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Abstract

Reasoning is a fundamental substrate for solving novel and complex problems. Delib-
erate efforts in learning and developing frameworks around System 2 reasoning have
made great strides, yet problems of sufficient complexity remain largely out of reach
for open models. To address this gap, we examine the potential of Generative Flow
Networks [GFlowNets; Bengio et al., 2021, Hu et al., 2024] as a fine-tuning method
for LLMs to unlock advanced reasoning capabilities. In this paper, we present a proof
of concept in the domain of formal reasoning, specifically in the Neural Theorem
Proving (NTP) setting, where proofs specified in a formal language such as Lean can
be deterministically and objectively verified. Unlike classical reward-maximization
reinforcement learning, which frequently over-exploits high-reward actions and fails
to effectively explore the state space, GFlowNets have emerged as a promising ap-
proach for sampling compositional objects, improving generalization, and enabling
models to maintain diverse hypotheses. Our early results demonstrate GFlowNet
fine-tuning’s potential for enhancing model performance in a search setting, which is
especially relevant given the paradigm shift towards inference time compute scaling
and “thinking slowly.” Code: https://github.com/matt-seb-ho/gfn_ntp

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities in pattern recognition and
surface-level tasks, but still exhibit significant limitations in reasoning, particularly in complex logical
inference and problem-solving tasks. Extending LLMs beyond mere memorization requires enhancing
their reasoning abilities through approaches like System 2’s "slow thinking," which scales inference
time computation to match problem complexity. A promising technique in this space is GFlowNet
fine-tuning [Hu et al., 2024], which unlocks new possibilities for search (a fundamental approach to
reasoning [Simon, 1983]) by teaching the model to sample trajectories proportional to reward. In this
sense, fine-tuning model M with the GFlowNet objective moves the inference time cost of sampling
more suggestions (“slow thinking”) from M to training time, thus amortizing the cost of inference.

Reasoning benchmarks like GSM8K [Cobbe et al., 2021] and MATH [Hendrycks et al., 2021]
are increasingly subject to overfitting as models are trained specifically on these formats and similar
math problems, raising concerns about their ability to capture the true generalization ability of models
for real-world problem-solving. To address this, we turn to formal mathematics and neural theorem
proving (NTP), leveraging proof assistants like Lean [Yang et al., 2023]. Built on dependent type
theory, Lean can automatically apply common proof patterns through tactics—commands such as
intro, apply, simp—which directly manipulate the proof state, transforming theorem proving
into a formalized search problem. Unlike standard benchmarks, NTP offers interactive feedback and
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Figure 1: Proof Flow System. We extract and filter ground-truth proofs and theorems from LEAN
4’s standard math library: mathlib. For reward model training data, we sample candidate tactics using a
base model and label with Lean. We use Best First Search [Pearl, 1984] for evaluation. The GFlowNet
diagram is a frame of an animation from Bengio et al. [2022]

guarantees correctness, ensuring that flawed reasoning cannot yield correct results—a common issue
in iterative self-teaching approaches [Zelikman et al., 2022].

In this paper, we present early in-progress evidence that GFlowNet fine-tuning has potential to
accelerate search in challenging reasoning domains like theorem proving. Our contributions include:

(1) A study on GFlowNet fine-tuning’s promise for accelerating search in a domain challenging even
for human experts. (2) An extensible code base integrating GFlowNet with the Lean environment.(3)
An ablation study of key interventions in GFlowNet fine-tuning, including reward models and
trajectory replay. (4) Early empirical results showing GFlowNet fine-tuning improves exploration
and reasoning in neural theorem proving tasks.

2 Methodology

In the context of language modeling, GFlowNets are a maximum entropy RL algorithm for training
policies to sample compositional objects with probability proportional to a reward [Bengio et al., 2021,
Hu et al., 2024] (see preliminary details in Appendix C). Following past NTP work (Appendix B), and
leveraging the interactive features of Lean, we parameterize proof search as a tactic generation problem.
GFlowNets model the construction of the object as a terminating trajectory through a graph where edges
(actions) specify adding a component to the object and nodes (states) are intermediate states of the object.
In this view, NTP can be viewed as composing proofs from component tactics. We refer the reader to Hu
et al. [2024] for a detailed discussion about GFlowNets in the context of language model fine-tuning.

