
How Well Does Self-Supervised Pre-Training Perform
with Streaming ImageNet?

Dapeng Hu∗1, Shipeng Yan∗2, Qizhengqiu Lu3, Lanqing Hong4,
Hailin Hu3, Yifan Zhang1, Zhenguo Li4, Xinchao Wang1, Jiashi Feng1

1National University of Singapore 2ShanghaiTech University
3AARC, Huawei Technologies 4Huawei Noah’s Ark Lab

{dapeng.hu, yifan.zhang}@u.nus.edu, yanshp@shanghaitech.edu.cn
{luqizhengqiu, honglanqing, huhailin2, li.zhenguo}@huawei.com

xinchao@nus.edu.sg, jshfeng@gmail.com

Abstract

Prior works on self-supervised pre-training focus on the joint training scenario,
where massive unlabeled data are assumed to be given as input all at once, and only
then is a learner trained. Unfortunately, such a problem setting is often impractical
if not infeasible since many real-world tasks rely on sequential learning, e.g., data
are decentralized or collected in a streaming fashion. In this paper, we conduct
the first thorough and dedicated investigation on self-supervised pre-training with
streaming data, aiming to shed light on the model behavior under this overlooked
setup. Specifically, we pre-train over 500 models on four categories of pre-training
streaming data from ImageNet and DomainNet and evaluate them on three types
of downstream tasks and 12 different downstream datasets. Our studies show that,
somehow beyond our expectation, with simple data replay or parameter regulariza-
tion, sequential self-supervised pre-training turns out to be an efficient alternative
for joint pre-training, as the performances of the former are mostly on par with
those of the latter. Moreover, catastrophic forgetting, a common issue in sequen-
tial supervised learning, is much alleviated in sequential self-supervised learning
(SSL), which is well justified through our comprehensive empirical analysis on
representations and the sharpness of minima in the loss landscape. Our findings,
therefore, suggest that, in practice, for SSL, the cumbersome joint training can
be replaced mainly by sequential learning, which in turn enables a much broader
spectrum of potential application scenarios.

1 Introduction

Recent advances in self-supervised learning (SSL) [1–4] demonstrate competitive or even better
transfer learning performance on downstream tasks, compared with supervised pre-training. Although
waiving the cost of human labeling, SSL usually requires massive unlabeled data to learn a powerful
representation model and benefits from significantly large-scale pre-training data [1]. The common
pre-training practice follows the joint training (JT) setup, where data are collected together before
model training. In reality, however, it is usually difficult to access a large amount of collective
unlabeled data at once. Instead, real-world data are usually accessed in a streaming fashion, e.g.,
data are generated and collected sequentially chunk by chunk [5], or even decentralized and stored in
different servers [6]; such a learning setup is known as sequential training (ST). Despite promising
results achieved by JT, it inevitably suffers from heavy data storage and prolonged training time with
increasing volume of training data. For ST, on the other hand, a learner can be sequentially trained
with disjoint data chunks, making it much more efficient than JT.
∗contributed equally.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

Chunk 2Chunk 1 Chunk 3 Chunk 4

Streaming data

…

Class 2 Class 7 Class 8Class 1 …
Class semantic tree

Domains

Instance
incremental sequence

Random class
incremental sequence

Distant class
incremental sequence

Domain
incremental sequence

Collective data

1 2 43

Parent

Child

Figure 1: Illustration of streaming data and the corresponding collective data. Different colors denote
different classes, and border types distinguish different domains. We use the WordNet Tree [7] to
measure the semantic similarity of classes. Classes having the same parent or ancestor in WordNet,
marked with similar colors, share similar semantics in the class semantic tree.

Unlike the well-studied supervised continual learning problem [5], how to effectively and efficiently
pre-train a representation model under the ST setup has been an open problem. To fill the research gap,
we provide a thorough empirical study on the transfer learning behavior of SSL models pre-trained
with streaming data. In the pre-training stage, to mimic real-world data collection scenarios and for the
ease of dissection of sequential SSL, we consider streaming data with different degrees of distribution
shift. As shown in Figure 1, we obtain four types of streaming data, including (1) the instance
incremental sequence with negligible data distribution shift, by randomly splitting ImageNet-1K [8]
into four identically distributed (IID) data chunks, (2) the random class incremental sequence with
moderate data distribution shift, by randomly splitting 1K classes of images into four independent
chunks each with 250 classes, (3) the distant class incremental sequence with severe data distribution
shift, by splitting 1K classes of data into four chunks while maximizing the semantical dissimilarity
among chunks, and (4) the domain incremental sequence with severe domain distribution shift, by
taking each domain of data in DomainNet [9] as a data chunk.

As for the evaluation, we consider three downstream tasks following [10], including few-shot
evaluation and linear evaluation (also named many-shot classification) on 12 image classification
datasets [11], and the Pascal VOC [12] detection task. Through extensive experiments with more than
500 pre-trained models, we thoroughly investigate key roles in sequential SSL, including streaming
data, downstream tasks and datasets, continual learning methods, SSL methods, and the method
efficiency in terms of time and storage. We also thoroughly investigate knowledge forgetting of
sequential SSL and SL models and provide an empirical analysis of the underlying reason.

To the best of our knowledge, we are among the first to explore the sequential self-supervised pre-
training setting and the first to provide a thorough empirical study on self-supervised pre-training
with streaming data. We summarize the takeaways as well as our contributions as: (1). Sequential
SSL models exhibit the on par transfer learning performance as joint SSL models on streaming data
with negligible or mild distribution shift. As for streaming data with severe distribution shifts or
longer sequences, i.e., the distant class incremental sequence, evident performance gaps exist between
sequential SSL and joint SSL models. Such performance gaps, however, can be mitigated effectively
and efficiently with unsupervised parameter regularization [13] and simple data replay. (2). Based
on the above finding, the standard joint training paradigm may be unnecessary for SSL pre-training.
Instead, sequential SSL is performance-competitive but more time-efficient and storage-saving and
is well worth considering as the practical practice for self-supervised pre-training with streaming
data. (3). Compared with supervised learning (SL) models, SSL models consistently show smaller
performance gaps between ST and JT. Our comprehensive investigation of learned representations
demonstrates that sequential SSL models are less prone to catastrophic forgetting than SL models.
Moreover, through the empirical analysis on the sharpness minima in the loss landscape, we find
that SSL models have wider minima than SL models, which we argue is the probable reason for less
forgetting of SSL models.

2

2 Problem Setting

In pre-training, we train representation models on large-scale datasets, such as ImageNet [8], and
evaluate the transferability of representations on various downstream tasks [14]. In our empirical
study, we adopt the prevailing MoCo-v2 [15] method to pre-train SSL models with streaming data.

Types of streaming data. In pre-training, we consider streaming data with various distribution shifts
to mimic practical data collection scenarios. As shown in Figure 1, each type of streaming data
consists of sequential and disjoint data chunks, while collective data cover all available data. See
Appendix B.1 for a detailed description of the four types of streaming data.

Model pre-training. With these streaming data, we study both sequential training (ST) and joint
training (JT) for model pre-training. As illustrated in Figure 1, in sequential training, a model
is sequentially trained with streaming data chunks, while in joint training, a model is repeatedly
re-trained with collective data, i.e., all seen data chunks. Moreover, we compare SSL with supervised
learning (SL) and mainly study the following pre-trained models: sequentially trained SSL models
(SSL-ST), jointly trained SSL models (SSL-JT), sequentially trained SL models (SL-ST), and jointly
trained SL models (SL-JT). See Appendix B.2 for details of the pre-training stage.

Transfer to downstream tasks. We evaluate the transfer learning performance of pre-trained models
using three typical downstream tasks: many-shot classification, few-shot classification, and object
detection. See Appendix B.3 for more details of the downstream evaluation.

3 Dissection of Sequential Self-Supervised Pre-Training

In this section, we provide a comprehensive empirical study on SSL models pre-trained with streaming
data. Specifically, we study several key factors affecting the downstream transfer learning performance
of sequential SSL models, including types of streaming data in Section 3.1, downstream tasks and
datasets in Section 3.1, continual learning methods in Section 3.2, and the adopted SSL methods in
Section 3.3. In addition, we analyze the time efficiency and the storage efficiency of models trained
with streaming data in Section 3.4.

