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Abstract

LLM-as-a-Judge has emerged as a promising001
alternative to human evaluators across various002
tasks, yet inherent biases—particularly position003
bias, the tendency to favor solutions based on004
their position within the prompt—compromise005
its reliability. This exploratory study evaluates006
position bias in LLM judges across pairwise007
and list-wise comparison settings, introducing008
three metrics: repetition stability, position con-009
sistency, and preference fairness. Our experi-010
ments, involving 15 LLM judges across MT-011
Bench and DevBench with 22 tasks and approx-012
imately 40 solution-generating models, result013
in over 150,000 evaluation instances. We iden-014
tify Judge-Level, Candidate-Level, and Task-015
Level factors contributing to bias. The findings016
confirm that position bias is not due to random017
chance and varies significantly across judges018
and tasks. While position bias is weakly influ-019
enced by the length of prompt components, it is020
strongly affected by the quality gap between so-021
lutions. Our agreement and disagreement anal-022
ysis among judges further provides insights into023
the distribution of judging difficulty across the024
dataset, and highlights the potential for dataset025
modifications.026

1 Introduction027

In recent years, Large Language Models (LLMs)028

have emerged as evolutionary technologies, gath-029

ering global interest and stimulating substantial030

research into their applications. Evaluating LLMs031

has received increasing attention due to their ad-032

vancing capabilities across diverse fields. While033

human assessment is considered the gold standard034

for aligning with human preferences, it lacks scal-035

ability in extensive evaluations (Zeng et al., 2023;036

Karpinska et al., 2021). To automate evaluations037

and reduce reliance on costly human evaluators,038

the LLM-as-a-Judge methodology emerged as a039

promising alternative across various tasks. Despite040

a high level of agreement with human judgments041

(Zheng et al., 2024b; Li et al., 2024a; Zhu et al., 042

2023), inherent biases, especially position bias, 043

have undermined the accuracy, fairness, and relia- 044

bility of these LLM evaluators. 045

Position bias refers to the tendency of LLM 046

judges to favor certain positions within prompt 047

components rather than the content itself, as shown 048

in Fig. 1 (a). This bias has been prevalent in all 049

types of LLM judges (Qin et al., 2024; Li et al., 050

2023d), raising concerns about their reliability. Pre- 051

vious studies (Zheng et al., 2024a,b; Zeng et al., 052

2023) have identified position bias alongside other 053

biases and assessed its impact. Although mitiga- 054

tion strategies have been proposed, they often fall 055

short due to incomplete bias elimination (Guo et al., 056

2024), increased complexity (Li et al., 2024b; Khan 057

et al., 2024; Chua et al., 2024), the introduction of 058

new biases (Ohi et al., 2024), inconsistent effective- 059

ness (Gallegos et al., 2024), or impracticality for 060

closed-source models, as mechanistic solutions re- 061

quire modifications to model internals (Wang et al., 062

2025; Yu et al., 2025). From an exploratory per- 063

spectives, despite empirical studies evaluating po- 064

sition bias in pairwise LLM-as-a-Judge settings 065

(Zheng et al., 2024b; Wang et al., 2023), the under- 066

lying factors contributing to this phenomenon and 067

extended measurements in list-wise comparative 068

paradigms remain incompletely explored. 069

In this study, we provide an in-depth and sys- 070

tematic investigation into position bias within the 071

context of LLM-as-a-Judge. While evaluating Posi- 072

tion Consistency (Zheng et al., 2024b), one of the 073

most widely used methods for measuring position 074

bias, we introduce two novel metrics: Preference 075

Fairness and Repetition Stability. Specifically, 076

we move beyond simply assessing Position Consis- 077

tency by incorporating Preference Fairness, which 078

provides deeper insights into the specific answer 079

directions where models exhibit unfair preferences. 080

Additionally, the measurement of Repetition Sta- 081

bility ensures that the observed position bias in 082
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Figure 1: Overview of our experiment settings: (a) Position bias is observed when LLM judges consistently favor a
specific position rather than evaluating the content, with repeated trials ensuring the deviations are not due to random
variations. (b) Preference fairness is defined and measured through the distribution of choice pairs to assess the
fairness of judgments. (c) The settings are extended from pairwise comparisons to list-wise comparisons, involving
evaluations of more than two candidate models.

the given model and tasks is not due to random083

variations, thus strengthening the reliability of the084

findings.085

To investigate the underlying factors contribut-086

ing to position bias, we categorized these factors087

into three levels: Judge-Level, Candidate-Level,088

and Task-Level. Our experiments are primar-089

ily conducted on pairwise comparisons, as LLM090

judges demonstrate superior performance in this091

setting. We further extend our study to more com-092

plicated list-wise comparison settings, involving093

evaluations of more than two candidate models by094

LLM judges. Our findings reveal several key in-095

sights: 1. The position bias of capable LLM judges096

is not a result of random variations. 2. There is a097

high volatility in the direction of preference, even098

within the same LLM judge when applied to differ-099

ent tasks. 3. Differences in answer quality among100

candidate models significantly influence position101

consistency. 4. Position bias is very weakly corre-102

lated with the length of prompts generated by the103

candidate models.104

Building on these findings, we conduct an agree-105

ment analysis among the LLM judges. The results106

reveal that, although measures of position consis-107

tency may appear similar in general, judgments on108

specific instances vary significantly among LLM109

judges, even when they demonstrate comparable110

capabilities. Instances where numerous LLMs111

agree are generally easier to judge, whereas in-112

stances with disagreements are more challeng-113

ing to evaluate and more prone to position bias.114

This analysis provides insights into the distribution 115

of judging difficulty across the dataset and high- 116

lights the potential for dataset modifications by in- 117

corporating more instances that are either easier or 118

more difficult to judge. Future work could explore 119

how to measure the likelihood of position bias arise 120

from the datasets by identifying and quantifying 121

such hard-to-judge instances before implementing 122

LLM judges. 123

2 Evaluation Settings & Definitions 124

We begin by outlining the settings for pairwise and 125

list-wise comparisons employed in our experiments 126

for LLM-as-a-Judge. Following this, we define 127

the three metrics used in our evaluation: Position 128

Consistency (PC), Preference Fairness (PF), and 129

Repetition Stability (RS). Finally, we provide a de- 130

tailed description of the factors we found that are re- 131

lated to position bias at the Judge-Level, Candidate- 132

Level, and Task-Level. Our exploratory study was 133

conducted post hoc, meaning the LLM judgments 134

were collected first, and the factors influencing po- 135

sition bias were then identified and analyzed. 136

2.1 Pairwise & List-wise Comparison 137

Pairwise Comparison: In the context of pairwise 138

comparison, LLM judges are tasked with select- 139

ing the better solution provided by two candidate 140

models in response to a given task question. As 141

shown in Fig. 1 (a), the system prompt, option 142

choices, task question, and solutions from two can- 143

didate models (original prompt) are presented to 144
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the LLM judges to select the better solution. The145