We define our forward policy as Pf (t|s) where t is a tactic and s is current proof state, all prior
tactics taken, and initial proof state (in Lean, tactic states include the goal). Since GFlowNet graphs
allow nodes to have multiple parents (analogously, multiple Lean tactic sequences can lead to the same
proof state), optimizing GFlowNet objectives require learning a backwards policy (specifying how
reward arrived in current node from). Not only would this be difficult as it requires learning the inverse
of the function that the base model learned in fine-tuning, it would also add another source of training
instability. To avoid this problem, we use a state encoding that includes the trajectory’s history. Instead
of representing a partially constructed proof by just its current proof state, we include its initial state
and all previous tactics. This enforces a tree structure, making the backward policy trivial by ensuring
that each proof state has only one parent.

As for the reward, one option is to use the feedback provided by the Lean verifier as a binary reward.
While strictly correct and therefore un-hackable, this binary reward may be too sparse and penalize
promising partial trajectories that were unable to complete due to limited search budget. To address
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Figure 2: Evaluation on hold-out set of 20
theorems unseen during train time. Validation run
every 20 gradient steps. GFlowNet-OO refers to
Online Only, GFlownet-BR-OO refers to Binary
Reward and Online Only, while GFlowNet refers
to the full method. SFT refers to Supervised
Fine-Tuning, or just maximizing log likelihood
on the ground truth trajectory. For exact theorem
names and lengths see Table 1.

Figure 3: Training Trajectory Balance loss over
2000 gradient steps. Loss is smoothed using
simple moving average over 100 steps. Interest-
ingly, GFlowNet observes instability in training
around episode 1000. Note that the full GFlowNet
is the only off-policy method, as opposed to the
on-policy GFlowNet-OO and GFlowNet-BR-OO.

this, we introduce partial reward through a reward model (RM). Here, we take advantage of ReProver’s
[Yang et al., 2023] training objective (maximizing P (t|current_proof_state) for ground truth proof
trajectories) and use it to score the individual tactics in a partial trajectory (note that for the RM, we use
the history-less state encoding, or just the current proof state). The trajectory balance [TB; Malkin et al.,
2022] learning objective for GFlowNets also requires estimating the log partition function logZ, where
Z is the sum of rewards for all terminal states for the given theorem. To that end, for each theorem,
we run a forward pass of the policy model on the initial state, and feed the model’s final hidden states
to a linear layer that predicts logZ. This linear layer is learned simultaneously with the policy.

The trajectories used for training are sampled from the current policy in conjunction with the
Lean environment to verify syntactic correctness and yield next states. In additon, we sample ground
truth correct trajectories which we are given access to during train time, whereas during the test time
evaluation and validation loops, we use standard best first proof search. Please see Appendix D for
more methodological details and detailed algorithm pseudocode.

3 Experiments

Data. Our experiments are based on the LeanDojo benchmark Yang et al. [2023]. Starting from the
Lean4 random splits version, we apply several rounds of filtering to form our train and validation
splits (see subsection D.1 for details). The final train and validation splits contain 1K and 20 instances,
respectively. Model. We conduct experiments initializing our model with ReProver, Yang et al. [2023]
a pretrained tactic generator, which was in turn initialized from ByT5-small [Xue et al., 2022] a 350M
parameter sequence-to-sequence model whose byte level vocabulary makes it well suited for the
unicode-symbol-heavy Lean language. We train using a single A100 40GB GPU. Please see all other
hyperparameters in Appendix A. Ablations. We conduct ablations over the reward function and
replay buffer. In standard setting (GFlowNet)—closest to the original GFlowNet LLM fine-tuning
[Hu et al., 2024] setup—each training step samples from the replay buffer with probability 0.5. In the
online-only (GFlowNet-OO) setting, the replay buffer is unused– every training step receives reward
from a newly sampled trajectory. In the binary-reward and online-only (GFlowNet-BR-OO) ablation,
we use a binary reward that gives perfect score to correct trajectories and a length-penalized score to
all other outcomes. In all GFlowNet runs, we inject the ground truth trajectory as way to help stabilize
training, This particular setting makes GFlowNet most comparable to SFT, which we also include as
a baseline. Ongoing experiments explore removing this intervention and scaling train time exploration.
Compute Budget. Proof search evaluation used much tighter constraints both due to time/resource
limits, but also to test the model’s efficiency in search. Compared to ReProver’s evaluation setting
with search budget of 10 minutes and branching factor of 64, we use 30 seconds and branching factor

3



8. For the fairest comparison, the base model was evaluated using ReProver’s original state encoding
instead of the history-augmented encoding used for SFT and GFlowNet training runs.

