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Abstract
The characteristics of the loss landscape are vital for ensuring efficient gradient-based optimization
of recurrent neural networks (RNNs). Learning dynamics in continuous-time RNNs are prone to
plateauing effects, with recent studies focusing on this issue by analyzing loss landscapes, partic-
ularly in the setting of linear time-invariant (LTI) systems. Building on this work, we explore a
fairly simplified setting and study the loss landscape under modal and canonical parametrizations,
derived from their respective state-space realizations. We find that canonical parametrization offers
improved quasi-convexity properties and faster learning compared to modal forms. Theoretical
results are corroborated by numerical experiments. We also show that autonomous ReLU-based
RNNs in a modal structure generate trajectories which can be produced by an LTI system while
those with a canonical structure produce complex trajectories beyond the scope of LTI systems.

1. Introduction

In training recurrent neural networks (RNNs), the loss landscape plays a critical role in determining
the convergence and stability of optimization dynamics. Some parametrizations can lead to favor-
able landscapes mitigating issues such as vanishing and exploding gradients, allowing for better
training dynamics and improved convergence properties while others could lead to the existence
of flat regions, saddle points and local minima. We investigate the role of parametrization on con-
vexity properties of the loss landscape for continuous-time linear RNNs and follow closely along
the work of [9] and [12]. A canonical parametrization based on the controller canonical form is
considered in [9], whereas [12] considers a modal parametrization1. These parametrizations are
taken up in [22] where a trained neural network with an auto-encoder like architecture is mapped
to a linear time-invariant (LTI) system but numerical results are presented only for the canonical
parametrization. State-space parametrizations of such LTI systems have been well-studied in the
system-identification literature [4–6, 13, 14]. Different parametrizations have been proposed in

1. These parametrizations will be introduced in the next section.
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[15–19, 30, 31] and it is shown that these parametrizations show better properties under Gauss-
Newton type optimization methods which are common in the system identification. We contribute
to this line of work while focusing on gradient-based optimization techniques and at the two specific
parametrizations studied in [12] and [9].

The main contributions of this paper can be summarized as follows. We extend the results on
weak quasi-convexity analysis of the loss landscape with the canonical parametrization from [9]
to the continuous-time setting and derive a linear matrix inequality to estimate the region of weak
quasi-convexity. Furthermore, we show that loss function under the modal parametrization shows
poor convexity properties. A discussion on characterizing stationary points of the loss reconcil-
ing relevant results [12, 20] is given in Appendix B. Our work together with the results of [9, 12]
suggests that the canonical parametrization shows superior theoretical properties compared to the
modal parametrization. Preliminary numerical studies support this finding. Finally, we derive an el-
ementary result on non-linear recurrent neural networks with rectified linear unit (ReLU) activation
function that proves the superior richness properties of the canonical2 form over the modal form.
These results offer a deeper understanding of the sensitive dependence of the loss landscape on
specific parametrizations and introduce systematic tools to compare and analyze different candidate
parametrizations. Additionally, they motivate the search for novel parametrizations that are specif-
ically designed to improve training efficiency and stability in RNN training. Theoretical results are
presented in Sections 2 and 3 with the proofs being deferred to Appendix D.1. Numerical results
are presented in Section 4 followed by conclusions in Section 5.

2. Main Results

We consider a continuous-time RNN with input u and output y described by

d

dt
x(t) = σ(Ax(t) + bu(t)), x(0) = 0 and y(t) = cx(t),

where A ∈ Rn×n, b ∈ Rn×1 and c ∈ R1×n are composed of the trainable weights of RNN and σ is
an activation function. We call an RNN linear when σ is the identity operator and we will make this
assumption throughout this paper, except for Section 3, where we set σ to be the ReLU function3.
We refer to Appendix F for a discussion on the applicability of the results to the discrete-time setting.
Following [9, 12], we choose the infinite-horizon loss function4

L(A, b, c) =
∫ ∞

0
|c∗ · exp(A∗τ) · b∗ − c · exp(Aτ) · b|2dτ,

where matrices (A∗, b∗, c∗) are the model matrices of a true underlying system. Note that for any
non-singular matrix T , L(A, b, c) = L(T−1AT, T−1b, cT ). This illustrates the non-uniqueness of
state-space realizations and shows that the loss indeed merely depends on the input-output behavior.
[12] uses a state-space realization (Â, b̂, ĉ) in a modal form whereas [9] uses a state-space realization

2. The use of the words "canonical" or "modal" is not well-founded in the non-linear setting but we nevertheless use
them to represent the sparsity pattern.

3. The ReLU activation function is defined as σ(x) = max{0, x}.
4. The loss function for the general setting is given by L =

∫ T

0
|y(τ) − y∗(τ)|2dτ , where y and y∗ represent the

predicted output and the true output for a given input u. We restrict attention to infinite-horizon loss (T → ∞).

2



ROLE OF PARAMETRIZATION IN LEARNING DYNAMICS OF RECURRENT NEURAL NETWORKS

(Ã, b̃, c̃) in the controller canonical form to parametrize the respective models as

[
Â b̂

ĉ 0

]
=


â1 0 . . . 0 1

0 â2
. . .

... 1
...