experiment is conducted in a double-blind setting.146

The identities of the candidate models are hidden147

from the LLM judges, and the candidate models148

are unaware that their solutions will be compared to149

another model when answering the question. Then,150

the prompt with solutions in a swapped position151

(swapped prompt) is given to the same LLM judge152

again, which results in a judgment pair. If the153

LLM judge consistently favors the same solution154

regardless of the swapped position, it is consid-155

ered position consistent. Conversely, if the LLM156

judge selects different winners, position bias is ob-157

served, with the preference direction being either158

primacy (e.g. always choose {A}) or recency (e.g.159

always choose {B}). Example of measuring prefer-160

ence fairness with specific choice pairs is shown in161

Fig. 1 (b). To accommodate the possibility of ties,162

various option modes are employed: Two-Option163

mode restricts LLM judges to choosing between164

two options, labeled A for the first candidate and165

B for the second. Three-Option mode introduces166

an additional choice, C, allowing LLM judges to167

indicate a tie if neither solution is preferable, as168

illustrated in Fig. 1 (a). These option modes were169

explicitly specified in the system prompts to ensure170

clear guidance for the decision-making process of171

the LLM judges.172

List-wise Comparison: Unlike pairwise set-173

tings, where LLM judges select the superior so-174

lution from two candidates, list-wise comparative175

approaches involve evaluating three or more candi-176

dates simultaneously, as shown in Fig. 1 (c). For177

efficiency, we prompt LLM judges to select the178

best candidate rather than ranking the entire list.179

The “swapped setting" used in pairwise evaluations180

is generalized to order permutations for list-wise181

judgments, ensuring that each candidate appears in182

every possible position exactly once. For a list of p183

candidates, this results in p permutations. In the ith184

permutation, the ith candidate is set to appear in the185

first position. Additionally, an option is provided to186

account for ties, allowing LLM judges to indicate187

if there is no certainly superior solution.188

2.2 Evaluation Metrics189

In our study, we first verify whether capable LLM190

judges exhibit high repetition stability and then191

evaluate their position bias in terms of position192

consistency and preference fairness. The metrics193

are introduced as follows:194

Repetition Stability (RS) evaluates the reliabil-195

ity of LLM judges when presented with identical 196

queries multiple times. It is essential to determine 197

whether the judgments of LLMs, and consequently 198

the observations of position bias, stem from a con- 199

sistent evaluation pattern or by random variations. 200

We measure this by calculating the percentage of 201

the most frequent selections across multiple trials 202

for each query, aggregated from all queries within 203

each dataset. This metric is formalized as 204

RC =
1

N

N∑
j=1

1

nj
max
k∈S

{
|Cj

k|
}
, (1) 205

where S = {A,B,C, . . . } refers to the set of 206

choice options depending on the option mode, |Cj
k| 207

denotes the counts of each choice option selected 208

by the judge for the jth query, nj represents the 209

total number of repeating trials for that query, and 210

N is the total number of queries. The value of 211

RS ranges from a small positive value depending 212

on the option mode, indicating completely random 213

decisions, to 1.0, indicating perfect stability. 214

Position Consistency (PC) quantifies how fre- 215

quently LLM judges prefer the same solution after 216

the order of solutions is permuted. It is calculated 217

as the ratio of consistent evaluation series to the 218

total number of valid evaluations, where a series 219

is deemed consistent if the LLM judge prefers the 220

same winning solution across permutations. For- 221

mally, it is calculated as 222

PC =
1

n

n∑
j=1

1{(Cj
1 ,...,C

j
p,)∈V }, (2) 223

where V is the set of choices that correspond to 224

position consistency, and (Cj
1 , . . . , C

j
p) denotes the 225

judgment series for the jth query when there are 226

p candidate solutions in the list, and n represents 227

the number of prompt series. An example of such 228

series of choices under pairwise comparison setting 229

can be found in Fig. 1 (b). This formula aims to 230

provide a direct measure of a LLM judge’s position 231

bias and has been widely used in previous studies 232

for its simplicity. 233

Preference Fairness (PF ) measures the extent 234

to which LLM judges favor certain solution po- 235

sitions. In pairwise comparisons, an LLM judge 236

may exhibit a preference for either primacy or re- 237

cency. These terms replace the more verbose “pref- 238

erence/bias for the first/second candidate model" 239

used in previous studies (Zheng et al., 2024b), en- 240

suring clarity and generalization for future research. 241
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The examples of such preferences are demonstrated242

in Fig. 1 (b). Previous studies proposed two com-243

mon ways to measure the preference fairness. One244

way is to count the primacy-preferred and recency-245

preferred judgment pairs, which we termed as246

primacy-count-number (pcn) and recency-count-247

number (rcn). The counts are then normalized248

by the total number of prompt pairs (Zheng et al.,249

2024b; Zhu et al., 2023). However, the sensitivity250

of this measurement highly depends on the size251

of dataset, making comparisons across datasets un-252

reliable, especially when the number of questions253

and instances varies for each task.254

Alternatively, instead of normalizing over the255

complete dataset, studies like (Li et al., 2023c;256

Liusie et al., 2024) treat position inconsistent eval-257

uation instances independently. They calculate258

the percentages of primacy-preferred and recency-259

preferred judgment pairs relative to the total num-260

ber of position inconsistent pairs. We denote these261

as inconsistent primacy rates (ipr) and inconsistent262

recency rates (irr), where ipr+irr = 1. However,263

this approach overlooks the fact that “position con-264

sistent judgments are also preference fair”, which265

leads to overly penalizing highly consistent LLM-266

judges.267

To overcome these limitations, we introduce a268

more granular and scalable measurement that com-269

bines the strengths of both methods, to assess pref-270

erence fairness. The PF score is formally calcu-271

lated by272

PF =
PFraw − S−

min

S+
max − S−

min

× 2− 1,

PFraw = (rcn× irr)− (pcn× ipr).

(3)273

where S−
min and S+

max are the minimum and maxi-274

mum achievable PFraw scores for each judge on275

each task, respectively. This min-max scale en-276

sures comparability across datasets by accounting277

for the range of achievable scores and centering the278

scale around zero. The PF score is interpreted as279

follows:280

PF =



1, if PC = 0 and entirely recency-preferred
x ∈ (0, 1), Recency-preferred
0, Preference Fair
x ∈ (−1, 0), Primacy-preferred
−1, if PC = 0 and entirely primacy-preferred

281

To extend this metric to list-wise comparisons,282

we employed a ‘one vs. all’ approach, defining283

primacy preference as favoring the first candidate284

solution while classifying all others as recency- 285

preferred. This straightforward extension of the 286

PF computation maintains consistency with pair- 287

wise setups. By providing a single and comprehen- 288

sive metric that applies to all evaluation instances 289

and list-wise settings, our proposed PF score en- 290

sures sensitivity across datasets, regardless of varia- 291

tions in the number of questions or instances, offer- 292

ing a significant improvement over previous meth- 293

ods. 294

2.3 Factors Affecting Position Bias 295

To investigate the factors influencing position bias 296

in LLM judges, we categorized these factors into 297

three groups: Judge-level, Candidate-level, and 298

Task-level factors. Each group includes specific 299

factors, that we hypothesize, may impact position 300

bias, which we explore through a series of experi- 301

ments. Table 1 lists the five factors we analyzed in 302

this study. 303

Among the influencing factors, we selected “fa- 304

milial property” for Judge-level factors, as it re- 305

flects similar model sizes or training specifics, 306

which are often proprietary and not publicly ac- 307

cessible for closed-source capable models. The 308

familial categories of the models used in our stud- 309

ies are (1) GPT, (2) Claude, (3) Gemini, and (4) 310

Llama allowing for straightforward grouping by 311

company and version. More details and discus- 312

sions about the familial property can be found in 313

Appendix Sec. C. 314

Answer quality gap: While prior studies (Wang 315

et al., 2023) explored quality disparities using 316

"score gaps" in score-based LLM-as-a-Judge, this 317

factor remains under-explored in comparative set- 318

tings, which we address by introducing "answer 319

quality gap" for both pairwise and list-wise eval- 320

uations. We define the quality of a candidate’s 321

solution by how effectively it addresses the ques- 322

tion. Consequently, the answer quality gap refers to 323

the disparity in quality between the solutions from 324

one candidate model and the others to the same 325

question and hence considered the Candidate-level 326

factor. Ideally, when a reliable LLM judge is pre- 327

sented with a question and corresponding answer 328

pairs or series, it would prefer the highest-quality 329

answer, where the corresponding candidate is de- 330

noted as the winner selected by the LLM judge. 331

Following this assumption, we measure the an- 332

swer quality gap by the win rates of candidates over 333

an expected baseline on a set of tasks and questions. 334

However, if position bias occurs, the winner may 335
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be inconsistent when the order of candidate so-336

