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ABSTRACT

Deep representation learning methods are highlighted as they outperform classical
algorithms in various downstream tasks, such as classification, clustering, genera-
tive models, etc. Due to their success and impact on the real world, fairness concern
is rising with noticeable attention. However, the focus of the fairness problem
was limited to a certain downstream task, mostly classification. We claim that the
fairness problems to various downstream tasks originated from the input feature
space, i.e., the learned representation space. While several studies explored fair
representation for the classification task, the fair representation learning method
for unsupervised learning is not actively discussed yet. To fill this gap, we define a
new notion of fairness, computational-unidentifiability, which suggests the fairness
of the representation as the distributional independence of the sensitive groups. We
demonstrate motivating problems that achieving computationally-unidentifiable
representation is critical for fair downstream tasks. Moreover, we propose a
novel fairness metric, Fair Fréchet distance (FFD), to quantify the computational-

unidentifiability and address the limitation of a well-known fairness metric for
unsupervised learning, i.e., balance. The proposed metric is efficient in computa-
tion and preserves theoretical properties. We empirically validate the effectiveness
of the computationally-unidentifiable representations in various downstream tasks.

1 INTRODUCTION

Thanks to the outstanding performance and development of deep learning, it has been widely applied
to various domains, including natural language processing (NLP) (Devlin et al., 2018), computer
vision (Karras et al., 2019), and generative models (Goodfellow et al., 2014). On the other hand, the
reliability and fairness concerns (Lee & Floridi, 2020; Angwin et al., 2016; Dastin, 2018) advanced
due to their impact on the real world applications. Such fairness concerns include credit limit
estimation (Vigdor, 2019), job application filtering (Dastin, 2018), or crime prevention (Dressel &
Farid, 2018), etc. Accordingly, algorithmic fairness is getting growing attention to prevent biased
predictions.

Following the mainstream fairness literature, we here focus on group fairness (Dua & Graff, 2019;
Zafar et al., 2015; Hardt et al., 2016), which suggests the equality of certain statistical measures
(e.g., true positive rate, positive prediction) between subgroups with different protected attribute (e.g.,

gender, race, religion, etc). It has been widely studied to mitigate fairness violations in downstream
tasks. Numerous studies (Hardt et al., 2016; Choi et al., 2020; Pleiss et al., 2017; Madras et al., 2018)
explore how to attain group fairness in classification tasks. The primary objective of this family of
works is to obtain the prediction independence of a protected property. Hardt et al. (2016) suggest
equal opportunity, which requires the same true positive rates for the subgroup. Calibration among
the subgroups (Kleinberg et al., 2016) is to match the predicted probability and actual distribution
of favorable class. Moreover, some works (Kim et al., 2020; Jang et al., 2021) study efficient
multi-constraint optimization to satisfy multiple fairness notions.

However, most of the works mainly focus on the supervised setting. Even though deep learning
has significant success in various unsupervised learning tasks, such as clustering (Xie et al., 2016;
Guo et al., 2017), generative model (Karras et al., 2019; Radford et al., 2019), and NLP (Hadifar
et al., 2019), the fairness of unsupervised learning is relatively not actively studied (Buet-Golfouse &
Utyagulov, 2022), and how to quantify the fairness of unsupervised learning methods has not been
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well established yet. A widely used metric for fair clustering is called balance (Chierichetti et al.,
2017), which is analogous to demographic parity (Barocas & Selbst, 2016) in classification. However,
the balance has some limitations since it quantifies fairness by computing the ratio of samples in
different protected groups within a cluster. For instance, even in the ideal balance (the ratio of the
samples from different groups matches the group truth), the sensitive groups can distribute samples
separately within clusters. In this case, it is easy to determine which sensitive group the sample
belongs to so that it might lead to a biased decision in downstream tasks. Especially in generative
models, e.g., VAE (Kingma & Welling, 2013), the generated samples can be imbalanced if the latent
space is dependent on the sensitive attributes. This can cause a critical problem as generative models
are widely applied to mitigate the imbalance of datasets (Guo et al., 2019; Fajardo et al., 2021; Mirza
et al., 2021).