Preliminary Results Analysis. The main results are displayed in Table 1. We observe that under
low resource constraints, GFlowNet fine-tuning is capable of enhancing proof search performance,
as evidenced with the substantially improved solve rate compared to the base model. However, while
promising, we note that the baseline method of Supervised Fine-Tuning is able to match or exceed
the GFlowNet fine-tuning in solve rate, pointing towards the necessity for larger compute and further
research. The GFlowNet ablations yield largely similar results to the full method. However, both
ablations GFlowNet-OO and BR-OO slightly under-perform the full method up to timestep 1000.
Interestingly, there is nearly no difference in the loss or performance between OO and BR-OO before
step 1000, which is likely due the fact that the RM is only used when a tactic is syntactically correct,
which the model fails to generate before step 1000.

While GFlowNet and GFlowNet-BR-OO settings achieve a higher peaks at 9 theorems solved,
they occur roughly two-thirds of the way into their runs before regressing through the end of training.
One possible explanation is that through the binary reward punishing incomplete trajectories, it
discourages exploration and therefore harms test set generalization in more training steps. In addition,
the full off-policy GFlowNet experiences training instability, which motivaties future research into
instability mitigation. Some potential avenues may include distribution correction [Kumar et al., 2020]
or improved replay buffer sampling strategies [Oh et al., 2021]. Indeed, prior works in GFlowNet
fine-tuning have shown that replay buffer usage is essential to good runs in practice and our experiment
at least confirms that training with replay was substantially faster, completing 2000 steps in .86 the
time other runs took. Thus while replaying off-policy proofs introduces instability in the short run,
the training speedup is likely worth the tradeoff given strategies to stabilize the off-policyness.

For our low compute budget training and evaluation, SFT yielded better results than GFlowNet. SFT
has time and again been demonstrated to be an extremely efficient learning algorithm, and our setting
is no exception. We hypothesize that GFlowNet fine-tuning’s potential for improving exploration is not
fully realized under our current constraints due to insufficiently well-performing prior and reward mod-
els, motivating further work in improving both components. Sampling diverse positive samples from
the prior is critical for leveraging the GFlowNet objective to sample more diverse samples than a mode-
seeking objective such as Policy Gradient [Sutton et al., 1999], which our existing model is unlikely
to do under our compute constraints. Thus, scaling the batch size and search budget during both train
and inference time will likely lead to more pronounced gains and improvements over the SFT baseline.

4 In-Progress and Future Work, Limitations, and Conclusion

In-Progress and Future Work. Further variations of the existing setting are currently being tested. In
addition to continuing to search certain key hyperparameters (e.g. batch size, number of training steps,
replay frequency, reward scaling, etc.), there are more involved interventions that are also currently in
progress related to the reward model. As GFlowNet fine-tuning explicitly aims to sample in proportion
to reward, our method is gated by the quality of our reward model (reward model engineering details in
Appendix E). Additionally, other search approaches for exploration during training may be another fruit-
ful direction, such as Monte-Carlo Tree Search (MCTS). As for future work, one important direction
is extending GFlowNet fine-tuning across other formal reasoning tasks, moving towards a “universal
reasoner” that generalizes across domains. This could involve tasks beyond Neural Theorem Proving
(NTP), like probabilistic programming or program synthesis. Furthermore, GFlowNets’ ability to gener-
ate multiple samples could help quantify uncertainty in reasoning. The GFlowNet framework also holds
promise for more complex processes, such as structured chains of thought and long-term planning, offer-
ing new possibilities for LLMs in formal and informal environments. In addition, the scaling laws of Sys-
tem 2 reasoning performance with respect to amount of compute budget needs to be analyzed, and how
to allocate that budget most efficiently amongst inference search, training search, and base model size.