lutions is permuted in the query. Therefore, we337

categorize the LLM judgments into three groups:338

cases where the same winner is consistently chosen339

across all permutations (termed “consistent wins”),340

cases where there is no certain winner (termed341

“consistent ties”), and cases where different win-342

ners are selected after the solutions are permuted in343

the queries (termed “inconsistent judgment series").344

We denote these counts as the number of consistent345

wins (Cw), consistent ties (Ct), and inconsistent346

judgment series (CI ), respectively. Inspired by347

Zheng et al., we count inconsistent judgment pairs348

as ties for all candidate models, which is later cal-349

culated as a down-scaled win rate depending on the350

number of candidate models.351

To calculate the win rates of candidate mod-352

els for all three cases, we define the overall win353

rate (owr) of a model’s solution over the other354

as: owr = 1
n [Cw + 1

p(Ct + CI)], where we have355

p candidates in the list and n judgment series.356

Then the answer quality gap (δq) is calculated357

as δq = |owr − 1/p|, where 1/p is the expected358

baseline when all judgments are “ties”. In contrast359

to using only consistent win rate (calculated as Cw
nc

,360

where nc is the number of position consistent judg-361

ment series) to quantify δq (Zheng et al., 2024b;362

Li et al., 2023b; Raina et al., 2024), the adoption363

of overall win rate incorporates all data points and364

captures the “comparable quality” cases, where re-365

sponses in similar quality might lead to position366

biased judgments, a scenario that the consistent367

win rate might overlook.368

3 Experiment369

3.1 Experiment Settings370

In this study, we evaluated position bias of 15371

models from the GPT (OpenAI, 2023), Claude372

(Anthropic, 2024), Gemini (Gemini Team, 2024),373

and Llama (Touvron et al., 2023) series using our374

framework. For datasets, we adopted the modified375

MTBench (Zheng et al., 2024b) and DevBench376

(Li et al., 2024a) due to their demonstrated high377

human-LLM agreement and the validated reliabil-378

ity of state-of-the-art LLM judges on the evaluation379

tasks. For pairwise comparisons, We fixed one of380

the candidates as vicuna-13b-v1.3 for MTBench381

and human for DevBench to serve as baselines, en-382

suring decent quality of solutions to the given ques-383

tions. MTBench consists of 30 candidate models,384

8 tasks, and 10 questions per task; for DevBench,385

we divide the general metric into more detailed 386

ones and consider them as different tasks, resulting 387

in 10 candidate models, 14 tasks, and 8 questions 388

per task. We then paired solutions of these candi- 389

date models with that of the baseline candidate for 390

evaluation by the LLM judges. 391

We adopted Two-option mode for MTBench, 392

and Three-option mode for DevBench. For list- 393

wise experiments, we randomly sampled 9 models 394

to form three triple-candidate lists and evaluated 395

four representative LLM judges on MTBench. The 396

prompt templates we used are identical to those 397

in the benchmarks for pairwise comparisons, with 398

minor modifications to accommodate list-wise eval- 399

uations. More details about the models, tasks, and 400

prompts can be found in Appendix. Sec. F. 401

To compute repetition stability, we sampled 3 402

questions per task and 4 candidate models, paired 403

with baseline candidates, for each LLM judge to 404

evaluate across 3 repetitive trials. This resulted in 405

576 instances per judge for MTBench and 432 in- 406

stances per judge for DevBench. The temperature 407

hyperparameter was set to 1 for all LLM judges 408

to generate nontrivial results. To compute position 409

consistency and preference fairness, the number of 410

instances increased to 4,800 and 2,240, covering 411

the entire MTBench and DevBench datasets. In 412

total, more than 100,000 evaluation instances were 413

analyzed in this study. 414

To identify significant factors contributing to po- 415

sition bias, we performed bidirectional stepwise 416

regression on data from the two benchmarks. We 417

used variables such as average lengths of input, out- 418

put, and prompt; answer quality gap; LLM judge se- 419

ries; candidate identities; and task categories to pre- 420

dict PC and PF , respectively. Each model prunes 421

non-significant variables based on the Akaike In- 422

formation Criterion (AIC) score. This process in- 423

volves both forward selection and backward elimi- 424

nation, with each "step" testing whether including 425

or excluding a variable improves the model’s AIC 426

value. Further details about the process can be 427

found in Appendix. Sec. E. 428

3.2 Empirical Results 429

The evaluation results of 12 close-source and 3 430

open-source LLM judges in terms of repetition sta- 431

bility, position consistency, and preference fairness 432

on MTBench and DevBench are listed in Table 2. 433

For each judge, we calculate its average RS, PC, 434

and PF across all candidates and tasks. For RS 435

and PC, higher values are preferable. A high RS 436
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Factor Judge-level Candidate-level Task-level

Familial Property ✓* × ×
Answer Quality Gap × ✓* ×
Task Input Length × × ✓
Task Output Length × ✓* ✓*
Prompt Length × ✓ ✓

Table 1: Factors influencing position bias. Significant
factors, identified via bidirectional stepwise regression,
are marked with * and highlighted in red based on
empirical findings on both MTBench and DevBench
results. Task Input refers to the question itself, while
Task Output denotes the candidate model’s answers,
serving as both Candidate-level and Task-level factors.
Prompt includes the full query presented to LLM judges:
Task Input, Task Output, and system prompts.

value is particularly important as a prerequisite for437

meaningful computations of PC and PF , ensur-438

ing the LLM judge’s choice patterns are not due439

to random variations. Fig. 2 (a)(b) demonstrate440

that position bias varies by judges and tasks signifi-441

cantly. Fig. 2 (c) explores the correlation between442

the metrics PC and PF . Fig. (d) to (f) further443

investigate the impact of the answer quality gap on444

position bias. These analyses were conducted by445

considering all judges together on MTBench. More446

analyses can be found in Appendix. Sec. D.447

Through bidirectional stepwise regression, as448

shown in Table 1, LLM judge series, candidate449

identities, and task categories significantly impact450

Position Consistency among all variables. Simi-451

larly, these factors also contribute significantly to452

Preference Fairness. Additionally, we found that453

average output length is a statistically significant454

predictor of PF . This finding is not surprising, as455

longer outputs are generally perceived as higher456

quality and more preferred. Quantitative results457

and more discussions can be found in Appendix.458

Sec. E.459

4 Main Findings460

Position Bias of Capable Judges are not Mere461

Random Variations: As shown in Table 2, the462

capable judges on the benchmark tasks, supported463

by minimal "Error" rates, generally exhibit RS val-464

ues above 0.85. The most capable models, such465

as Claude-3.5-Sonnet, GPT-4, and Llama-3.3-70B,466

all achieve near-perfect RS scores over 0.95 on467

both benchmarks. These results confirm that judg-468

ments from capable LLM judges, and the resulting469

position bias, are not due to random variations.470

This strengthens confidence that one-time gener-471

ated judgments by these validated LLMs accurately472

reflect their judging capabilities. 473

Position Bias Varies by Judge & Task: As 474

shown in Fig. 2(a), position bias among LLM 475

judges varies significantly across different judges 476

and tasks. For instance, GPT-4o demonstrates 477

higher position consistency when evaluating cod- 478

ing tasks but performs less consistently on other 479

tasks compared to GPT-4. Similarly, Gemini-1.5- 480

pro, while achieving higher PC than other Gemini 481

models in most tasks, exhibits comparable con- 482

sistency when judging extraction tasks. Similar 483

findings can be observed in the DevBench results, 484

as detailed in Appendix.Sec. D.2. 485

Variations in preference fairness are also evi- 486

dent. As shown in Table 2, GPT-4 and GPT-3.5- 487

Turbo display different preference biases across 488

datasets and tasks—being recency-preferred on 489

MTBench but primacy-preferred on DevBench. 490

Likewise, Claude-3.5-Sonnet, which is nearly 491

preference-fair on MTBench (PF = 0.01), ex- 492

hibits a strong recency-preferred position bias on 493

DevBench (PF = 0.22). 494

While higher position consistency generally 495

correlates with improved preference fairness (as 496

demonstrated by the regression curve in Fig. 2(c)), 497

consistency alone does not guarantee fairness. Cer- 498

tain LLM judges, despite achieving high PC, still 499

exhibit significant and varied preference directions 500

across different tasks, underscoring the need to 501

evaluate both consistency and fairness when assess- 502

ing LLM judges. 503

In list-wise comparisons, similar variations in 504

position bias were observed across judges and tasks. 505

Furthermore, Table 2 highlights that more capable 506

models, such as GPT-4o and Claude-3.5-Sonnet, 507

maintain high consistency when transitioning from 508

pairwise to list-wise evaluations, while less capable 509

models, such as GPT-3.5-Turbo, exhibit greater 510

sensitivity to the increased number of candidates 511

in list-wise tasks. 512

Therefore, the position bias of LLM judges is 513

both judge-dependent and task-dependent. This ob- 514

servation is further confirmed by the bidirectional 515

stepwise regression where judge identities and task 516

categories are statistically significant predictors of 517

PC and PF . In practice, when evaluating LLM 518

judge’s reliability or selecting suitable LLM judges, 519

considering the balance between consistency and 520

fairness, as well as accounting for task-specific 521

variations, may be beneficial. 522

Position Bias Correlates to Answer Quality 523

Gap: Intuitively, the difficulty of judging a pair 524
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Judge
MTBench Pairwise DevBench Pairwise MTBench List-wise