28
30
32
34
36
38
40
42

Aircrafts

72
74
76
78
80
82
84
86
88
90

Caltech

76
78
80
82
84
86
88

Flowers

56
60
64
68
72
76
80
84
88
92

Pets

22
24
26
28
30
32
34
36
38

Cars

58
60
62
64
66
68
70
72

DTD

1 2 3 4
50
52
54
56
58
60
62
64
66

Food

1 2 3 4

82

84

86

88

90

CIFAR10

1 2 3 4
58
60
62
64
66
68
70
72

CIFAR100

1 2 3 4
21
24
27
30
33
36
39
42
45
48

Birds

1 2 3 4
42
44
46
48
50
52
54
56
58

Sun397

1 2 3 4
66
68
70
72
74
76
78
80
82

VOC07

M
an

y-
sh

ot

1 2 3 4
of chunks

48

52

56

60

64

68

72

76

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT
SSL-ST w/MAS+

SL-ST
SL-JT

38
40
42
44
46
48
50

Aircrafts

84
86
88
90
92
94
96

Caltech

84
85
86
87
88
89
90
91

Flowers

64
68
72
76
80
84
88
92
96

Pets

48
52
56
60
64
68
72

Cars

68

70

72

74

76

78
DTD

1 2 3 4
58
60
62
64
66
68
70
72
74

Food

1 2 3 4
60
63
66
69
72
75
78
81

CIFAR10

1 2 3 4
66
69
72
75
78
81
84

CIFAR100

1 2 3 4
56
60
64
68
72
76
80
84

Birds

1 2 3 4
85
86
87
88
89
90
91
92
93

Sun397
SSL-ST
SSL-JT
SSL-ST w/MAS+
SL-ST
SL-JT

Fe
w-

sh
ot

1 2 3 4
of chunks

60

63

66

69

72

75

78

81

84

87

90

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT
SSL-ST w/MAS+

SL-ST
SL-JT

Figure 2: Linear and few-shot evaluation results of distant class incremental sequence. on the left
are the results of each dataset. On the right are averaged results across all left datasets.

3.1 How does transfer learning performance vary with streaming data?

As shown in Figure 8 and Figures 6-9 in Appendix C.1, generally, performances of sequential SSL
models generally increase with more streaming chunks, while sequential SL models do not. As for the
performance on each type of streaming data, sequential SSL models are on par with joint SSL models
on streaming data with mild distribution shift. On streaming data with severe distribution shift, joint
SSL visibly outperform sequential SSL. In contrast, on all types of streaming data, sequential SL
models perform obviously worse than joint SL models.

3

3.2 Do continual learning methods help sequential SSL?

We investigate two classic methods in continual learning [5], i.e., data replay and MAS [13], to
mitigate possible performance gaps between SSL-ST and SSL-JT. We denote SSL models trained
with data replay as SSL-ST w/Replay, SSL models trained with MAS as SSL-ST w/MAS, and SSL
models trained with both methods as SSL-ST w/MAS+. In short, as shown in Figure 8 and Figure 8
in Appendix C.1, we find continual learning methods especially promising to improve performances
of sequential SSL models challenging streaming data. See Appendix C.2 for implementations of
MAS and data replay in sequential SSL.

3.3 How about SSL methods other than MoCo?

For simplicity, we choose MoCo-v2 [15] in experiments and illustrate sequential SSL is performance-
promising. We further try BYOL [2] with the distant class incremental sequence and show results in
Figure 10 in Appendix C.3. Similarly, we find SSL models exhibit much smaller performance gaps
than SL models, which further validates the potential of sequential SSL in pre-training tasks. See
detailed results in Appendix C.3.

Table 1: Resource efficiency of considered SSL
pre-training methods. We take the distant class
incremental sequence as an example and report
the training time (h) and required storage (GB)
of the model pre-trained with each data chunk.
The lower value means better efficiency.

Time (Storage) / Chunk 2 3 4
SSL-ST 16.5 (35) 16.5 (35) 16.6 (35)
SSL-ST W/Replay 17.0 (35) 18.5 (42) 20.0 (46)
SSL-ST w/MAS 18.2 (35) 18.1 (35) 18.1 (35)
SSL-ST w/MAS+ 22.4 (39) 24.4 (42) 26.4 (46)
SSL-JT 31.1 (70) 46.5 (105) 66.6 (140)

Table 2: Comparisons of the averaged accuracy
gaps of linear evaluation between ST and JT
models. The lower, the better.

Accuracy gap (%) / Chunk 2 3 4
SL-ST (Instance) 2.26 3.27 4.83
SSL-ST (Instance) 0.41 1.02 1.04
SL-ST (Random) 5.63 8.73 10.68
SSL-ST (Random) 0.42 0.94 1.13
SL-ST (Distant) 7.77 12.50 15.75
SSL-ST (Distant) 2.34 3.81 4.62
SSL-ST w/MAS (Distant) 1.82 2.73 3.17
SSL-ST w/MAS+ (Distant) 1.47 2.01 2.10

3.4 Analysis of method efficiency

We then discuss the time and memory consumption of different training methods of SSL, including
sequential training, continual learning methods like data replay and MAS, and joint training. As
shown in Table 1, sequential SSL is much more time-efficient and storage-saving than JT, especially
when the data amount is large or grows quickly. See Appendix D.1 for detailed descriptions.

4 Self-Supervised Models Forget Less than Supervised Models

We compare SSL and SL in terms of the transfer performance gaps between ST models and the
corresponding JT models, as shown in Table 2. We find that SL models generally show larger
performance gaps than SSL models, which motivates us to further investigate the knowledge forgetting
behavior of both SL and SSL models.

4.1 Backward and forward transfer analysis of sequential learning

Table 3: Backward and forward transfer analysis
of sequential learning.

Data Method BWT(%) FWT(%)
Top-1 Top-5 Top-1 Top-5

Instance SL -9.45 -5.46 8.64 2.81
SSL 3.61 3.60 7.55 8.63

Random SL -20.63 -7.03 -0.34 0.01
SSL -5.17 -1.36 11.05 4.52

Distant SL -40.43 -28.66 4.90 0.47
SSL -13.24 -11.06 11.01 3.66

Following continual learning works [16], we adopt
the backward and forward transfer to measure the
knowledge forgetting. Backward transfer refers
to the improvement of performance on previously
learned chunks when learning new chunks, where
large negative transfer is also known as catas-
trophic forgetting. Forward transfer measures the
improvement in performance on the novel chunk
with the accumulation of knowledge from previ-
ous chunks. As shown in Table 3, we find SSL
itself is less prone to catastrophic forgetting than

4

SL, especially that SSL achieves positive backward transfer on instance incremental sequence. More
details or observations are in Appendix D.3.

4.2 Representations analysis of sequential learning

Input Image Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 1 Chunk 2 Chunk 3 Chunk 4

Raw image Images reconstructed from SSL models Images reconstructed from SL models

Figure 3: Feature reconstructions of both SSL models and SL models in sequential pre-training.

We investigate the forgetting of previous features and the similarity between ST and JT models.

How do features forget in sequential training? We find features of SSL models forget less in-
formation and evolve more slowly than those of SL models in sequential training. The feature
reconstructions via deep image prior [17] are shown in Figure 3. Details are in Appendix D.4.

How are ST models similar to JT models? In summary, we find that SSL representations have larger
similarity between ST models and JT models than SL representations. Details are in Appendix D.4.

4.3 Why do self-supervised models forget less?

Table 4: The sharpness results. Lower is flatter in the loss landscape. ε is the perturbation range.
Instance Random Class Distant Class

ε = 0.1 ε = 0.3 ε = 0.1 ε = 0.3 ε = 0.1 ε = 0.3

SL 0.47 0.94 0.21 0.94 0.19 0.94
SSL 0.14 0.68 0.08 0.66 0.06 0.71

We provide an explanation for the forgetting behavior of different training approaches by analyzing
the flatness of minima in the loss landscape. Flat minima is the minima in which the change in
objective is slow in its large neighborhood. When starting with flat minima, it is expected that learning
new chunks will have a smaller effect on performance of the existing chunks, as escaping the flat
basin is more difficult [18]. Therefore, we hypothesize that SSL encourages the model to seek out
more flat minima, which increases SSL’s resistance to catastrophic forgetting. As sharpness results
shown in Table 4, we can see that SSL does indeed discover a more flat minima compared to SL,
which verifies our hypothesis and providing an explanation for why SSL suffers less forgetting than
SL. More implementation details can be found in Appendix D.5.