Instead, we propose a novel approach, computational-unidentifiability, as a fairness notion in unsuper-
vised learning. Analogous to the fact that biased data is responsible for the biased decision-making
(Buolamwini & Gebru, 2018; Mehrabi et al., 2021), we here claim that the learned representation
itself plays a critical role in fair downstream tasks utilizing DNN. Even though deep representation
has been appreciated for its superb performance (Eldan & Shamir, 2016; Kozma et al., 2018), the
fairness concerns in the space have been overlooked. Thus, we explore the fairness in representation
space that could bridge DNN and the downstream tasks with fairness concerns. We validate our claim
on downstream tasks by comparing the performance and fairness of two distributions: fair and unfair
representation.

To measure fairness in representation space, we propose a novel metric called FFD (Fair Fréchet
distance) inspired by Fréchet distance (Dowson & Landau, 1982) to efficiently quantify fairness
in representation space by measuring distributional independence of the sensitive groups with
computational identifiability (Hébert-Johnson et al.; Lahoti et al., 2020). Unlike the balance, we not
only consider statistical independence but also distributional independence between the sensitive
groups. This can be a good reference for future work to evaluate the fairness or distributional
independence in the representation space of certain attributes of interest. Moreover, we propose a deep
fair clustering framework to learn a fair representation that achieves comparable performance with
other clustering methods while ensuring fairness. The contributions in the paper can be summarized
as follows:

1. We study the motivating problem of why fair representation is important to achieve fair
downstream tasks.

2. We propose a novel metric that quantifies fairness in representation space. We provide
rigorous analysis of the theoretical property and complexity of our fairness metric.

3. We propose a framework for fair representation learning for downstream tasks.

4. We validate our method on various benchmark datasets comparing with state-of-the-art fair
methods in the literature.

2 RELATED WORKS

GROUP FAIRNESS

As a class of definitions, group fairness measures the disparity of predicted outcomes among the
subgroups with certain sensitive attributes. A number of works introduce fair notions to mitigate the
bias and ensure the independence of the performance measures between the subgroups to achieve
group fairness. Demographic parity (Barocas & Selbst, 2016) suggests that positive prediction should
be equalized and independent of the sensitive attribute. Equal opportunity (Hardt et al., 2016) states
that true positive rates should match. Likewise, Predictive equality (Chouldechova, 2017) states the
equality of false positive rates. Group-wise calibration (Kleinberg et al., 2016; Pleiss et al., 2017)
proposed to match the probability estimate with the actual ratio of positive distribution within the
group. In an unsupervised setting, balance (Chierichetti et al., 2018) is introduced to have an equal
number of samples from different protected groups within a cluster as fair clustering. However, the
balance only considers statistical parity, which limits the utility as a metric since perfect balance (i.e.,

1) does not guarantee fairness (as the base rate differs). Moreover, none of the works explore the
fairness of the representation itself.
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FAIR SUPERVISED LEARNING

To assure group fairness, recent works in supervised learning reside in one of the three approaches:
1) pre-processing; 2) in-processing; 3) post-processing. Pre-processing method (Chen et al., 2018)
suggests improving the skewed sample size problem. Adversarial learning methods (Madras et al.,
2018; Zhao et al., 2019) are proposed to learn a fair representation that is independent of sensitive
attributes. Post-processing the output of the biased model (Hardt et al., 2016; Jang et al., 2021) with
multiple fairness objectives are introduced as they are more efficient than training a model from
scratch. However, the aforementioned approaches minimize group fairness constraints specified for
the classification task.

FAIR UNSUPERVISED LEARNING

Fairness in the unsupervised setting has recently got attention (Buet-Golfouse & Utyagulov, 2022;
Ghadiri et al., 2021). A pioneering work (Chierichetti et al., 2018) in fair clustering method proposed
fairlet decomposition to pre-process data followed by classic clustering methods to address disparate
impact. Scalable fair clustering algorithm (Backurs et al., 2019) is the following work of fairlet
decomposition by improving the efficiency with approximation. Variational framework (Ziko et al.,
2019) is introduced to satisfy KL fairness objective. Wang & Davidson (2019) propose a new concept
called fairoid that enforces the centroids of each sensitive group in feature space to have an equal
distance to each cluster centroid. Adversarial objective (Li et al., 2020) is employed to learn a
representation that is statistically independent w.r.t. sensitive attribute while clustering-favorable
utilizing individual clustering modules. However, to our best knowledge, previous works mostly
focused on the predicted outcome to be independent of the sensitive attribute, i.e., statistical parity.
We here study the independence of sensitive attributes in the learned representation in unsupervised
learning.