. . . . . . 0 1
0 . . . 0 ân 1

ĉ1 ĉ2 . . . ĉn 0

 ,

[
Ã b̃

c̃ 0

]
=


0 1 . . . 0 0

0 0
. . .

... 0
...

. . . . . . 1 0
ã1 ã2 . . . ãn 1

c̃1 c̃2 . . . c̃n 0

 ,

where we collect the modal parameters in a vector θ̂ = (â1, · · · , ân, ĉ1, · · · , ĉn) and the canonical
parameters in a vector θ̃ = (ã1, · · · , ãn, c̃1, · · · , c̃n). The mapping between parametrizations is
given in Appendix A. We use the notation â = (â1, · · · , ân), ĉ = (ĉ1, · · · , ĉn) and similarly for ã
and c̃. Following [9, 12], we make the following assumption to ensure that the true system can be
represented in both parametrizations of order n.

Assumption 1 A∗ has distinct, negative, real eigenvalues and (A∗, b∗, c∗) is a minimal realization.

2.1. Convexity Analysis

The notion of weak quasi-convexity is central in proving convergence with a rate O(1t ) [9] (see
Appendix D for details). Translating ideas from [9, Lemma 3] to the continuous-time setting, we
obtain the following result that gives a sufficient condition for weak quasi-convexity of the loss.

Theorem 1 (Convexity analysis) Let θ̃∗ = (a1, · · · , an, c1, · · · , cn) be the optimal parameters
corresponding to the true system in canonical form. If there exists a positive constant τ and a
neighborhood S of θ̃∗ such that for all ω ∈ R and for all θ̃ = (ã1, · · · , ãn, c̃1, · · · , c̃n) ∈ S

2Re

[
(iω)n − an(iω)

n−1 · · · − a2(iω)− a1
(iω)n − ãn(iω)n−1 − · · · − ã2(iω)− ã1

]
≥ τ, (1)

then L is τ -wqc over S with respect to θ̃∗.

Theorem 1 provides a useful way of analyzing the domain of weak quasi-convexity of the loss
function. In particular, owing to the well-known positive-real lemma (see [2, Section 2.7.2]), we
obtain Corollary 2 as an immediate consequence.

Corollary 2 (Region of convergence estimation) Let θ̃∗ = (a1, · · · , an, c1, · · · , cn) be the opti-
mal parameters corresponding to the true system in canonical form. L is τ -wqc over S with respect
to θ∗ where 5

S =

{
θ̃ ∈ R2n | ∃P ≻ 0,

[
ÃTP + PÃ P b̃− ãT + ãT∗
b̃TP − ã+ ã∗ 0

]
⪯ 0

}
.

In order to avoid evaluating the set S via a linear matrix inequality, a local result is given next.

Corollary 3 (Local weak quasi-convexity) For every τ ∈ (0, 1), there exists a positive constant R
such that L is τ -wqc over the domain BR(θ̃∗) := {θ̃∗ + δ ∈ R2n | ∥δ∥ ≤ R} with respect to θ̃∗.

5. The notation P ≻ 0 means P is symmetric positive definite whereas ⪯ is used to mean symmetric negative semi-
definiteness.
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Figure 1: Illustration on a low dimensional example with n = 2 where the c matrix for both
parametrizations is set to their respective optimal values. Contour plots of the loss under
canonical parametrization is shown on the left and under modal parametrization in the
middle. Right figure shows the domain of weak quasi-convexity where the yellow region
denotes S from Corollary 2 whereas the red circle denotes BR(θ̃∗) from Corollary 3. Red
star ∗ denotes the global optimum and green star ∗ denotes a saddle point.

We now move our attention to the modal parametrization and obtain the following lemma where 1
is used to denote the vector of all ones.

Lemma 4 Let θ̂∗ = (a1, · · · , an, c1, · · · , cn) be the optimal parameters corresponding to the
true system in modal form. Then (θ̂ − θ̂∗)

T∇L(θ̂) =
∫∞
0 E(iω)∗ (2Re [M(iω)])E(iω)dω where

M(s) = 1
[ s−a1
s−â1

. . . s−an
s−ân

]
and E(s) =

[(
ĉ1

s−â1
− c1

s−a1

)
. . .

(
ĉn

s−ân
− cn

s−an

)]T
.

Following the strategy used in the canonical parametrization, we can try to use Lemma 4 to verify
τ−weak quasi-convexity of L by checking if the integrand can be uniformly lower bounded as
E(iω)∗

(
2Re

[
M(iω)− τ11T

])
E(iω) ≥ 0 ∀ω ∈ R. This, however, turns out to be impossible,

because one can construct θ̂ arbitrarily close to θ̂∗ such that E(0)∗ (2Re [M(0)])E(0) < 0 as
illustrated in Appendix E.

Figure 2.1 illustrates the application of these results on a low-dimensional example with n = 2.
It can be seen that the canonical parametrization leads to convex sub-level sets and a unique global
minimizer as expected whereas the modal parametrization shows poor convexity-properties with the
presence of a saddle point and two minimizers.