5 Discussions

This paper has conducted the first thorough empirical evaluation to investigate how well self-
supervised learning (SSL) performs with streaming data. Our results show the two main findings as
follows: 1). Joint training is unnecessary for SSL, while sequential training with suitable continual
learning strategies is performance-competitive yet more efficient, well worth considering as a good
alternative. 2). Sequential self-supervised pre-training shows a better capability of overcoming
catastrophic forgetting than sequential supervised pre-training. We hypothesize the reason that SSL
models have wider minima than SL models in the loss landscape and verify it by experiments.

As for future directions, we first call for more attention to sequential self-supervised learning for
understanding its underlying theories of knowledge forgetting and devising better approaches. Also,
we recommend considering sequential self-supervised training as a more efficient representation
learning paradigm for real-world applications.

5

Acknowledgements

The authors would like to thank Jiawei Du for his help with implementing sharpness analysis and
Yujun Shi for his discussion with the feature decorrelation in SSL. This work was partially supported
by AISG-100E-2019-035, MOE2017-T2-2-151, NUS ECRA FY17 P08 and CRP20-2017-0006.

References
[1] He, K., H. Fan, Y. Wu, et al. Momentum contrast for unsupervised visual representation learning.

In Computer Vision and Pattern Recognition. 2020.

[2] Grill, J.-B., F. Strub, F. Altché, et al. Bootstrap your own latent: A new approach to self-
supervised learning. In Advances in Neural Information Processing Systems. 2020.

[3] Caron, M., I. Misra, J. Mairal, et al. Unsupervised learning of visual features by contrasting
cluster assignments. In Advances in Neural Information Processing Systems. 2020.

[4] Jure, Z., J. Li, M. Ishan, et al. Barlow twins: Self-supervised learning via redundancy reduction.
In International Conference on Machine Learning. 2021.

[5] Delange, M., R. Aljundi, M. Masana, et al. A continual learning survey: Defying forgetting in
classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[6] Lange, M. D., X. Jia, S. Parisot, et al. Unsupervised model personalization while preserving
privacy and scalability: An open problem. In Computer Vision and Pattern Recognition. 2020.

[7] Miller, G. A. WordNet: An Electronic Lexical Database. MIT press, 1998.

[8] Russakovsky, O., J. Deng, H. Su, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 2015.

[9] Peng, X., Q. Bai, X. Xia, et al. Moment matching for multi-source domain adaptation. In
International Conference on Computer Vision. 2019.

[10] Ericsson, L., H. Gouk, T. M. Hospedales. How well do self-supervised models transfer? In
Computer Vision and Pattern Recognition. 2021.

[11] Kornblith, S., J. Shlens, Q. V. Le. Do better imagenet models transfer better? In Computer
Vision and Pattern Recognition. 2019.

[12] Everingham, M., L. Van Gool, C. K. Williams, et al. The PASCAL visual object classes (VOC)
challenge. International Journal of Computer Vision, 2010.

[13] Aljundi, R., F. Babiloni, M. Elhoseiny, et al. Memory aware synapses: Learning what (not) to
forget. In European Conference on Computer Vision. 2018.

[14] Chen, T., S. Kornblith, M. Norouzi, et al. A simple framework for contrastive learning of visual
representations. In International Conference on Machine Learning. 2020.

[15] Chen, X., H. Fan, R. Girshick, et al. Improved baselines with momentum contrastive learning.
arXiv preprint arXiv:2003.04297, 2020.

[16] Yan, S., J. Xie, X. He. Der: Dynamically expandable representation for class incremental
learning. In Computer Vision and Pattern Recognition. 2021.

[17] Ulyanov, D., A. Vedaldi, V. Lempitsky. Deep image prior. In Computer Vision and Pattern
Recognition. 2018.

[18] Keskar, N. S., D. Mudigere, J. Nocedal, et al. On large-batch training for deep learning:
Generalization gap and sharp minima. 2016.

[19] Gidaris, S., P. Singh, N. Komodakis. Unsupervised representation learning by predicting image
rotations. In International Conference on Learning Representations. 2018.

6

[20] Noroozi, M., P. Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European Conference on Computer Vision. 2016.

[21] Larsson, G., M. Maire, G. Shakhnarovich. Learning representations for automatic colorization.
In European Conference on Computer Vision. 2016.

[22] Caron, M., P. Bojanowski, A. Joulin, et al. Deep clustering for unsupervised learning of visual
features. In European Conference on Computer Vision. 2018.

[23] Wu, Z., Y. Xiong, S. X. Yu, et al. Unsupervised feature learning via non-parametric instance
discrimination. In Computer Vision and Pattern Recognition. 2018.

[24] Caron, M., P. Bojanowski, J. Mairal, et al. Unsupervised pre-training of image features on
non-curated data. In International Conference on Computer Vision. 2019.

[25] Thomee, B., D. A. Shamma, G. Friedland, et al. YFCC100M: The new data in multimedia
research. Communications of the ACM, 2016.

[26] Mahajan, D., R. Girshick, V. Ramanathan, et al. Exploring the limits of weakly supervised
pretraining. In European Conference on Computer Vision. 2018.

[27] Gururangan, S., A. Marasović, S. Swayamdipta, et al. Don’t stop pretraining: adapt lan-
guage models to domains and tasks. In Annual Meeting of the Association for Computational
Linguistics. 2020.

[28] Reed, C. J., X. Yue, A. Nrusimha, et al. Self-supervised pretraining improves self-supervised
pretraining. In International Conference on Computer Vision. 2021.

[29] Kirkpatrick, J., R. Pascanu, N. Rabinowitz, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences, 2017.

[30] Zenke, F., B. Poole, S. Ganguli. Continual learning through synaptic intelligence. Proceedings
of Machine Learning Research, 2017.

[31] Rebuffi, S.-A., A. Kolesnikov, G. Sperl, et al. icarl: Incremental classifier and representation
learning. In Computer Vision and Pattern Recognition. 2017.

[32] Rolnick, D., A. Ahuja, J. Schwarz, et al. Experience replay for continual learning. In Advances
in Neural Information Processing Systems. 2019.

[33] Lopez-Paz, D., M. Ranzato. Gradient episodic memory for continual learning. In Advances in
Neural Information Processing Systems. 2017.

[34] Wang, L., K. Yang, C. Li, et al. Ordisco: Effective and efficient usage of incremental unlabeled
data for semi-supervised continual learning. In Computer Vision and Pattern Recognition. 2021.

[35] Serra, J., D. Suris, M. Miron, et al. Overcoming catastrophic forgetting with hard attention to
the task. In International Conference on Machine Learning. 2018.

[36] Mallya, A., S. Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning.
In Computer Vision and Pattern Recognition. 2018.

[37] Rao, D., F. Visin, A. Rusu, et al. Continual unsupervised representation learning. In Advances
in Neural Information Processing Systems. 2019.

[38] Aljundi, R., K. Kelchtermans, T. Tuytelaars. Task-free continual learning. In Computer Vision
and Pattern Recognition. 2019.

[39] Parisi, G. I., R. Kemker, J. L. Part, et al. Continual lifelong learning with neural networks: A
review. Neural Networks, 2019.

[40] Yosinski, J., J. Clune, Y. Bengio, et al. How transferable are features in deep neural networks?
In Advances in Neural Information Processing Systems. 2014.

[41] Han, J., X. Liang, H. Xu, et al. SODA10M: Towards large-scale object detection benchmark for
autonomous driving. arXiv preprint arXiv:2108.12178, 2021.

7

[42] Oord, A. v. d., Y. Li, O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[43] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In Computer
Vision and Pattern Recognition. 2016.

[44] Bossard, L., M. Guillaumin, L. Van Gool. Food-101 – mining discriminative components with
random forests. In European Conference on Computer Vision. 2014.

[45] Krizhevsky, A., G. Hinton, et al. Learning multiple layers of features from tiny images. Master’s
thesis, University of Tront, 2009.

[46] Berg, T., J. Liu, S. Woo Lee, et al. Birdsnap: Large-scale fine-grained visual categorization of
birds. In Computer Vision and Pattern Recognition. 2014.