3 MOTIVATING PROBLEMS

In this work, we define a novel fairness notion called computationally unidentifiability that is more
extensive than the existing task-specific notions. Inspired by fair classification works (Hébert-Johnson
et al.; Lahoti et al., 2020), we define computational-identifiability as the maximum possible ability
for an external classifier to distinguish which sensitive group the data belongs to. Two distributions
are computationally unidentifiable if and only if they are identical, i.e., no external classifier can
distinguish which sensitive group the sample is drawn from. We demonstrate motivating problems
showing how such distributional independence affects fairness in downstream tasks.

3.1 CLASSIFICATION AND CLUSTERING

Consider data distribution with binary sensitive attribute, A = {0, 1}, and binary label, Y = {0, 1}.
In Fig. 1, we illustrate synthetic data distributions similar to previous works (Zafar et al., 2015; Kim
et al., 2020) with two scenarios that both satisfy the perfect balance, i.e., base rate for each protected
group is identical. The perfect balance can also be referred to as statistical independence. We denote
Xya as a set of instances with y 2 Y and a 2 A. The detail of the synthetic data sampling process is
in the appendix. When comparing two distributions in Fig. 1b and Fig. 1a, the distribution in Fig.
1b explicitly exposes which sensitive group a sample belongs to, i.e., computationally identifiable
(CI). This has a potential risk of discrimination in downstream tasks. Specifically, it is unstable
for maintaining good clustering performance since such data representation can be clustered by the
sensitive group structure whether than the expected intrinsic features (Lee et al., 2021). In contrast,
in Fig. 1a, the representation satisfies not only statistical independence but also distributional

independence w.r.t. sensitive attribute, i.e., computationally unidentifiable (CU). Therefore, models
cannot easily identify which group a sample belongs to and thus cannot discriminate against groups
in the downstream tasks.

To validate our claim, we evaluate two representations with classification and clustering, which are
the most popular tasks in supervised and unsupervised learning. For the classification task, we test
the logistic regression. To measure fairness in classification, we adopt demographic parity (Barocas
& Selbst, 2016), DP = |P (Ŷ = 1|A = 0) � P (Ŷ = 1|A = 1)|, and equalized odds (Hardt et al.,
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(a) Computationally unidentifiable (fair) representation (b) Computationally identifiable (unfair) representation

Figure 1: Illustration of two synthetic data of computationally unidentifiable (fair) and identifiable
(unfair) distribution with a binary sensitive group and class. Different color (resp. shape) indicates
different class y (resp. sensitive group a). We denote Xya as a set of instances with y, a 2 {0, 1}.

Table 1: Evaluation of downstream tasks on different distributions. Computational-Unidentifiable
(CU) distribution achieves significantly fairer results with similar performance in both supervised
and unsupervised learning tasks, while Computationally-Identifiable (CI) distribution has a huge
detriment of fairness. FFD is the proposed metric to measure the fairness of a representation.

Data k-means++ (Unsup Learning) Logistic Regression (Sup Learning)
FFD2 Balance ACC �ACC Balance ACC �ACC DP EOD

CU 6.876 0.931 0.846 0.002 0.851 0.865 0.005 0.029 0.031
CI 8.385 0.908 0.861 0.091 0.116 0.855 0.076 0.636 0.717

2016), EOD =
P

y |P (Ŷ = y|A = 0, Y = y) � P (Ŷ = y|A = 1, Y = y)|, where Ŷ is predicted
label. Both DP and EOD are the lower, the better.

For fair clustering, we measure the balance by following the previous works (Xie et al., 2016; Li
et al., 2020; Bera et al., 2019), which is to satisfy EX⇠D[A = a|C(X) = k] = EX⇠D[A = a],
where C(X) = k indicates that the data X is clustered to the k-th cluster by model C. Achieving
the balanced clustering satisfies the statistical independence w.r.t. A, and balance = 1 is a perfect
balance. However, we claim that statistical independence cannot fully examine fair clustering. To
address the limitation of the previous fair unsupervised learning metric, we propose a novel fairness
metric for representation called Fair Fréchet Distance (FFD), which will be discussed in the following
section.

