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ABSTRACT

Recent works have revealed the superiority of feature-level fusion for cross-modal
3D object detection, where fine-grained feature propagation from 2D image pix-
els to 3D LiDAR points has been widely adopted for performance improvement.
Still, the potential of heterogeneous feature propagation between 2D and 3D do-
mains has not been fully explored. In this paper, in contrast to existing pixel-
to-point feature propagation, we investigate an opposite point-to-pixel direction,
allowing point-wise features to flow inversely into the 2D image branch. Thus,
when jointly optimizing the 2D and 3D streams, the gradients back-propagated
from the 2D image branch can boost the representation ability of the 3D backbone
network working on LiDAR point clouds. Then, combining pixel-to-point and
point-to-pixel information flow mechanisms, we construct an bidirectional feature
propagation framework, dubbed BiProDet. In addition to the architectural design,
we also propose normalized local coordinates map estimation, a new 2D auxil-
iary task for the training of the 2D image branch, which facilitates learning local
spatial-aware features from the image modality and implicitly enhances the over-
all 3D detection performance. Extensive experiments and ablation studies validate
the effectiveness of our method. Notably, we rank 1st on the highly competitive
KITTI benchmark on the cyclist class by the time of submission. The source code
is available at https://github.com/Eaphan/BiProDet.

1 INTRODUCTION

In recent years, 3D object detection has received increasing academic and industrial attention driven
by the thriving of autonomous driving scenarios, where the two dominating data modalities 3D
point clouds and 2D RGB images demonstrate complementary properties in many aspects. 3D point
clouds scanned by LiDAR encode accurate structure and depth cues in the geometric domain but
typically suffer from severe sparsity, incompleteness, and non-uniformity. The 2D RGB images
captured by optical cameras convey rich semantic features in the visual domain and facilitate the
application of well-developed image learning architectures (He et al., 2016) but pose challenges in
reliably modeling spatial structures. More importantly, due to the essential difficulties in processing
irregular and unordered point clouds, the actual learning ability of neural network backbones work-
ing on 3D LiDAR data is still relatively insufficient, thus limiting the performance of LiDAR-based
detection frameworks. Practically, despite the efforts made by previous studies (Wang et al., 2019;
Vora et al., 2020) devoted to cross-modal learning, how to reasonably mitigate the big modality gap
between images and point clouds and fuse the corresponding heterogeneous feature representations
still remains an open and non-trivial problem.

Depending on specific fusion strategies between image and point cloud modalities, existing cross-
modal 3D object detection pipelines can be categorized into: 1) proposal-level; 2) result-level; 3)
pseudo-LiDAR-based; and 4) point-level processing paradigms, as illustrated in Fig. 1. Concretely,
proposal-level fusion methods (Chen et al., 2017; Ku et al., 2018) perform feature fusion for both
modalities over each of the proposals/anchors, while result-level fusion methods (Pang et al., 2020)
directly manipulate the output 2D and 3D object candidates by leveraging geometric and semantic
consistencies. However, the former two fusion paradigms do not make full use of fine-grained corre-
spondence between 3D LiDAR points and 2D images, and thus show inferior detection performance.
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Figure 1: Comparison on the schematic paradigms of different cross-modal 3D object detectors.

For another alternative fusion paradigm based on pseudo-LiDAR representations (You et al., 2020),
auxiliary learning modules specialized for stereo depth estimation are integrated to synthesize dense
pseudo-LiDAR point clouds as additional complements to the original real-scanned sparse LiDAR
data. Such a strategy indeed brings performance boosts but it becomes more technically cumber-
some and demanding, since ground-truth depth maps are required as supervision signals. Moreover,
as investigated previously (Qian et al., 2020), it is non-trivial to harmonize the joint end-to-end opti-
mization of the object detector and the depth estimator. To make use of point-pixel correspondences
between images and point clouds, there has been another family of point-level fusion approaches
(Huang et al., 2020; Vora et al., 2020) characterized by using projection from the 3D space of point
cloud to 2D image planes. That is, for each 3D point, its geometric feature extracted from the 3D
LiDAR learning branch is fused with the semantic feature (retrieved from the 2D image learning
branch) of the corresponding 2D pixel. Benefiting from more fine-grained feature manipulation,
point-level fusion typically demonstrates more significant performance improvement and thus is
considered as a more promising cross-modal fusion paradigm.

Still, based on our observations, despite the superiority of point-level fusion, previous studies have
not fully exploited its great potential in terms of specific architectural design and technical work-
flow. Fundamentally, the performance boost achieved by previous methods can be mainly credited
to the fact that additional discriminative 2D semantic information is incorporated into the 3D de-
tection pipeline. However, there is no evidence that the actual representation capability of the 3D
LiDAR backbone network, which is also one of the most critical influencing factors, is strengthened.
Besides, it is also noticed that the choice of 2D auxiliary tasks used for training the image learning
branch also makes a difference, which essentially determines the consequent 2D feature represen-
tations to be propagated. Previous methods directly resort to classic semantic understanding tasks
(e.g., image segmentation) for the learning of visual patterns, which may not be the optimal task that
harmonizes with the 3D LiDAR learning branch for geometric modeling.

Given the above issues, in this paper we propose a bidirectional feature propagation architecture,
namely BiProDet, for cross-modal 3D object detection. Foremost, our core component lies in a
novel point-to-pixel feature propagation mechanism allowing 3D geometric features of LiDAR point
clouds to flow into the 2D image learning branch. Our BiProDet differentiates from previous cross-
modal 3D detection pipelines that solely pay attention to unidirectional 2D-to-3D (pixel-to-point)
feature propagation while neglecting the potential effects of the opposite 3D-to-2D (point-to-pixel)
direction. Functionally, different from existing pixel-to-point propagation, the proposed point-to-
pixel propagation turns out to be capable of enhancing the representation ability of 3D LiDAR
backbone networks. In fact, it is worth emphasizing that this is an interesting phenomenon, and
we reason that this is because the gradients back-propagated from the auxiliary 2D image branch
built upon mature 2D convolutional neural networks (CNNs) with the impressive learning ability
can effectively strengthen the 3D LiDAR branch. Taking a step forward, we integrate pixel-to-point
and point-to-pixel propagation directions into a unified interactive bidirectional feature propagation
framework such that 2D and 3D learning branches are inter-strengthened, eventually contributing
to more significant performance gains. Note that the previous work also develops a bidirectional
model for joint optical and scene flow estimation(Liu et al., 2022). Still, we design a concise yet ef-
fective bidirectional propagation strategy without bells and whistles. Unlike Liu et al. (2022) detach
the gradients in bidirectional fusion modules, we demonstrate that gradients back-propagated from
the auxiliary 2D image branch could enhance the 3D backbone. In addition, we also particularly
customize a new 2D auxiliary task called normalized local coordinate (NLC) map estimation, which
facilitates learning local spatial-aware feature representations from the 2D image. Such a task also
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implicitly helps to capture more discriminative geometric information from the main 3D LiDAR
point cloud learning branch, thus improving the overall detection performance, especially for hard
cases of distant and/or highly-occluded objects.

We conduct extensive experiments on the prevailing KITTI (Geiger et al., 2012) benchmark dataset.
Compared with state-of-the-art single-modal and cross-modal 3D object detectors, our framework
achieves remarkable performance improvement. Notably, our method ranks 1st on the cyclist class
of KITTI 3D detection benchmark1. Conclusively, our main contributions are three-fold:

• In contrary to existing pixel-to-point cross-modal fusion strategies, we explore an opposite
point-to-pixel feature propagation paradigm, which turns out to be capable of enhancing the
representation capability of 3D backbone networks working on LiDAR point clouds.