3. Autonomous RNNs with ReLU Activations

In contrast to the results on LTI systems, defining a canonical form for general non-linear systems
is fairly involved. Furthermore, similarity transformations (A, b, c) → (T−1AT, T−1b, cT ) do not
keep the input-output response invariant. Acknowledging these difficulties and subtleties involved
in the analysis of non-linear systems, we investigate the richness of the model classes obtained
by imposing the sparsity structure on the model matrices motivated from the modal and canonical
parametrizations. To simplify the analysis, we focus first on autonomous systems (i.e., u ≡ 0) with
non-zero initial conditions. We observe that the set of output trajectories generated when imposing
a modal structure is a strict subset of the trajectories that can be generated by an LTI system of
potentially smaller order.

4



ROLE OF PARAMETRIZATION IN LEARNING DYNAMICS OF RECURRENT NEURAL NETWORKS

Proposition 5 Let σ be the element-wise ReLU activation function and let x and y be the state and
output trajectories generated by

d

dt
x(t) = σ(Âx(t)) and y(t) = ĉx(t)

for some parameters θ̂ = (â1, · · · , ân, ĉ1, · · · , ĉn) and initial condition x(0). There exist A ∈
Rm×m (diagonal) and c ∈ R1×m with m ≤ n such that y(t) = c exp(At)1.

Conversely, we show that there exist trajectories generated by an RNN with a canonical structure
on A that cannot be generated by any LTI system. Consider

d

dt
x(t) = σ

([
0 1
−2 −3

]
x(t)

)
and y(t) =

[
0 1

]
x(t),

with initial condition x̃(0) = [−1 0]T . This system can be solved analytically to obtain the output
trajectory y(t) = 2e−2t(et − 1) for t ∈ [0, ln(2)). For t ≥ ln(2), y(t) = 1

2 . Note that since y(t)
is not twice continuously differentiable, there does not exist A, c and x0 such that y(t) = ceAtx0,
which illustrates that the canonical structure produces richer trajectories.

4. Numerical Experiments
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Figure 2: Iterations needed for
reaching a prescribed
loss for n = 2.

We conduct numerical experiments to explore the loss land-
scapes and parameter trajectories, systematically comparing
the modal and controller canonical (cc) forms in terms of con-
tour plots, loss curves, and the number of iterations needed to
reach a specific loss. We also study the performance of three
optimizers, GD, Nesterov, and Adam, for both parametriza-
tions. In order to study the local and global features of the loss
landscapes and the performance of various optimizers for the
two parametrizations, we initialize the learnable parameters
both "near" and "far" from the true parameter values, focus-
ing on hidden dimensions 2 and 8. For details on initialization,
comparison, and the problem setup, see Appendix G, and for case studies on learning systems with
hidden dimensions 2 and 8, please refer to Appendix G.1, Appendix G.2, respectively. The code to
reproduce the experimental results will be published as an open-source repository upon acceptance.

When the learnable parameters are initialized close to the global minimum, the results for both
parametrizations and for n = 2 and n = 8 show no notable difference in the number of iterations
required to reach a given loss, implying that neither parametrization holds an advantage in terms
of faster convergence to the true parameters. While GD and Nesterov reach a loss value of at least
10−5, they need more than 50k steps for convergence.In contrast, the Adam optimizer consistently
reaches the true parameters in fewer iterations.

When initialized far from the true parameters, we observe that for n = 2 and n = 8, the
canonical form consistently requires fewer iterations to reach a specific loss compared to the modal
form, indicating favorable characteristics (See Figure 2 for n = 2). All optimizers, Adam, GD, and
Nesterov, attain a loss of around 2 to 8 orders of magnitude higher than when the parameters are
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initialized near the true parameters. The Adam optimizer usually results in a loss of around 2 to
6 orders of magnitude lower than GD and Nesterov. Even though this aligns with the theory, the
comparison favors the canonical form as the loss at the initialized parameters in the cc form (= 4.3)
is slightly lower than the loss in the modal form (= 19.85) for n = 2. We intend to compare the two
parametrizations in different ways in the future to make the comparison more fair (cf. Appendix G).

Figure 3 shows the contour plot of the learnable parameters of the state matrix and their respec-
tive trajectories in the two parametrizations. The ĉ and c̃ parameters are eliminated by plugging in
their optimal values for each â and ã, respectively. Note that this is different from the plots in Figure
2.1 where ĉ and c̃ are set to the parameters of the true system. As the canonical form has a unique
global minimum, all trajectories slowly converge towards the global minimum. The modal form
has multiple global minima, and we observe that different initializations may lead to trajectories
converging towards different global minima. In both cases, the Adam optimizer finds globally opti-
mal parameters, whereas GD and Nesterov optimizers reach the shallow valley in which the decay
of the loss function is very slow, and do not find the true parameters within 50000 iterations. The
Adam optimizer’s use of adaptive learning rates for each parameter (unlike GD and Nesterov) and
momentum (absent in GD) enables faster convergence to the global minimum by taking advantage
of momentum and allows increasing learning rates in the shallow valley regions.
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Figure 3: Trajectories of learnable parameters of the state matrix A on a contour plot for 2 × 2
system and parameters initialized away from the true parameters. The black circle indi-
cates the starting point, and the respective colored circles indicate the parameter values
at the last (50000th) iteration. (Left): CC - trajectory 1, (Middle): Modal - trajectory - 1,
(Right): Modal trajectory 2.