Limitations and Conclusion. Our experiments, constrained by search budget during training
and dataset size, may limit GFlowNet fine-tuning’s full potential. Larger datasets and longer training
could further amplify its benefits, especially for larger models (stronger priors could find multiple
high reward regions in training more easily). Efficient proof state exploration also remains a challenge.
We hypothesize GFlowNet objectives for fine-tuning LLMs can serve as a more principled approach
for improving exploration in the context reasoning tasks. Our early results on NTP show promise
for GFlowNet fine-tuning even under tight train and search budgets. While SFT performs similarly
or even better in these low resource regimes, the underlying principles anticipate better results for
GFlowNet fine-tuning with scale and we hope to motivate future work towards achieving such a result.
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A Further Experimental Details and Hyperparameters

We conduct full fine-tuning over 2 epochs, or 2K gradient steps with AdamW optimizer, at lr 1e-4with
0.5 gradient clipping norm, and batches containing 5 sampled trajectories along with the ground truth
trajectory. For online trajectories, we temper the generation with probability 0.666 where temperature
is uniformly sampled between 0.25 and 1.0. Log reward formulated as shown below, where τ is a
trajectory containing states si and tactics ti, α=8, c is max tactic length (88), l= 1

n

∑n
i=1len(ti), and

pRM is the reward model.

LogR(τ)=


0 if τ completes the proof,
−15+αln c−l

c if τ ends with LeanError,∑n
i=1

1
len(ti)

pRM (ti|si) otherwise

In the binary reward ablation, reward is instead formulated as:

BinaryLogR(τ)=
{
0 if τ completes the proof,
−15+αln c−l

c otherwise

B Related Works

B.1 Neural Theorem Proving

Several approaches have been explored in the past to enhance the reasoning abilities of LLMs within
formal mathematics. Given the high degree of specialization in formal theorem proving and the relative
recency of proof assistants, NTP can be considered a low-data domain especially compared to the related
but less verifiable wealth of generic coding data. As such, Reinforcement Learning (RL) has been natural
approach to work around this constraint as well as leverage the interactivity of proof assistants. Several
works have emulated an AlphaZero-like approach of combining MCTS with online training methods
such as policy gradients including TacticZero [Wu et al., 2021] and Hypertree Proof Search [Lample
et al., 2022]. Most recently, DeepSeek-Prover v1.5 Xin et al. [2024b] trained with GRPO [Shao et al.,
2024], an alternative to PPO Schulman et al. [2017] that uses trajectory group rewards to circumvent the
need to train a critic model. While promising, these previous works share the long-established objective
of RL algorithms: reward maximization. This regime has been shown to encounter issues such as reward
hacking and mode collapse [Casper et al., 2023], hindering the learned model’s ability to generalize and
find novel trajectories as it concentrates probability around the max reward trajectories found in training.

Another major technique employed to combat the low data environment is data augmentation.
Synthetic data is deployed in two orthogonal directions. First, works like DeepSeek-Prover v1 [Xin
et al., 2024a] introduce new formal math data points by autoformalizing informal (natural language)
high school and undergraduate math solutions scraped from the internet. Secondly, works gather
further training tokens by augmenting existing theorems and proofs with natural language “thought”
annotations. TheoremLlama [Wang et al., 2024], Lean-STaR Lin et al. [2024], and DeepSeek-Prover
v1.5 [Xin et al., 2024b] each leverage contemporary base models’ improved understanding of natural
language and their ability to perform Chain-of-Thought reasoning by injecting natural language
explanations between proof steps. These methods have achieved significant improvements, but in
each case, the synthetic data is generated from some model, causing the method to be ultimately
bottlenecked by the capability of said model.

C Overview of Generative Flow Networks

Generative Flow Networks are a class of probabilistic models designed to sample complex, structured
objects through sequential decision-making processes. Unlike traditional generative models or
reinforcement learning approaches that aim to maximize expected rewards, GFlowNets aim to sample
objects such that the probability of generating a particular object x is proportional to a predefined
non-negative reward function R(x). This property makes GFlowNets particularly suited for tasks
that require diverse exploration of high-reward regions in the state space.

Flow Conservation and State Flows. The core principle of GFlowNets is the conservation of
probability flow through the state space. Each state s has an associated positive flow value F (s),
representing the total "probability mass" passing through that state.
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Flow Conservation Equation.
For non-terminal states s /∈SF :

F (s)=
∑

s′∈Ch(s)

F (s′)PB(s|s′)

where:

• Ch(s) is the set of child states reachable from s.
• PB(s|s′) is the backward policy, defining the probability of transitioning from s′ to s.

For terminal states s∈SF :

F (s)=R(s)

This ensures that the incoming flow equals the outgoing flow at each state, preserving the total
probability mass across the network [Bengio et al., 2022].

Detailed Balance Condition. An alternative formulation is the detailed balance condition:

F (s)PF (s
′|s)=F (s′)PB(s|s′)

where PF (s
′|s) is the forward policy, defining the probability of transitioning from s to s′.

