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ABSTRACT

Large Language Models (LLMs) show promising potential in solving clinical
problems. Current LLMs, including so-called medical LLMs, are reported to
achieve excellent performance on certain medical evaluation benchmarks, such as
medical question answering, medical exams, etc. However, such evaluations can-
not assess whether LLMs have mastered sufficient, compressive, and necessary
medical knowledge for solving real clinical problems, such as clinical diagnos-
tic assistance. In this paper, we propose a framework to assess the mastery of
LLMs in clinical knowledge. Firstly, we construct a large medical disease-based
knowledge base, MedDisK, covering 10,632 common diseases across 18 clini-
cal knowledge aspects, which are crucial for diagnosing and treating diseases.
Built on that, we propose a MedDisK-based evaluation method MedDisKEval:
We prompt LLMs to retrieve information related to these clinical knowledge as-
pects. Then, we evaluate an LLM’s mastery of medical knowledge by measuring
the similarity between the LLM-generated information and the content within our
knowledge base. Our experimental findings reveal that over 50% of the clinical
information generated by our evaluated LLMs is significantly inconsistent with
the corresponding knowledge stored in our knowledge base. We further perform
a significance analysis to compare the performance of medical LLMs with their
backbone models, discovering that 5 out of 6 medical LLMs perform less effec-
tively than their backbone models in over half of the clinical knowledge aspects.
These observations demonstrate that existing LLMs have not mastered adequate
knowledge for clinical practice. Our findings offer novel and constructive insights
for the advancement of medical LLMs.

1 INTRODUCTION

In recent years, advancements in Large Language Models (LLMs) have shown potential across
various domains, including the medical domain. Several foundation LLMs like ChatGPT (Ouyang
et al., 2022) and LLaMa (Touvron et al., 2023) have been noted for their outstanding performance
on various medical evaluation benchmarks, including USMLE (United States Medical Licensing
Examination) (Kung et al., 2023), the medical section of MMLU (Hendrycks et al., 2020), MedQA
(Jin et al., 2021), and PubMedQA (Jin et al., 2019). However, direct application of general-purpose
LLMs to the medical domain may not be suitable due to their lack of specialized training on medical
corpora and potential deficits in professional expertise within the medical field. To address this gap,
researchers have proposed several LLMs (Li et al., 2023; Wang et al., 2023; Chen et al., 2023; Zhang
et al., 2023; Xiong et al., 2023; Singhal et al., 2023a) tailored for medical applications, known as
“medical LLMs”. Some of these models are claimed to outperform general LLMs like ChatGPT in
specific medical tasks, such as medical dialogues and medical question answering. However, does
the excellent performance achieved in these medical benchmarks and tasks indicate that current
LLMs, including general and medical ones, master adequate knowledge for solving real clinical
problems?

To answer this question, we need to take a throughout look at existing medical evaluation bench-
marks. The existing medical evaluation benchmarks are predominantly based on question-answering
(QA) tasks. These benchmarks collect questions from diverse sources, including medical examina-
tions, electronic health records, online resources, and expert crafting. While these QA-based evalu-
ation benchmarks are effective for assessing LLM performance, they cannot answer whether LLMs
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Figure 1: An overview of the proposed evaluation framework, consisting of two stages: disease-
oriented clinical knowledge retrieval and expert-aligned automated scoring.

have mastered sufficient medical knowledge for solving real clinical problems. This is because cur-
rent QA-based medical evaluation datasets cover only some common diseases and lack extensive
coverage of knowledge across various aspects of diseases. Therefore, the performance of LLMs
on these medical QA datasets cannot accurately reflect the extent to which they cover knowledge
about different diseases and various knowledge aspects of diseases. Moreover, answering questions
involves three distinct skills: understanding the question, mastering the relevant knowledge, and ap-
plying that knowledge for reasoning. Therefore, the performance of LLMs on QA datasets is jointly
determined by these three skills and does not directly reflect their mastery of clinical knowledge.
Furthermore, some of these benchmarks are available online and may be inadvertently included into
the training sets of some LLMs by web crawlers or similar tools used by LLMs developers. Such
data leakage may lead to unfair comparisons.

To address these shortcomings, we present in this paper a novel framework to probe whether LLMs
have mastered comprehensive medical knowledge for real clinical challenges. Figure 1 presents an
overview of this framework. To begin, we construct a large-scale medical disease-based knowledge
base MedDisK, encompassing 10,632 common diseases and 18 clinical knowledge aspects nec-
essary for diagnosing and treating diseases, such as primary symptoms, surgical procedures, and
medications. Built on that, we propose a MedDisK-based evaluation method MedDisKEval: LLMs
are first prompted to recall information of the knowledge aspects defined in our knowledge base,
such as “the primary symptoms of virus URI are ...” and “the anatomy parts of diabetes are ...”.
The LLM’s mastery of clinical knowledge is then probed by measuring the similarity between the
LLM-generated disease information and the content within our knowledge base.

We perform the proposed evaluation on a total of 12 general and medical LLMs. Our experimental
results indicate that, more than 50% of the disease-related information generated by all the evaluated
LLMs exhibit significant inconsistencies with the content from our knowledge base (See Figure 4).
The experimental results answer our question in the first paragraph: None of the current
LLMs have yet mastered adequate clinical knowledge. Additionally, we observe that 5 out of 6
medical LLMs achieve inferior performance compared to their backbone models in over half of the
clinical knowledge aspects. The results imply that the training methods applied in current medical
LLMs may not consistently enhance the mastery of clinical knowledge and could potentially result
in catastrophic forgetting in some knowledge aspects. To ensure the timeliness of this evaluation
framework while guarding against data leaks, we will not release the complete medical knowledge
base. Nevertheless, we will make data samples and an evaluation interface available at [URL to be
released] to promote further research. Our contributions are summarized as follows:

• We propose a large-scale medical disease-based knowledge base MedDisK, covering
10,632 common diseases and 18 clinical knowledge aspects that are crucial for diagnos-
ing and treating diseases.