5. Conclusions and Future Work

This work investigates the loss landscape properties of continuous-time RNNs under canonical and
modal parametrizations in a fairly simplified setting. We demonstrate that, under the canonical
parametrization, the loss function exhibits weak quasi-convexity within a region that can be esti-
mated. In contrast, the modal parametrization displays poor convexity properties, as evidenced by
a counterexample and contour plots from a low-dimensional case. Preliminary numerical studies
support these findings, with more extensive systematic studies currently underway. Lastly, we es-
tablish that autonomous RNNs with ReLU activation possess richer dynamical properties under the
canonical structure than the modal structure.

Several open research directions show promise. For example, it would be interesting to see how
the different parametrizations proposed in [15–19, 30, 31] affect the convexity properties of the loss
and, therefore, the learning dynamics. Following the discussion on the geometric aspects of the
manifold presented in Appendix C, one can exploit the Riemannian structure of the set of stable
transfer functions to investigate an algorithm based on the Riemannian gradient descent.
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Appendix A. Relationship between the parametrizations

We briefly comment on the non-linear mapping between the two parametrization. Let us first con-
sider the low-dimensional example with n = 2 before giving a general formula for the mapping.
By equating the transfer functions, observe that

ĉ1
(s− â1)

+
ĉ2

(s− â2)
=

ĉ1(s− â2) + ĉ2(s− â1)

(s− â1)(s− â2)
=

c̃2︷ ︸︸ ︷
(ĉ1 + ĉ2) s+

c̃1︷ ︸︸ ︷
(−ĉ1â2 − ĉ2â1)

s2 − (â1 + â2)︸ ︷︷ ︸
ã2

s− (−â1â2)︸ ︷︷ ︸
ã1

.

Thus, the relationship between the modal parametrization and the canonical parametrization for
n = 2 can be described via the map

fmod-can : R4 ∋ (â1, â2, ĉ1, ĉ2) 7→ (−â1â2, â1 + â2,−ĉ1â2 − ĉ2â1, ĉ1 + ĉ2) ∈ R4.

Note that fmod-can is not injective since fmod-can(â1, â2, ĉ1, ĉ2) = fmod-can(â2, â1, ĉ2, ĉ1). Further-
more, there does not exist a point (â1, â2, ĉ1, ĉ2) ∈ R4 such that fmod-can(â1, â2, ĉ1, ĉ2) = (−1, 0, 1, 1)
showing that fmod-can is not surjective either. Therefore, corresponding to a particular input-output
relationship, there exist many state-space realizations in modal form that are mapped to a single
state-space realization in canonical form. For higher order systems, this mapping can be described
via a transformation matrix T that maps a state-space realization in modal form to one in the canon-
ical form as

[
Ã b̃

c̃ 0

]
=

[
T−1ÂT T−1b̂

ĉT 0

]
where T =


eTnC−1

eTnC−1Â
...

eTnC−1Ân−1

 (2)

with en being the nth column of the n dimensional identity matrix and and C =
[
b̂ Âb̂ · · · Ân−1b̂

]
is the controllability matrix6. For more details on this transformation, see [1, Section 6.4.1].

Appendix B. Characterization of stationary points and global minimizers

A number of results illuminating the difficulties in learning of RNNs in the modal form have been
derived in [12]. We now review some of these results that are relevant for our setting and investigate
their analogues for the canonical form. For example, [12, Theorem D.1 and Theorem D.2] together
show that there exist m! global minimizers while the number of d−coincided critical affine spaces7,
each containing infinitely many stationary points, is at least polynomial times larger than the number
of global minimizers. The m! global minimizers are characterized in the proof of [12, Theorem D.1]
and these are obtained from a simple permutation. Furthermore, [12, Theorem D.3] shows that the
Hessian ∇2L(θmod) on these d−coincided critical affine spaces has at least n− d zero eigenvalues.
See [12, Section D.1.3] for details on the application of this theory on the low-dimensional example.

6. Note that the controllability matrix obtained with the modal form is a Vandermonde matrix and one can use formulae
for it’s inverse to compute the transformation matrix T .

7. For 1 ≤ d ≤ n, a d−coincided critical affine spaces are defined to be the set of points in the space of parameters
θmod where ∇L(θmod) = 0 and there are at least d distinct entries in the parameter vector â = (â1, · · · , ân).

10
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It is shown that there exist 2 global minimizers of the form (a1, a2, c1, c2) and (a2, a1, c2, c1) and
a 1−coincided critical affine space {(â1, a − â, w, w | a ∈ R)} which contains saddle points and
degenerate stable-points that are not global minimizes.