[47] Xiao, J., J. Hays, K. A. Ehinger, et al. Sun database: Large-scale scene recognition from abbey
to zoo. In Computer Vision and Pattern Recognition. 2010.

[48] Krause, J., J. Deng, M. Stark, et al. Collecting a large-scale dataset of fine-grained cars. In
Workshop on Fine-Grained Visual Categorization. 2013.

[49] Maji, S., E. Rahtu, J. Kannala, et al. Fine-grained visual classification of aircraft. arXiv preprint
arXiv:1306.5151, 2013.

[50] Cimpoi, M., S. Maji, I. Kokkinos, et al. Describing textures in the wild. In Computer Vision
and Pattern Recognition. 2014.

[51] Parkhi, O. M., A. Vedaldi, A. Zisserman, et al. Cats and dogs. In Computer Vision and Pattern
Recognition. 2012.

[52] Fei-Fei, L., R. Fergus, P. Perona. Learning generative visual models from few training examples:
An incremental bayesian approach tested on 101 object categories. In Computer Vision and
Pattern Recognition Workshop. 2004.

[53] Nilsback, M.-E., A. Zisserman. Automated flower classification over a large number of classes.
In Indian Conference on Computer Vision, Graphics & Image Processing. 2008.

[54] Chen, T., S. Kornblith, K. Swersky, et al. Big self-supervised models are strong semi-supervised
learners. In Advances in Neural Information Processing Systems. 2020.

[55] Ren, S., K. He, R. Girshick, et al. Faster R-CNN: Towards real-time object detection with
region proposal networks. In Advances in Neural Information Processing Systems. 2015.

[56] Goodfellow, I. J., M. Mirza, D. Xiao, et al. An empirical investigation of catastrophic forgetting
in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013.

[57] McCloskey, M., N. J. Cohen. Catastrophic interference in connectionist networks: The sequen-
tial learning problem. In Psychology of Learning and Motivation. Elsevier, 1989.

[58] Tian, Y., Y. Wang, D. Krishnan, et al. Rethinking few-shot image classification: a good
embedding is all you need? In European Conference on Computer Vision. 2020.

[59] Wang, Z., Z. Dai, B. Póczos, et al. Characterizing and avoiding negative transfer. In Computer
Vision and Pattern Recognition. 2019.

[60] Newell, A., J. Deng. How useful is self-supervised pretraining for visual tasks? In Computer
Vision and Pattern Recognition. 2020.

[61] Kornblith, S., M. Norouzi, H. Lee, et al. Similarity of neural network representations revisited.
In International Conference on Machine Learning. 2019.

[62] Zhao, N., Z. Wu, R. W. Lau, et al. What makes instance discrimination good for transfer
learning? In International Conference on Learning Representations. 2020.

[63] Wen, W., Y. Wang, F. Yan, et al. Smoothout: Smoothing out sharp minima to improve
generalization in deep learning. arXiv preprint arXiv:1805.07898, 2018.

[64] Mirzadeh, S. I., M. Farajtabar, D. Gorur, et al. Linear mode connectivity in multitask and
continual learning. In International Conference on Learning Representations(ICLR). 2020.

8

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] The limitations are discussed in

’Future direction’ part of the last section.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] This is a

fundamental research and does not have potential negative social impacts.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A] The code is
proprietary, but will be made public upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] All the assets are publicly available.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] The data we are using do not contain personally
identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

9

6 Appendix

A Related Work

Self-supervised learning (SSL). SSL learns useful features by solving various pretext tasks using
supervisions generated from unlabeled training data, e.g., predicting rotations [19], solving jigsaw
puzzles [20], predicting colorization [21], predicting cluster assignments [22], and solving instance
discrimination [23, 14, 1, 2]. To achieve better performance in the downstream task, recent studies of
SSL have made efforts in either upstream pre-training or downstream transfer. Previous works [24, 1]
have leveraged especially large datasets for pre-training, such as YFCC 100M [25] and Instagram
1B [26]. Some recent works [27, 28] propose to pre-train with the downstream dataset for a better
transfer. Our work still focuses on the downstream-agnostic model pre-training. However, in realistic
scenarios, access to massive data is often streaming, and how to perform SSL with streaming data
has not been studied before, motivating our work.

Continual learning. Existing studies of continual learning (CL) [5] mainly focus on supervised tasks
and can be summarized into three categories, including regularization, replay, and parameter-isolation.
In regularization-based CL, knowledge preserving is achieved by regularizing the parameter posterior
of the new task not to deviate drastically from the prior [13, 29, 30]. Replay-based CL methods
overcome forgetting by saving samples of previous tasks in a replay buffer [31–34] and using them to
regularize the learning of new tasks. Last, isolation-based CL methods leverage different parameters
for learning each task to preserve the learned knowledge [35, 36]. Although works [37, 38] explore
continual learning for some specific unsupervised tasks, few have studied the transfer learning
performance of sequential self-supervised models.

B Experimental Setups

B.1 Types of streaming Data

We consider four kinds of streaming data for the study, i.e., the instance incremental sequence,
the random class incremental sequence, the distant class incremental sequence, and the domain
incremental sequence. To exclude the effect of the number of images, we make sure that data chunks
in the same sequence have almost the same data amount. Here we provide more details about these
data sequences.

Instance incremental sequence. In the instance incremental sequence, streaming data chunks
are almost IID, which simulates the scenario where data are continually collected under the same
condition. In this case, there is negligible distribution shift among sequential data chunks. Specifically,
we split the ImageNet [8] training data that consists of 1.28 million images with 1,000 classes into
four even chunks. We ensure that each data chunk includes the same 1,000 classes with the same
number of images for each class, which means these data chunks are independent and identically
distributed (IID).

Random class incremental sequence. In the random class incremental sequence, data in disjoint
chunks belong to different classes, which mimics the scenario where data are collected by random
keyword search on the Internet [39]. Here the distribution shift is moderate. Specifically, we randomly
split the 1,000 classes of ImageNet into four parts where each part has 250 classes. Since each class
of ImageNet has around 1,000 images, we can directly obtain four data chunks with almost the same
amount of images.

Distant class incremental sequence. To explore the data sequence with severe distribution shift
among data chunks, we consider the distant class incremental sequence. The distant class incremental
sequence is similar to the random class incremental sequence except that the semantic gaps between
sequential data chunks in the distant sequence are larger, i.e., images from different data chunks are
semantically dissimilar. This data sequence has severe distribution shift between chunks. It mimics
the scenario where data are crawled from websites with different subjects. Following [40], rather
than randomly splitting the 1,000 classes, we leverage the WordNet Tree [7] to obtain four even
data chunks sharing the minimal semantic overlapping. We first build a 1000*1000 adjacent matrix
among the 1,000 classes by setting the value of similar classes as 1 and the value of dissimilar classes
as 0. To be specific, we take classes sharing the common parent node beneath the ninth depth in

10

the WordNet Tree as similar classes and vice versa. Using the semantic similarity described in the
adjacent matrix, we then split the 1,000 classes into independent connected components as shown in
Figure 4. Finally, we merge these imbalanced components into four almost even data chunks.

0 200 400
Connected component

0

25

50

75

100

125

150

175

200

225

of

 c
la

ss
es

Distant class

Figure 4: The number of classes for
each connected component from
the adjacent matrix of 1,000 classes
in ImageNet.

Domain incremental sequence. In the domain incremental se-
quence, data chunks are collected from different domains with
severe domain distribution shift. A typical example is that large-
scale autonomous driving data in [41] are collected in different
domains, such as different weather conditions and cities, but
share similar classes. The first three types of streaming data are
designed with ImageNet [8], while the domain incremental se-
quence consists of five domains in DomainNet [9]. Specifically,
we consider a multi-domain dataset called DomainNet [9]. In
our work, we adopt a domain incremental data sequence made
of four distant domains including ‘sketch’, ‘real’, ‘painting’
‘quickdraw’, and ‘clipart’. There exist severe domain distri-
bution shift among data in these five domains. Specifically,
data in the domain ‘quickdraw’ mostly contain only lines with-
out visual textures. As a result, images from ‘quickdraw’ are
less informative and more visually distinct, compared with im-
ages from those four domains, as shown in Figure 5. For each
domain, we randomly select 48,129 images as a data chunk,
except for ‘quickdraw’ where we select 47,687 images.