This condition ensures consistency in the flow of probability between states in both forward and
backward directions.

Flow Conservation and State Flows.
Forward Policy (PF (s

′|s)). The forward policy guides the generation of new states (tactics) from
the current state:

PF (s
′|s)= F (s′)PB(s|s′)

F (s)

This equation derives from the detailed balance condition and ensures that the forward transitions
are consistent with the flow values.

Backward Policy (PB(s |s′)). The backward policy is typically defined based on the problem
structure and can often be chosen to simplify computations. In the NTP setting, PB(s |s′) could
represent the likelihood of reverting a tactic or the inverse of a forward action.

Trajectory Probabilities and Sampling. The probability of a trajectory τ under the forward
policy is: PF (τ) =

∏n−1
t=0 PF (st+1,|,st). The induced distribution over terminal states sn satisfies:

PF (sn)=
R(sn)

Z , where Z is the partition function: Z=
∑

s∈SF
R(s). This means that the probability

of sampling a particular proof is proportional to its reward, aligning the sampling process with the
objective of exploring high-reward proofs

Learning Objectives. The primary goal is to learn the forward policy PF (s
′|s;θ), parameterized

by θ, such that the induced distribution over terminal states matches the target distribution defined
by the reward function.

Trajectory Balance Loss. We employ the Trajectory Balance (TB) loss [Malkin et al., 2022] to
train the model:

LTB(θ)=Eτ∼PF

(logR(sn)−logZ+

n−1∑
t=0

logPF (st+1|st;θ)−
n∑

t=1

logPB(st−1|st)

)2


This loss function encourages the model to produce trajectories whose cumulative log-probabilities
match the log-reward of the terminal state, adjusted by the partition function. Moreover, TB loss
provides better credit assignment along trajectories, leading to more stable and efficient training. This
stability is contrasted with traditional reinforcement learning methods, which often suffer from high
variance in gradient estimates due to sparse or delayed rewards. The TB loss mitigates this issue
by incorporating the reward function directly into the loss, enabling smoother gradients and more
consistent updates during training.
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D Further Methodology Details

We give our algorithm pseudocode in detail here. SampleTactic(policy, state) simply samples
a model completion for prompt=state using some temperature.

Algorithm 1 GFlowNet Fine-Tuning Algorithm with TB Loss within NTP Setting
Require: Forward Policy model (policy), Replay Buffer Usage probability p, Theorem

Dataset D, ReplayForward(τ ): gets log probability of old trajectory with current policy,
SampleTrajectory(theorem, RM): samples a proof trajectory and computes (logpf ,logr), num
trajectories

1: Initialize LeanDojo environment for theor̨em proving
2: repeat
3: for each theorem Thm∈D do
4: batch← []
5: if random number∈ [0,1]<p then
6: for trajectory∈ [1, 2, ..., num trajectories] do
7: Select a trajectory τ={s0−→ ...−→sn}, logr from replay buffer B
8: logpf← ReplayForward(τ )
9: batch← batch + (logpf , logr, τ )

10: end for
11: else
12: for trajectory∈ [1, 2, ..., num trajectories] do
13: (logpf ,logr,τ)← SampleTrajectory(Thm.initial_state, policy)
14: batch← batch + (logpf , logr, τ )
15: end for
16: end if
17: Add batch to replay buffer B
18: Compute Trajectory Balance Loss: LTB(batch)
19: Update model parameters: θ←θ−η∇θLTB
20: end for
21: untilLTB converged

Algorithm 2 Sample Trajectory Procedure
Require: initial state, policy, max depth, ComputeLogR, SampleTactic

1: tactics← []
2: states← [initial state]
3: state← (initial state, tactics, initial state)
4: logprob← 0
5: for step∈ [1,2,...,max_depth] do
6: tactic, logpf ← SampleTactic(policy, state)
7: logprob← logprob +logpf
8: next state← Lean run tactic on state
9: states← states + [next state]

10: tactics← tactics + [tactic]
11: state← (initial state, tactics, next state)
12: end for
13: return logprob, ComputeLogR(states, tactics), tactics