Table 1 summarizes the evaluation of downstream tasks on the two distributions. Even though
both CU and CI data are sampled from perfectly balanced distributions, fairness violations from
CI are significantly worse than that of CU on both tasks. It is interesting to note that fairness is
sensitive to distributional independence; however, performance is not affected. This validates that fair
representation itself has a substantial impact on fairness in downstream tasks while preserving utility.
Moreover, FFD is a good proxy to measure computational identifiability since smaller FFD indicates
harder to identify sensitive information from the representation.

4 FAIR FRÉCHET DISTANCE

To quantify the proposed fairness notion in terms of computational identifiability, in this subsection
we introduce a novel metric named Fair Fréchet Distance (FFD) to measure the distance between
distributions from different sensitive groups.

Consider two sets of samples U 2 Rd⇥n0 and V 2 Rd⇥n1 . Suppose the samples in U and V are
drawn from multivariate Gaussian distributions, respectively. Define a centering matrix Hn 2 Rn⇥n

as Hn = I � 1
n1n1>n , where 1n 2 Rn is a vector with all elements being 1; and I is the identity

matrix. We first introduce two metrics in Definition 4.1 and 4.2 that measure the distance between
two distributions U and V .
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Definition 4.1. Fréchet distance (FD) (Dowson & Landau, 1982) between U and V is defined as:

FD
2(U, V ) = kµU � µV k22 +Tr

�
⌃U + ⌃V � 2(⌃

1
2
U⌃V ⌃

1
2
U )

1
2
�
,

where µU , µV and ⌃U ,⌃V are the means and covariance matrices of U and V , respectively.
Definition 4.2. We define the Fair Fréchet Distance within Cluster (FFDC) between U and V as
follows:

FFDC2(U, V ) =

����
U1n0

n0
� V 1n1

n1

����
2

2

+

✓
kUHn0kFp

n0 � 1
� kV Hn1kFp
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,

when n0, n1 > 1, else FFDC2(U, V ) = 1.

Next, we define Fair Fréchet Distance (FFD) in Definition 4.3. For simplicity, we define FFD for the
case with binary sensitive feature a 2 {0, 1}. We will introduce how to extend such a measure to the
case with multi-valued sensitive features at the end of this subsection.

For a clustering assignment of m samples into c clusters as {X1, X2, . . . , Xk}, where Xk 2
Rd⇥nk , k = 1, 2, . . . c, contains the nk samples in the k-th cluster that sums to

cP
k=1

nk = m. Within

each cluster Xk, define Uk 2 Rd⇥nk and Vk 2 Rd⇥nk as follows:

ui
k =

⇢
xik, if aik = 0
0, else , vik =

⇢
xik, if aik = 1
0, else (1)

where xik is the i-th sample in Xk; aik 2 {0, 1} is the sensitive feature of the i-th sample in Xk; and 0
is the zero vector. Thus we have Uk + Vk = Xk, k = 1, 2, . . . , c.
Definition 4.3. With the definition of Uk|ck=1 and Vk|ck=1 in equation 1, we define FFD for the m
samples with the clustering assignment {X1, X2, . . . , Xk} as:

FFD({X1, X2, . . . , Xk}) = max
k

FFDC(Uk, Vk).

Theorem 4.4. With the definition of Uk|ck=1 and Vk|ck=1 in equation 1, the following inequality holds:

FFD2({X1, X2, . . . , Xk})�max
k

1

nk � 1
Tr(XkX

>
k )

 max
k

FD2(Uk, Vk)  FFD2({X1, X2, . . . , Xk}).

Proof of Theorem 4.4 is in the appendix. In the case of the multi-valued sensitive feature, we can
extend the definition of FFDC in Definition 4.2 with the max FFDC value among all pairs of sensitive
groups in a cluster, and thus extend the definition of FFD in Definition 4.3. We can easily verify that
Theorem 4.4 still holds in the case with the multi-valued sensitive feature.