Figure 5: Example images in the five domains of DomainNet.

B.2 Details of pre-training

MoCo-v2. For the illustration purpose, we adopt a prevailing self-supervised learning (SSL) method,
MoCo-v2 [15], to investigate the performance of SSL with streaming data. MoCo-v2 uses a Siamese
network consisting of two encoders. These two encoders are designed for query images and key
images, respectively, and share the same architecture where an MLP projection head fw is on top of a
backbone network fθ. Only the query encoder is updated by the gradients backpropagation while the
key encoder is updated by the moving average with a momentum. MoCo-v2 maintains an additional
dictionary as a queue of features for contrastive learning. Specifically, features in the dictionary are
progressively updated. The current mini-chunk features from the key encoder are enqueued and the
same number of oldest features are dequeued. MoCo-v2 uses InfoNCE [42], a variant of contrastive
loss (CL), to maximize the similarity of features from positive pairs and minimize the similarity of
features from negative pairs. The contrastive loss is formalized as below.

Lcl= −
1

N

N∑
i=1

log
e(z
>
i z

+
i /τ)

e(z
>
i z

+
i /τ) +

∑
z−i ∈Z

− e(z
>
i z
−
i /τ)

, (1)

where N is the number of samples, zi is the L2-normalized projected feature from the query encoder,
z+i is the L2-normalized projected feature of the same input image from the key encoder, Z− are the
negative history features stored in the dictionary and τ is the temperature.

Pre-training. For self-supervised pre-training, we follow the protocol of MoCo-v2 [15], i.e., using
the standard ResNet50 backbone [43]. The implementation is based on OpenSelfSup2. For both

2https://github.com/open-mmlab/OpenSelfSup

11

joint training and sequential training, the number of training epochs is 200 for each model training,
where the convergence of loss is observed. For the instance incremental sequence, we consider one
random sequence as the data are randomly divided. While for the random class incremental sequence,
distant class incremental sequence, and domain incremental sequence, we experiment with different
sequences of data chunks. In particular, considered sequences are obtained through right circular shift
operations. For example, if the data sequence length is 4, after splitting all the data into four chunks
A, B, C, and D, four sequences, namely A-B-C-D, B-C-D-A, C-D-A-B, and D-A-B-C are used for
the sequential pre-training a representation model. The results from different sequences are averaged
to obtain the final performance. For comparison, supervised pre-training is also implemented using
OpenSelfSup following the recommended training protocol of ImageNet. For supervised pre-training,
the classifier layer is reset at a new data chunk.

B.3 Details of downstream tasks

We evaluate the transfer performance of the pre-trained models using three different downstream tasks.
Following [14], we consider 12 diverse image classification datasets including Food-101 [44], CI-
FAR10 [45], CIFAR100 [45], Birdsnap [46], SUN397 [47], Standard Cars [48], FGVC Aircraft [49],
VOC2007 [12], DTD [50], Oxford-IIIT Pets [51], Caltech-101 [52] and Oxford 102 Flowers [53]. On
these datasets, we evaluate the pre-trained models via the many-shot classification and the few-shot
classification (except VOC2007). Both classification protocols are the same as [10]. In addition, we
evaluate the pre-trained models on the PASCAL VOC detection task, following the same transfer
protocol of MoCo [1]. The training data of detection come from VOC2007 and VOC2012, and the
test data come from VOC2007.

Table 5: The inverse of regularization strength (weight decay value) used in many-shot logistic
regression evaluation on 12 different downstream classification datasets. SSL models: self-supervised
models. SL models: supervised models.

Dataset SSL Models SL Models
Aircraft 5623.413277133687 9.99999985098839
Caltech-101 316227.7712565657 0.3162277621819913
Flowers 31622.77530666721 999.999952502551
Pets 999.999952502551 562.3413185099295
Cars 5623.413277133687 17.782794106882072
DTD 1778.2794843157246 0.0177827946252197
Food 177827.94843157247 0.0562341298247638
CIFAR10 316227.7712565657 0.0562341298247638
CIFAR100 100.00000223517424 0.0562341298247638
Birdsnap 1778.27948431572 0.1
SUN397 100.00000223517424 0.0177827946252197
VOC2007 9.99999985098839 0.005623413223739

Many-shot classification. Many-shot classification is a widely used evaluation protocol [54, 1]. To
evaluate the pre-trained representations, a linear classifier is directly added to the pre-trained feature
encoder. During the downstream task evaluation, only the added linear classifier is fine-tuned using
a substantial amount of downstream labeled data while the feature encoder is frozen. In this way,
the downstream transfer performance can directly reflect the generalization ability of the pre-trained
representation models.

Few-shot classification. Few-shot classification reflects how well the pre-trained models perform on
downstream tasks in the few-shot learning regime. Specifically, we consider 5-way 5-shot few-shot
tasks on 11 downstream classification datasets, following the few-shot setting in [10]. Concretely,
the pre-trained model is fixed for extracting representations. In contrast to many-shot evaluation,
in few-shot evaluation, only a few downstream labeled data are provided to obtain prototypes for
different categories and then the classification is based on the nearest prototype.

Detection. To further evaluate the transferability of the pre-trained models on more downstream
scenarios, we consider object detection as a downstream task, where the fine-grained spatial location
information is more important, compared with classification tasks. To be specific, we follow the
settings in [1], i.e., adopting the Faster-RCNN [55] with a backbone of R50-dilated-C5 and fine-tuning
all layers including the pre-trained representation network.

12

We perform no hyper-parameter tuning for few-shot evaluation and detection evaluation. As for the
linear evaluation protocol, we adopt the logistic regression and only tune the weight decay value. The
inversed weight decay values for all downstream classification datasets are given in Table 5.

C More Experimental Results

C.1 Results of other streaming data

We pre-train representation models on four types of streaming data and evaluate pre-trained models
on 12 downstream datasets with three downstream evaluation tasks. Note that models pre-trained
with ImageNet-based streaming data are evaluated on all three downstream tasks. Models trained
with the domain incremental sequence are only evaluated with few-shot classification, considering
that the size of each data chunk in DomainNet is only 1/5 that of each chunk in ImageNet. Besides
the distant class incremental sequence, we also report downstream evaluation results of the instance
incremental sequence, random class incremental sequence, and the domain incremental sequence
in Figure 6, Figure 7, and Figure 8, respectively. We also evaluate three types of ImageNet-based
streaming data on object detection and illustrate results in Figure 9.

Transfer learning results of self-supervised pre-training with the instance incremental sequence
are evaluated on all three downstream tasks. For results of both many-shot classification and few-
shot classification in Figure 6, we find sequential SSL performs comparably with joint SSL on all
downstream datasets, with the average performance gap between sequential training and joint training
less than 1%, while there exists evident gaps, more than 4%, between sequential supervised learning
and joint supervised learning.

32

34

36

38

40

42 Aircrafts

78
80
82
84
86
88
90

Caltech

85

86

87

88

89
Flowers

72
75
78
81
84
87
90

Pets

31
32
33
34
35
36
37
38

Cars

65
66
67
68
69
70
71
72

DTD

1 2 3 4
59
60
61
62
63
64
65
66
67

Food

1 2 3 4
86

87

88

89

90

91
CIFAR10

1 2 3 4
65
66
67
68
69
70
71
72
73

CIFAR100

1 2 3 4
24
27
30
33
36
39
42
45
48

Birds

1 2 3 4
51
52
53
54
55
56
57
58

Sun397

1 2 3 4
74
75
76
77
78
79
80
81
82

VOC07

M
an

y-
sh

ot

1 2 3 4
of chunks

48

52

56

60

64

68

72

76

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT

SL-ST
SL-JT

36
38
40
42
44
46
48
50
52
54

Aircrafts

88

90

92

94

96

Caltech

88

89

90

91

92
Flowers

78
81
84
87
90
93
96

Pets

44
48
52
56
60
64
68
72

Cars

72
73
74
75
76
77
78

DTD

1 2 3 4
60
62
64
66
68
70
72
74

Food

1 2 3 4
64
66
68
70
72
74
76
78
80

CIFAR10

1 2 3 4

70
72
74
76
78
80
82
84

CIFAR100

1 2 3 4
56
60
64
68
72
76
80
84

Birds

1 2 3 4
87
88
89
90
91
92
93

Sun397
SSL-ST
SSL-JT
SL-ST
SL-JT

Fe
w-

sh
ot

1 2 3 4
of chunks

60

63

66

69

72

75

78

81

84

87

90

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT

SL-ST
SL-JT

Figure 6: Linear and few-shot evaluation results of instance incremental sequence. on the left are
the results of each dataset. On the right are averaged results across all left datasets.