• Built on that, we introduce a MedDisK-based evaluation method MedDisKEval to probe
LLMs’ mastery of clinical knowledge. Employing the proposed clinical knowledge base,
we conduct an extensive evaluation of 12 LLMs to assess their clinical knowledge mastery.
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• Our experimental results demonstrate that none of the evaluated LLMs have mastered suf-
ficient knowledge to handle real clinical problems effectively. Further analysis indicates
that most of the current medical LLMs do not significantly surpass their backbone models
in medical knowledge mastery.

2 RELATED WORKS

Medical Large Language Models Current medical LLMs can be divided into two categories. One
category supervised finetunes general backbone models with medical question answering (Singhal
et al., 2023b), multi-turn medical dialogue (Zhang et al., 2023; Chen et al., 2023), data generated
by LLMs (Wang et al., 2023; Li et al., 2023; Xiong et al., 2023) or a hybrid of general and medical
data (OpenMEDLab, 2023). The other category, represented by PMC-LLaMA (Wu et al., 2023),
conducts further pretraining on medical corpora. We primarily evaluate LLMs in the first category
since only a few models are in the second category. Moreover, our evaluation is based on a Chinese
clinical knowledge base, and current models in the second category present poor Chinese language
capabilities in our preliminary experiments.

Medical Evaluation Benchmarks Existing medical LLMs are evaluated with question-answering
(QA) tasks, including multi-choice QA (Jin et al., 2021; 2019) and open-ended QA (Singhal et al.,
2023a; He et al., 2019). Though QA tasks are demonstrated as effective tools to evaluate LLMs’
capabilities, they have limitations in measuring LLMs’ medical knowledge mastery. Therefore, we
propose a disease-knowledge-based evaluation that probes LLMs’ proficiency in clinical knowledge.
When scoring open-ended QA, automated metrics (Papineni et al., 2002; Lin, 2004; Zhang et al.,
2019) are widely used but may not align well with human judgments. LLMs (OpenMEDLab, 2023)
or human experts (Singhal et al., 2023b) are also employed, though incurring significant costs for
comprehensive assessments. Therefore, we introduce a low-cost, expert-aligned automated scoring
method to produce scores consistent with expert assessment.

Knowledge-graph-based Language Model Evaluation Some prior studies (Petroni et al., 2019;
Sung et al., 2021) assess language models like BERT (Devlin et al., 2018) and BioBERT (Lee et al.,
2020) by completing triples in knowledge graphs. While these studies probe LMs’ knowledge in the
general and biomedical domains, we focus on probing larger LMs in the clinical domain. We employ
a large-scale clinical knowledge base including 10,632 diseases across 18 attributes to evaluate the
clinical knowledge mastery of 12 LLMs.

3 METHODS

In this section, we present the framework to assess whether LLMs have mastered comprehensive
medical knowledge for real clinical diagnosis and medical decisions, by first introducing a large-
scale medical disease-based knowledge base MedDisK in Section 3.1 and then the MedDisK-based
evaluation method MedDisKEval in Section 3.2.

3.1 MEDDISK:LARGE-SCALE MEDICAL DISEASE-BASED KNOWLEDGE BASE

As we know, disease-based clinical knowledge is of utmost importance and crucial for making ac-
curate clinical diagnoses, conducting appropriate examinations, implementing effective treatments,
and other medical decision-making. Therefore, we construct a large-scale medical disease-based
knowledge base MedDisK to evaluate LLMs. To make the evaluation effective, the MedDisK
must require the following properties:(1) including large-scale common diseases;(2) involving rich
disease-based knowledge;(3) accurate and inaccessible publicly (avoiding implicit leaks leading to
internal testing). To address the above issues, we employ an ICD10-based method to construct Med-
DisK as presented in Figure 2. ICD10 was developed by the World Health Organization (WHO),
including almost all diagnosis diseases and related health problems. We first select a subset from
the ICD10 database according to whether the diseases are common in clinical (determined by clin-
ical experts) and are statistically frequent in EHR (Electronic Health Record), resulting in 10,632
common diseases. Then, we employ clinical experts to define 18 disease-based clinical knowledge
aspects (in Table 1) that are crucial to medical decision-making (diagnoses, examinations, treat-
ments). Finally, the MedDisK, including 10,632 common diseases and their corresponding 18
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(a) An example in the ICD10. (b) The procedure of constructing our MedDisK.

Figure 2: ICD10-based large-scale common disease clinical knowledge base construction.

Clinical knowledge aspects Definitions
Patient Population The most group of individuals affected by the disease.
Prevalence Ages The ages at which the disease commonly occurs.
Onset Ages The ages at which the disease occurs exclusively.
Primary Symptoms The most prominent clinical symptoms of the disease.
Associated Symptoms Other clinical symptoms accompanying the primary symptoms.
Differential Symptoms Specific symptoms differentiating the disease from others.
Physical Examinations Physical examination results specific to the disease.

Anatomical Sites Specific locations or regions on or within the body identified
based on the anatomy of the disease.

Affected Sites The area of the body damaged or affected by the disease.
Affected Body Systems The body systems that are damaged or affected by the disease.
Treatment Principles The clinical principles for developing a treatment to the disease.
Secondary Diseases Possible additional diagnosis to the disease.
Medications Prescribed drug(s) used to treat the disease.

Surgical Procedures Medical procedures that treat the disease, involving the cutting,
repairing, or removal of tissue or organs.

Laboratory Examinations Abnormal laboratory examination results to the disease.
Auxiliary Examinations Abnormal auxiliary examination results to this disease.
Departments The specific medical departments responsible for the disease.
Severity Level The severity level of the disease.

Table 1: Definitions of clinical knowledge aspects to each disease in our MedDisK.

aspects of clinical knowledge, are constructed with a collaborative effort between clinical experts
and machine assistance. The annotation by clinical experts ensures the accuracy, professionalism,
and completeness of knowledge in MedDisK. The whole process involved the dedicated efforts of
20 clinical experts over about 10 months. More details of MedDisK construction and comparison
with existing QA evaluation datassets are provided in Appendix A.