In contrast, it has been shown that the canonical form for single-input single-output system is an
identifiable model structure, i.e., there exists a unique global minimizer (see [6]). It can be shown
that all m! global minimizers in the modal form are mapped via fmod-can to a unique minimizer in
the canonical form. Furthermore, since the loss landscape satisfies the local weak quasi-convexity
property (Definition 6), it can be shown that there are no other stationary points in the neighborhood
of the global minimum. For a global picture, the stationary points can be characterized by a set of
2n algebraic equations [20, see equation (33)]

G(−p̂) = Gθ(−p),

dG

ds
(−p̂) =

dGθ

ds
(−p̂),

where p̂ are the poles of the RNN Gθ(s) and G(−p̂) is the true transfer system. These equations
can be numerically solved to obtain the set of stationary points. Characterizing the set of stationary
points using these algebraic equations and comparing them with the number of global minimizers
in a way similar to the one adopted in [12] is an interesting question for future work.

Appendix C. Geometric viewpoint

The study of geometric structures that can be imposed on the set linear system has a long history
and we cite some of the most relevant works next. [10] develops a differentiable manifold structure
on the set of state-space models of order at most n by considering equivalence classes defined via
similarity transformations. [3] investigates the geometric aspects of the set of linear single-input
single-output systems and shows that this set consists of multiple connected components. [7] de-
fines a so-called Finsler metric on the manifold of systems and presents a parametrization [8] that
is especially suitable for the implementation of a parametrization independent Riemannian gradi-
ent descent. [21] use a Riemannian manifold structure to interpret existing H2 model reduction
algorithm as a Riemannian gradient descent. Application of such geometric ideas for system iden-
tification has been considered in [24–27, 29].

Appendix D. Convergence analysis under weak quasi-convexity

Let us first recall the notion of weak quasi-convexity as defined in [9].

Definition 6 (Weak quasi-convexity) Let τ be a positive constant. A differentiable L : Rn → R is
said to be τ -weakly quasi-convex (τ−wqc) over a domain S with respect to θ∗ if for all θ ∈ S,

(θ − θ∗)
T∇L(θ) ≥ τ(L(θ)− L(θ∗)).

Convergence analysis of negative gradient flows has been well studied and convexity plays a
central role in obtaining linear and sub-linear convergence rate guarantees (see for example [32]
and [23]). For the sake of completeness, we provide a standard convergence analysis based on the
notion of weak quasi-convexity which acts as a continuous-time analogue of the global convergence
result from [9].

11
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Theorem 7 (Convergence Analysis) Suppose L is τ -weakly quasi-convex (τ−wqc) over a domain
S with respect to θ∗ and let c be a positive constant such that Bc(θ∗) ⊂ S. If θ is a solution of the
gradient flow dynamics

θ̇(t) = −∇L(θ(t))

with θ(0) ∈ Bc(θ∗), then

(L(θ(t))− L(θ∗)) ≤
1

2τt
||θ(0)− θ∗||2 ∀t ≥ 0.

Proof The proof follows a standard argument based on a Lyapunov function [11]. If the trajectory
θ(t) stays in S for all t ≥ 0, consider the evolution of the energy function V (t) := 1

2 ||θ(t)− θ∗||2+
tτ (L(θ(t))− L(θ∗)). The chain rule gives us

V̇ (t) = −(θ(t)− θ∗)
T∇L(θ(t)) + τ (L(θ(t))− L(θ∗))− tτ ||∇L(θ(t))||2 ≤ 0.

This implies that for all t ≥ 0,

V (t) =
1

2
||θ(t)− θ∗||2 + tτ (L(θ(t))− L(θ∗)) ≤ V (0) =

1

2
||θ(0)− θ∗||2

which gives us the desired convergence bound. The only thing left to be proven then is if θ(0) ∈
Bc(θ∗) ⊂ S, then θ(t) ∈ S for all t ≥ 0. This follows from a standard invariance argument [11]
completing the proof.

D.1. Proofs of theorems

Proof (Theorem 1) The proof proceeds exactly analogous to the proof of [9, Lemma 3] except that
the Parseval relation [33, Problem 4.2] in continuous-time evaluates the integral along the imaginary
axis in the complex plane instead of the unit circle. We thus obtain

(θ̃ − θ∗)
T∇L(θ̃)

=

∫ ∞

0
2Re

[
(iω)n − an(iω)

n−1 · · · − a2(iω)− a1
(iω)n − ãn(iω)n−1 − · · · − ã2(iω)− ã1

]
∥G(iω)− Ĝ(iw)∥2dω.

Using the uniform lower bound hypothesis and the definition of weak quasi-convexity, we get the
desired result.

Proof (Corollary 2) This is a straight-forward application of the positive real lemma [2, Section
2.7.2]. The main idea is that positive realness of a transfer function over all frequencies can be
verified by solving an algebraic system of equations.

Proof (Corollary 3) We use a linear fractional representation [33, Chapter 9] and a small-gain ar-
gument [33, Section 8.2] common in the robust control literature and we refer the reader to these

12
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references for more details. With the deviation variables δ = (δa1 , · · · , δan , δc1 , · · · , δcn) = θ̃− θ∗,
we can show that

sn − ans
n−1 · · · − a2s− a1

sn − ãnsn−1 − · · · − ã2s− ã1
= 1 +

δans
n−1 · · ·+ δa2s+ δa1

sn − (an + δan)s
n−1 · · · − ((a2 + δa2))s− (a1 + δa1)

= 1 + Fu


[
P11(s) P12(s)
P21(s) 0

]
︸ ︷︷ ︸

P (s)

,

δa1 . . .
δan


︸ ︷︷ ︸

∆

 ,

where Fu (P (s),∆) := P21(s)∆(I −P11(s)∆)−1P12(s) and P (s) does not depend on ∆. Finally,
it can be shown that if8

∥∆∥ <
1− τ

∥(1− τ)P11(s)∥H∞ + ∥P12(s)∥H∞ · ∥P21(s)∥H∞
=: R,

then ∥Fu (P (s),∆)∥H∞ < 1 implying sn−ansn−1···−a2s−a1
sn−ãnsn−1−···−ã2s−ã1

≥ τ completing the proof.