RS PC PF Error RS PC PF Error PC PF Error
Claude-3.5-Sonnet 0.96 ± 0.07 0.82 ± 0.14 0.01 0.00 0.95 ± 0.09 0.76 ± 0.16 0.22 0.00 0.67 ± 0.19 0.17 ± 0.19 0.00
Claude-3-Opus 0.95 ± 0.08 0.70 ± 0.19 0.22 0.00 0.96 ± 0.07 0.69 ± 0.20 0.29 0.00
Claude-3-Sonnet 0.93 ± 0.11 0.59 ± 0.22 0.32 0.01 0.95 ± 0.09 0.71 ± 0.22 0.23 0.00
Claude-3-Haiku 0.89 ± 0.18 0.57 ± 0.18 0.18 0.00 0.90 ± 0.17 0.23 ± 0.14 0.75 0.00

Gemini-1.5-pro 0.97 ± 0.09 0.62 ± 0.19 0.23 0.03 0.87 ± 0.17 0.84 ± 0.17 0.03 0.13 0.55 ± 0.20 0.33 ± 0.18 0.00
Gemini-1.0-pro 0.89 ± 0.18 0.57 ± 0.18 0.30 0.00 0.85 ± 0.26 0.66 ± 0.20 -0.05 0.00
Gemini-1.5-flash 1.00 ± 0.00 0.67 ± 0.17 0.07 0.00 0.04 ± 0.08 0.92 ± 0.39 0.00 0.96

GPT-4 0.97 ± 0.05 0.82 ± 0.15 0.02 0.00 0.97 ± 0.05 0.83 ± 0.15 -0.13 0.00
GPT-4-Turbo 0.94 ± 0.10 0.75 ± 0.16 0.02 0.00 0.97 ± 0.06 0.79 ± 0.18 0.16 0.00
GPT-4o 1.00 ± 0.02 0.76 ± 0.18 -0.12 0.00 0.98 ± 0.03 0.80 ± 0.16 -0.12 0.00 0.68 ± 0.22 0.18 ± 0.22 0.00
GPT-3.5-Turbo 0.96 ± 0.07 0.70 ± 0.18 0.06 0.00 0.99 ± 0.02 0.76 ± 0.18 -0.02 0.00 0.34 ± 0.17 -0.05 ± 0.30 0.12
o1-mini 0.90 ± 0.07 0.76 ± 0.15 -0.04 0.00 0.93 ± 0.12 0.84 ± 0.13 -0.07 0.00

Llama-3.3-70B 0.96 ± 0.06 0.80 ± 0.16 -0.05 0.00 0.99 ± 0.01 0.89 ± 0.12 -0.03 0.00
Llama-3.1-405B 0.93 ± 0.10 0.77 ± 0.16 0.10 0.02 0.94 ± 0.10 0.79 ± 0.15 0.01 0.00
Llama-3.1-8B 0.75 ± 0.32 0.69 ± 0.23 -0.03 0.25 0.79 ± 0.36 0.47 ± 0.18 0.25 0.00

Table 2: Evaluation results for Repetition Stability (RS), Position Consistency (PC), and Preference Fairness (PF )
are presented for both pairwise and list-wise evaluation approaches, with the top 5 performances marked in bold.
Errors arise from judgment failures (e.g., exceeding context window, not following output format). High error rates
and low RS are marked red, rendering further evaluations invalid due to insufficient data. List-wise evaluation is
conducted on four representative judges to validate scalability.

of candidate answers is largely reflected by their525

difference in quality. In this study, as defined in526

Section 2.3, we quantify the quality gap (δq) be-527

tween candidate solutions and expected baseline528

(calculated by 1/p for a p-candidate list) by the529

overall win rate (owr). Therefore, δq increases as530

owr extends from baseline to 0 or 1. Fig. 2 (e)531

and (f) exhibit significant parabolic shapes, indicat-532

ing that PC is positively proportional to δq. This533

aligns with our intuition that the answer pairs or534

series with larger quality disparities are easier to535

achieve judgment consistency, whereas those of536

similar quality are difficult to judge, increasing the537

likelihood of position bias that leads to lower PC.538

The same relationship is observed for each individ-539

ual judge and across benchmarks, as demonstrated540

in Appendix.Sec. D.541

Similarly, as shown in Fig. 2 (d), judgments gen-542

erally become more preference fair as δq increases.543

However, the extent is not as significant as for PC.544

Also, the relationship varies by judge, as some545

LLMs maintain preference fairness regardless of546

δq. For example, as shown in Appendix.Fig. 5,547

PF of GPT models centered closely around 0 con-548

sistently, whereas that of Claude and Gemini-pro549

models exhibit a conspicuous proportional relation-550

ship on MTBench. These observations align with551

the right-arrow shape as demonstrated in Fig. 2552

(c), where there is a general trend that judgments553

become preference fairer as position consistency554

increases. It also justifies the reasonableness of555

our quantification of preference fairness, as highly556

position consistent judges are not overly penalized557

and a perfect PC should result in PF = 0. 558

Together, we conclude that as the answer quality 559

gap enlarges, judges generally become more posi- 560

tion consistent and preference fair according to the 561

regression curves. However, exceptions are com- 562

mon, as shown by the individual scatter points of 563

these figures. This indicates that though the answer 564

quality gap significantly influences the position 565

bias of LLM judges, other factors also play impor- 566

tant roles. Therefore, built on our findings, future 567

studies may have better control over the answer 568

quality gap when evaluating LLM judges, explor- 569

ing other impacting factors on position bias, and 570

seeking potential mitigation strategies. 571

Position Bias is weakly Length-dependent We 572

investigate the impact of three different lengths on 573

the position bias of LLM judges: the length of the 574

question (task input length), the solution length 575

of candidate models (task output length), and the 576

length of the entire prompt (prompt length). By 577

stepwise regression, we discovered that average 578

task output length is only significant in predicting 579

PF , adding a minimal change in AIC as shown in 580

Appendix Table. 4. In other words, there is a very 581

weak relationship between the lengths of prompt 582

components and position bias. 583

LLM Agreement Analysis: We complement 584

our investigation of position bias with an agreement 585

and disagreement analysis among LLM judges. 586

Rather than focusing exclusively on overall con- 587

sistency or fairness, we examine how LLM judges 588

converge and diverge in their assessments of in- 589

dividual instances. Agreement analysis quantifies 590
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(a) (b)

(c) (e) (f)(d)

Figure 2: Judge performances on MTBench. Fig. (a)(b) are the radar charts for the PC comparison by family,
judge, and task. Fig. (c) leverages linear regression to explore the general relationship between PC and PF . Fig.
(d) to (f) investigate the impact of answer quality gap on position bias using overall win rates. Fig. (a) to (e) are for
pairwise comparative settings, while Fig. (f) are obtained under list-wise evaluations.

the percentage of instances where two LLM judges591

mutually agree on the outcome. Disagreement anal-592

ysis counts the number of choices deviating from593

the mode for each instance among all judges. This594

further complies a “distribution of disagreement”595

across the dataset.596

Our findings reveal that, despite exhibiting simi-597

lar overall PC and PF scores, judges vary signif-598

icantly in their judgments on individual instance.599

Disagreement analysis, in particular, highlights in-600

stances where consensus is either easily or diffi-601

cultly achieved, reflecting the inherent complexity602

of the judgment task. For example, as shown in Fig.603

3, more than half of the dataset can be considered604

relatively easy to judge, as over 80% of all 15 LLM605

judges agree with each other on these instances606

(disagreement ≤ 3). Conversely, fewer than 2%607

of instances represent the likely especially-hard-to-608

judge cases where a majority of LLM judges fail609

to reach consensus (disagreement ≥ 8).610

Based on our observations of answer quality611

gaps and LLM agreement/disagreement patterns,612

this study offers practical insights for designing613

evaluator benchmarks that account for the varying614

difficulty levels of judgment tasks. Specifically, the615

most challenging instances to evaluate are charac-616

terized by: (1) frequent disagreements among LLM617

judges, (2) closely matched win rates and minimal618

quality gaps among candidate models, and (3) sig-619

nificant position bias exhibited by the majority of620

LLM judges. Further discussions and analyses can621

be found in Appendix Sec. C.622

Figure 3: Distribution of disagreement on MTBench.
The y-axis indicates the proportion of the dataset where
the level of disagreement among LLM judges does not
exceed a specific threshold.