• Combining the existing pixel-to-point and the newly proposed point-to-pixel feature propa-
gation schemes, we further construct the powerful bidirectional feature propagation for cross-
modal 3D objection detection.

• We reveal the importance of specific 2D auxiliary tasks used for training the 2D image learn-
ing branch which has not received enough attention in previous works, and introduce 2D NLC
map estimation to facilitate learning spatial-aware features and implicitly boost the overall 3D
detection performance.

2 RELATED WORK

LiDAR-based 3D Object Detection could be roughly divided into two categories. 1) Voxel-based
3D detectors typically voxelize the point clouds into grid-structure forms of a fixed size (Zhou &
Tuzel, 2018). Yan et al. (2018) introduced a more efficient sparse convolution to accelerate training
and inference. He et al. (2020a) employed auxiliary tasks including center estimation and foreground
segmentation to guide the network to learn the intra-object relationship. 2) Point-based 3D detectors
consume the raw 3D point clouds directly and generate predictions based on (downsampled) points.
Shi et al. (2019) applied a point-based feature extractor and generated high-quality proposals on
foreground points. 3DSSD (Yang et al., 2020) adopted a new sampling strategy named F-FPS as a
supplement to D-FPS to preserve enough interior points of foreground instances. It also built a one-
stage anchor-free 3D object detector based on feasible representative points. Zhang et al. (2022c)
and Chen et al. (2022) introduced semantic-aware down-sampling strategies to preserve foreground
points as much as possible. Shi & Rajkumar (2020b) proposed to encode the point cloud by a fixed-
radius near-neighbor graph. Besides, PV-RCNN (Shi et al., 2020a) adopted a voxel-based RPN and
leverages point-wise features extracted from the voxel set abstraction module to refine the proposals.

Camera-based 3D Object Detection. Early works (Mousavian et al., 2017; Manhardt et al., 2019)
designed monocular 3D detectors by referring to 2D detectors (Ren et al., 2015; Tian et al., 2019)
and utilizing 2D-3D geometric constraints. Another way is to convert images to pseudo-lidar rep-
resentations via monocular depth estimation and then resort to LiDAR-based methods (Wang et al.,
2019). Chen et al. (2021) built dense 2D-3D correspondence by predicting object coordinate map
and adopted uncertainty-driven PnP to estimate object location. Recently, multi-view detectors like
BEVStereo (Li et al., 2022) have also achieved promising performance, getting closer to LiDAR-
based methods.

Cross-Modal 3D Object Detection can be roughly divided into four categories: proposal-level,
result-level, point-level, and pseudo-lidar-based approaches. Proposal-level fusion methods (Chen
et al., 2017; Ku et al., 2018; Liang et al., 2019) adopted a two-stage framework to fuse image fea-
tures and point cloud features corresponding to the same anchor or proposal. For result-level fusion,
Pang et al. (2020) exploited the geometric and semantic consistencies of 2D detection results and 3D
detection results to improve single-modal detectors. Qi et al. (2018) generated 2D region proposals
using a CNN and lifted them to frustum proposals, where a PointNet-based network is utilized to es-
timate 3D box. Obviously, both proposal-level and decision-level fusion strategies are coarse and do
not make full use of correspondence between LiDAR points and images. Pseudo-LiDAR based meth-
ods (You et al., 2020; Wu et al., 2022; Liang et al., 2019) employed depth estimation/completion
and converted the estimated depth map to pseudo-LiDAR points to complement raw sparse point
clouds. However, such methods require extra depth map annotations that are high-cost. Regarding
point-level fusion methods, Liang et al. (2018) proposed the continuous fusion layer to retrieve cor-
responding image features of nearest 3D points for each grid in BEV feature map. Especially, Vora

1www.cvlibs.net/datasets/kitti/eval object.php?obj benchmark=3d
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Figure 2: Flowchart of the proposed BiProDet for cross-modal 3D object detection. It contains two
branches separately extracting features from input 2D RGB images and 3D point clouds. BiProDet
is mainly featured with (1) the multi-stage bidirectional propagation manner for deep interaction
between two modalities and (2) the supervision task of NLC map estimation for promoting the
image branch to exploit local spatial features.

et al. (2020) and Huang et al. (2020) retrieved the semantic scores or features by projecting points
to image plane. Liu et al. (2021) proposed EPNet++, where an LI-Fusion layer is used to enable
more interaction between the two modalities to obtain more comprehensive features. And Wang
et al. (2021) decorated point clouds with middle CNN features extracted from 2D detection models.
However, neither semantic segmentation nor 2D detection tasks can enforce the network to learn
3D-spatial-aware image features. By contrast, we introduce NLC Map estimation as an auxiliary
task to promote the image branch to learn local spatial information to supplement the sparse point
cloud. Besides, Bai et al. (2022) proposed TransFusion, a transformer-based detector that performs
fine-grained fusion with attention mechanisms on the BEV level. Philion & Fidler (2020) and Liang
et al. (2022) estimated the depth of multi-view images and transformed the camera feature maps into
the BEV space before fusing them with LiDAR BEV features.

3 PROPOSED METHOD

Overview. Architecturally, the overall processing pipeline of cross-modal 3D object detection con-
sists of an image branch and a point cloud branch, learning feature representations from 2D RGB
images and 3D LiDAR point clouds, respectively. Existing methods implement cross-modal learn-
ing only by incorporating pixel-wise semantic cues from the 2D image branch into the 3D point
cloud branch for feature fusion. Here, motivated by the observation that point-based networks typ-
ically show insufficient learning ability due to the essential difficulties in processing irregular and
unordered point cloud data modality (Zhang et al., 2022a), we additionally seek to boost the expres-
sive power of the point cloud backbone network with the assistance of the 2D image branch, whose
potential is ignored in previous studies. It is also worth reminding that our ultimate goal is not to
design a more powerful point cloud backbone network structure but to elegantly make full use of the
available resources in this cross-modal application scenario.

As shown in Fig. 2, in addition to pixel-to-point feature propagation explored by mainstream point-
level fusion methods (Liang et al., 2018; Huang et al., 2020), we propose point-to-pixel propagation
allowing features to flow inversely from the point cloud branch to the image branch, based on which
we can achieve bidirectional feature propagation implemented in a multi-stage fashion. In this way,
not only the image features propagated via the pixel-to-point module can provide additional seman-
tic information, but also the gradients backpropagated from the training objectives of the image
branch can boost the representation ability of the point cloud backbone. Besides, we also employ
auxiliary tasks to train the pipeline, aiming to enforce the network to learn rich semantic and spa-
tial representations. In particular, we propose NLC map estimation to promote the image branch to
learn spatial-aware features, providing a necessary complement to the sparse spatial representation
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Figure 3: Illustration of the proposed bidirectional feature propagation.

extracted from point clouds, especially for distant or highly occluded cases. We refer the readers to
Appendix A.2 for detailed network structures of the image and point cloud backbones.

3.1 BIDIRECTIONAL FEATURE PROPAGATION

As illustrated in Fig. 3, the proposed bidirectional feature propagation consists of a pixel-to-point
module and a point-to-pixel module, which bridges the two learning branches that operate on RGB
images and LiDAR point clouds. Functionally, the point-to-pixel module applies grid-level interpo-
lation on point-wise features to produce a 2D feature map, while the pixel-to-point module retrieves
the corresponding 2D image features by projecting 3D points to the 2D image plane.

In general, we partition the overall 2D and 3D branches into the same number of stages, such that
we can perform bidirectional feature propagation at each stage between the corresponding layers
of the image and point cloud learning networks. Without loss of generality, below we only focus
on a certain stage, where we can acquire a 2D feature map F ∈ RC2D×H′×W ′

with C2D channels
and dimensions H ′ ×W ′ from the image branch and a set of C3D-dimensional embedding vectors
G =

{
gi ∈ RC3D

}N ′

i=1
of the corresponding N ′ 3D points.