Proof (Lemma 4) Proceeding in the same way as in the proof of Theorem 1, we use Parseval’s
relation and reorganize the integrand using the definitions of

M(s) =

1...
1

 [ s−a1
s−â1

. . . s−an
s−ân

]
and E(s) =


(

ĉ1
s−â1

− c1
s−a1

)
...(

ĉn
s−n̂2

− cn
s−an

)


to get the desired result.

Proof (Proposition 5) Consider the system of differential equations in coordinate form

d

dt
x(i)(t) = σ

(
âix

(i)(t)
)
,

with initial condition x(i)(0). Observe that if âix
(i)(0) > 0, then x(i)(t) = eâi·tx(i)(0) solves

the differential equation. On the other hand, if âix(i)(0) ≤ 0, then x(i)(t) = x(i)(0) solves the
differential equation. Since σ is Lipschitz-continuous, we also have uniqueness of the solution [28,
Theorem 54]. Without loss of generality, let m be such that âix(i)(0) > 0 for all i ∈ {1, 2, · · · ,m}
and âix

(i)(0) ≤ 0 for all i ∈ {m+ 1,m+ 2, · · · , n}. The trajectory y can now be described as the
impulse response of the following LTI system which completes the proof.

d

dt
x̄(t) =


â1

. . .
âm

0

 x̄(t), x̄(0) = 1,

y(t) =
[(
x(1)(0)ĉ1

) (
x(2)(0)ĉ2

)
. . .

(
x(m)(0)ĉm

) (∑n
i=m+1 x

(i)(0)ĉi
)]

x̄(t).

8. We use the H∞ norm defined as ∥P (s)∥H∞ = supω∈R∥P (iω)∥.
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Appendix E. Counter example for weak quasi-convexity in modal form

For α ∈ R, define µ(α) = c2−a2α
c2+a2α

and let

âi =

{
ai if i ∈ {1, · · · , n} \ {2},
a2

µ(α) if i = 2

ĉi =

{
c1 − a1α

(
1− µ(α)−

√
2 + 2µ(α)2

)(
1

µ(α) − 1
)

if i = 1

ci if i ∈ {2, · · · , n}.

Note that since limα→0 µ(α) = 1, we have that limα→0 âi = ai and limα→0 ĉi = ci. It can further
be shown that for any α ∈ R, E(0)∗ (2Re [M(0)])E(0) < 0. This implies that the wqc condition is
violated at the 0 frequency no matter how small we choose the neighborhood S of the optimum and
how small we choose τ . This example thus shows that the proof technique we used for the canonical
parametrization breaks down for the modal parametrization. We note however that since the sum of
non-convex functions can potentially be convex, this example does not conclusively establish that
the loss under the modal parametrization is not weakly quasi-convex.

Appendix F. From continuous-time to the discrete-time

In this section, we shortly comment on the analogous discrete-time results when studying discrete-
time RNNs which is the more common setting in the literature. As already stated in the main
text, Theorem 1 is motivated from its discrete-time analogue which appeared in [9, Lemma 3].
Corollaries 2 and 3 can be extended in a rather straight-forward manner to the discrete-time setting
since the robust control tools such as the positive-real lemma and the small-gain theorem already
have their discrete-time counterparts. Similarly, Lemma 4 can be extended to the discrete-time
setting using a discrete-time version of the Parseval relation. Proposition 5 has an exact analogue in
the discrete-time setting which is stated next.

Proposition 8 Let σ be the element-wise ReLU activation function and let x and y be the state and
output trajectories generated by

x(k + 1) = σ(Âx(k)) and y(k) = ĉx(k).

for some parameters θ̂ = (â1, · · · , ân, ĉ1, · · · , ĉn) and initial condition x(0). There exist A ∈
Rm×m (diagonal) and c ∈ R1×m with m ≤ n such that y(k) = cAk1 for k ≥ 2.

Proof The proof follows arguments similar to the proof of Proposition 5. Observe that if âi > 0
and x(i)(0) > 0, then x(i)(k) = âki x

(i)(0) solves the difference equation. In all other cases, note
that x(i)(k) = 0 for all k ≥ 2. Without loss of generality, let m be such that âi > 0 and x(i)(0) > 0
for all i ∈ {1, 2, · · · ,m} and either âi ≤ 0 or x(i)(0) ≤ 0 or both for all i ∈ {m+1,m+2, · · · , n}.
The trajectory y can now be described as the impulse response of the following LTI system which
completes the proof.

x̄(k + 1) =

 â1
. . .

âm

 x̄(k), x̄(0) = 1,

y(k) =
[(
x(1)(0)ĉ1

) (
x(2)(0)ĉ2

)
. . .