5 Conclusion 623

In conclusion, this paper provides an in-depth anal- 624

ysis of position bias in LLM judges, a critical chal- 625

lenge in automated evaluation. Using metrics such 626

as repetition stability, position consistency, and 627

preference fairness, we identify significant vari- 628

ations in position bias across judges and tasks, con- 629

sistent across pairwise and list-wise comparison 630

settings. Our findings show that position bias is 631

weakly influenced by prompt length but strongly 632

impacted by the quality gap between solutions. Fur- 633

thermore, agreement and disagreement analysis 634

highlights variability in judgment reliability, pro- 635

viding valuable insights for refining benchmarks. 636

This study enhances understanding of position bias 637

and contributes to the development of fairer and 638

more reliable LLM evaluation frameworks. 639
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6 Limitations640

Despite proposing scalable metrics and investigat-641

ing key factors influencing position bias, our study642

has several limitations.643

First, we evaluated only 12 commercial closed-644

source LLM judges for pairwise settings and 4 for645

list-wise paradigms across two benchmarks, lim-646

iting the list-wise comparisons to three-candidate647

lists. Among open-source models, we assessed648

only three Llama 3.1+ models of varying sizes,649

as earlier versions or other smaller models lacked650

sufficient context window lengths, making them651

unsuitable given the length of evaluation instances652

in our study. Additionally, while we used original653

benchmark prompt templates, exploring alternative654

prompting techniques could offer further insights.655

Future work could expand on this by incorporat-656

ing more models, tasks, prompting strategies, and657

larger list-wise candidate pools to enhance the gen-658

eralizability of our findings.659

Second, data accessibility limitations prevented660

a direct analysis of Judge-level factors like archi-661

tecture and parameter size of closed-source mod-662

els. Instead, we approximated these factors by663

grouping models by family properties. While open-664

source models offer accessible architectural details665

for deeper analysis, our assessment of only three666

Llama models may not provide sufficient evidence667

for broader conclusions. Additionally, our analy-668

ses were conducted post hoc, relying on completed669

judgments before analysis. Future work could ex-670

plore methods to estimate or control these factors671

pre-judgment, reducing computational costs and672

enabling proactive mitigation strategies.673

Lastly, our focus was on evaluating and under-674

standing position bias rather than mitigating it.675

While our findings provide a foundation for ef-676

fective mitigation, further research is needed to677

address issues like maintaining consistency and678

fairness when answer quality gaps are minimal,679

where position bias is most pronounced. Multivari-680

ate analyses exploring interactions between factors681

like prompt length, task complexity, and answer682

quality gaps could also yield deeper insights and683

enhance mitigation approaches.684
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B Related Work 883

B.1 LLM-as-a-Judge 884

Large Language Models (LLMs) have become a 885

transformative tool in automating evaluative tasks, 886

offering scalability and reproducibility advantages 887

over human assessments. The methodology of us- 888

ing LLMs as evaluators ("LLM-as-a-Judge") has 889

been widely used for tasks such as open-ended 890

story generation (Chiang and Lee, 2023a), adver- 891

sarial attacks (Chiang and Lee, 2023b), summa- 892

rization (Karpinska et al., 2021), machine transla- 893

tion (Kocmi and Federmann, 2023), and instruc- 894

tion following (Zeng et al., 2023), where models 895

are tasked with scoring or ranking outputs. De- 896

spite their potential, inherent biases—particularly 897

position bias—pose significant challenges to their 898

reliability and fairness, even in the most effective 899

pairwise comparative settings. 900

B.2 Position Bias 901

However, position bias is a complex problem that 902

is challenging to deal with or solve. The naive way 903

is to exclude the position inconsistent judgments, 904

which does not solve the fundamental issue and 905

would likely result in data sparsity when position 906

bias is frequently exhibited. Therefore, researchers 907

proposed ‘inconsistency-as-a-tie’ for both models 908

in pairwise comparative settings to consider all 909

judgments for further analysis (Zheng et al., 2024b; 910

Li et al., 2023c). This approach, while practically 911

useful for evaluations, does not mitigate position 912

bias. 913

Given the significance of position bias, re- 914

searchers have developed more sophisticated ap- 915

proaches to mitigate it, including bootstrapping 916

(Hou et al., 2024), split-and-merge techniques (Li 917

et al., 2023d), and multi-agent discussions (Li et al., 918

2023c; Khan et al., 2024). While these methods 919

demonstrate potential, they are often costly, time- 920

consuming, or insufficient. For example, multi- 921

agent discussions and iterative reviews require ex- 922

tensive computational resources and human-like 923
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deliberation, while simpler techniques, such as or-924