C.2 Details of continual learning methods

Continual learning is assumed to suffer from catastrophic forgetting of previously learned knowledge
in supervised learning [56, 29, 57], leading to significant performance degradation of previous tasks.
Here we introduce the continual learning techniques we adopt, including data replay [32, 31] and
regularization-based method, e.g., Memory Aware Synapses (MAS) [13].

Data replay. Data relay is a simple yet effective method for alleviating the catastrophic forgetting
problem during the continual learning process. Specifically, we need to maintain a replay buffer
and store a selected subset of samples from each learned task in the buffer. Then we just retrain on
samples in the replay buffer to revisit old tasks while training the model for a new task.

13

30
32
34
36
38
40
42

Aircrafts

78
80
82
84
86
88
90

Caltech

78
80
82
84
86
88

Flowers

72
75
78
81
84
87
90

Pets

24
26
28
30
32
34
36
38

Cars

60
62
64
66
68
70
72

DTD

1 2 3 4

54
56
58
60
62
64
66

Food

1 2 3 4
84
85
86
87
88
89
90
91

CIFAR10

1 2 3 4

64

66

68

70

72

CIFAR100

1 2 3 4
24
27
30
33
36
39
42
45
48

Birds

1 2 3 4

46
48
50
52
54
56
58

Sun397

1 2 3 4

74

76

78

80

82
VOC07

M
an

y-
sh

ot

1 2 3 4
of chunks

48

52

56

60

64

68

72

76

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT

SL-ST
SL-JT

38
40
42
44
46
48
50

Aircrafts

88

90

92

94

96

Caltech

86
87
88
89
90
91

Flowers

78
81
84
87
90
93
96

Pets

45
48
51
54
57
60
63
66
69
72

Cars

72
73
74
75
76
77
78

DTD

1 2 3 460
62
64
66
68
70
72
74

Food

1 2 3 4
62
64
66
68
70
72
74
76
78
80

CIFAR10

1 2 3 4
68
70
72
74
76
78
80
82
84

CIFAR100

1 2 3 4
57
60
63
66
69
72
75
78
81
84

Birds

1 2 3 4
87
88
89
90
91
92
93

Sun397
SSL-ST
SSL-JT
SL-ST
SL-JT

Fe
w-

sh
ot

1 2 3 4
of chunks

60

63

66

69

72

75

78

81

84

87

90

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT

SL-ST
SL-JT

Figure 7: Linear and few-shot evaluation results of random class incremental sequence. On the
left are the results of each dataset. On the right are averaged results across all left datasets.

27
30
33
36
39
42
45 Aircrafts

42
48
54
60
66
72
78
84
90

Caltech

45
50
55
60
65
70
75
80
85
90 Flowers

28
32
36
40
44
48
52
56
60
64

Pets

27
30
33
36
39
42
45
48
51

Cars

30
35
40
45
50
55
60
65
70

DTD

1 2 3 4 5
28
32
36
40
44
48
52
56

Food

1 2 3 4 530
33
36
39
42
45
48
51
54

CIFAR10

1 2 3 4 5
36
40
44
48
52
56
60
64
68 CIFAR100

1 2 3 4 5
33
36
39
42
45
48
51
54
57 Birds

1 2 3 4 5
40
45
50
55
60
65
70
75
80
85

Sun397
SSL-ST
SSL-JT
SSL-ST w/Replay
SL-ST
SL-JT

Fe
w-

sh
ot

1 2 3 4 5
of chunks

30

36

42

48

54

60

66

72

78

84

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

SSL-ST
SSL-JT
SSL -ST w/Replay
SL-ST
SL-JT

Figure 8: Few-shot evaluation results of domain incremental sequence. on the left are the results of
each dataset. On the right are averaged results across all left datasets.

1 2 3 4
of chunks

53

57

61

AP

SSL-ST
SSL-JT

1 2 3 4
of chunks

78
81
84

AP
50

SSL-ST
SSL-JT

1 2 3 4
of chunks

59

63

67

AP
75

SSL-ST
SSL-JT

(a) Instance incremental sequence

1 2 3 4
of chunks

53

57

61

AP

SSL-ST
SSL-JT

1 2 3 4
of chunks

78
81
84

AP
50

SSL-ST
SSL-JT

1 2 3 4
of chunks

59

63

67

AP
75

SSL-ST
SSL-JT

(b) Random class incremental sequence

1 2 3 4
of chunks

53

57

61

AP

SSL-ST
SSL-JT

1 2 3 4
of chunks

78
81
84

AP
50

SSL-ST
SSL-JT

1 2 3 4
of chunks

59

63

67

AP
75

SSL-ST
SSL-JT

(c) Distant class incremental sequence

Figure 9: Object detection evaluation results of three types of ImageNet-based streaming data.

14

To perform data replay in the sequential training process, we maintain a replay buffer consisting of
images sampled from previous data chunks. After finishing the sequential training with each data
chunk, we randomly select 10% data of this chunk and store sampled data in the replay buffer. For
the sequential training with the current data chunk, we directly mix current data with data in the
replay buffer for self-supervised pre-training e.g. MoCo-v2 training using Eqn. (1).

MAS. Regularization-based methods aim to mitigate the catastrophic forgetting by consolidating
previous knowledge with an added regularization term in the loss function. One typical unsupervised
regularization-based method is MAS [13]. Specifically, MAS proposes to compute gradients the
squared L2-norm of the encoder output fθ as the importance weights of parameters.

Ωij =
1

N

N∑
k=1

∂[‖fθ(x)‖22)]

∂θij
. (2)

With the parameter regularization term added, the resulting loss function with the coefficient λ is
shown as below.

L(θ) = Lcl(θ) + λ
∑
i,j

Ωij(θij − θ∗ij)2. (3)

In MoCo-v2, the query encoder is considered as the representation network, we thus only impose
the MAS regularization term on parameters of the query encoder. Specifically, the regularization
coefficient λ is fixed to be 100. Following the prevailing use of MAS regularization [13, 38], we
update the MAS importance weights Ωij to cover information of each data chunk in the sequential
training process. To be specific, after finishing the sequential training with each data chunk, we
leverage both the current data chunk and data in the replay buffer to estimate importance weights
for the trained model using Eqn. (2). Then we update the stored sequential importance weights by a
cumulative moving average of current and previous estimated importance weights, following [38].
As for the model training on the current data chunk, we apply the parameter regularization using
previous importance weights and optimize the model using Eqn. (3).

To sum up, besides the sequentially trained model, both above methods require extra storage for
sequential self-supervised pre-training. For the 10% data replay method, we need to only keep 10%
data of each previous data chunk for sequential training. For the MAS regularization method, we only
require to save a set of importance weights for the model and then update the importance weights
sequentially.

As shown in Figure 8, data replay can totally eliminate the performance gaps between sequential SSL
models and joint SSL models on the domain incremental sequence. Results in Figure 2 also validate
the effectiveness of both continual learning methods in improving the transfer learning performance
of sequential SSL models when faced with streaming data with severe distribution shift. In short, we
find methods devised for supervised continual tasks are especially promising to make sequential SSL
models perform comparably to joint SSL models on challenging streaming data.

C.3 Results of BYOL

To evaluate whether sequential training performs well for other SSL methods, we conduct the
challenging distant class incremental sequence experiments with BYOL [2]. The results of BYOL
are shown in Figure 10. Similar to the observations with MoCo-v2 in Section 3.1, sequential SSL
is visibly inferior to joint SSL on streaming data with severe distribution shift, but sequential SL
performs obviously worse than joint SL. In addition, compared with SL models, SSL models show
significantly smaller performance gaps between sequential training and joint training.