Point-to-Pixel Module. We design this module to propagate geometric information from the 3D
point cloud branch into the 2D image branch. Formally, we expect to construct a 2D feature map
F P2I ∈ RC3D×H′×W ′

by querying from the acquired point-wise embeddings G. More specifically,
for each pixel position (r, c) over the targeted 2D grid of F P2I of dimensions H ′ ×W ′, we collect
the corresponding geometric features of points that are projected inside the range of this pixel and
then perform feature aggregation by avg-pooling AVG(·):

F P2I
r,c = AVG({gj |j = 1, ..., n}), (1)

where n counts the number of points that can be projected inside the range of the pixel located at the
rth row and the cth column. Particularly, for empty pixel positions where there is no point projected
inside, we simply define its feature value as 0.

After that, instead of directly feeding the “interpolated” 2D feature map F P2I into the subsequent
2D convolutional stage, we introduce a few additional refinement procedures for feature smoothness
as described below:

F fuse = CONV(CAT[CONV(F P2I),F ]), (2)
where CAT[·, ·] and CONV(·) stand for feature channel concatenation and the convolution operation,
respectively, and the resulting F fuse is further fed into the subsequent layers of the 2D image
branch.

Pixel-to-Point Module. From an opposite direction, this module propagates semantic information
from the 2D image branch into the 3D point cloud branch. We start by projecting the corresponding
N ′ 3D points onto the 2D image plane, obtaining their planar coordinates denoted as X = {xi ∈
R2}N ′

i=1. Considering that these 2D coordinates are continuously and irregularly distributed over
the projection plane, we apply bilinear interpolation to compute exact image features at projected
positions, deducing a set of point-wise embeddings F I2P = {F (xi) ∈ RC2D |i = 1, ..., N ′}.

Similar to our practice in the point-to-pixel module, the interpolated 3D point-wise features F I2P

need to be refined by the following procedures:

Gfuse = MLP
(
CAT

[
MLP

(
F I2P ;θ1

)
,G

]
;θ2

)
, (3)
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where MLP(·;θ) denotes shared multi-layer perceptrons parameterized by learnable weights θ, and
the resulting Gfuse further passes through the subsequent layers of the 3D point cloud branch.

3.2 AUXILIARY TASKS FOR TRAINING

The semantic and spatial-aware information is essential for determining the category and boundary
of objects. To promote the network to uncover such information of input data, we also leverage
auxiliary tasks when training the whole pipeline. For the point cloud branch, following SA-SSD (He
et al., 2020b), we introduce 3D semantic segmentation and center estimation to learn structure-aware
features. For the image branch, we particularly propose NLC map estimation, in addition to 2D
semantic segmentation.

Normalized Local Coordinate (NLC) System.
We define the NLC system as taking the center
of an object as the origin, aligning the x-axis to-
wards the head direction of its ground-truth (GT)
bounding box, then normalizing the local coordi-
nates with respect to the size of the GT bounding
box. Fig. 4 (a) shows an example of the NLC sys-
tem for a typical car. With the geometry relation-
ship between the input RGB image and point

Figure 4: Illustration of the (a) NLC system and
(b) 2D NLC map.

cloud, we can project NLCs to the 2D image plane to construct a 2D NLC map with three chan-
nels corresponding to three spatial dimensions, as illustrated in Fig. 4 (b). We refer the reader to
Appendix A.1 for the detailed process.

NLC Map Estimation. Intuitively, vision-based semantic information is useful for network to
distinguish the foreground from the background. However, the performance bottleneck of existing
detectors lies in the limited localization accuracy in distant or highly occluded cases, where the
spatial structure is incomplete due to the sparsity of point clouds. To this end, we further take NLC
map as supervision to learn the relative position of each pixel inside the object from the image. We
expect such an auxiliary task can drive the image branch to learn local spatial-aware features, which
serve as a complement to the sparse spatial representation extracted from point clouds. Besides, this
task could have an effect on augmenting the representation ability of the point cloud branch.

Remark. The proposed NLC map estimation shares the identical objective with pseudo-LiDAR-
based methods, i.e, enhancing the spatial representation limited by the sparsity of point clouds.
However, compared with the manner of learning a pseudo-LiDAR representation via depth com-
pletion, our NLC map estimation has the following advantages: 1) the local NLC is easier to learn
than the global depth owing to its scale-invariant property at different distances; 2) our NLC map
estimation can be naturally incorporated and trained with the detection pipeline end-to-end, while it
is non-trivial to optimize the depth estimator and LiDAR-based detector simultaneously in pseudo-
LiDAR based methods though it can be implemented in a somewhat complex way (Qian et al., 2020);
and 3) the pseudo-LiDAR representations require ground-true dense depth images as supervision,
which may not be available in reality, but our method does not require such information.

Semantic Segmentation. Leveraging semantics of 3D point clouds has demonstrated effective-
ness in point-based detectors, owing to the explicit preservation of foreground points at downsam-
pling (Zhang et al., 2022c; Chen et al., 2022). Therefore, we further introduce the auxiliary semantic
segmentation tasks not only in the point cloud branch but also in the image branch, to exploit richer
semantic information. Needless to say, additional semantic features extracted from images facilitate
the network to distinguish true positive candidate boxes from the false-positive.

3.3 LOSS FUNCTION

The NLC map estimation task is optimized with the loss function defined as

LNLC =
1

Npos

N∑
i

∥∥pNLC
i − p̂NLC

i

∥∥
H
· 1pi

, (4)
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where pi is the ith LiDAR point, Npos is the number of foreground LiDAR points, ∥·∥H is the
Huber-loss, 1pi

indicates the loss is calculated only with foreground points, and pNLC
i and p̂NLC

i
are the NLCs of ground-truth and prediction at corresponding pixel for foreground points.

We use the standard cross-entropy loss to optimize both 2D and 3D semantic segmentation, denoted
as L2D

sem and L3D
sem respectively. And the loss of center estimation is computed as

Lctr =
1

Npos

N∑
i

∥∆pi −∆p̂i∥H · 1pi
, (5)

where ∆pi is the target offsets from points to the corresponding object center, and ∆p̂i denotes the
output of center estimation head.

Besides the auxiliary tasks, we follow (Chen et al., 2022) to define the loss of the RPN stage as
Lrpn = Lc + Lr + Ls + Ld, (6)

where Lc is the classification loss, Lr the regression loss, Ls the shifting loss between the predicted
shifts and residuals from the sampled points to their corresponding object centers in candidate gen-
erate layer (Yang et al., 2020), and Ld the point segmentation loss in SA layers to enable semantic-
guided sampling. In addition, we also adopt commonly used proposal refinement loss Lrcnn as
defined in (Shi et al., 2020a).

In all, the loss for optimizing the overall pipeline in an end-to-end manner is written as
Ltotal = Lrpn + Lrcnn + λ1LNLC + λ2L

2D
sem + λ3L

3D
sem + λ4Lctr, (7)

where λ1, λ2, λ3, and λ4 are hyper-parameters that are empirically set to 1.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and Metrics. We conducted experiments on the prevailing KITTI benchmark dataset,
which contains two modalities of 3D point clouds and 2D RGB images. Following previous
works (Shi et al., 2020a), we divided all training data into two subsets, i.e., 3712 samples for train-
ing and the rest 3769 for validation. Performance is evaluated by the Average Precision (AP) metric
under IoU thresholds of 0.7, 0.5, and 0.5 for car, pedestrian, and cyclist categories, respectively. We
computed APs with 40 sampling recall positions by default, instead of 11. For the 2D auxiliary task
of semantic segmentation, we used the instance segmentation annotations as provided in (Qi et al.,
2019). Besides, we also conducted experiments on the Waymo Open Dataset (WOD) (Sun et al.,
2020), which can be found in Appendix A.4.