der permutation (Wang et al., 2023; Zheng et al.,925

2024a) and batch calibration (Zhou et al., 2024),926

have limited effectiveness in addressing bias holisti-927

cally. Furthermore, calibration methods like ensem-928

bling (Li et al., 2023a) or context decomposition929

(Li et al., 2023d) are often constrained by the inad-930

equacy of supervised data to align LLM evaluators931

effectively (Liu et al., 2024). This highlights that932

addressing this crucial bias is complex and chal-933

lenging.934

The limitations of existing approaches under-935

score a critical gap in our understanding of position936

bias itself. A lack of clarity on the factors influ-937

encing this bias and their quantitative impacts ham-938

pers the development of effective solutions. For939

instance, while the PORTIA approach (Li et al.,940

2023d) demonstrates significant improvements in941

consistency for GPT-4 (from 93.44% to 97.03%),942

this success may be overestimated due to the selec-943

tion of tasks with large answer quality gaps. As our944

study reveals, such gaps inherently reduce the like-945

lihood of position bias, making these cases easier to946

calibrate. This example underscores the necessity947

of first comprehensively understanding the under-948

lying factors contributing to position bias before949

proposing or refining mitigation strategies. With-950

out this foundational understanding, the efficacy of951

current and future methods remains uncertain and952

potentially misjudged.953

B.3 Research Gaps954

To enhance the understanding of position bias, our955

study builds on and extends prior work through the956

following dimensions.957

Repetition Stability: Previous studies on LLM-958

as-a-Judge often implicitly assume that single-959

instance judgments are sufficient to reflect the960

evaluating capabilities of judge models, thereby961

attributing observed biases entirely to systematic962

tendencies rather than random variations. These963

studies typically proceed directly to analyses on964

position bias or others without such verification.965

However, if judgments vary by chance or lack con-966

sistency across repetitions, the reliability and ac-967

curacy of downstream analyses are compromised.968

To avoid this issue, Chen et al. (2024) repeated969

evaluations multiple times and adopted the mode970

judgment as the representative, an approach that,971

while effective, is computationally expensive. Ad-972

dressing this gap, our work introduces a method or973

metric for systematically evaluating the stability of974

LLM judgments across repetitions. This ensures 975

that observed biases are systematic rather than arti- 976

facts of variability. By performing this validation 977

on a sample dataset for cost-efficiency, researchers 978

can establish a robust foundation for subsequent 979

evaluations and analyses, ensuring the reliability of 980

their conclusions. 981

Preference Fairness: Prior studies on position 982

bias often focus on the proportion of position con- 983

sistent judgments, referred to as “position consis- 984

tency”. Only a few have explored the preference 985

directions of LLM evaluators in addition to con- 986

sistency. However, traditional measurements ei- 987

ther overly penalize highly consistent judges (Li 988

et al., 2023c; Liusie et al., 2024) or rely on metrics 989

whose sensitivity is highly dependent on dataset 990

size (Zheng et al., 2024b; Zhu et al., 2023). To ad- 991

dress these limitations, we proposed a refined met- 992

ric, preference fairness (PF ), which integrates the 993

strengths of both approaches. This single, compre- 994

hensive metric ensures sensitivity across datasets, 995

remains independent of the number of questions 996

and tasks, and represents a significant improvement 997

over previous metrics. 998

Answer Quality Gap: Intuitively, candidate so- 999

lutions with significant quality disparities are easier 1000

to judge, likely resulting in reduced position bias. 1001

This suggests that the quality gap among answers 1002

is a potentially significant factor influencing posi- 1003

tion bias. However, this factor has been largely 1004

overlooked in prior works, both in evaluations and 1005

in the development of mitigation strategies, under- 1006

scoring our limited understanding of position bias. 1007

While Wang et al. (2023) explored the answer qual- 1008

ity gap in score-based LLM-as-a-Judge evaluations 1009

using judgment scores, quantifying this variable 1010

in comparative settings (pairwise or list-wise) re- 1011

mains an open research problem. To address this 1012

gap, we propose the use of win rates (Zheng et al., 1013

2024b) of candidate solutions against an expected 1014

baseline to measure the answer quality gap. This 1015

approach offers a practical quantitative metric for 1016

subsequent analysis and deepens our understanding 1017

of the factors driving position bias. 1018

List-wise Evaluations: Although LLM-as-a- 1019

Judge has been categorized into pointwise, pair- 1020

wise, and list-wise paradigms (Qin et al., 2024), 1021

most research has focused on pairwise compara- 1022

tive assessments due to their demonstrated effec- 1023

tiveness (Zheng et al., 2024b; Liusie et al., 2024). 1024

However, this leaves a significant gap in measuring 1025

and understanding the position bias in list-wise set- 1026
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tings, where LLMs are prompted to evaluate three1027

or more candidate solutions simultaneously. With1028

advancements in model capabilities, list-wise eval-1029

uations present a potentially more cost-effective1030

alternative to pairwise approaches, requiring fewer1031

comparisons while maintaining consistency and1032

fairness. Our work bridges this gap by extending1033

position bias assessments from pairwise to list-wise1034

settings, enabling a more comprehensive evaluation1035

of LLM-as-a-Judge across varied configurations.1036

These identified gaps - spanning from the vali-1037

dation of judgments to the evaluation of list-wise1038

settings - highlight the need for a more comprehen-1039

sive framework to evaluate and understand position1040

bias. By addressing these dimensions collectively,1041

our work provides a foundation for a deeper under-1042

standing of the consistency, fairness, and reliability1043

of LLM evaluators.1044

C LLM Agreement Analysis1045

Besides the exploration of position bias with a1046

broad lens by average PC and PF , instance-wise1047

agreement between LLM judges is also insightful.1048

Even two judges with the same PC and PF scores1049

may not reach consensus on each instance. There-1050

fore, this session investigates (1) what percentage1051

of a set of evaluations do two LLM judges agree1052

on each other? (2) how do the choices of all judges1053

on an instance vary?1054

C.1 Mutual Agreement & Familial Property1055

We compute the LLM judges’ mutual agreement1056

on the instances to explore how “alike” or con-1057

sistent they are across a set of evaluations. We1058

denote two judges agree on an instance if their1059

judgment choices are identical. Then the mutual1060

agreement between two LLM judges on a bench-1061

mark is defined as the proportion of their agreed1062

instances. Figs. 4(a) and (c) displays the mutual1063

agreement heatmap for all judges on MTBench and1064

DevBench, respectively. For MTBench that utilizes1065

the 3-option mode, we also consider the “without1066

tie" agreement since two judges are less disagreed1067

when one chooses {C} while the other prefers a1068

certain solution, compared to the case when they1069

prefer different solutions. The “without tie” agree-1070

ment heatmap of the twelve judges on MTBench is1071

explored in Fig. 4(b).1072

The heatmaps reveal clear “familial patterns” in1073

the judgment choices of these LLM judges. For1074

instance, the GPT-4, GPT-4-Turbo, and GPT-4o1075

series exhibit high agreement on MTBench, achiev- 1076

ing over 70% with ties included and over 85% with- 1077

out. GPT-3.5-Turbo didn’t agree with the GPT-4 1078

series and o1-mini for around 40% of the instances, 1079

indicating that they are considerably different in 1080

judging capabilities. 1081

For Claude-3 models, similar familial patterns 1082

could be observed. Claude-3-Opus highly agrees 1083

with Claude-3.5-Sonnet, probably due to their sim- 1084

ilar capabilities, while it also highly agrees with 1085

Claude-3-Sonnet, likely due to their similar model 1086

structure within the same series. Interestingly, 1087

Claude-3.5-Sonnet and Claude-3-Sonnet do not ex- 1088

hibit a significantly high agreement, indicating that 1089

the upgrade from series 3 to 3.5 considerably im- 1090

pacts their judging capabilities. 1091

Gemini models exhibit rather low mutual agree- 1092

ment and “familial property" is minimal, but the 1093

most capable Gemini-1.5-pro aligns more closely 1094

with other capable models like the GPT-4 series 1095

and Claude-3-Opus. 1096

Llama models demonstrate a high agreement 1097

among capable family members (Llama-3.3-70B 1098

and Llama-405B) and with GPT series. However, 1099

significantly smaller and less capable model like 1100

Llama-3.1-8B does not strong agree with them. 1101

These patterns suggest that familial similarities, 1102

possibly stemming from analogous model sizes, 1103

training data, and strategies, influence the posi- 1104

tional preferences of these judges. In particular, the 1105

LLM judges could be primarily grouped by their 1106

capabilities; when judging capabilities are compa- 1107

rable, models within the same family series share a 1108

higher mutual agreement than across families. 1109

Identifying such groupings provides valuable in- 1110

sights, as comparisons between judges from differ- 1111

ent groups, both adept at assessing LLM-generated 1112

content, can reveal distinct position biases and en- 1113

rich our understanding of this phenomenon. 1114

C.2 Disagreement & Benchmark Design 1115

Insight 1116

Since the mutual agreement between LLM judges 1117

is not perfect and usually a considerable proportion 1118

of instances are difficult for them to reach a con- 1119

sensus, disagreement analysis becomes crucial and 1120

insightful. Therefore, we define the disagreement 1121

of an evaluation instance to be the number of judg- 1122

ments different from the majority. By this defini- 1123

tion, an instance with all judges reaching a consen- 1124

sus on the better solution will have a disagreement 1125

of 0; in contrast, an instance where judgments are 1126
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Figure 4: Figures (a) to (c) are mutual agreement heatmap of LLM judges on MTBench and DevBench, where (b) is
the agreement computation excluding the tie option {C}. Higher mutual agreement between two LLM judges is
marked with brighter color. Figure (d), like Figure 3, is the distribution of disagreement on DevBench.