3.2 MEDDISKEVAL:DISEASE-KNOWLEDGE-BASED LLMS EVALUATION

3.2.1 DISEASE-ORIENTED CLINICAL KNOWLEDGE RETRIEVAL

We employ different prompting strategies for different categories of LLMs to extract disease-related
information from each clinical knowledge aspect individually. For pretraining-only models (not fine-
tuned on specific instructions), we apply the few-shot learning strategy utilized in existing bench-
marks, such as MMLU, by generating prompts with five demonstrative examples. We have dis-
covered in experiments that five examples suffice to activate the few-shot capability of LLMs. For
models finetuned on instructions, we collaborate closely with clinical experts to craft tailored in-
structions for each knowledge aspect. These instructions are added before the few-shot examples,
acknowledging that these models may achieve suboptimal performance without instructions. Each
instruction is designed to introduce the relevant knowledge aspect and guide the format of LLMs’
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Figure 3: Expert-Aligned Knowledge Scoring:
Clinical experts create the grading standard based
on sampled automated evaluation results.

Metrics Correlation With
Clinical Experts

BLEU-1 0.722*
ROUGE-1 0.779*

Cosine Similarity 0.805*
Average 0.837*

Table 2: Consistency between the results of Med-
DisKEval and clinical experts across metrics,
measured by Spearman correlation coefficients.
Asterisks indicate the correlations are significant.

output accordingly, undergoing multiple iterations to achieve optimal generation results. We provide
prompt examples and all the instructions in Appendix B and C, respectively.

After the generation, we post-process LLM responses to remove noise and format them according
to three types of clinical knowledge aspects: 1. enumerated type (a list of entities); 2. declarative
type (unstructured text); 3. numeric type. We first apply heuristic rules to extract related segments
and filter out irrelevant content in LLMs’ responses. Afterward, we leverage various methods to
format responses for different types of knowledge aspects. For the enumerated type, we employ a
specialized NER model to identify and extract medical entities from the text. In cases involving the
numeric type, we extract the initial number within the text and return NaN if no number is found.
We do not format responses of the declarative type as they inherently assume a textual form. We
denote each piece of post-processed information as a triplet (d, a, r), where d is the corresponding
disease, a is the involved clinical knowledge aspect, and r is LLM’s post-processed information. We
provide more details of the post-processing and the NER model in Appendix D and E.

3.2.2 EXPERT-ALIGNED KNOWLEDGE SCORING

The proposed expert-aligned knowledge scoring process includes two steps: disease-knowledge-
based automated scoring that assess the similarity between LLM-generated information and the
content within our knowledge base using automated metrics, and expert-aligned grading that aligns
the automated scores with expert assessment, yielding results that are more easily interpretable.

Disease-Knowledge-based Automated Scoring We employ automated evaluation metrics to mea-
sure the similarity between LLM-generated information and the content within our knowledge base.
Firstly, for each piece of LLM-generated information (d, a, r), we retrieve the corresponding triplet
(d, a, r̂) from our knowledge base. Then, the similarity is calculated as s = sim(r, r̂), where sim
refers to an evaluation metric that varies according to the type of knowledge aspect a. For the declar-
ative type, we apply both token-level metrics, such as BLEU-1 (Papineni et al., 2002) and ROUGE-1
(Lin, 2004) (f1-score), and a sentence-level metric cosine similarity based on a Chinese text embed-
ding model M3E (Wang Yuxin, 2023). We have explored alternative metrics like BERTScore (Zhang
et al., 2019) but found that the computed scores achieve lower consistency with expert assessment
(See Appendix F). When dealing with the enumerated type, considering computational complexity,
we adopt a straightforward approach by concatenating entities with blank spaces and applying the
same metrics for declarative types. In the case of the numeric type, we evaluate it using the hard
match score 1r=r̂, as our knowledge base includes only one numerical aspect (Severity Level), where
distinct numbers correspond to different categories.

Expert-aligned Grading The disease-knowledge-based automated scoring method offers objective
but less interpretable scores that reveal clinical knowledge mastery. The scores are not inherently
aligned with the subjective assessments of clinical experts. Furthermore, variations in the types of
knowledge aspects can introduce disparities in score distributions, thus constraining comprehensive
analysis across different aspects. As a solution, we develop an expert-aligned grading approach to
categorize consistency scores into distinct levels, facilitating interpretable comparisons and cross-
aspect analysis. The grading process is illustrated in Figure 3. We first conduct interval sampling on
all the scoring results across LLMs. Subsequently, we engage clinical experts to categorize LLM’s
responses into multiple tiers aligned with their subjective cognition and determine the optimal grad-
ing standard (score thresholds) that divide the results into these tiers:
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• Completely Wrong: the LLM-generated information r has a significant inconsistency or
conflict with the ground truth r̂, or even irrelevant to the aspect a.

• Partially Correct: the LLM-generated information r contains some accurate information
mentioned in r̂ but may also include some incorrect or incomplete information.

• Basically Correct: the LLM-generated information r is mostly in agreement with the
ground truth r̂. There might be minor errors or incompleteness, but the consistency is
high.

Specifically, we determine a grading standard for each combination of metrics (ROUGE-1, BLEU-1,
and cosine similarity) and types (enumerated and declarative). In each combination, we set a score
interval of 0.1 and sample 10 examples from each interval, where each example consists of d, a, r, r̂,
and a similarity score s. For the numeric type, such as Severity Level, in our case, we directly map
the score 1 to ’Basically Correct’ and the score 0 to ’Completely Wrong,’ as it has only two possible
values. Ultimately, the clinical knowledge mastery of an LLM can be reflected by the proportion of
LLM-generated information in these three tiers. More details are presented in Appendix G.