C.4 Results on different downstream tasks and datasets

In pre-training tasks, we pay attention to the generalization of the learned representations to new data
or tasks rather than the performance on the training dataset. As shown in Figures 7-8, sequential
SSL is performance-promising across the three downstream tasks, supported by the average results
across all datasets. Taking a closer look at the results, we observe that, although joint SSL models
achieve comparable performance to joint SL models in linear evaluation, joint SL models significantly
outperform joint SSL models in few-shot evaluation. This observation is also demonstrated in [58, 10].
The main difference between the two evaluation protocols is that linear evaluation involves more

15

27
30
33
36
39
42
45
48

Aircrafts

72
74
76
78
80
82
84
86
88
90

Caltech

75
78
81
84
87
90
93

Flowers

56
60
64
68
72
76
80
84
88
92

Pets

24
28
32
36
40
44
48
52

Cars

58
60
62
64
66
68
70
72
74
76

DTD

1 2 3 4
51
54
57
60
63
66
69
72
75

Food

1 2 3 4
80
82
84
86
88
90
92

CIFAR10

1 2 3 4
58
60
62
64
66
68
70
72
74
76

CIFAR100

1 2 3 4
20
24
28
32
36
40
44
48

Birds

1 2 3 4
42
45
48
51
54
57
60

Sun397

1 2 3 4
66
68
70
72
74
76
78
80
82

VOC07
M

an
y-

sh
ot

1 2 3 4
of chunks

48

52

56

60

64

68

72

76

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

BYOL-ST
BYOL-JT

SL-ST
SL-JT

40
42
44
46
48
50

Aircrafts

86
88
90
92
94
96

Caltech

84
86
88
90
92
94

Flowers

64
68
72
76
80
84
88
92
96

Pets

48
51
54
57
60
63
66
69
72

Cars

68
70
72
74
76
78
80

DTD

1 2 3 4
58
60
62
64
66
68
70
72
74

Food

1 2 3 4
60
63
66
69
72
75
78
81

CIFAR10

1 2 3 4
68
70
72
74
76
78
80
82
84

CIFAR100

1 2 3 4
56
60
64
68
72
76
80
84

Birds

1 2 3 4
85
86
87
88
89
90
91
92
93

Sun397
BYOL-ST
BYOL-JT
SL-ST
SL-JT

Fe
w-

sh
ot

1 2 3 4
of chunks

60

63

66

69

72

75

78

81

84

87

90

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

BYOL-ST
BYOL-JT

SL-ST
SL-JT

Figure 10: Linear and few-shot evaluation results of distant incremental sequence for BYOL. on
the left are the results of each dataset. On the right are averaged results across all left datasets.

fine-tuning than few-shot evaluation, as introduced in Appendix B.3. Therefore, the underlying reason
for the observation is that supervised features are correlated with labels and more discriminative, thus
easy to directly transfer to downstream datasets similar to upstream pre-training data (DomainNet
or ImageNet). For example, SL models dominate most few-shot object or scene classification tasks
but fail on DTD [50], a texture classification dataset sharing no common classes with ImageNet
or DomainNet. In contrast, self-supervised features are more generalized and comprehensive, thus
requiring more fine-tuning for desirable downstream transfer. In addition, on some downstream
datasets, we have seemingly abnormal observations that ST models may outperform JT models
and the model performance may drop with the increase of chunk number. These phenomena are
due to the so-called “negative transfer” [59], which is also discussed in other model pre-training
studies [60, 27]. That is, pre-training with more data chunks generally improves the model ability,
but does not necessarily benefit a specific downstream dataset if the added training data are irrelevant
to the downstream dataset. Compared with sequential SSL, it is observed that sequential SL suffers
more severe “negative transfer” on the performance of downstream datasets.

D More Empirical Analysis

D.1 Analysis of the efficiency

We then discuss the time and memory consumption of different training methods of SSL, including
sequential training (SSL-ST), ST with data replay (SSL-ST w/Replay), ST with MAS (SSL-ST
w/MAS), ST with MAS and data replay (SSL-ST w/MAS+), and joint training (SSL-JT). As shown in
Table 1, JT is very time-consuming especially when the data amount is large, while ST is able to save
a large amount of time under sequential training scenarios. To be specific, ST is about 2x faster than
JT when there are 2 chunks of data, and is about 4x faster when the number of chunks is 4. Moreover,
when we use MAS and data replay to improve the performance of ST, the time consumption of SSL
increases a little but is still significantly faster than JT. As for storage consumption, we can observe a
similar phenomenon as shown in Table 1. In summary, sequential SSL is much more time-efficient
and storage-saving than JT, especially when the data amount is large or grows quickly. Such a result
indicates that sequential SSL is a more favorable choice for real-world pre-training applications,
where data come in sequentially and grow daily.

D.2 Pre-training loss

Figure 11 shows the training loss on each step for various types of streaming data. We can see that
the training loss increases from instance incremental learning, random class incremental learning,
to distant class incremental learning at the beginning of step 2. It reflects that the data distribution

16

0 250 500 750 1000
Iteration

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Tr
ai

ni
ng

 L
os

s

Chunk 1

0 250 500 750 1000
Iteration

6.6

6.8

7.0

7.2

7.4
Chunk 2

0 250 500 750 1000
Iteration

6.6

6.8

7.0

7.2

7.4

7.6
Chunk 3

0 250 500 750 1000
Iteration

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Chunk 4

Distant Class Incremental

0 250 500 750 1000
Iteration

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Tr
ai

ni
ng

 L
os

s

Chunk 1

0 250 500 750 1000
Iteration

6.6

6.7

6.8

6.9

7.0

7.1

7.2
Chunk 2

0 250 500 750 1000
Iteration

6.6

6.7

6.8

6.9

7.0

7.1

Chunk 3

0 250 500 750 1000
Iteration

6.6

6.7

6.8

6.9

7.0

7.1

7.2
Chunk 4

Random Class Incremental

0 250 500 750 1000
Iteration

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Tr
ai

ni
ng

 L
os

s

Chunk 1

0 250 500 750 1000
Iteration

6.6

6.7

6.8

6.9

7.0

Chunk 2

0 250 500 750 1000
Iteration

6.6

6.7

6.8

6.9

7.0

Chunk 3

0 250 500 750 1000
Iteration

6.6

6.7

6.8

6.9

7.0

Chunk 4

Instance Incremental

Figure 11: Training Loss on each step of various types of streaming data.

shift increases when changing the distribution from instance incremental learning, random class
incremental learning to distant class incremental learning.

D.3 Details of BWT and FWT

For supervised continual learning, the performance is defined as the accuracy on the associated
test set, which is meaningful due to the consistency of the training and test sets. However, the
data on downstream task are significantly different from the training set. In this work, to mea-
sure the backward and forward transfer in self-supervised continual learning, we assume that the
training labels are known and perform k-Nearest Neighbor(KNN) classification to evaluate the
representation quality of pretrained model, similar to [23]. Concretely, the backward transfer
BWT = 1

T−1
∑T
i=2

1
i

∑i
j=1A

i
Yj − A

j
Yj and forward transfer FWT = 1

T−1
∑T
i=2A

i
Yi − ÃYj met-

rics used in [16] where T is the sequence length, AiYj refers to the accuracy on the chunk j using
model learned at step i where the label space includes all observed classes up to chunk j, and ÃYj
means the accuracy with the model learned from scratch. For accuracy AiYj on chunk j, we first
extract the features for all the examples in the chunk j, and then perform KNN classification in the
feature space. Specifically, we set the number of nearest neighbor k=200 for the KNN classification.

We can obtain two more observations about forgetting: (1) Types of streaming data: The model
suffers progressively severe forgetting when the distribution shift increases for both SSL and SL
cases. (2) Example forgetting: It is observed that forgetting is less severe in top-5 classification than
top-1 classification, which indicates that the knowledge is not fully forgotten.