4.1 INSIGHT FROM THEOREM 4.4

Consider a clustering problem that partitions the m samples into c clusters, where each data sample
is formulated as a d-dimensional vector. The FFD metric we proposed in Definition 4.3 is efficient
in computation, which requires linear time w.r.t. the number of features and number of samples.
The calculation of FFD in Definition 4.3 has a time complexity of O(ndc) (since we only need to
calculate the trace of matrix UU> and V V > in Definition 4.2, it requires linear instead of quadratic
time w.r.t. d). In contrast, traditional FD metric in Definition 4.1 has a cubic time complexity w.r.t.

number of features. The time complexity for calculating FD is O(c(nd2 + d3)) (since it requires the
computation of exact covariance matrices ⌃U and ⌃V in Definition 4.1 and the corresponding square
root).

Theorem 4.4 indicates that the FD metric is upper bounded by our proposed FFD metric, thus
minimizing FFD indicates the minimization of the upper bound of FD. Further, the gap between the
FD and our FFD metric is bounded by maxk

1
nk�1 Tr(XkX>

k ). Note that FFD is minimized if and
only if the two following conditions are met in each cluster Xk, k = 1, 2, . . . c:

Uk1nk = Vk1nk , kUkHnkk2F = kVkHnkk2F ,
in which case we have FD2 = 0. Thus FD value is minimized if and only if our proposed FFD metric
is minimized.
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5 FAIR CLUSTERING FRAMEWORK

In this section, we present our deep fair clustering framework and its objective functions. For
simplicity, we consider sensitive attribute as binary feature. However, this can be easily extended
to multiple sensitive attribute problems. Consider the c-clustering problem, given the i.i.d. sampled
m data samples X 2 Rd⇥m, where each sample is represented by a d-dimensional vector. Encoder
E learns a representation Z 2 Rl⇥m and a clustering module C takes Z as an input and outputs
probability P 2 Rc⇥m of the predicted cluster as a soft label. The goal of E and C is to achieve
computationally unidentifiable fairness and high clustering performance. Given a matrix X 2 Rd⇥m

with m samples, we denote the i-th data point from X as its bold lower case letter with index in the
superscript, e.g., xi, and the k-th entry of a vector as a lower case letter e.g., xi

k.

5.1 CLUSTERING LOSS

Inspired by the previous works (Xie et al., 2016; Li et al., 2020), we employ clustering loss to learn the
representation that is concentrated in the cluster centroids. Clustering module C assigns probability
that a sample zi = E(xi) belongs to each cluster k0 by comparing with trainable cluster centroids ck
on Student t-distribution as:

pik =
(1 + kzi � ckk2/↵)�

↵+1
2

P
k0(1 + kzi � ck0k2/↵)�↵+1

2

, (2)

where pik indicates the probability that xi belongs to k-th cluster and ↵ is the degree of freedom of
Student t-distribution. Then, assign the target cluster qik by sharpening the soft assignment pik within
a sensitive group a as

qik =
(pik)

2/
P

xj2Xa
pjkP

k0

�
(pjk0)2/

P
xj2Xa

pjk0

� , (3)

which reinforce the confidence of the predicted cluster and prevent large clusters as a regularizer. We
set empirical clustering loss L̂cls as KL divergence between pk and qk as

L̂cls = KL(P ||Q) =
X

x2X

X

k

pk log
pk
qk

. (4)

5.2 FAIRNESS LOSS

Our goal is to further improve fairness in the clustering task that sensitive group is not identifiable
by the samples in a cluster. Recent work proposed to use fairoid (fair-centroid) (Wang & Davidson,
2019) that the centroid of each sensitive group should have equal distance to all cluster centroids. We
claim that fairoid cannot guarantee fair representation since equidistance centroids can be perfectly
separated by the cluster centroids.