To validate the alignment between the proposed expert-aligned automated grading and expert evalu-
ation, we assign clinical experts to annotate another 150 randomly selected instances. Each instance
includes a disease d, a knowledge aspect a, information from an LLM (r), and r̂ from our knowl-
edge base. The tiers ”Completely Wrong,” ”Partially Correct,” and ”Basically Correct” are mapped
to respective scores of 0, 1, and 2. We employ Spearman correlation coefficients to measure the
consistency and summarize results in Table 2. All three metrics achieve correlation coefficients sur-
passing 0.7, indicating the high consistency between the proposed automated grading and the expert
assessment. Cosine similarity correlates more strongly with expert assessments than the other two
metrics. However, we find that the average scores of all three metrics after grading achieve stronger
correlation than any single metric (Table 2), indicating that these three metrics can complement each
other in our evaluation. Therefore, we use all these metrics for a comprehensive evaluation.

4 EVALUATION

4.1 EVALUATED LLMS

As mentioned above, we evaluate two types of LLMs in our experiments: (1) LLMs that are pre-
trained and finetuned in general domain: GPT-3.5-turbo (Ouyang et al., 2022), Bloomz-7.1B-mt
(Muennighoff et al., 2023), LLaMa-7B (Touvron et al., 2023), Vicuna-7B (Zheng et al., 2023),
ChatGLM-6B (Du et al., 2022), and Baichuan-7B (Yang et al., 2023); (2) LLMs that are further
finetuned on medical data: ChatDoctor (Li et al., 2023), DoctorGLM (Xiong et al., 2023), BenTsao
(huatuo-llama-med-chinese) (Wang et al., 2023), HuatuoGPT (Zhang et al., 2023), BianQue-2 (Chen
et al., 2023), and PULSE (OpenMEDLab, 2023). These LLMs are selected based on a comprehen-
sive consideration of computational power, evaluation cost, and model availability. To ensure a
fair comparison, we maintain the text generation parameters of LLMs as default in their respective
GitHub or HuggingFace repositories.

4.2 RESULTS

4.2.1 OVERALL PERFORMANCE

The upper part of Figure 4 depicts the distribution of all LLMs’ responses across the three metrics
within the three tiers defined in Section 3.2.2. These three sub-figures reveal the overall performance
of current LLMs on clinical knowledge mastery. Our findings point to a striking revelation: The ex-
perimental results reveal that over 50% of responses generated by current LLMs are classified
as ”Completely Wrong,” approximately 30% fall under the category of ”Partially Correct,”
and merely fewer than 20% are deemed ”Basically Correct.” These results show that the clinical
knowledge mastery of existing LLMs is far from adequate to address real-world clinical challenges.
The distribution of the three metrics exhibits similar trends while varying in detailed proportions,
highlighting the importance of utilizing multiple metrics in our evaluation. We provide some exam-
ples of LLMs’ responses within three tiers in Table 3. The degree of clinical knowledge mastery
shown in these LLM responses closely corresponds with the tiers assigned by our method.
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Figure 4: Upper: Distribution of LLMs’ responses across three metrics. Lower: Distribution of
responses across 12 LLMs and three metrics. We denote Bloomz-7.1B-mt as Bloomz-7B for name
consistency with other models. Models with the same backbone model are illustrated with similar
colors. We use slashes to denote the base models within each model series.

Tier Disease Knowledge Aspect Ground Truth LLM Response

Completely
Wrong

rheumatoid arthritis
of the hand

interphalangeal joints
patient population

higher prevalence
in females;

middle-age; elderly
ok, I see.

Partially
Correct

tracheobronchial
amyloidosis affected sites trachea; bronchi; lung lung; chest

Basically
Correct esophageal abscess affected body

systems digestive system digestive system

Table 3: Examples of LLMs’ responses within three tiers defined in Section 3.2.2.

4.2.2 DETAILED COMPARISON ACROSS LLMS

We further investigate the clinical knowledge mastery across different LLMs by examining the dis-
tribution of different LLM’s responses across three tiers, which is showcased in the lower part of
Figure 4. See Appendix H for another comparison across knowledge aspects. Across all evaluated
LLMs and metrics, over 40% of the clinical information generated by each LLM exhibits significant
inconsistencies or conflicts with the knowledge stored in our knowledge base. This indicates that
the insufficient medical knowledge mastery of existing LLMs, as demonstrated in Section 4.2.1, is
not caused by a few models but is a widespread phenomenon of current LLMs. Moreover, we con-
sider a group of LLMs using the same backbone model as an LLM series and compare the medical
knowledge mastery between different series that share a similar number of parameters (excluding
ChatGPT). The general order is as follows: Baichuan-7B series holds the first position, ChatGLM-
6B series takes the second place, and LLaMA-7B and Bloomz-7B series share the third place.

Remarkably, GPT-3.5-turbo (ChatGPT) stands out by achieving the highest proportion of ”Basi-
cally Correct” and the lowest proportion of ”Completely Wrong,” surpassing all other LLMs in
terms of clinical knowledge mastery. Additionally, ChatGPT achieves a higher ”Basically Correct”
proportion than ”Partially Correct” in 2 out of 3 metrics, indicating that ChatGPT exhibits lower
hallucination and tends to avoid responding when faced with uncertain knowledge.

For a straightforward assessment of the clinical knowledge mastery in these LLMs, we begin by av-
eraging the distributions of the three metrics for each LLM. Then, we perform a weighted summation
across the three tiers, assigning scores of 0, 5, and 10 to ”Completely Wrong,” ”Partially Correct,”
and ”Basically Correct,” respectively, to yield a total score for each LLM. It is worth noting that
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Figure 5: Calculating to-
tal scores with the distri-
bution on three tiers.