Implementation Details. For the image branch, we used ResNet18 (He et al., 2016) as the backbone
encoder, followed by a decoder composed of pyramid pooling module (Zhao et al., 2017) and several
upsampling layers to give the outputs of semantic segmentation and NLC map estimation. For the
point cloud branch, we deployed a point-based network like (Yang et al., 2020) with extra FP layers
and further applied semantic-guided farthest point sampling (S-FPS) (Chen et al., 2022) in SA layers.
Thus, we implemented bidirectional feature propagation between the top of each SA or FP layer and
their corresponding locations at the image branch. Please refer to Appendix A.2 for more details.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We submitted our results to the official website of KITTI. As compared in Table 1, our BiProDet
outperforms existing state-of-the-art methods on the KITTI test set by a remarkable margin, i.e., an
absolute increase of 2.1% mAP over the second best method EQ-PVRCNN. Notably, by the time of
submission, we ranked 1st on the KITTI 3D detection benchmark for the cyclist class. Particularly, it
is observed that BiProDet shows consistent and more obvious superiority on “moderate” and “hard”
levels, i.e., the distant or highly-occluded objects with sparse points. We ascribe such performance
gains to the fact that our proposed bidirectional feature propagation mechanism contributes to more
adequate exploitation of complementary information between multi-modalities as well as the effects
of 2D auxiliary tasks (as verified in Sec. 4.3). Besides, we can observe from the actual visual results
(as presented in Appendix A.7) that our BiProDet is able to produce higher-quality 3D bounding
boxes in varying scenes.
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Table 1: Performance comparisons on the KITTI test set, where the best and the second best results
are highlighted in bold and underlined, respectively.

Method Modality 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PointRCNN (Shi et al., 2019) LiDAR 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53 60.33
PointPillars (Lang et al., 2019) LiDAR 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92 60.65
TANet (Liu et al., 2020) LiDAR 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53 61.71
IA-SSD (Zhang et al., 2022c) LiDAR 88.34 80.13 75.04 46.51 39.03 35.60 78.35 61.94 55.70 62.29
STD (Yang et al., 2019) LiDAR 87.95 79.71 75.09 53.29 42.47 38.35 78.69 61.59 55.30 63.60
Point-GNN (Shi & Rajkumar, 2020a) LiDAR 88.33 79.47 72.29 51.92 43.77 40.14 78.60 63.48 57.08 63.90
Part-A2 (Shi et al., 2020b) LiDAR 87.81 78.49 73.51 53.10 43.35 40.06 79.17 63.52 56.93 63.99
PV-RCNN (Shi et al., 2020a) LiDAR 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65 64.91
3DSSD (Yang et al., 2020) LiDAR 88.36 79.57 74.55 54.64 44.27 40.23 82.48 64.10 56.90 65.01
HotSpotNet (Chen et al., 2020) LiDAR 87.60 78.31 73.34 53.10 45.37 41.47 82.59 65.95 59.00 65.19
PDV (Hu et al., 2022) LiDAR 90.43 81.86 77.36 47.80 40.56 38.46 83.04 67.81 60.46 65.31
MV3D (Chen et al., 2017) LiDAR+RGB 74.97 63.63 54.00 - - - - - - -
MMF (Liang et al., 2019) LiDAR+RGB 88.40 77.43 70.22 - - - - - - -
AVOD-FPN (Ku et al., 2018) LiDAR+RGB 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93 56.84
F-PointNet (Qi et al., 2018) LiDAR+RGB 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.12 49.01 57.86
PointPainting (Vora et al., 2020) LiDAR+RGB 82.11 71.70 67.08 50.32 40.97 37.84 77.63 63.78 55.89 60.81
F-ConvNet (Wang & Jia, 2019) LiDAR+RGB 87.36 76.39 66.69 52.16 43.38 38.80 81.98 65.07 56.54 63.15
CAT-Det (Zhang et al., 2022b) LiDAR+RGB 89.87 81.32 76.68 54.26 45.44 41.94 83.68 68.81 61.45 67.05
EQ-PVRCNN (Yang et al., 2022) LiDAR+RGB 90.13 82.01 77.53 55.84 47.02 42.94 85.41 69.10 62.30 68.03
BiProDet (Ours) LiDAR+RGB 89.13 82.97 80.05 55.59 48.77 46.12 86.74 74.32 67.45 70.13

Table 2: Ablative experiments on different feature exploitation and propagation schemes.

Exp. Method 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard
(a) Single-Modal 91.92 85.22 82.98 68.82 61.47 56.39 91.93 74.56 69.58 75.88
(b) Input Fusion 92.18 85.68 83.43 71.23 64.78 60.27 91.81 74.52 69.69 77.07
(c) Point-to-pixel 91.83 85.11 82.91 70.66 63.57 58.19 92.78 76.31 71.77 77.01
(d) Pixel-to-point 92.07 85.79 82.95 69.46 65.53 59.56 94.39 75.24 72.23 77.47
(e) Bidirectional 92.63 85.77 83.13 72.68 67.64 62.25 94.39 77.77 71.47 78.64

4.3 ABLATION STUDY

We conducted comprehensive ablation studies to validate the effectiveness and explore the impacts
of key modules involved in the overall learning framework.

Effectiveness of Bidirectional Propagation. We performed detailed ablation studies on specific
multi-modal feature exploitation and interaction strategies. We started by presenting a single-modal
baseline (Table 2 (a)) that only preserves the point cloud branch of our BiProDet for both training
and inference. Based on our complete bidirectional propagation pipeline (Table 2 (e)), we explored
another two variants as shown in (Table 2 (c)) and (Table 2 (d)), solely preserving the point-to-pixel
and pixel-to-point feature propagation in our 3D detectors, respectively. Note that in Table 2 (c)
the point-to-pixel feature flow was only enabled during training, and we detached the point-to-pixel
module as well as the whole image branch during inference. In addition, in Table 2 (b), we replaced
the bidirectional feature propagation of our BiProDet with the input fusion strategy as proposed in
(Wang et al., 2021) that decorates point clouds with CNN features deduced from the image branch.
Empirically, we can draw several aspects of conclusions that strongly support our preceding claims.
First, the performance of Table 2 (a) turns out to be the worst among all variants, which reveals
the superiority of cross-modal learning. Second, combining Table 2 (a) and Table 2 (c), the mAP
is largely boosted from 75.88% to 77.01%. Considering that, during the inference stage, these two
variants have identical forms of input and network structure, the resulting improvement strongly
indicates that the representation ability of the 3D LiDAR branch is indeed strengthened. Third,
comparing Table 2 (c) and Table 2 (d) with Table 2 (e), we can verify the superiority of bidirectional
propagation (78.64%) over the unidirectional schemes (77.01% and 77.47%). If we particularly pay
attention to Table 2 (d) and Table 2 (e), we can conclude that our newly proposed point-to-pixel
feature propagation direction further brings 1.17% mAP increase based on the previously explored
pixel-to-point paradigm. Besides, by comparing Table 2 (b) (77.07%) and Table 2 (d) (77.47%)
whose information propagation directions are both from the 2D image domain to the 3D point cloud
domain, we can demonstrate the superiority of feature-level propagation over its input-level coun-
terpart (Wang et al., 2021).