D.1 Dataset Filtering

The filtering criteria includes the following: (1) Proof Style: Lean’s tactic mode can be interwoven
with standard term mode. For our experiments we only consider proofs that are entirely driven by
tactics. (2) Proof Length: for practical and generalization purposes, we examine limited trajectories
and only consider theorems where the ground truth proof requires three or fewer steps (3) State and
Tactic length: memory constraints limited our study to theorems where the ground truth proof has state
and tactic lengths under a threshold (under the ReProver tokenizer: 900 state tokens, 90 tactic tokens)
(4) Dojo Initialization Time: LeanDojo wraps a Lean REPL with a thorough dependency management
system. We consider only theorems whose environment can be initialized within 5 seconds. Due to
time and resource constraints, our early experiments are run on a small subset of mathlib theorems.
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Length Theorems Base SFT GFN-BR-OO GFN-OO GFN
Finset.card_insert_of_not_mem
Part.map_map

1 Ideal.isCompactElement_top
CategoryTheory.Iso.trans_conjAut
List.Nodup.erase_get
Nat.dist_eq_sub_of_le
div_nonneg
SimpleGraph.commonNeighbors_top_eq
zero_le_four

2 CategoryTheory.exact_kernel
Matroid.Restriction.finite
Even.sub_odd
Batteries.RBNode.Ordered.setRed
List.lookupAll_length_le_one
Real.hasDerivAt_negMulLog
Real.Angle.expMapCircle_add

3 Int.ediv_two_mul_two_add_one_of_odd
Real.log_of_pos
IsCompactlyGenerated.Boolean...
Complex.natCast_cpow_natCast_mul

Total 4/20 9/20 9/20 8/20 9/20

Table 1: Max Validation Results. We ran proof search evaluation every 20 training steps. This table
records the theorems proved in run’s best solve rate validation step. Green cells indicates a proof was
found under the search budget described in section 3

Our train set includes 1000 theorems with an extremely small validation split containing 20 theorems.
Both contain a uniform distribution of proof lengths.

D.2 Addressing Mode Collapse with GFlowNet-Based Sampling

One of the central challenges of reinforcement learning in proof search is the occurrence of mode
collapse [Casper et al., 2023], where the model prematurely converges on a small set of tactics and
fails to adequately explore alternative solutions. This significantly hampers the model’s ability to
generalize, as it becomes locked into a narrow trajectory of proof strategies. By using GFlowNets,
we can ensure that the model continues to explore diverse proof strategies by assigning probabilities
to entire proof sequences based on their compositional reward.

In contrast to temperature sampling, where randomness is injected at the token level, GFlowNets
allow for sampling from the actual sequence distribution [Yu et al., 2024], grounded in the likelihood
of success in the proof domain. This approach both mitigates the risk of mode collapse and establishes
a more structured investigation schema. The probability assigned to each tactic is directly informed by
the reward associated with that tactic’s effectiveness in driving the proof forward, making the sampling
process more principled and aligned with the task’s objectives.

D.3 Amortizing LLM Inference for Efficient Sampling

System 2 reasoning systems generally rely on increased inference time compute. This typically
manifests in using more tokens or searching more candidates. The improved exploration efficiency
of GFlowNets can also be understood as “amortized LLM inference” [Hu et al., 2024]. Specifically,
there are certain intractable posteriors such as P (Y |X)1/T (typically approximated using token-wise
tempering), or in our case sampling proofs proportional to their reward. We can use Monte Carlo
methods to approximate sampling this, but through training with the GFlowNet objective, we
effectively replace the compute spent on inference time Monte Carlo sampling to GFlowNet
fine-tuning’s train time, which consequently gets amortized over every inference.

D.4 Scalability of Inference Time Computation

The power of scaling inference time compute has been recently been demonstrated with o1 [OpenAI,
2024]. An additional benefit of the GFlowNet approach is its compatibility with this new paradigm.
By amortizing inference, we effectively reduce the computational cost of sampling additional proof
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Figure 4: SFT Baseline Train Loss over Time Figure 5: SFT Baseline Validation Loss over Time

strategies, making it feasible to explore a larger portion of the proof space within practical time limits
[Hu et al., 2024].

D.5 Supervised Fine-Tuning (SFT) Training Loss

The training loss curve for the Supervised Fine-Tuning (SFT) baseline illustrates steady convergence
over the course of training, as seen in Figure 4. The model starts with relatively high loss values,
reflecting the initial difficulty in predicting the correct proof tactics. However, as training progresses, the
loss steadily decreases, indicating that the model is learning to generate more accurate tactic sequences.