widely varied will result in a high disagreement.1127

For our study where 15 judges are investigated, the1128

maximum disagreement of an MTBench instance1129

is 10, accounting for the 5{A}-5{B}-5{C} choice1130

pattern by 3-option mode. On the other hand, for1131

DevBench instances, since Gemini-1.5-flash is ex-1132

cluded due to insufficient data (as shown by high1133

error rates in Tabel 2), the maximum possible dis-1134

agreement for the remaining 14 judges is 7, repre-1135

senting the 7{A}-7{B} judgment distribution for1136

the 2-option mode.1137

The distributions of instances with different dis-1138

agreement values on MTBench and DevBench are1139

shown in Fig. 3 and Fig. 4(d), respectively. From1140

our disagreement analysis, at least 75% of the1141

judges reached a choice consensus on more than1142

half of the instances on both benchmarks. These are1143

likely easy-to-evaluate instances, and the reliability1144

of LLM judgments is enhanced by majority voting.1145

In comparison, the instances with the highest dis-1146

agreement are likely the ones that are difficult to 1147

evaluate and where the position bias is most likely 1148

to occur. However, luckily, these instances are rare, 1149

occupying only less than 5% for both benchmarks 1150

respectively. In other words, majority voting of 1151

multiple capable LLM judges could be practically 1152

useful for over 95% of evaluation instances on both 1153

benchmarks. 1154

Moreover, if we roughly consider the disagree- 1155

ment value of instances as their difficulty for judg- 1156

ing, then Fig. 3 and Fig. 4(d) exhibit a balanced 1157

distribution of instances with varied difficulty. This 1158

is because, except for the instances with the high- 1159

est disagreement, the numbers of other instances 1160

with varied disagreement do not vary significantly, 1161

indicating a smoothly increasing difficulty curve 1162

across the benchmark datasets. 1163

To summarize, the practical implications of the 1164

disagreement analysis are three-fold. First, it helps 1165

identify the instances that are difficult or trivial to 1166
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judge, benefiting benchmark designs to control the1167

difficulty of evaluation by managing the number1168

of these instances across the dataset. Second, it1169

assists in filtering out instances where majority vot-1170

ing of LLM evaluators are likely to offer reliable1171

judgments without direct comparison with human-1172

annotated evaluations, enhancing the scalability of1173

LLM judges especially when human evaluations1174

are costly. In other words, if one-shot judgments1175

from only one LLM judge are not enough reliable,1176

multiple capable LLMs and the majoring voting1177

strategy could be employed to make the evaluation1178

more convincing. Last but not least, disagreement1179

analysis provides a convenient way to make the1180

difficulty variance of instances varied across the1181

dataset tangible. Since the difficulty of an evalua-1182

tion instance is closely related to the quality gap1183

between the two solutions and hence position bias,1184

the investigation of the instances where most judges1185

particularly disagree with one another could pro-1186

vide more insights and inspiration for future bench-1187

mark designs and potential mitigation strategies for1188

position bias.1189

D More Results of Position Bias and1190

Answer Quality Gap Measurement1191

D.1 MTBench1192

As shown in Fig. 2(c), considering all judges to-1193

gether, a larger answer quality gap generally leads1194

to better position consistency and preference fair-1195

ness. In this session, we explore whether the discov-1196

ery is consistent for each individual judge. Same as1197

Section 2.3, we apply the overall win rate to reflect1198

the answer quality gap for visualization.1199

As shown in Fig. 5 (a), the “parabolic shape" is1200

observed for all individual judges, indicating that1201

the argument “a higher answer quality gap gener-1202

ally results in higher position consistency applies to1203

all models. However, Fig. 5 (b) reveals that prefer-1204

ence fairness is more judge-dependent and the im-1205

pact of the answer quality gap is neglectable for cer-1206

tain judges. For example, while Claude-3-opus and1207

Claude-3-sonnet exhibit conspicuous “parabolic1208

shape", GPT-4 and GPT-3.5 present nearly linear1209

curves. In other words, while the former models1210

align with the general tendency that a larger answer1211

quality gap improves preference fairness, the lat-1212

ter ones preserve fairness regardless of the answer1213

quality gap. This further demonstrates the neces-1214

sity to investigate preference fairness in addition1215

to consistency when evaluating a judge model’s1216

position bias. 1217

D.2 DevBench 1218

This session includes a similar baseline compari- 1219

son analysis on DevBench as on MTBench. As 1220

shown in Fig.6, position bias is judge-dependent 1221

and task-dependent on DevBench as well, as PC 1222

and PF vary significantly across judges and tasks. 1223

Similarly, although GPT-4 stands as the baseline 1224

model with a generally high PC across tasks, cer- 1225

tain models achieve comparable or superior perfor- 1226

mances on certain tasks. For instance, for archi- 1227

tecture design evaluations, GPT-4-Turbo, GPT-4o, 1228

and Gemini-1.5-pro all surpass GPT-4. Gemini- 1229

1.5-pro is especially outstanding, also exceeding 1230

GPT-4 in uml class evaluations. However, GPT-4 is 1231

still the best-performing model on UML sequence 1232

evaluations, with only GPT-3.5-Turbo can achieve 1233

comparable performance regarding certain detailed 1234

metrics (e.g., interaction complexity). These dis- 1235

coveries, aligning with the findings on MTBench, 1236

further necessitate the need to consider the trade- 1237

offs between positional consistency and fairness 1238

when selecting the optimal judge model for certain 1239

tasks. 1240

E Variable Selection and Tests 1241

E.1 Bidirectional Stepwise Regression with 1242

AIC 1243

Bidirectional stepwise regression is a combination 1244

of forward selection and backward elimination tech- 1245

niques. It iteratively refines the model by adding 1246

or removing predictors based on a statistical crite- 1247

rion—commonly the Akaike Information Criterion 1248

(AIC). The objective is to select a model that bal- 1249

ances goodness of fit and complexity, aiming for 1250

the lowest AIC value. 1251

The AIC is given by: 1252

AIC = 2k − 2 log(L), (4) 1253

where L is the likelihood of the model and k is 1254

the number of parameters in the model, including 1255

the error variance σ2. For a linear regression model 1256

with independent and identically distributed (iid) 1257

errors, N(0, σ2), fitted to n observations, the log- 1258

likelihood can be written as: 1259

log(L) = −n
2 log(2π)−

n
2 log(σ

2)− 1
2σ2

∑n
i=1 ê

2
i , (5) 1260
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Figure 5: Position Consistency and Preference Fairness vs. overall win rate for each judge on MTBench. Figure (a)
refers to the relationship investigation of PC and figure (b) for PF .

where êi is the residual for the ith observation,1261

and σ2 is the variance of the errors. The AIC, in1262

this context, becomes:1263

AIC = 2k + n log(2π) + n log(σ2) + 1
σ2

∑n
i=1 ê

2
i . (6)1264

This form of the AIC balances the goodness of1265

fit (as reflected by the residual sum of squares) and1266

model complexity (as represented by k).1267

The operation of Bidirectional stepwise regres-1268

sion starts with either no predictors (forward se-1269

lection) or all predictors (backward elimination),1270

where the model iteratively adds or removes vari-1271

ables. Each step evaluates the impact on the AIC1272

score. In forward selection, variables are added1273

one by one, starting from the null model, such that1274

the addition of each variable results in the largest1275

decrease in AIC. In backward elimination, all vari-1276

ables are included in the model initially, and vari-1277

ables are removed one at a time, with the variable1278

whose removal causes the smallest increase in AIC1279

being dropped.1280

At each iteration, the change in AIC is computed1281

as ∆AIC = AICnew − AICcurrent, where AICnew1282

refers to the AIC after adding or removing a vari-1283

able, and AICcurrent is the AIC of the current model.1284

If ∆AIC < 0, the model is improved by the addi-1285

tion or removal of the variable. The process termi-1286

nates when neither adding nor removing variables1287

results in a lower AIC, signifying that the most par- 1288

simonious model, based on AIC, has been reached. 1289

E.2 Test results 1290

We operated bidirectional stepwise regression on 1291

both benchmarks individually and together to iden- 1292

tify the factors that are significantly contributing 1293

to position bias. Specifically, the variables include 1294

lengths (input, output, and prompt), answer qual- 1295

ity gap, LLM judges, candidate models, and task 1296

categories to predict position consistency and pref- 1297

erence fairness respectively. Table 5, 6 records the 1298

results of final step in stepwise regression for pre- 1299

dicting PC and PF , respectively. Table 7, 8 serves 1300

for DevBench, and Table 3, 4 is conducted on the 1301

integrated set of both benchmarks. The impact of 1302

variables on the model is ranked from highest to 1303

lowest, from bottom to top. Removed variables 1304

listed as None indicate the full model at this given 1305

step. 1306

Through benchmark testing, we verified that 1307

LLM judges, task categories, and the answer qual- 1308

ity gap significantly contribute to position bias in 1309

terms of both position consistency and preference 1310

fairness. These findings align with our empirical 1311

results, showing that position bias varies notably by 1312

judge and task, with the answer quality gap being a 1313

key influencing factor. The extent of this impact is 1314

reflected by the magnitude of change in AIC when 1315
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Figure 6: Baseline comparisons of position bias of LLM judges across tasks on DevBench. An asterisk marks the
statistical significance by Student’s t-tests. Figure (a) selects GPT-4 as the baseline, where asterisk demonstrates
signficantly better or worse PC of other models compared to it. Figure (b) utilizes an absolute PF baseline of 0
and depicts preference fairness performances of LLM judges across tasks. Similar to findings on MTBench, position
bias is significantly judge-dependent and task-dependent on DevBench as well.