Effectiveness of Image Branch. Comparing Table 3 (d) with Tables 3 (e)-(g), the performance is
stably boosted from 75.88% to 78.64%, as the gradual addition of the 2D image branch and two
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Table 3: Ablative experiments on key modules of our BiProDet. LiDAR: the point cloud branch
trained without auxiliary tasks; Img: the 2D RGB image backbone; 3D Seg: 3D semantic segmen-
tation; 3D Ctr: 3D center estimation; 2D Seg: 2D semantic segmentation; NLC: 2D NLC map
estimation.

Exp. LiDAR 3D Seg 3D Ctr Img 2D Seg NLC Car Ped. Cyc. mAP
(a) ✓ 87.40 59.02 79.11 75.18
(b) ✓ ✓ 86.75 59.90 78.57 75.07
(c) ✓ ✓ 86.56 61.06 78.58 75.40
(d) ✓ ✓ ✓ 86.71 62.23 78.68 75.88
(e) ✓ ✓ ✓ ✓ 86.91 63.23 79.00 76.38
(f) ✓ ✓ ✓ ✓ ✓ 87.10 64.52 79.94 77.18
(g) ✓ ✓ ✓ ✓ ✓ ✓ 87.18 67.52 81.21 78.64

auxiliary tasks. These results indicate that the additional semantic and geometric features learned
from the image modality are indeed effective supplements to the point cloud representation, leading
to significantly improved 3D object detection performances.

Effectiveness of Auxiliary Tasks. Comparing Table 3 (a) with Tables 3 (b)-(d), the mAP is boosted
by 0.70% when incorporating 3D semantic segmentation and 3D center estimation, and can be
further improved by 2.76% after introducing 2D semantic segmentation and NLC map estimation
(Tables 3 (d)-(g)). However, only integrating image features without 2D auxiliary tasks (comparing
results of Tables 3 (d) and (e)) brings limited improvement of 0.5%. This observation shows that the
2D auxiliary tasks, especially the proposed 2D NLC map estimation, do enforce the image branch
to learn complementary information for the detector.

Robustness against Input Corruption. We also conducted extensive experiments to verify the
robustness of our BiProDet to sensor perturbation. Specifically, we added Gaussian noises to the
reflectance value of points or RGB images. Fig. 5 shows that the mAP value of our cross-modal
BiProDet is consistently higher than that of the single-modal baseline and decreases slower with the
LiDAR noise level increasing. Particularly, as listed in Table 4, when the variance of the LiDAR
noise is set to 0.15, the perturbation affects our cross-modal BiProDet much less than the single-
modal detector. Besides, even applying the corruption to both LiDAR input and RGB images, the
mAP value of our BiProDet only drops by 2.49%.

Table 4: Performances (mAPs) of the single-modal base-
line and our BiProDet on the KITTI val set under input
corruptions of simulated LiDAR and image noise sam-
pled from the Gaussian distribution. Note that the image
noise is only applicable to multi-modal detectors.

Corruptions Type Modal Car Ped. Cyc. mAP
No Corruption LiDAR 86.71 62.23 78.68 75.87
LiDAR Noise LiDAR 84.37 49.19 77.27 70.28
No Corruption LiDAR + RGB 87.18 67.52 81.21 78.64
LiDAR Noise LiDAR + RGB 86.82 65.61 77.63 76.69
Image Noise LiDAR + RGB 87.14 66.26 77.97 77.12

LiDAR + Image Noise LiDAR + RGB 86.60 65.42 76.44 76.15

Figure 5: Comparisons of noise robust-
ness between the single-modal baseline
and our BiProDet.

5 CONCLUSION

We have presented a novel cross-modal 3D detector, namely BiProDet, by fully exploiting com-
plementary information from the image domain in two aspects. First, we proposed point-to-pixel
feature propagation, which enables gradients backpropagated from the training loss of the image
branch to augment the expressive power of the 3D point cloud backbone. Second, we proposed
NLC map estimation as an auxiliary task to promote the image branch to learn local spatial-aware
representation rather than just semantic features. Our BiProDet achieves state-of-the-art results on
the KITTI detection benchmark. And extensive ablative experiments demonstrate the robustness of
our BiProDet against sensor noises and generalization to LiDAR signals with fewer beams. The
decent results demonstrate the potential of joint training between 3D object detection and more 2D
scene understanding tasks. We believe our new perspective will further inspire investigations on
multi-task multi-modal learning for scene understanding in autonomous driving.
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A APPENDIX

In this appendix, we provide the details omitted from the manuscript due to space limitation. We
organize the appendix as follows.

• Section A.1: Details of the normalized local coordinate (NLC) System.
• Section A.2: Implementation details.
• Section A.3: More quantitative results.
• Section A.4: Experimental results on Waymo dataset.
• Section A.5: More ablation studies.
• Section A.6: Efficiency analysis.
• Section A.7: Visual results of 3D object detection.
• Section A.8: Visual results of 2D semantic segmentation.
• Section A.9: Details on the official KITTI test leaderboard.

A.1 DETAILS OF NORMALIZED LOCAL COORDINATE (NLC) SYSTEM

The aim of the cross-modal 3D detector is to estimate the bounding box parameterized by the object
dimension (w, l, h), the center location (xc, yc, zc), and the orientation angle θ. The input contains
an RGB image X ∈ R3×H×W , where H and W represent the height and width of the image
respectively, and a 3D LiDAR point cloud {pi|i = 1, ..., N}, where N is the number of points, and
each point pi ∈ R4 is represented with its 3D location (xp, yp, zp) in the LiDAR coordinate system
and the reflectance value ρ.

To build the correspondence between the 2D and 3D modalities, we project the observed points from
the 3D coordinate system to the 2D coordinate system on the image plane:

dc

[
u
v
1

]
= K [R T ]

xp

yp
zp
1

 , (8)

where u, v, dc denote the corresponding coordinates and depth on the image plane, R ∈ R3×3 and
T ∈ R3×1 denote the rotation matrix and translation matrix of the LiDAR relative to the camera,
and K ∈ R3×3 is the camera intrinsic matrix.

Given the point cloud and the bounding box of an object, LiDAR coordinates of foreground points
can be transformed into the NLC system by proper translation, rotation, and scaling, i.e.,xNLC
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where (xNLC
p , yNLC

p , zNLC
p ) and (xLCS

p , yLCS
p , zLCS

p ) denote the coordinates of points in NLC
system and local coordinate system, respectively. Suppose that the bounding box is unknown with
known global coordinates and NLCs of points, we can build a set of equations about the parameters
of box (i.e., the xc, yc, zc, w, l, h, θ). In order to solve the total of 7 parameters, global coordinates
and NLCs of at least 7 points are required to construct the equations.

Discussion. Notably, it is difficult to infer NLCs of points with only LiDAR data for objects far
away or with low reflectivity, since the point clouds are sparse. Meanwhile, the contours and ap-
pearance of these cases are still visible in RGB images, so we propose to estimate the normalized
local coordinates from images. Then, we can retrieve the estimated NLCs of observed points based
on the 2D-3D correspondence. Finally, we expect the proposed cross-modal detector to achieve
higher detection accuracy with estimated NLCs and known global coordinates.

A.2 IMPLEMENTATION DETAILS

Network Architecture. Fig. 6 illustrates the architectures of the point cloud and image backbone
networks. For the encoder of the point cloud branch, we further show the details of multi-scale
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Figure 6: The detailed architecture of 2D and 3D backbones. We adopt ResNet18 as the encoder
of the image branch, followed by a decoder with Pyramid Pooling Module (PPM) and several up-
sampling blocks. C1, C2, C3, C4, and C5 denote convolutional layers of different stages in ResNet.
Extra convolutional layers are deployed after each up-sampling layer. For the point cloud branch,
we adopt the PointNet++ structure. SA: set abstraction layer, D-FPS: 3D Euclidean distance-based
farthest point sampling, S-FPS: semantic-guided farthest point sampling, FP: feature propagation
layer, MLP: shared multi-layer perceptron. Besides, “Bi-Propag” denotes the proposed bidirectional
feature propagation between the 2D and 3D backbones.