Model Type Completely
Wrong

Partially
Correct

Basically
Correct

Total
Score Level

GPT-3.5 Turbo General 46.1% 27.7% 26.1% 4.00 1
Vicuna-7B General 54.2% 28.9% 17.0% 3.14

2Baichuan-7B General 54.4% 29.3% 16.3% 3.10
HuatuoGPT-7B Medical 52.1% 35.5% 12.4% 3.02
PULSE-7B Medical 55.2% 29.8% 15.1% 3.00
DoctorGLM-6B Medical 60.7% 23.6% 15.7% 2.75

3

ChatGLM-6B General 58.0% 29.8% 12.1% 2.70
BianQue2-6B Medical 63.1% 25.6% 11.4% 2.41
LLaMA-7B General 67.2% 18.3% 14.4% 2.36
ChatDoctor-7B Medical 65.5% 23.9% 10.6% 2.26
BenTsao-7B Medical 68.3% 19.4% 12.2% 2.20
BLOOMZ-7B General 68.7% 25.9% 5.5% 1.84 4

Table 4: The ranking of evaluated LLMs based on total scores com-
puted by the method presented in Figure 5, classified into four levels.

this score is equivalent to the average score in Table 2 that achieves high consistency with expert
assessment. Subsequently, we categorize LLMs into four levels based on these total scores. The
scoring process and outcomes are detailed in Figure 5 and Table 4, respectively. Surprisingly, it is
evident that none of the top three models have received specialized training on medical corpora, and
most medical LLMs are placed in Level 3. Additionally, models sharing the same base architecture
tend to attain similar scores (e.g., LLaMA, ChatDoctor, and BenTsao; ChatGLM, DoctorGLM, and
BianQue-2), although a few exceptions exist (Vicuna, PULSE). These findings suggest that most
current medical LLMs perform not significantly different from their backbone models.

4.2.3 MEDICAL LLMS VERSUS THEIR BACKBONE MODELS

To investigate the effect of continual training on medical corpora, we further conducted a signifi-
cance analysis comparing each medical LLM with its corresponding backbone model. We employed
Welch’s T-test to assess six model pairs across all 18 aspects of disease knowledge, utilizing the co-
sine similarity for analysis. The results of the T-test utilizing other metrics (ROUGE-1, BLEU-1)
show similar trends and can be found in Appendix I. The findings are presented in Table 5. Within
this table, the t-statistics reveal disparities in performance between medical LLMs and their back-
bone models across various knowledge aspects. Asterisks’ presence denotes statistical significance
(p-value < 0.05). green cells in the table signify superior performance by the medical LLM com-
pared with its backbone model on the respective aspect, red cells indicate poorer performance, while
white cells suggest no significance.

The experimental results reveal that 5 out of 6 medical LLMs underperform significantly compared
to their base models in over half of the clinical knowledge aspects. PULSE stands out as the sole
model achieving significant improvements on almost all evaluated aspects except the Severity Level.
The significant improvement attained by the PULSE model can be attributed to its finetuning on
approximately 4,000,000 instructions from both the Chinese medical field and the general domain.
However, this significant improvement may also be affected by the low performance of its backbone
model, Bloomz-7.1B-mt, on the proposed evaluation benchmark (see Figure 4). Medical LLMs
typically excel in certain aspects, such as Patient Population and Departments, but exhibit subpar
performance in other areas, such as Anatomical Sites and Secondary Diseases.

In summary, the results imply that most of the current medical LLMs do not achieve consistent
enhancement in the clinical knowledge mastery across all knowledge aspects compared to their
backbone models, even potentially resulting in catastrophic forgetting in some aspects.

5 DISCUSSION

Medical Capabilities of Current LLMs Large Language Models cannot be widely employed in
real clinical tasks unless they master adequate clinical knowledge, exceptional medical compre-

8



Under review as a conference paper at ICLR 2024

Backbone Models ChatGLM-6B Bloomz-7B Baichuan-7B LLaMA-7B
Medical LLMs BianQue-2 DoctorGLM PULSE HuatuoGpt BenTsao ChatDoctor
Patient Population 15.0* 36.7* 27.0* 24.2* 40.2* 31.6*
Prevalence Ages 29.1* 63.7* 3.7* -23.0* -35.0* -9.4*
Onset Ages 68.0* 173.1* 17.9* -112.2* -103.0* -0.6
Primary Symptoms -23.8* -38.8* 87.4* 14.9* -3.2* -10.3*
Associated Symptoms 2.8* -7.4* 13.6* -2.1* -5.4* 9.9*
Differential Symptoms -38.0* -26.0* 28.0* 9.8* -7.0* 7.2*
Physical Examination -53.8* -14.5* 13.8* -29.6* -7.4* -27.4*
Anatomical Sites -55.0* -16.0* 83.9* -41.2* -15.3* -92.0*
Affected Sites -41.8* -11.6* 56.0* -29.3* -32.5* -41.4*
Affected Body Systems -76.9* -62.7* 38.1* 20.9* 58.0* 81.1*
Treatment Principles 2.6* 11.7* 15.8* 2.2* 15.2* -9.6*
Secondary Diseases -13.1* -45.8* 22.9* -28.4* -42.8* -27.0*
Medications 11.9* 4.9* 21.1* -17.7* 41.2* 25.7*
Surgical Procedures -8.3* -4.7* 12.8* -5.4* -4.8* -6.2*
Auxiliary Examinations -35.1* -9.7* 9.4* -27.7* -10.6* -28.3*
Laboratory Examinations -30.6* -12.9* 25.1* -10.4* -4.5* -11.6*
Departments 4.4* 5.0* 106.6* -12.4* 56.8* 72.1*
Severity Level 17.9* -18.5* -41.3* 43.3* 86.7* 4.5*

Table 5: The results of Welch’s T-test between each medical LLM and its backbone model across
different aspects of diseases. The cosine similarities are applied in this analysis.

hension, and strong reasoning capabilities. Among these capabilities, sufficient clinical knowledge
forms the foundation for the other two. Nevertheless, our experimental results demonstrate that all
current LLMs are far from mastering adequate clinical knowledge.

Performance of Current Medical LLMs Though several medical LLMs are claimed to perform
better than their backbone models on medical evaluation benchmarks, our evaluation results indicate
that they do not achieve consistent improvement in all clinical knowledge aspects, even degrading
severely in some aspects. Moreover, these medical LLMs achieve inferior performance than some
general LLMs with a similar number of parameters, such as Baichuan-7B and Vicuna-7B. Several
factors may contribute to this phenomenon: 1. These medical LLMs have not undergone extensive
pretraining on medical corpora; 2. Certain medical LLMs are trained for limited medical tasks and
lack comprehensive training on diverse medical tasks; 3. The performance of a few medical LLMs
may be inflated due to potential data leakage.