the given variable is removed. It is worth noting1316

that while task output length remains a significant1317

predictor for PF and PC in both benchmarks, the1318

change in AIC magnitude after removing this vari-1319

able is very minimal. This is consistent across1320

both benchmarks individually and combined. We1321

therefore conclude that, although position bias is1322

influenced by task output length, this dependency1323

is minimal.1324

Removed Variables DF Sum of Sq RSS AIC

None 163.75 -18370
Task 20 2.832 166.59 -18319

Candidate 38 4.472 168.23 -18303
Quality gap 1 21.953 185.71 -17703

Judge 13 55.417 219.17 -16846

Table 3: Final results of stepwise model selection for
both benchmarks: Position Consistency

F Experiment Settings1325

This session specifies more detailed information1326

about the judges, answer-generating models, tasks,1327

and prompt templates used in this study. We choose1328

to evaluate MTBench and DevBench for the follow-1329

ing reasons: (1) all necessary information about the1330

benchmark models, tasks, and questions is publicly1331

Removed Variables DF Sum of Sq RSS AIC

None 254.28 -16103
Task output length 1 0.836 255.12 -16088

Quality gap 1 11.339 265.62 -15873
Task 21 16.177 270.46 -15817

Judge 13 82.069 336.35 -14641

Table 4: Final results of stepwise model selection for
both benchmarks: Preference Fairness

Removed Variables DF Sum of Sq RSS AIC

None 61.974 -13312
Task output length 1 0.0553 62.029 -13311

Candidate 29 1.6474 63.621 -13282
Task 7 1.5304 63.504 -13244

Judge 13 15.3637 77.338 -12594
Quality gap 1 15.6206 77.594 -12559

Table 5: Final results of stepwise model selection for
MTBench: Position Consistency

available, making modifications convenient (2) they 1332

include a wide variety of answer-generating mod- 1333

els, tasks, and task questions for a comprehensive 1334

evaluation (3) their human evaluations validated the 1335

reliability of state-of-the-art judging models (GPT- 1336

4 and GPT-4-Turbo) on their evaluation instances, 1337

hence model untested by prior work, if reaching 1338

high agreement with these validated judges, can be 1339
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Removed Variables DF Sum of Sq RSS AIC

None 129.00 -10909.2
Quality gap 1 1.931 130.93 -10861.3

Task 7 9.295 138.29 -10689.4
Judge 13 58.847 187.85 -9672.5

Table 6: Final results of stepwise model selection for
MTBench: Preference Fairness

Removed Variables DF Sum of Sq RSS AIC

None 55.382 -6940.2
Task output length 1 0.257 55.638 -6933.2

Candidate 9 1.514 56.896 -6905.4
Quality gap 1 13.128 68.510 -6525.3

Judge 13 84.760 140.141 -5146.6

Table 7: Final results of stepwise model selection for
DevBench: Position Consistency

Removed Variables DF Sum of Sq RSS AIC

None 60.104 -6753.9
Task output length 1 0.061 60.165 -6753.9

Candidate 9 0.731 60.834 -6748.2
Task 13 1.305 61.408 -6737.8

Quality gap 1 1.783 61.886 -6698.6
Judge 13 80.875 140.979 -5108.9

Table 8: Final results of stepwise model selection for
DevBench: Preference Fairness

perceived reliable as well.1340

F.1 Judges, Candidates, and Tasks1341

Judge In this study, we choose seven GPT, four1342

Claude, and three Gemini models as the judges.1343

The specific versions for API call are specified1344

as follows: o1-mini-2024-09-12 for o1-mini, gpt-1345

4o-2024-05-13 for GPT-4o, gpt-4-1106-preview1346

for GPT-4-Turbo, gpt-4-0613 for GPT-4, and1347

gpt-3.5-turbo-1106 for GPT-3.5-turbo; claude-1348

3-5-sonnet-20240620, claude-3-opus-20240229,1349

claude-3-sonnet-20240229, and claude-3-haiku-1350

20240307 for Claude series. The other model1351

names and versions are as they are.1352

Model The reference (or baseline) answer-1353

generating models are vicuna-13b-v1.3 for MT-1354

Bench and human for DevBench. They are chosen1355

to ensure a baseline quality of responses and an1356

expected widely spread quality gap across evalua-1357

tions. The other models that are compared to the1358

reference models, namely “Model" in our context,1359

are listed as follows.1360

• MTBench (30): alpaca-13b, baize-v2-13b,1361

chatglm-6b, claude-instant-v1, claude-v1, dolly- 1362

v2-12b, falcon-40b-instruct, fastchat-t5-3b, gpt- 1363

3.5-turbo, gpt-4, gpt4all-13b-snoozy, guanaco- 1364

33b, guanaco-65b, h2ogpt-oasst-open-llama- 1365

13b, koala-13b, llama-13b, mpt-30b-chat, 1366

mpt-30b-instruct, mpt-7b-chat, nous-hermes- 1367

13b, oasst-sft-4-pythia-12b, oasst-sft-7-llama- 1368

30b, palm-2-chat-bison-001, rwkv-4-raven-14b, 1369

stablelm-tuned-alpha-7b, tulu-30b, vicuna-33b- 1370

v1.3, vicuna-7b-v1.3, wizardlm-13b, wizardlm- 1371

30b 1372

• DevBench (10): codellama-7b-instruct, 1373

codellama-13b-instruct, codellama-34b-instruct, 1374

deepseek-coder-1.3b-instruct, deepseek-coder- 1375

6.7b-instruct, deepseek-coder-33b-instruct, 1376

gpt-3.5-turbo-1106, gpt-4-0125-preview, 1377

gpt-4-0613, gpt-4-1106-preview 1378

The model names are exactly what MTBench 1379

(Zheng et al., 2024b) and DevBench (Li et al., 1380

2024a) used in their studies. That is why for GPTs, 1381

DevBench specifies the exact version (e.g., gpt-4- 1382

0613) while MTBench doesn’t (e.g., gpt-4). In 1383

this study, we directly use the provided answers of 1384

these models to the task questions to form answer 1385

pairs and queries for the LLM judges. 1386

Task For tasks, we also follow the original stud- 1387

ies of these two benchmarks, except for DevBench 1388

we separate the gerenal metrics into detailed ones 1389

and considered them as different tasks. In this 1390

sense, our study experiments on the following tasks 1391

to provide a comprehensive study on the positon 1392

bias of LLM-as-a-Judge: 1393

• MTBench (8): coding, extraction, humanities, 1394

math, reasoning, roleplay, stem, and writing. 1395

• Devbench (14): 1396

– UML class (4): cohesion_and_decoupling, 1397

complexity, practicability, and faithfulness 1398

– UML sequence (5): cohe- 1399

sion_and_decoupling, interac- 1400

tion_complexity, practicability, uni- 1401

formity_and_integration, and faithfulness 1402

– architecture design (5): conformance, 1403

design_and_coding, practicability, unifor- 1404

mity_and_integration, and faithfulness 1405

F.2 Prompt Settings 1406

We follow the original prompt settings of MTBench 1407

and DevBench in our study of pairwise comparative 1408

LLM-as-a-Judge. 1409
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Though written differently, these prompts all1410

share same key components:1411

• A system prompt explaining the judging task and1412

the role the LLM should be playing.1413

• Emphasized “should" and“shouldn’t"s.1414

• A prompt structure with placeholders for specific1415

questions and model answers1416

• A specified output format for later judgment ex-1417

traction1418

• Chain-of-Thought (Wei et al., 2022) prompts re-1419

quiring the LLM judge to provide reasons for its1420

judgment1421

The detailed prompt templates are specified be-1422

low.1423
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