To achieve computational-unidentifiability, we employ variational autoencoder (VAE) struc-
ture (Kingma & Welling, 2013) for the encoder to leverage the reparameterization trick. Then
we can formulate the latent feature of an instance xi as zi = E(xi) = µi + ✏�, where ✏ ⇠ N (0, I),
where µ and � are the mean and variance respectively. To enforce the learned representation inde-
pendent of the sensitive attribute, we minimize the distance between distributions from a different
protected group within a cluster, i.e., KL(p(a,k)||p(a0,k)), where p(a,k) is a probability distribution
of the samples in a sensitive group a with predicted cluster k. Assume the distribution follows the
Gaussian distribution as p(a,k) = N (µ(a,k), Diag(�(a,k))). Then our fairness objective to minimize
KL divergence can be written as:

Lfair = �1

2

✓
2 log

✓
�(a,k)

�(a0,k)

◆
�

�2
(a,k) + (µ(a,k) � µ(a0,k))

2

�2
(a0,k)

+ 1

◆
. (5)

For the empirical loss L̂fair, we use µ̂(a,k) =
1

|Xa,k|
P

i2Xa,k
µi and �̂(a,k) =

1
|Xa,k|

P
i2Xa,k

�i as
the empirical mean and variance where Xa,k is denoted as a set of instances predicted as cluster k in
group a, since we assume all samples are i.i.d.

To sum up, our final objective is to minimize the loss as follows:
min
E,C

L̂cls + L̂fair. (6)

6



Under review as a conference paper at ICLR 2023

6 EXPERIMENTS

In this section, we compare fairness and the performance of the proposed method with the state-of-
the-art methods.

6.1 EXPERIMENTAL SETUP

Benchmark Dataset. We use two image datasets and two tabular datasets to evaluate the methods.
MNIST-USPS dataset consists of 60,000 MNIST 1, and 7,291 USPS2 hand written gray scale digits.
We consider the source of the image i.e., MNIST, USPS as a sensitive attribute with c = 10 clustering
problem. MTFL (Zhang et al., 2014) consists of 12,995 facial images and its landmark information. It
also provides information such as gender and wearing glasses. By following (Li et al., 2020), we use
wearing glasses or not as a sensitive attribute and c = 2 clustering problem with desired clustering
attribute is gender.

We pre-process the image dataset by normalizing the pixel value. The normalization parameters
are mean = 0.1307, std = 0.3081 for MNIST-USPS, and mean= (0.3527, 0.3902, 0.4697), and
std= (1, 1, 1) for MTFL respectively.

Comparing Methods. To evaluate our method, we compare with the following related methods in the
experiments. ScFC (Backurs et al., 2019) is non-deep fair clustering method that approximates fairlet
decomposition algorithm in a linear run time. ALG (Bera et al., 2019) is non-deep fair clustering
method that is based on k-median approach. DFC (Li et al., 2020) is a deep fair clustering method
to learn fair and clustering-favorable representation by adversarial loss and cluster modules with
an individual group. VFC (Ziko et al., 2019) is a variational framework for fair clustering with KL
fairness as clustering objective.

As a baseline and reference, we use k-means++ and perfect clustering. We use the same backbone
structure for deep fair clustering methods for the fair evaluation. For USPS-MNIST, we pretrain
the encoder to reconstruct the original image as VAE following DFC (Li et al., 2020). For MTFL,
we adopt ResNet50 (He et al., 2016) pretrained with ImageNet for the encoder. We used Adam
optimizer (Kingma & Ba, 2014) with learning rate as 10�5. We implement all experiments on Nvidia
Quadro RTX 6000 and Intel i9-9960X with 128GB RAM.

Evaluation Metric. For the evaluation, we measure performance with accuracy and NMI (Strehl &
Ghosh, 2002), and fairness with accuracy difference between sensitive groups, balance, and FFD.
The four metrics can be computed as:

Accuracy =

P
xi⇠X [argmaxk pik = yi]

n
, NMI =

P
k,j n

+
kj log

� nn+
kj

nkn
+
j

�

r
�P

k nk log
nk
n

��P
j n

+
j log

n+
j

n

�
,

Balance = min
k

✓
min

⇣nuk

nvk
,
nuk

nvk

⌘◆
,

FFD2 = max
k

✓��Uk1nk

nk
� Vk1nk

nk

��2 +
⇣kUkHnkkFp

nk � 1
� kVkHnkkFp

nk � 1

⌘2
+

Tr(UkU>
k ) + Tr(VkV >

k )

nk � 1

◆
.