(
x(m)(0)ĉm

)]
x̄(k).
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Finally, extension of the results from [12] such as Theorem D.2 and Theorem D.7 is ongoing work
and we believe that these results can be extended to their natural counterparts in the discrete-time
setting.

Appendix G. Numerical experiments

LTI system: We choose the LTI system proposed in [12] as a starting point. In particular, we
populate the matrix Z ∈ Rn×n with randomly sampled entries from the Gaussian distribution
N (0, n−0.5). The state matrix is then computed as −I − ZTZ, where, I ∈ Rn×n is an iden-
tity matrix. The entries of vectors b and c are sampled from the normal distribution N (0, 1) and
scalar d is set to 0. We first convert the systems into modal and canonical (cc) parametrizations, re-
spectively, using similarity transformations. In the canonical form, entries of b are not learnable, and
in modal form, we fix all entries of b to 1 and absorb the parameters in c without loss of generality.

Setup for numerical experiments: We stack the learnable parameters of the state matrix
A ∈ Rn×n and the output vector c ∈ R1×n in a vector denoted by w ∈ R2n. Let d1, d2 ∈ R2n

be vectors with entries sampled from a uniform distributions U(−1, 0), U(−15,−10), respectively.
We denote the initial and true parameters by winit, wtrue ∈ R2n. We focus on the following cases
to understand the local and global aspects of the loss landscape and parameter trajectories:

• Case (A): Parameters initialized “near” the global minimum winit = wtrue + d1.

• Case (B): Parameters initialized “away” from the global minimum winit = wtrue + d2.

Note that we first compute true parameters in the respective parametrizations and then initialize the
learnable parameters away from the true parameters by perturbations d1 and d2. We perform all
experiments with three optimizers - Gradient Descent (GD), Nesterov, and Adam. We perform all
experiments with three random seeds, thereby changing the initial values for learnable parameters
for each seed. The hyper-parameter details are included in Table 1 and Table 2. In Appendix G.1
and Appendix G.2, we perform case studies with LTI systems having state dimensions 2 and 8,
respectively. We choose the learning rate that results in the lowest mean of the losses over three
different initializations for each parametrization. We select optimal hyper-parameters to plot the
loss curves and contour plots. In all the loss curves, we plot the mean of the losses with a solid
line, and the shaded region is used to indicate the minimum and maximum of the losses at a given
iteration. We check that the eigenvalues of the learned state matrix are in the negative half-plane
after every 500 iterations to ensure the stability of the learned LTI system during training and to
ensure that the loss is meaningful.

We also show contour plots of the learnable parameters of the state matrix and their respective
trajectories in the two parametrizations. In both cases, parameter values of c are set to the optimal
values for the given parameter values of the matrix A at any iteration in the computation of the
loss for the contour plot. Since we have more parameters in the true optimization problem, the
parameter trajectories do not always appear along the gradient direction in the contour plot. We
observe a unique global minimum in the canonical form and n! global minima in the modal form.

Note on fair empirical comparison of the two forms: It is not trivial to define a problem
setup for a fair comparison of the two approaches, and we wish to investigate more and better ways
of comparing them in the future. For our setting, the parameter values in the canonical form usually
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Figure 7: Loss trajectories: 2× 2 system and Case (A)

have a larger magnitude in comparison to the parameter values in the modal form. Though we
initialize parameters with the same perturbation from the true parameters in both parametrizations,
in our examples, the canonical form usually has a lower loss than the modal form for the initial
guess and thus has an advantage. Investigating different initialization schemes for the respective
forms is ongoing work and this will allow us to remove this bias in the comparison.

G.1. Case study - 1: 2× 2 systems

G.1.1. CASE (A): PARAMETERS INITIALIZED “NEAR” THE GLOBAL MINIMUM.

Loss curves: Figure 4 and Figure 5 show that for canonical (cc) form and modal forms, the loss
drops quickly within the first few iterations for GD and Nesterov, compared to the Adam optimizer.
However, with enough iterations, Adam reduces the loss down to almost machine precision in both
parametrizations, whereas Nesterov and GD exhibit extremely slow loss decay after the first drop.
Figure 6 shows that the iteration count to attain a certain loss is roughly the same regardless of the
parametrization if the weights are initialized close to the global minimum.

Contour plots: Figure 10 shows the contour plot of the learnable parameters of the state matrix
and their respective trajectories in the two parametrizations. In both cases, parameter values of the
matrix C are set to the optimal values for the given parameter values of the matrix A at any iteration
in the computation of the loss. We observe that the Adam optimizer reaches the global minimum,
whereas the SGD and Nesterov need more iterations to reach the global minimum.

Parameter trajectories: Figure 11 and Figure 12 show the parameter trajectories for canonical
(cc) and modal forms, respectively. The learnable parameters in canonical form are the entries in the
last row of the state matrix, viz., A(2, 1) and A(2, 2) (denoted by ã1 and ã2 in Section 2), whereas,
in the modal form, they are the diagonal entries A(1, 1) and A(2, 2) (denoted by â1 and â2 in Section
2). We observe that Adam finds the global minimum in both forms and is very efficient compared to
GD and Nesterov. Nesterov finds the global minimum in the modal form but needs more iterations
in the canonical form to converge to true parameters, whereas GD performs relatively poorly in both
forms.