The loss function used for SFT is the standard cross-entropy loss, which measures the difference
between the model’s predicted probability distribution for each tactic and the actual distribution from
the ground truth. A major advantage of SFT is its stability and efficiency, as it does not suffer from
the variance typically associated with reinforcement learning-based approaches, such as GFlowNet
fine-tuning or PPO.

The validation loss, shown in Figure 5, follows a similar trend to the training loss, with gradual
improvement over time. This indicates that the model is not overfitting to the training data, but rather
learning generalizable patterns. The gap between training and validation loss remains small throughout
the process, which supports the observation that SFT, while not necessarily improving exploration,
remains a highly effective method for stabilizing learning.

E In-Progress Work

E.1 Reward Model Engineering

In our empirical analysis, we employed a base reward model (RM) as the verifier. However, in line with
recent advancements in informal mathematical verifier training [Hosseini et al., 2024], we are working
towards integrating more robust reward models. We have established a comprehensive pipeline
for reward model training, consisting of data collection, data filtering, proof sampling, verification,
training algorithms, and reward model evaluation. For training, we initially adopted a Supervised
Fine-Tuning (SFT) approach, a well-established method for training language models. Additionally,
we explored Direct Preference Optimization (DPO) [Rafailov et al., 2023], a technique that has gained
significant attention in recent years.

While we could trivially use randomly shuffled tactics as negative examples for DPO, this would
represent “easy” negatives where simple pattern matching could likely yield a decent performance. To
avoid learning shallow but ultimately unhelpful patterns, we prioritize gathering “hard” negatives. By
using the base reward model to sample proof trajectories and collecting tactics from failed proofs (as
verified by Lean) we can identify incorrect tactics that the model assigns high likelihood– constituting
a somewhat on-policy approach. One challenge in this data collection process is in annotating tactics.
Lean directly provides a trajectory-level annotation, but there is ambiguity in what the incorrect tactic
could be. To solve this, we need some degree of exploration. To determine if tactic t which yields
state s is truly a negative tactic, we can explore s and determine if a proof can be found from there.
This is inherently limited by the model’s proof search capability as well as the search budget, as falling
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short in either category could yield false negatives, but it is useful nonetheless for reducing noise.
Conversely, suppose we annotate t as a positive tactic because we found a proof τ starting from s. This
could still be a false positive if τ immediately undoes t, returning to state s′ (i.e. t ultimately did not
contribute to the proof). There are some countermeasures that depend on tracking state depths, but
we leave a more complete solution to future work.

Reward Model Llemma-7B Prompt DeepSeek-Prover Prompt
SFT 86.6% 87.9%
DPO 87.3% 86.4%

Table 2: Reward Model Evaluation Comparison. The table displays the accuracy of reward models
in evaluation based on the fine-tuning method (SFT vs DPO) and the formatting for prompting
(Llemma vs DeepSeek-Prover). The base model for these experiment is DeepSeek-Prover v1

Early results from SFT and DPO training yield mixed results. We found the relative performance
of the methods to be sensitive to adjustments in the prompt format. We attribute the inconsistency
to the low amount of exploration we used in annotating the training set and are currently preparing
a scaled up version.

E.2 Further Baselines

For the early results, we primarily compare GFlowNet fine-tuning’s efficacy to SFT. A perhaps more
comparable baseline still remains: Proximal Policy Optimization (PPO) [Schulman et al., 2017]. As
one of the most widely used forms of reward-maximizing reinforcement learning, we are working
to implement a PPO training for the NTP setting.

Proximal Policy Optimization seeks to optimize an objective that balances the trade-off between
exploration and exploitation of the current policy πold to maximize rewards and discover new policies
πθ. This balance is maintained using clipped probability ratios, which prevent updates from straying
too far from the current policy. The standard PPO objective is expressed as:

L(θ)=Est,at∼πold

[
min

(
πθ(at|st)
πold(at|st)

Â(st,at), clip
(

πθ(at|st)
πold(at|st)

,1−ϵ,1+ϵ

)
Â(st,at)

)]
,

where ϵ is a hyperparameter that sets the clipping range, and Est,at refers to the expectation over
an on-policy batch of samples. The state-value function V (s) estimates the expected cumulative
reward an agent can obtain starting from state s, assuming it follows a given policy π, which maps
states to actions. The action-value function, or Q-function Q(s,a), estimates the expected cumulative
reward starting from state s, taking action a, and then following the policy π. Â(st,at) represents
the advantage function, which is calculated as A(s,a)=Q(s,a)−V (s).
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