We denote n, nk, nuk, n
+
j , and n+

kj as total number of samples, number of samples predicted as
cluster k, cluster k with group u, has ground truth label j, and samples intersected with k and j.
Also, yi indicates the true label of xi, which is matched to the clusters by the linear sum assignment
problem to find the best pair between the predicted cluster and the true label for calculating accuracy.
The lower bound of Fréchet Distance (FD) can be calculated by simply omitting the last term in the
above equation.

1http://yann.lecun.com/exdb/mnist/
2https://www.kaggle.com/bistaumanga/usps-dataset
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MNIST-USPS MTFL
Acc NMI Balance FFD2 Acc NMI Balance FFD2

Perfect 1.0 1.0 0.12 14.90 1.0 1.0 0.145 7.57
k-means++ 0.593 0.503 0.054 16.24 0.727 0.228 0.076 7.57

ScFC (Backurs et al., 2019) 0.353 0.258 0.072 13.63 0.731 0.182 0.080 8.72
ALG (Bera et al., 2019) 0.581 0.487 0.091 15.80 0.747 0.227 0.124 8.80
VFC (Ziko et al., 2019) 0.580 0.522 0.115 14.67 0.756 0.227 0.140 8.79
DFC (Li et al., 2020) 0.824 0.828 0.053 14.13 0.731 0.163 0.137 48.02

Ours (only Lcls) 0.768 0.762 0.058 2.04 0.762 0.211 0.081 46.30
Ours 0.831 0.837 0.091 1.82 0.728 0.154 0.113 43.58

Table 2: Evaluation of clustering methods on two datasets: MNIST-USPS and MTFL. For accuracy
and NMI, it is higher the better. Balance is better if it is closer to perfect clustering i.e., original data
statistic. FFD2 measures distributional independence of sensitive attribute, i.e., the lower, the better.
FFD is measured in the learned representation (resp. input space) space for the deep (resp. non-deep)
models. FFD measurement in the input space is underlined.

6.2 QUANTITATIVE EVALUATION

In Table 2, we report the quantitative evaluation of two image datasets. For accuracy and NMI, the
higher, the better, and balance is better if it is close to that of perfect clustering. For FFD, it is lower
the better. To calculate FFD, we set all comparing deep models (DFC and ours) to have the same
dimension in the representation space. In addition, we preprocessed the latent features from each
model by normalizing the maximum magnitude to 1 for a fair comparison. For non-deep models, we
measure FFD in the original input space, and the values are underlined. Note that we do not directly
compare FFD from deep and non-deep models since they are calculated in different spaces.

In the table, we observe some non-deep fairness methods achieve lower accuracy than classical
k-means++, which is sacrificed to have better balance. With the proposed method, we achieve
comparable or better results on both accuracy and balance compared with the baselines. Moreover,
we could achieve a significantly lower FFD than the other deep fair method, DFC (Li et al., 2020).
As an ablation study, we evaluate our framework with the same structure without the fair loss term.
We empirically found that integrating Lfair in training sometimes favorably contributes to not only
fairness but also performance.

It is interesting to note that ScFC (Backurs et al., 2019) got lower FFD than the perfect clustering
in MNIST-USPS. Thus FFD can be also a good measure to reveal how biased the dataset itself is
against some demographic groups, e.g., imbalanced data or under-representation analysis.

6.3 QUALITATIVE ANALYSIS

In this subsection, we qualitatively evaluate fairness of the learned representation proposed in the
paper comparing with other deep fair clustering methods. Fig. 2 illustrates t-SNE (Van der Maaten &
Hinton, 2008) visualization of the original data, the learned representation of our model, and DFC on
MNIST-USPS dataset. The colors in top and bottom rows indicate different ground truth labels and
sensitive attributes, respectively. The first two columns show the progress of our model in the training
process. The last column in the figure is the visualization of DFC after it converges. At the starting
phase, as in Fig. 2a, we observe that representation is clustered based on the sensitive attribute.
This shows that for the pretraining of the encoder or some downstream tasks, sensitive information
takes an important role, which is not desirable. At last, as in Fig. 2b, we could achieve similar
distribution between different sensitive groups within a cluster. This can be explained by the proposed
objective functions that our Lfair aims to learn the representation that follows the multivariate normal
distribution for all sensitive groups meanwhile the centroids of a different sensitive group within the
cluster. It is noticeable that the representation from DFC is highly identifiable compared with ours.
This would result in potential bias in downstream tasks or possibly generating clusters with the same
sensitive group.
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(a) Ours (iteration=0) (b) Ours (iteration=10000) (c) DFC (Li et al., 2020)

Figure 2: t-SNE visualization of FFC and DFC from 1024 randomly selected samples on MNIST-
USPS dataset. Samples with different colors indicate different ground truth labels (10 digits) and
different sensitive groups (MNIST, USPS) for the top and the bottom row.