G.1.2. CASE (B): PARAMETERS INITIALIZED AWAY FROM THE GLOBAL MINIMUM.

Loss curves: Figure 14 and Figure 15 show that for canonical, the loss drops quickly for all opti-
mizers, whereas for the modal form, the loss relatively quickly with GD and Nesterov optimizers,
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Figure 13: Parameter trajectories: 2× 2 system and Case (A)

compared to the Adam optimizer. However, with enough iterations, Adam reduces the loss down to
almost machine precision with both parametrizations, whereas Nesterov and GD exhibit extremely
slow loss decay after the first drop.
Parameter trajectories: Figure 17 and Figure 18 show the parameter trajectories for canonical
and modal forms, respectively. We observe that Adam finds the global minimum in both forms and
is very efficient compared to GD and Nesterov. Interestingly, GD performs better than Nesterov in
the canonical form. It seems like momentum does not necessarily help Nesterov in the valley region
as it cannot adjust the learning rate, unlike Adam.

G.2. Case study - 2: 8× 8 systems

We now study loss curves for the 8 × 8 systems. Figure 20 and Figure 21 show that all optimizers
can attain a loss lower than 1e− 5 and Adam often results in a loss lower than the other optimizers
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Table 1: Details of the hyper-parameters: 2× 2 system
Form Optimization algorithm Learning rate values Minimum Loss
CC (Case A) Gradient Descent [102, 101,10−1, 10−3, 10−5, 10−7] 7.77× 10−6

Nesterov [102, 101,10−1, 10−3, 10−5, 10−7] 7.54× 10−7

Adam [102, 101, 10−1,10−3, 10−5, 10−7] 6.15× 10−15

CC (Case B) Gradient Descent [102,101, 10−1, 10−3, 10−5, 10−7] 5.47× 10−5

Nesterov [102,101, 10−1, 10−3, 10−5, 10−7] 8.24× 10−4

Adam [102, 101,10−1, 10−3, 10−5, 10−7] 9.80× 10−12

Modal (Case A) Gradient Descent [102, 101,10−1, 10−3, 10−5, 10−7] 7.05× 10−6

Nesterov [102, 101,10−1, 10−3, 10−5, 10−7] 4.13× 10−18

Adam [102, 101, 10−1,10−3, 10−5, 10−7] 3.76× 10−18

Modal (Case B) Gradient Descent [102, 101,10−1, 10−3, 10−5, 10−7] 1.74× 10−4

Nesterov [102, 101,10−1, 10−3, 10−5, 10−7] 1.64× 10−3

Adam [102, 101, 10−1,10−3, 10−5, 10−7] 1.41× 10−17
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Figure 16: Loss trajectories: 2× 2 system and Case (B)

Table 2: Details of the hyper-parameters: 8× 8 system
Form Optimization algorithm Learning rate values Minimum Loss
CC (Case A) Gradient Descent [102,101, 10−1, 10−3, 10−5, 10−7] 3.14× 10−7

Nesterov [102,101, 10−1, 10−3, 10−5, 10−7] 3.43× 10−9

Adam [102, 101, 10−1,10−3, 10−5, 10−7] 2.12× 10−12

CC (Case B) Gradient Descent [102,101, 10−1, 10−3, 10−5, 10−7] 1.92× 10−4

Nesterov [102,101, 10−1, 10−3, 10−5, 10−7] 2.3× 10−6

Adam [102, 101,10−1, 10−3, 10−5, 10−7] 6.96× 10−10

Modal (Case A) Gradient Descent [102, 101,10−1, 10−3, 10−5, 10−7] 2.96× 10−6

Nesterov [102, 101,10−1, 10−3, 10−5, 10−7] 2.69× 10−7

Adam [102, 101, 10−1,10−3, 10−5, 10−7] 2.84× 10−9

Modal (Case B) Gradient Descent [102, 101,10−1, 10−3, 10−5, 10−7] 1.49× 10−4

Nesterov [102, 101,10−1, 10−3, 10−5, 10−7] 2.59× 10−4

Adam [102, 101,10−1, 10−3, 10−5, 10−7] 7.09× 10−7

by up to five orders of magnitude. The final loss attained by the canonical form is lower than the
one obtained by the modal form. However, importantly, Figure 22 shows that the canonical form
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Figure 17: Parameter trajectory: cc
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Figure 18: Parameter trajectory: modal

Figure 19: Parameter trajectories: 2× 2 system and Case (B)
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Figure 20: Loss curve: cc
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Figure 21: Loss curve:
modal
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Figure 22: Iterations Vs Loss

Figure 23: Loss trajectories: 8× 8 system and Case (A)

requires much fewer iterations than the modal form, to attain a particular loss. The observations
in case (B), when we start away from the global minimizer are similar (cf Figure 24, Figure 25,
Figure 26).
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Figure 24: Loss curve: cc
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Figure 25: Loss curve:
modal
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Figure 26: Iterations Vs Loss

Figure 27: Loss trajectories: 8× 8 system and Case (B)
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