Table 5: Details of set abstraction layers in the point cloud branch. We report the sampling strategy
used in the sampling operation, ball radius of group operation, “nquery” that denotes the number of
group points, and dimensions of the unit PointNet layer for multi-scale grouping. The features at
different scales are concatenated and dimensionally reduced to the specific output channels.

Layer Sampling Strategy Radius nquery Feature Dimension Output Channels
1st SA D-FPS [0.2, 0.4, 0.8] [32, 32, 64] [[16, 16, 32], [16, 16, 32], [32, 32, 64]] 64
2nd SA D-FPS & S-FPS [0.4, 0.8, 1.6] [32, 32, 64] [[64, 64, 128], [64, 64, 128], [64, 96, 128]] 128
3rd SA D-FPS & S-FPS [1.6, 3.2, 4.8] [64, 64, 128] [[128, 128, 256], [128, 196, 256], [128, 256, 256]] 256

grouping (MSG) network in Table 5. Following 3DSSD (Yang et al., 2020), we take key points
sampled by the 3rd SA layer to generate vote points and estimate the 3D box. Then we feed these
3D boxes and features output by the last FP layer to the refinement stage. Besides, we adopt density-
aware RoI grid pooling (Hu et al., 2022) to encode point density as an additional feature. Note that
3D center estimation (He et al., 2020b) aims to learn the relative position of each foreground point
to the object center, while the 3D box is estimated based on sub-sampled points. Thus, the auxiliary
task of 3D center estimation differs from 3D box estimation and can facilitate learning structure-
aware features of objects.

Training Details. Through the experiments on KITTI dataset, we adopted Adam (Kingma & Ba,
2015) (β1=0.9, β2=0.99) to optimize our BiProDet. We initialized the learning rate as 0.003 and
updated it with the one-cycle policy (Smith, 2017). And we trained the model for a total of 80
epochs in an end-to-end manner. In our experiments, the batch size was set to 8, equally distributed
on 4 NVIDIA 3090 GPUs. We kept the input image with the original resolution and padded it to
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Table 6: Quantitative comparisons on the KITTI validation set under the evaluation metric of 3D
Average Precision (AP) calculated with 11 sampling recall positions. We highlight the best and the
second best results in bold and underlined, respectively.

Method Modality 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard
PointPillars (Lang et al., 2019) LiDAR 86.46 77.28 74.65 57.75 52.29 47.90 80.05 62.68 59.70 66.53
SECOND (Yan et al., 2018) LiDAR 88.61 78.62 77.22 56.55 52.98 47.73 80.58 67.15 63.10 68.06
3DSSD (Yang et al., 2020) LiDAR 88.55 78.45 77.30 58.18 54.31 49.56 86.25 70.48 65.32 69.82
PointRCNN (Shi et al., 2019) LiDAR 88.72 78.61 77.82 62.72 53.85 50.24 86.84 71.62 65.59 70.67
PV-RCNN (Shi et al., 2020a) LiDAR 89.03 83.24 78.59 63.71 57.37 52.84 86.06 69.48 64.50 71.65
TANet (Liu et al., 2020) LiDAR 88.21 77.85 75.62 70.80 63.45 58.22 85.98 64.95 60.40 71.72
Part-A2 (Shi et al., 2020b) LiDAR 89.55 79.40 78.84 65.68 60.05 55.44 85.50 69.90 65.48 72.20
AVOD-FPN (Ku et al., 2018) LiDAR+RGB 84.41 74.44 68.65 - 58.80 - - 49.70 - -
PointFusion (Xu et al., 2018) LiDAR+RGB 77.92 63.00 53.27 33.36 28.04 23.38 49.34 29.42 26.98 42.75
F-PointNet (Qi et al., 2018) LiDAR+RGB 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 53.37 65.58
CLOCs (Pang et al., 2020) LiDAR+RGB 89.49 79.31 77.36 62.88 56.20 50.10 87.57 67.92 63.67 70.50
EPNet (Huang et al., 2020) LiDAR+RGB 88.76 78.65 78.32 66.74 59.29 54.82 83.88 65.50 62.70 70.96
CAT-Det (Zhang et al., 2022b) LiDAR+RGB 90.12 81.46 79.15 74.08 66.35 58.92 87.64 72.82 68.20 75.42
BiProDet (Ours) LiDAR+RGB 89.73 86.40 79.31 71.77 68.49 62.52 89.24 76.91 75.18 77.73

Table 7: Comparison with state-of-the-art methods on the KITTI val set for car 3D detection. All
results are reported by the average precision with 0.7 IoU threshold. R11 and R40 denotes AP
calculated with 11 and 40 recall sampling recall points, respectively.

Method Modal AP3D|R11 (%) AP3D|R40 (%)
Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN (Deng et al., 2021) LiDAR 89.41 84.52 78.93 92.38 85.29 82.86
PV-RCNN (Shi et al., 2020a) LiDAR 89.35 83.69 78.7 92.57 84.83 82.69
SA-SSD (He et al., 2020b) LiDAR 90.15 79.91 78.78 93.14 84.65 81.86

SE-SSD (Zheng et al., 2021) LiDAR 90.21 85.71 79.22 93.19 86.12 83.31
GLENet-VR (Zhang et al., 2022d) LiDAR 89.93 86.46 79.19 93.51 86.10 83.60

MV3D (Chen et al., 2017) LiDAR+RGB - - - 71.29 62.68 56.56
3D-CVF (Yoo et al., 2020) LiDAR+RGB - - - 89.67 79.88 78.47

BiProDet (Ours) LiDAR+RGB 89.72 86.52 79.34 93.03 86.46 83.73

the size of 1248× 376, and down-sampled the input point cloud to 16384 points during training and
inference. Following the common practice, we set the detection range of the x, y, and z axis to [0m,
70.4m], [-40m, 40m] and [-3m, 1m], respectively.

Data Augmentation. We applied common data augmentation strategies at global and object levels.
The global-level augmentation includes random global flipping, global scaling with a random scaling
factor between 0.95 and 1.05, and global rotation around the z-axis with a random angle in the range
of [−π/4, π/4]. Each of the three augmentations was performed with a 50% probability for each
sample. The object-level augmentation refers to copying objects from other scenes and pasting them
to current scene (Yan et al., 2018). In order to perform sampling synchronously on point clouds and
images, we utilized the instance masks provided in (Qi et al., 2019). Specifically, we pasted both the
point clouds and pixels of sampled objects to the point cloud and images of new scenes, respectively.

A.3 MORE QUANTITATIVE RESULTS

Performance on KITTI Val Set. We also reported the performance of our BiProDet on all three
classes of the KITTI validation set in Table 6, where it can be seen that our BiProDet also achieves
the highest mAP of 77.73%, which is obviously higher than the second best method CAT-Det.

Performance of Single-Class Detector. Quite a few methods (Deng et al., 2021; Zheng et al., 2021)
train models only for car detection. Empirically, the single-class detector performs better in the car
class compared with multi-class detectors. Therefore, we also provided performance of BiProDet
trained only for the car class, and compared it with several state-of-the-art methods in Table 7.

Performance of NLC Map Estimation. The NLC map estimation task is introduced to guide
the image branch to learn local spatial-aware features. We evaluated the predicted NLC of pixels
containing at least one projected point with mean absolute error (MAE) for each object:

MAEq =
1

Nobj

N∑
i

∣∣qNLC
pi

− q̂NLC
pi

∣∣ · 1pi
, q ∈ {x, y, z} , (10)
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Figure 7: Quantitative results of NLC map estimation on the KITTI val set.