Acc (Diff) NMI Balance FFD2

Perfect 1.0 (0.0) 1.0 0.12 -
DFC 0.824 (0.160) 0.828 0.053 14.13

DFC (k-means++) 0.812 (0.115) 0.754 0.044 7.61
Ours 0.831 (0.015) 0.837 0.091 1.82

Ours (k-means++) 0.831 (0.016) 0.834 0.090 1.82

Table 3: Evaluation of the learned representations from deep networks on MNIST-USPS dataset. We
compare the end-to-end deep model and adopt k-means++ clustering method. The representation
with lower FFD achieves more stable and fair results.

6.4 JUSTIFICATION OF FAIR FRÉCHET DISTANCE AS A FAIRNESS METRIC

Representation learning for clustering using deep networks can benefit from their structure of
discovering intrinsic features that are difficult to observe in raw data. However, as we mentioned in
the motivation, if samples are computationally-identifiable (unfair), they are more vulnerable to being
clustered with extrinsic features i.e., sensitive attribute.

To validate this claim, we conduct a classical k-means++ algorithm to cluster the learned representa-
tion from our method and DFC. In Table 3, we summarize the results. As expected, DFC lost more
accuracy and NMI compared to ours when the learned features are clustered with k-means++ because
the FFD was higher than ours. In contrast, we observe almost identical results by k-means++ when
we train with our representation. Also, we achieve better balance and NMI compared with DFC
variant. This confirms that FFD is a good metric of fair clustering as the representation with lower
FFD consistently outcomes fair clusters. This is also shown qualitatively by t-SNE representation.
When the representation is computationally-identifiable and easily separable by the sensitive attribute,
this can result in subsequent unstable and unfair clustering.

7 CONCLUSION AND DISCUSSION

In this paper, we define computationally unidentifiable fairness as a novel notion of fairness to measure
distributional independence of sensitive attributes by leveraging Fréchet distance. Furthermore, we
elaborate on the theoretical analysis of the proposed metric and find some interesting properties. We
integrate contrastive learning and distributional constraint to achieve state-of-the-art performance
while maintaining computational-unidentifiability. We report experimental results comparing with
other fair clustering methods on various benchmark datasets to validate our claim.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: there’s software used
across the country to predict future criminals. and it’s biased against blacks. propublica 2016, 2016.

Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner. Scalable
fair clustering. In ICML, pp. 405–413. PMLR, 2019.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Calif. L. Rev., 104:671, 2016.

Suman K Bera, Deeparnab Chakrabarty, Nicolas J Flores, and Maryam Negahbani. Fair algorithms
for clustering. arXiv preprint arXiv:1901.02393, 2019.

Francois Buet-Golfouse and Islam Utyagulov. Towards fair unsupervised learning. In 2022 ACM

Conference on Fairness, Accountability, and Transparency, pp. 1399–1409, 2022.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial
gender classification. In Conference on fairness, accountability and transparency, pp. 77–91.
PMLR, 2018.

Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier discriminatory? In
NeurIPS, pp. 3539–3550, 2018.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. In Proceedings of the 31st International Conference on Neural Information Processing

Systems, pp. 5036–5044, 2017.

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair clustering through
fairlets. arXiv preprint arXiv:1802.05733, 2018.

YooJung Choi, Meihua Dang, and Guy Van den Broeck. Group fairness by probabilistic modeling
with latent fair decisions. arXiv preprint arXiv:2009.09031, 2020.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

Jeffrey Dastin. Amazon scraps secret ai recruiting tool that showed bias against women. San Fransico,

CA: Reuters. Retrieved on October, 9:2018, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
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