Future Works Medical LLMs have to master sufficient clinical knowledge first to become a foun-
dation model in the medical domain. Our experiments on current medical LLMs indicate that small-
scale finetuning on a limited set of medical tasks cannot inject adequate clinical knowledge into
LLMs. Large-scale pretraining on medical corpora and supervised finetuning across various medi-
cal tasks may offer promising ways for training foundational models in the medical domain.

6 CONCLUSION

We present in this paper an evaluation framework to assess the clinical knowledge mastery of LLMs.
Firstly, we construct a large-scale Chinese medical disease-based knowledge base MedDisK, cov-
ering 10,632 common diseases and 18 clinical knowledge aspects that are essential in clinical prac-
tice. Built on that, we introduce a MedDisK-based evaluation method MedDisKEval, utilizing the
proposed clinical knowledge base to study the medical knowledge mastery of 12 general and med-
ical LLMs. Our experimental results reveal that current LLMs have not mastered adequate clinical
knowledge, indicating that they are not well prepared to serve as foundation models in the medi-
cal domain. A further in-depth study reveals that most current medical LLMs have not performed
significantly better than their backbone models. In the future, we will continue maintaining the
knowledge base we have introduced to ensure its accuracy and professionalism and support more
languages to facilitate the research of this field.
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A DETAILS OF MEDDISK CONSTRUCTION

A.1 SUPPLEMENTARY OF MEDDISK CONSTRUCTION

The construction of MedDisK involves a total of two phases: selection of diseases, and knowledge
annotation. In phase 1, we first conduct a statistical analysis on the occurrence of 27,000 ICD-10
diseases in 4 million highly de-identified electronic health records (EHRs) from over 100 hospitals
across 5 cities. Then we selected diseases with a frequency > 10−4, resulting in 1,048 diseases.
To broaden the coverage of MedDisK, we further requested clinical experts to choose a subset of
clinically important diseases from the remaining, resulting in another 9,584 diseases.

In phase 2, we employed a retrieve-and-proofread knowledge annotation method. We first exploit
an information retrieval module that retrieves disease-related information from medical books and
literature. Subsequently, we requested clinical experts to proofread the retrieved information and
supplement missing knowledge. We find that such human-machine collaboration is helpful for
minimizing human bias introduced in annotation: we have requested two experts to annotate the
knowledge related to 20 diseases (involving around 1,000 disease-related knowledge points) using
the human-machine collaborative method introduced above, and the results revealed a disagreement
rate of less than 2%, indicating the reliability and effectiveness of our knowledge base construction
method. The statistics of MedDisK, including the frequency of disseases in EHRs and the number
of unique entities, are presented in Figure 6 and Table 6, respectively.

Figure 6: Frequency of diseases covered by MedDisk in 4
million EHRs. Low: frequency < 10−4, Medium: 10−4 ≤
frequency< 10−3, High: frequency ≥ 10−3.

Knowledge Aspects Total Amount
Patient Population 701
Prevalence Ages 146
Onset Ages 17
Primary Symptoms 16884
Associated Symptoms 4619
Differential Symptoms 12749
Anatomical Sites 1345
Affected Sites 1021
Treatment Principles 3526
Secondary Diseases 638
Surgical Procedures 5097
Medications 3826
Departments 89
Affected Body Systems 89

Table 6: Number of unique entities
across 14 enumerated-type knowledge
aspects.
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A.2 MEDDISK VERSUS OTHER MEDICAL DATASETS

We have conducted a comprehensive comparison between MedDisK and existing medical QA
datasets in terms of coverage of common diseases, disease-based knowledge and public availability.
For QA datasets, we leverage Medical Concept Annotation Tool (Kraljevic et al., 2021) to identify
all the diseases and count the number of diseases in each QA dataset. We included in the comparison
all QA datasets in MultiMedQA (Singhal et al., 2023b) except PubMedQA, because PubMedQA is
primarily a reading comprehension dataset where answers can be directly derived from the provided
context. Consequently, it is not designed to evaluate models’ mastery of medical knowledge.

The results listed in Table 7 demonstrate that our proposed database covers a significantly larger
amount of diseases and more types of disease-based knowledge than existing QA-based datasets. It
is also worth noting that most of existing medical databases have released labeled data, which may
result in data contamination that some LLMs have seen the test set of these datasets in the training
phase. In contrast, we will release evaluation interface instead of the whole database to balance both
the public accessibility of our evaluation and the reduction of data contamination.

Datasets Type # diseases Publicly available?
MedQA QA dataset 1391 Yes
MedMCQA QA dataset 3475 Yes
MMLU (medical) QA dataset 383 Yes
MedicationQA QA dataset 172 Yes
LiveQA QA dataset 480 Yes
HealthSearchQA QA dataset 262 Yes
Total of Above QA datasets 3907 Yes
MedDisK (Ours) Knowledge base 10632 Yes (evaluation platform)

Table 7: Comparison of existing medical evaluation datasets across the number of diseases and
public availability.

Results in Table 8 show that existing medical QA evaluation sets have not covered as many disease-
knowledge-related entities as MedDisK does. It is worth noting that MedDisK covers even more
entities than the sum of these 6 medical QA datasets, indicating that our evaluation benchmark ob-
tains a much broader coverage of disease-related clinical knowledge than existing medical evaluation
benchmarks.