Table 8: Bidirectional propagation is also effective when the 2D and 3D backbones are asymmetric.
Here we adopt a single-stage detector (Chen et al., 2022) whose backbone includes only an encoder,
which is asymmetric with the encoder-decoder network in the image branch.

Method 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPEasy Mod. Hard Easy Mod. Hard Easy Mod. Hard
SASA 92.17 84.90 82.57 66.75 61.40 56.00 89.91 74.05 69.41 75.24

Ours (SASA) 92.11 85.67 82.99 70.52 63.38 58.16 91.58 74.81 70.22 76.61

where Nobj is the number of LiDAR points inside the ground-truth box of the object, 1pi
indicates

that the evaluation is only calculated with foreground points inside the box, qNLC
pi

and q̂NLC
pi

are
the normalized local coordinates of the ground-truth and the prediction at the corresponding pixel
for the foreground point. Finally, we obtained the mean value of MAEq for all instances, namely
mMAEq . We report the metric over different difficulty levels for three categories on the KITTI val
set at Figure 7. We can observe that, for the car class, the mMAE error is only 0.0619, i.e., ±6.19
cm error per meter. For the challenging pedestrian and cyclist categories, the error becomes larger
due to the smaller size and the non-rigid shape.

Generalization to Asymmetric Backbones. As shown in Fig. 6, we originally adopted an encoder-
decoder network in the LiDAR branch that is architecturally similar to the image backbone. Nev-
ertheless, it is worth clarifying that our approach is not limited to symmetrical structures and can
be generalized to different point-based backbones. Here, we replaced the 3D branch of the origi-
nal framework with an efficient single-stage detector—SASA (Chen et al., 2022), using a backbone
only with the encoder in the LiDAR branch, which is asymmetric with the encoder-decoder struc-
ture of the image backbone. Accordingly, the proposed bidirectional propagation is only performed
between the 3D backbone and the encoder of the 2D image backbone. The experimental results are
shown in Table 8. We can observe that the proposed method works well even when the two back-
bones are asymmetric, which demonstrates the satisfactory generalization ability of our method for
different LiDAR backbones.

A.4 RESULTS ON WAYMO OPEN DATASET

The Waymo Open Dataset (Sun et al., 2020) is a large-scale dataset for 3D object detection. It con-
tains 798 sequences (15836 frames) for training, and 202 sequences (40077 frames) for validation.
According to the number of points inside the object and the difficulty of annotation, the objects are
further divided into two difficulty levels: LEVEL 1 and LEVEL 2. Following common practice,
we adopted the metrics of mean Average Precision (mAP) and mean Average Precision weighted by

Table 9: 3D detection results on the Waymo Open Dataset validation set. “-” denotes that the results
are not reported in their papers.

Method Vehicle L1 Vehicle L2 Pedestrian L1 Pedestrian L2 Cyclist L1 Cyclist L2
mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH mAP mAPH

PointAugmenting 67.41 - 62.7 - 75.42 - 70.55 - 76.29 - 74.41 -
TransFusion - - - 65.14 - - - 64.00 - - - 67.40

Ours 78.36 77.91 69.45 69.04 76.32 71.67 65.93 61.81 79.64 78.55 76.36 75.26

18



Published as a conference paper at ICLR 2023

Table 10: Ablative experiments on the multi-stage manner of bidirectional propagation, where SA
and FP denote applying bidirectional propagation at downsampling (in the encoder) and upsampling
(in the decoder) stages of the point cloud branch, respectively.

Stage 3D Car (IoU=0.7) 3D Ped. (IoU=0.5) 3D Cyc. (IoU=0.5) mAPSA FP Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
(a) - - 91.92 85.22 82.98 68.82 61.47 56.39 91.93 74.56 69.58 75.88
(b) ✓ - 92.67 85.86 83.40 70.94 65.29 60.35 93.60 75.60 71.04 77.64
(c) - ✓ 92.19 85.44 83.27 69.02 63.41 58.47 92.85 76.39 71.91 76.99
(d) ✓ ✓ 92.63 85.77 83.13 72.68 67.64 62.25 94.39 77.77 71.47 78.64

Table 11: Effect of the semantic-guided SA layer. Compared with the single-modal baseline,
BiProDet can better exploit image semantics and preserve more foreground points during down-
sampling.

Method Single-Modal BiProDet (Ours) Improvement
SA Layer FG rate Instance recall FG rate Instance recall FG rate Instance recall
Level-2 15.87 97.92 20.70 98.23 +4.83 +0.31
Level-3 29.73 97.35 38.03 97.82 +8.29 +0.47

heading accuracy (mAPH), and reported the performance on both LEVEL 1 and LEVEL 2. We set
the detection range to [-75.2m, 75.2m] for x and y axis, and [-2m, 4m] for z axis. Following Wang
et al. (2021) and Bai et al. (2022), the training on Waymo dataset consists of two stages to allow
flexible augmentations. First, we only trained the LiDAR branch without image inputs and bidirec-
tional propagation for 30 epochs. We enabled the copy-and-paste augmentation in this stage. Then,
we trained the whole pipeline for another 6 epochs, during which the copy-and-paste is disabled.
Note that the image semantic segmentation head is disabled, since ground-truth segmentation maps
are not provided (Sun et al., 2020).

As shown in Table 9, our method achieves substantial improvement compared with previous state-
of-the-arts. Particularly, unlike existing approaches including PointAugmenting (Wang et al., 2021)
and TransFusion (Bai et al., 2022) where the camera backbone is pre-trained on other datasets and
then frozen, we trained the entire pipeline in an end-to-end manner. It can be seen that even without
the 2D segmentation auxiliary task, our method still achieves higher accuracy under all scenarios
except “Ped L2”, demonstrating its advantage.

A.5 MORE ABLATION STUDIES

Effectiveness of Multi-stage Interaction. As mentioned before, both 2D and 3D backbones adopt
an encoder-decoder structure, and we perform bidirectional feature propagation at both downsam-
pling and upsampling stages. Here, we conducted experiments to verify the superiority of the multi-
stage interaction over single-stage interaction. As shown in Table 10, only performing the bidirec-
tional feature propagation in the encoder (i.e., Table 10 (b)) or the decoder (i.e., Table 10 (c)) leads
to worse performance than that of performing the module in both stages (i.e., Table 10 (d)).

Effect of Semantic-guided Point Sampling. When performing downsampling in the SA layers
of the point cloud branch, we adopted S-FPS (Chen et al., 2022) to explicitly preserve as many
foreground points as possible. We report the percentage of sampled foreground points and instance
recall (i.e., the ratio of instances that have at least one point) in Table 11, where it can be seen that
exploiting supplementary semantic features from images leads to substantial improvement of the
ratio of sampled foreground points and better instance recall during S-FPS.

Table 12: Comparison between our multi-task training methods and the single-modal 2D semantic
segmentation baseline (PSPNet). The results show that point features effectively improve the seg-
mentation performance on pedestrian and cyclist classes.

Method Car Pes. Cyc. mIoU
PSPNet (Zhao et al., 2017) 77.49 30.45 23.83 43.92
BiProDet (Ours) 78.45 36.15 30.42 48.34
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Influence on 2D Semantic Segmentation. We also aimed to demonstrate that the 2D-3D joint
learning paradigm benefits not only the 3D object detection task but also the 2D semantic seg-
mentation task. As shown in Table 12, the deep interaction between different modalities yields an
improvement of 4.42% mIoU. The point features can naturally complement RGB image features
by providing 3D geometry and semantics, which are robust to illumination changes and help dis-
tinguish different classes of objects, for 2D visual information. The results suggest the potential of
joint training between 3D object detection and more 2D scene understanding tasks in autonomous
driving.