17

1 2 3 4

Chunk 1

Chunk 2

Chunk 3

Chunk 4

1 0.78 0.76 0.75

0.78 1 0.78 0.77

0.76 0.78 1 0.78

0.75 0.77 0.78 1

SL Instance

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

1 0.73 0.72 0.72

0.73 1 0.76 0.76

0.72 0.76 1 0.77

0.72 0.76 0.77 1

SL Random Class

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

1 0.38 0.37 0.41

0.38 1 0.69 0.61

0.37 0.69 1 0.61

0.41 0.61 0.61 1

SL Distant Class

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

Chunk 1

Chunk 2

Chunk 3

Chunk 4

1 0.9 0.82 0.75

0.9 1 0.92 0.86

0.82 0.92 1 0.92

0.75 0.86 0.92 1

SSL Instance

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

1 0.82 0.79 0.8

0.82 1 0.89 0.9

0.79 0.89 1 0.88

0.8 0.9 0.88 1

SSL Random Class

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4

1 0.68 0.59 0.65

0.68 1 0.85 0.79

0.59 0.85 1 0.75

0.65 0.79 0.75 1

SSL Distant Class

0.0

0.2

0.4

0.6

0.8

1.0

(a) CKA scores between sequentially trained models.

1 2 3 4
of chunks

0.0

0.2

0.4

0.6

0.8

1.0

CK
A

Si
m

ila
rit

y

SL-ST
SSL-ST

SSL-ST w/MAS
SSL-ST w/MAS+

(b) CKA similarity scores between
the sequentially trained models and
the corresponding jointly trained
models at the step of each data
chunk on the distant class incremen-
tal sequence.

Figure 12: CKA similarity analysis of sequentially trained models. Given images in the first data
chunk, figure (a) shows the similarity of features between different sequential models on three types
of ImageNet-based streaming data. With the same images, figure (b) shows the similarity of features
between ST models and the corresponding JT models w.r.t. each data chunk on the distant class
incremental sequence. The higher CKA similarity value, the more similar.

D.4 Details of CKA similarity analysis

To further understand the sequential self-supervised pre-training, we then take a closer look at the
learned feature representations during the sequential training process. We leverage the linear centered
kernel alignment (CKA) [61] to measure the similarity of output features between two different
representation networks given the same data set as input. If we consider the size of the data set as
n and the feature dimension for two networks as d1 and d2, respectively. We use the selected data
set to extract features X ∈ Rn×d1 from one representation network and features Y ∈ Rn×d2 from
another representation network. In our experiments, n is 50,000 and both d1 and d2 are 2,048. We
first preprocess the two representation matrices by centering the columns. Then the linear CKA
similarity between two representations X and Y can be computed as below:

CKA(X,Y) =
‖XTY ‖2F

‖XTX‖2F ‖Y TY ‖
2
F

.

How do features forget in sequential training? We first study how learned features forget in
sequential training via the Centered Kernel Alignment (CKA) [61]. CKA is usually used to measure
the similarity between two representations of the same given samples. Specifically, we randomly
sample 50,000 images from the first data chunk on each type of streaming data. We use these samples
and the sequentially trained models for CKA similarity analysis. We report the CKA similarity
values on three types of ImageNet-based streaming data in Figure 12(a). Each value in Figure 12(a)
is obtained by first extracting features of samples with two different models and then computing
the CKA feature similarity value between the two features. On all streaming data, we have three
consistent observations about the CKA similarity between sequential models: (1) SSL models all
exhibit higher features similarity to the initial model, compared with SL models. (2) In general,
SSL models show higher features similarity between two sequential models in sequential training,
compared with SL models. (3) Features similarity between two sequential models decrease on
streaming data with more severe distribution shift, for both SSL and SSL. These observations suggest
that features of SSL models forget less information and evolve more slowly than those of SL models
in sequential training.

How are ST models similar to JT models? We then evaluate CKA similarity, for each data chunk,
between features from the sequentially trained model and features from the corresponding jointly
trained model. The same 50,000 samples are used for CKA features similarity analysis. For example,
as shown in Figure 12(b), at the step of the second data chunk, we compute the CKA similarity value
between features of the model jointly trained with the first two data chunks and features from the
model sequentially trained after the second data chunk. The corresponding CKA similarity value is
0.4, which indicates for SL, the difference between the ST model and the JT model is very large. In

18

contrast, SSL has a higher similarity of 0.7 between the ST model and the JT model. Particularly,
with MAS and data replay, the CKA similarity increases to about 0.9, which means the model trained
by sequential SSL extracts nearly the same features as the jointly trained model does. Since the
analysis is on the streaming data with severe distribution shift, this further reinforces our hypothesis
that, with the help of suitable continual learning methods, sequential SSL pre-training is promising to
replace joint training on streaming data with various distribution shift.

Feature reconstructions of sequential models. Similar to [62], in Figure 3, we visualize feature
reconstructions of both sequential SL models and sequential SSL models using deep image prior
(DIP) [17]. To be specific, we choose four images in the first data chunk of the challenging distant
class incremental sequence and visualize features of four sequentially learned models for both SSL
and SL, respectively. As shown in Figure 3, in sequential training, features of SSL models can always
perfectly reconstruct the main information in original images. In contrast, features of SL models lose
more detailed information with the increase of data chunks, which indicates SSL is much better at
countering the knowledge forgetting in sequential training. Recalling the evolving CKA similarity
shown in Figure 12(a), the perfect reconstruction results of sequential SSL models do not mean
SSL models stop learning in sequential training, but it indicates that SSL does well in learning new
knowledge while keeping previous knowledge.

D.5 Sharpness analysis

To verify this hypothesis, we undertake experiments to compare the sharpness of SL and SSL minimas.
Concretely, we introduce the sharpness by adopting the similar metric in [18, 63]. The neighborhood
Cε of mimina is defined as follows

Cε = {z ∈ Rn : −ε||θ||2 ≤ ||z||2 ≤ ε||θ||2} (4)

where n is the number of parameters and θ refers to the model parameter after training. Note that
it is unfair to compare the sharpness at minima of SL and SSL directly due to different losses used.
However, the losses of SL and SSl can be considered as the proxies for 0-1 loss. As a result, we
propose to compare the sharpness on the 0-1 loss for both SL and SSL, where we perform KNN
classification to obtain 0-1 loss, i.e. classification accuracy. Then the sharpness Φθ,f is defined as
follows

Φθ,f (ε) = max
θ′∈Cε

g(θ′) =
f(θ)−minθ′ f(θ′)

f(θ)
(5)

where g(θ′) means the relative loss change from minima θ to the parameter θ′, and the loss function
f(θ) is the negative KNN classification accuracy with model parameter θ.

As shown in Tab. 4, we can see that SSL does indeed discover a more flat minima compared to SL,
which verifies our hypothesis and providing an explanation for why SSL suffers less forgetting than
SL. More implementation details can be found in Appendix D.5. Moreover, we also conduct the
visualization of relative loss change g over a linear path like [64] in Appendix D.5.

For calculation details, we compute the sharpness on chunk 1 for different types of splits in ImageNet.
Considering the function f is not differentiable, we sample θ from Cε and run 50 times to take the
minimal accuracy. For computational efficiency, we randomly sample 0.1M data points to perform
kNN classification with k=200. For flatness visualization, we show the normalized loss along the
specified path by performing linearly interpolation between the model after chunk 1 and the model
after chunk 2 for different splits, as shown in Figure 13. We can see that the compared to SL, loss
remains low for SSL along the linear path, which reflects SSL’s superiority in terms of flatness.

19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Interpolation value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

lo
ss

 c
ha

ng
e SL-ST

SSL-ST

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Interpolation value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

lo
ss

 c
ha

ng
e SL-ST

SSL-ST

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Interpolation value

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

lo
ss

 c
ha

ng
e SL-ST

SSL-ST

(a) Instance (b) Random Class (c) Distant Class

Figure 13: Relation loss change for different interpolations of parameters

20

	Introduction
	Problem Setting
	Dissection of Sequential Self-Supervised Pre-Training
	How does transfer learning performance vary with streaming data?
	Do continual learning methods help sequential SSL?
	How about SSL methods other than MoCo?
	Analysis of method efficiency

	Self-Supervised Models Forget Less than Supervised Models
	Backward and forward transfer analysis of sequential learning
	Representations analysis of sequential learning
	Why do self-supervised models forget less?

	Discussions
	Appendix
	Related Work
	Experimental Setups
	Types of streaming Data
	Details of pre-training
	Details of downstream tasks

	More Experimental Results
	Results of other streaming data
	Details of continual learning methods
	Results of BYOL
	Results on different downstream tasks and datasets

	More Empirical Analysis
	Analysis of the efficiency
	Pre-training loss
	Details of BWT and FWT
	Details of CKA similarity analysis
	Sharpness analysis