Dataset #Popu. #Symp. #Part. #Syst. #Proc. #Medi. #Dept.
MedQA 197 377 574 15 429 62 36
MedMCQA 241 452 1245 33 811 56 54
MMLU (medical) 92 114 250 10 111 6 9
MedicationQA 27 64 52 7 70 67 3
LiveQA 75 108 141 9 166 14 19
HealthSearchQA 10 63 40 3 4 2 2
Total of Above 349 570 1362 34 997 183 83
MedDisK (Ours) 701 18737 1585 89 5097 3826 89

Table 8: Comparison of existing medical QA datasets with the proposed MedDisK database across
7 medical entities, including patient population (Popu.), symptoms (Symp.), body parts (Part.), body
systems (Syst.), therapeutic procedure (Proc.), medication (Medi.), and departments (Dept.). Note
that for MedDisK, we count unique anatomic/affected sites for the number of body parts, and unique
primary/associated/differential symptoms for the number of symtoms.
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B DETAILS OF LLMS’ KNOWLEDGE RETRIEVAL

We employ distinct prompting strategies tailored to various types of LLMs. For pretraining models,
we provide a set of five examples preceding the question. In the case of instruction-tuning mod-
els, our approach begins with explicit instructions detailing the knowledge aspect, followed by five
illustrative examples, and culminates with the question itself. Exemplars of these prompts are show-
cased in Figure 7, while a comprehensive compilation of instructions for each knowledge aspect is
available in Appendix C.

Figure 7: Examples of the disease-oriented clinical knowledge retrieval process in the proposed
evaluation method, each includes a Chinese prompt (used in our experiments) and its English trans-
lation. The few-shot examples are directly extracted from our knowledge base and transformed into
text with templates. The blue text is the test sample, and the violet underlined text is the response
from LLMs.
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C LIST OF INSTRUCTIONS

Table 9: Instructions employed for each knowledge aspect, comprising the Chinese version and
English translation. {} in instructions will be filled with disease name during experiment.

We meticulously crafted instructions for each knowledge aspect, encompassing both a detailed de-
scription of the knowledge element and specific constraints regarding the output format. Importantly,
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Table 10: Instructions employed for each knowledge aspect, comprising the Chinese version and
English translation. {} in instructions will be filled with disease name during experiment.

these prompts were developed in collaboration with domain experts in the medical field to ensure
their high quality.
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D DETAILS OF POST-PROCESSING

Figure 8: The pattern extracted from LLM’s responses using regular expression, wherein <disease
name >and <knowledge aspect >correspond to the question.

We leverage simple heuristic rules to extract relevant segments in the original responses, as illus-
trated in Figure 8. Given the disease name and the knowlegde aspect, we search patterns that appear
in our crafted instructions and demonstrative examples and extract the answer part in patterns. The
response will remain unchanged if no pattern is discovered in the response.

E DETAILS OF THE NER TOOL

The NER model that we leverage to process responses of enumerated types is trained and constructed
following the method proposed in Su et al. (2022). We first pretrained a BERT-base model on 3.5
million highly de-identified EHRs from 7 hospitals with MLM objective proposed in Devlin et al.
(2018). Then we finetuned the model on 200k labeled EHR segments by following the method
proposed in Su et al. (2022), teaching the model to extract medical entities in EHRs. On a test set
of 10k+ real-world EHRs involving 40k+ medical entities, our NER model achieves 0.88 micro-f1
score across a total of 116 types of medical entities, even surpassing 0.9 on several common medical
entities, such as anatomical sites, symptoms, medication. This model has already been applied in
a wide range of medical scenarios, including assisted consultations and diagnosis, as well as EHR-
based semantic parsing, demonstrating consistent and reliable performance.

F CONSISTENCY BETWEEN AUTOMATED SCORE AND CLINICAL EXPERT

Metrics Correlation with
Clinical Experts

BLEU-1 0.757*
ROUGE-1 0.772*

Cosine Similarity 0.762*
BERTScore 0.650*

Table 11: Consistency between clinical experts and automated score prior to expert alignment, mea-
sured by Spearman correlation. Asterisks denote statistically significance (p-value < 0.05). The
correlation coefficient of BERTScore is below 0.7, indicating misalignment with human judgment.

G EXPERT-ALIGNED GRADING THRESHOLD

Metrics Type Completely Wrong Partially Correct Basically Correct

BLEU-1 enumerate [0, 0.05) [0.05, 0.25) [0.25, 1]
declarative [0, 0.05) [0.05, 0.45) [0.45, 1]

ROUGE-1 enumerate [0, 0.05) [0.05, 0.75) [0.75, 1]
declarative [0, 0.05) [0.05, 0.55) [0.55, 1]

Cosine Similarity enumerate [-1, 0.35) [0.35, 0.75) [0.75, 1]
declarative [-1, 0.55) [0.55, 0.65) [0.65, 1]

Table 12: Thresholds used in expert-aligned automated grading. Distinct thresholds are applied to
various metrics and types. Note that the grading of numetric types is relied on exact matching.
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H PERFORMANCE ACROSS KNOWLEDGE ASPECTS

We further analysis the detailed performance of LLMs across 18 knowledge aspects, and present
the results in Figure 9 and 10, respectively. The results in Figure 9 indicates that LLMs achieve
relatively better performance on Treatment Principles and Onset Ages, and poorer performance on
several aspects such as Secondary Diseases and Laboratory Examination.

Figure 9: The average performance of LLMs across 18 clinical knowledge aspects. PP: Patient
Population; PA: Prevalence Ages; OA: Onset Ages; PS: Primary Symptoms; AS: Associated Symp-
toms; DS: Differential Symptoms; PE: Physical Examination; AnS: Anatomical Sites; AfS: Affected
Body Systems; TP: Treatment Principles; SD: Secondary Diseases; SP: Surgical Procedures; Med:
Medications; AE: Auxiliary Examinations; LE: Laboratory Examinations; Dept: Departments; SL:
Severity Level; ABS: Affected Body System.