Conditional Analysis. To better figure out where the improvement comes from when using addi-
tional image features, we compared BiProDet with the single-modal detector on different occlusion
levels and distant ranges. The results shown in Table 13 and Table 14 include separate APs for ob-
jects belonging to different occlusion levels and APs for moderate class in different distance ranges.
For car detection, our BiProDet achieves more accuracy gains for long-distance and highly occluded
objects, which suffer from the sparsity of observed LiDAR points. The cyclist and pedestrian are
much more difficult categories on account of small sizes, non-rigid structures, and fewer training
samples. For these two categories, BiProDet still brings consistent and significant improvements on
different levels even in extremely difficult cases.

Table 13: Performance breakdown over different occlusion levels. As defined by the official website
of KITTI, occlusion levels 0, 1, and 2 correspond to fully-visible samples, partly-occluded samples,
and samples that are difficult to see, respectively.

Class Car Pedestrian Cyclist
Occlusion Level-0 Level-1 Level-2 Level-0 Level-1 Level-2 Level-0 Level-1 Level-2

Single-Modal 91.98 77.18 55.41 67.44 26.76 6.10 91.23 24.66 1.74
BiProDet (Ours) 92.26 77.44 58.39 74.00 35.13 7.99 92.89 30.02 2.53

Improvement +0.28 +0.26 +2.97 +6.56 +8.38 +1.89 +1.66 +5.36 +0.79

Table 14: Performance breakdown over different distances.

Class Car Pedestrian Cyclist
Distance 0-20m 20-40m 40m-Inf 0-20m 20-40m 40m-Inf 0-20m 20-40m 40m-Inf

Single-Modal 96.28 85.21 43.91 71.28 38.42 1.63 93.61 61.56 34.48
BiProDet (Ours) 96.36 86.48 49.88 76.56 45.72 2.46 94.12 67.27 39.10

Improvement +0.07 +1.27 +5.97 +5.28 +7.30 +0.83 +0.51 +5.71 +4.62

Generalization to Sparse LiDAR Signals. We also compared our BiProDet with the single-modal
baseline on LiDAR point clouds with various sparsity. In practice, following Pseudo-LiDAR++ (You
et al., 2020), we simulated the 32-beam, 16-beam, and 8-beam LiDAR signals by selecting LiDAR
points whose elevation angles fall within specific intervals. As shown in Table 15, the proposed
BiProDet outperforms the single-modal baseline under all settings. The consistent improvements
suggest our method can generalize to sparser signals. Besides, the proposed BiProDet significantly
performs better than the baseline in the setting of LiDAR signals with fewer beams, demonstrating
the effectiveness of our method in exploiting the supplementary information in the image domain.

A.6 EFFICIENCY ANALYSIS

We also compared the inference speed and number of parameters of the proposed BiProDet with
state-of-the-art cross-modal approaches in Table 16. Our BiProDet has about the same number of
parameters as CAT-Det (Zhang et al., 2022b), but a much higher inference speed at 9.52 frames per
second on a single GeForce RTX 2080 Ti GPU. In general, our BiProDet is inevitably slower than
some single-modal detectors, but it achieves a good trade-off between speed and accuracy among
cross-modal approaches.

A.7 VISUAL RESULTS OF 3D OBJECT DETECTION

In Figure 8, we present the qualitative comparison of detection results between the single-modal
baseline and our BiProDet. We can observe that the proposed BiProDet shows better localization
capability than the single-modal baseline in challenging cases. Besides, we also show qualitative
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Table 15: Comparison with single-modal baselines under LiDAR signals with different beams,
where we report AP3D|R40 on the KITTI validation set.

LiDAR Beams Modal Car Ped. Cyc. mAP

64
LiDAR 86.71 62.23 78.68 75.87

LiDAR + RGB 87.18 67.52 81.21 78.64
Improvement +0.47 +5.29 +2.53 +2.76

32
LiDAR 83.49 57.83 70.82 70.71

LiDAR + RGB 84.47 62.56 73.93 73.65
Improvement +0.98 +4.73 +3.11 +2.94

16
LiDAR 79.80 53.84 60.51 64.71

LiDAR + RGB 80.78 59.44 67.35 69.19
Improvement +0.99 +5.60 +6.84 +4.48

8
LiDAR 64.42 22.57 43.19 43.39

LiDAR + RGB 67.09 31.03 47.97 48.70
Improvement +2.66 +8.46 +4.78 +5.30

Table 16: Comparison of the number of network parameters, inference speed, and detection accuracy
of different multi-modal methods on the KITTI test set.

Method Params (M) Frames per second mAP (%)
AVOD-FPN (Ku et al., 2018) 38.07 10.00 56.84
F-PointNet (Qi et al., 2018) 12.45 6.25 57.86
EPNet (Huang et al., 2020) 16.23 5.88 -

CAT-Det (Zhang et al., 2022b) 23.21 3.33 67.05
BiProDet (Ours) 24.98 9.52 70.13

results of BiProDet on the KITTI test split in Figure 9. We can clearly observe that our BiProDet
performs well in challenging cases, such as pedestrians and cyclists (with small sizes) and highly-
occluded cars.

A.8 VISUAL RESULTS OF 2D SEMANTIC SEGMENTATION

Several examples are shown in Figure 10. For distant cars in the first and the second row as well
as the pedestrian in the sixth row, the size of objects is small and PSPNet tends to treat them as
background, while our BiProDet is able to correct such errors. In the third row, our BiProDet finds
the dim cyclist missed by PSPNet. Our BiProDet also performs better for the highly occluded objects
as shown in the fourth and the fifth lines. This observation shows the 3D feature representations
extracted from point clouds can boost 2D semantic segmentation, since the image-based method is
sensitive to illumination and can hardly handle corner cases with only single-modal inputs.

A.9 DETAILS ON OFFICIAL KITTI TEST LEADERBOARD

We submitted the results of our BiProDet to the official KITTI website, and it ranks 1st on the 3D
object detection benchmark for the cyclist class. Figure 11 shows the screenshot of the leaderboard.
Figure 12 illustrates the precision-recall curves along with AP scores on different categories of the
KITTI test set. The samples of the KITTI test set are quite different from those of training/validation
set in terms of scenes and camera parameters, so the impressive performance of our BiProDet on the
test set demonstrates it also achieves good generalization.
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Figure 8: Qualitative comparison between single-modal baseline and our multi-modal BiProDet. For
each comparison, from top to bottom, we have the image, detection results of single-modal baseline,
and detection results of BiProDet. We use red, green, and yellow to denote the ground-truth, true
positive and false positive bounding boxes, respectively. We highlight some objects in images with
red circles, which are detected by BiProDet but missed by the single-modal method.
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Figure 9: Extra qualitative results of BiProDet on the KITTI test set. The predicted bounding boxes
of car, pedestrian, and cyclist are visualized in green, cyan, and yellow, respectively. We also show
the corresponding projection of boxes on images. Best viewed in color and zoom in for more details.

Figure 10: Visual results of 2D semantic segmentation on the KITTI val set. The prediction boxes are
shown in green for car, cyan for pedestrian, and yellow for cyclist. Best viewed in color. Compared
with PSPNet, our cross-modal BiProDet produces more accurate and detailed results.
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Figure 11: Screenshot of the KITTI 3D object detection benchmark for cyclist class on August 15th,
2022.

Figure 12: Precision-recall curves of different methods on the KITTI 3D object detection test set on
Aug. 15th, 2022. We also report APs in different categories for each method.
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