-closing)). The results are shown in Tab. 4. Our method shows462

significantly higher success rates, indicating our better robustness to the noisy reference poses Gr.463

More importantly, the results verify that a simple execution of Gr and strategy of finger-closing are464

not enough for robust functional grasping, which shows the contribution of our RL-based grasping465

policy.466

C.4 Ablation467

We conduct a comprehensive ablation study of the various components of our system to demonstrate468

their effectiveness in both simulation and real-world scenarios. As in the previous section, we utilize469

YCB objects and the 25% DexYCB grasp references unseen during training for testing.470

C.4.1 H2R Grasp Retargeting471

We first verify the effectiveness of our H2R Grasp Retargeting module in simulation by replacing it472

with three baselines and retraining our RL policy: i) simply setting the robot hand finger angles to473

match those of the human hand (Angle Reset + *). ii) utilizing DexGraspNet [48] to generate Gr.474

Since DexGraspNet requires hand contact points and initial wrist poses to generate grasping poses,475

we extract this information from Gh for a fair comparison (DexGraspNet + *). iii) an extension of476

DexGraspNet that incorporates our table collision loss (DexGraspNet (Tab. Col.) + *). As shown in477

Tab. 5, our system outperforms all baselines. The Angle Reset method struggles with thin or small478

objects without considering contacts. Although DexGraspNet creates contact-rich grasps, its lack479

of table collision awareness leads to failures for thin objects. Incorporating the table collision loss480

improves its Suc. R. from 65% to 74%, especially for thin objects, but also increases SimD. due481

to reduced force-closure stability. This instability arises because the optimization of DexGraspNet482

does not consistently yield effective and stable poses, necessitating an additional filtering process.483

In contrast, our system preserves precise contacts and postures from the human grasp references,484

enabling more robust grasping.485
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Model Suc. R. ↑ SimD. [mm/s] ↓ Con. R. ↑
w/o Priv. Info. 61% 1.6 0.56

w/o Priv. Learn. 40% 1.7 0.24
Teacher Policy 85% 1.6 0.79

Ours 85% 1.6 0.79
Table 6: Privileged information & encoder ablation (Sim).

Setting w/o Sys. Id. w/o Grav. Comp. Ours

Success Rate 38% 59% 75%
Table 7: System identification & gravity compensation ablation (Real).

C.4.2 Privileged Learning486

To show the effectiveness of the privileged information (c and f) and our privileged learning frame-487

work, we compare our system in simulation against i) the policy trained without c and f (w/o Priv.488

Info.) ii) the student policy with the LSTM encoder trained from scratch without the privileged489

learning framework, driven by RL rewards and the contact reconstruction loss (w/o Priv. Learn.)490

iii) the teacher policy with access to the ground-truth (GT) c and f from simulation (Teacher Policy).491

The results are shown in Tab. 6. Our original policy shows a clear improvement compared with492

the policy trained without c and f, which shows that the contact information is key for stable and493

robust grasping, and indicates the necessity of our LSTM privileged information encoder. The stu-494

dent policy trained from scratch reaches the worst performance, which shows the importance of the495

privileged learning framework instead of a single-stage training process. Notably, our policy shows496

highly comparable performance with the teacher policy utilizing the GT privileged information,497

which verifies the effectiveness of our LSTM-based encoder.498

C.4.3 System Identification & Gravity Compensation499

We ablate the system identification (w/o Sys. Id.) and gravity compensation (w/o Grav. Comp.)500

techniques (See Section B.3) on real robots to assess their effectiveness for robust sim-to-real trans-501

fer. We randomly select 6 grasp references for each YCB object from the 25% DexYCB test set to502

evaluate all variants. The success rates are shown in Tab. 7. Notably, the variant without system iden-503

tification exhibits the poorest performance across nearly all objects, highlighting the importance of504

a precise joint dynamics model. The gravity compensation leads to further improvements in success505

rate, indicating its effectiveness. Overall, our original configuration achieves the best performance,506

validating the effectiveness of both modules for sim-to-real transfer.507
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