Results in Figure 10 further suggest that different LLMs perform distinctly on the same knowledge
aspect. For example, GPT-3.5-turbo achieves around 5 on Primary Symptoms (PS), while models
such as LLaMA, BenTsao, and ChatDoctor achieve under 1 on this aspect. It is worth noting that
GPT-3.5-turbo achieves relatively stable performance across all knowledge aspects.
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Figure 10: Performance of LLMs across 18 clinical knowledge aspects. PP: Patient Population; PA:
Prevalence Ages; OA: Onset Ages; PS: Primary Symptoms; AS: Associated Symptoms; DS: Dif-
ferential Symptoms; PE: Physical Examination; AnS: Anatomical Sites; AfS: Affected Body Sys-
tems; TP: Treatment Principles; SD: Secondary Diseases; SP: Surgical Procedures; Med: Medica-
tions; AE: Auxiliary Examinations; LE: Laboratory Examinations; Dept: Departments; SL: Severity
Level; ABS: Affected Body System.
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I SIGNIFICANCE ANALYSIS

Backbone Models ChatGLM-6B Bloomz-7B Baichuan-7B LLaMA-7B
Medical LLMs BianQue-2 DoctorGLM PULSE HuatuoGpt BenTsao ChatDoctor
Patient Population 16.2* 39.7* 36.8* 40.3* 43.9* 43.5*
Prevalence Ages 36.3* 64.1* 9.0* -7.4* -37.8* -0.8
Onset Ages 66.6* 155.4* 25.3* -111.8* -102.9* 5.4*
Primary Symptoms -5.6* -23.9* 43.9* 45.9* -0.4 7.9*
Associated Symptoms -0.1 -3.6* 24.7* 13.4* 4.2* -6.5*
Differential Symptoms -11.3* -14.0* 23.3* 26.9* 7.4* -4.7*
Physical Examination -44.1* -16.7* 23.9* -29.2* 10.8* -52.5*
Anatomical Sites -20.9* -3.0* 36.6* -24.3* -10.6* -68.5*
Affected Sites -27.2* -3.1* 22.6* -16.1* -19.2* -29.9*
Affected Body Systems -57.7* -41.4* 31.7* 6.6* 32.1* 39.8*
Treatment Principles 24.6* 21.5* -1.4 12.5* 19.7* -3.3*
Secondary Diseases -12.0* -48.9* 40.2* -21.8* -35.0* -14.2*
Medications -12.5* -14.6* 36.4* 10.4* -35.2* -26.5*
Surgical Procedures -20.6* -3.7* 61.5* 19.7* -30.0* -7.3*
Auxiliary Examinations -29.0* -17.4* 18.2* 9.1* -7.2* -38.7*
Laboratory Examinations -49.1* -46.0* 37.5* 25.9* 1.5 -25.0*
Departments -11.0* -4.0* 74.2* -6.2* 0.8 11.5*
Severity Level 17.9* -18.5* -41.3* 43.3* 86.7* 4.5*

Table 13: The results of Welch’s T-test between each medical LLM and its backbone model across
different aspects of diseases. The BLEU-1 similarities are applied in this analysis. Values in the
table are the t-statistics that measure the difference of average scores between the medical LLM and
its backbone model on different aspects. Asterisks indicate that the differences are significant (p-
value<0.05). Note that we denote Bloomz-7.1B-mt as Bloomz-7B for name consistence with other
backbone models.
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Backbone Models ChatGLM-6B Bloomz-7B Baichuan-7B LLaMA-7B
Medical LLMs BianQue-2 DoctorGLM PULSE HuatuoGpt BenTsao ChatDoctor
Patient Population 15.6* 39.1* 35.4* 39.8* 40.4* 40.9*
Prevalence Ages 32.7* 58.8* 3.6* -4.1* -36.3* 1.3
Onset Ages 66.5* 155.0* 24.8* -111.6* -102.9* 5.4*
Primary Symptoms -17.5* -25.5* 61.6* 38.2* 2.6* -2.2*
Associated Symptoms 0.5 -4.4* 24.7* 13.5* 5.2* -5.7*
Differential Symptoms -15.4* -13.4* 27.1* 26.7* 5.1* -8.4*
Physical Examination -59.5* -29.4* 29.0* -17.9* 8.5* -68.7*
Anatomical Sites -26.3* -3.4* 48.4* -18.9* -10.7* -70.1*
Affected Sites -28.9* -2.7* 25.3* -16.6* -21.5* -33.5*
Affected Body Systems -56.3* -36.6* 33.3* 0.3 34.4* 43.1*
Treatment Principles 27.6* 30.4* -16.7* 10.5* 24.8* -18.6*
Secondary Diseases -12.1* -48.9* 39.9* -21.9* -34.9* -14.2*
Medications -11.7* -13.1* 38.0* 6.3* -34.5* -26.0*
Surgical Procedures -21.3* -4.2* 62.1* 20.4* -28.8* -8.5*
Auxiliary Examinations -38.2* -25.4* 9.3* 11.3* 6.0* -50.9*
Laboratory Examinations -56.2* -52.0* 27.6* 28.7* 6.3* -28.4*
Departments -11.1* -0.2 84.5* -12.6* 10.0* 10.4*
Severity Level 17.9* -18.5* -41.3* 43.3* 86.7* 4.5*

Table 14: The results of Welch’s T-test between each medical LLM and its backbone model across
different aspects of diseases. The ROUGE-1 similarities are applied in this analysis. Values in the
table are the t-statistics that measure the difference of average scores between the medical LLM and
its backbone model on different aspects. Asterisks indicate that the differences are significant (p-
value<0.05). Note that we denote Bloomz-7.1B-mt as Bloomz-7B for name consistence with other
backbone models.
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J AN EXAMPLE OF KNOWLEDGE ASPECTS

Table 15: An illustrative instance showcasing comprehensive knowledge across 18 aspects pertain-
ing to ”cephalohematoma caused by birth injury”
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K EXAMPLES OF LLMS’ RESPONSES IN THREE CATEGORIES

Table 16: Examples of LLM responses in three tiers.
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L EVALUATION PLATFORM PLANNING

We plan to make our evaluation benchmark freely accessible for any researchers and organizations
by releasing an online evaluation platform. The platform provides participants who are seeking to
evaluate their LLMs a list of diseases, prompts we employ in this work, and several demonstrative
examples. Participants can either choose to directly test their LLMs with the provided prompts, or
DIY prompts by themselves. Once the participants upload the LLMs’ response on the platform, the
evaluation script will be running automatically. The evaluation results, including the performance
on various knowledge aspects, will be available for downloading once the evaluation process ends.
Participants can choose whether to update their performance on a leaderboard and compare the
performance with others.
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