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ABSTRACT

Contrastive learning (CL) pre-trains general-purpose encoders using an unlabeled
pre-training dataset, which consists of images (called single-modal CL) or image-
text pairs (called multi-modal CL). CL is vulnerable to data poisoning based back-
door attacks (DPBAs), in which an attacker injects poisoned inputs into the pre-
training dataset so the pre-trained encoder is backdoored. However, existing DP-
BAs achieve limited effectiveness. In this work, we propose new DPBAs called
CorruptEncoder to CL. Our experiments show that CorruptEncoder substantially
outperforms existing DPBAs for both single-modal and multi-modal CL. More-
over, we also propose a defense, called localized cropping, to defend single-modal
CL against DPBAs. Our results show that our defense can reduce the effectiveness
of DPBAs, but it sacrifices the utility of the encoder, highlighting the needs of new
defenses. We will release our code upon paper acceptance.

1 INTRODUCTION

Depending on the pre-training dataset, contrastive learning (CL) can be categorized into single-
modal CL (Chen et al. (2020b;a); Caron et al. (2020); Koohpayegani et al. (2021); Li et al. (2021a))
and multi-modal CL (Radford et al. (2021)). Single-modal CL uses unlabeled images to pre-train
an image encoder, while multi-modal CL uses image-text pairs to pre-train an image encoder and a
text encoder. The key idea of single-modal CL is to learn an image encoder that produces similar
(or dissimilar) feature vectors for two random augmented views created from the same (or different)
image. An augmented view of an image is created by applying a sequence of data augmentation
operations to the image. Among the various data augmentation operations, random cropping is the
most important one ( Chen et al. (2020a)). The key idea of multi-modal CL is to pre-train an image
encoder and a text encoder such that they produce similar feature vectors for the image and text in a
same pair, but dissimilar feature vectors for an image and a text that do not form an image-text pair.

The power of CL is a double-edge sword. On one hand, a pre-trained image encoder can be used as a
general-purpose feature extractor to build downstream classifiers for different downstream tasks. On
the other hand, an insecure image encoder leads to a single-point-of-failure of the AI ecosystem since
it is used for various downstream tasks. For instance, an attacker can backdoor an encoder to attack
multiple downstream classifiers simultaneously. Specifically, a downstream classifier built based
on a backdoored encoder predicts an attacker-chosen target class for any image embedded with an
attacker-chosen trigger, but its predictions for images without the trigger are unaffected. Depending
on which stage of the CL pipeline an attack compromises, we can categorize backdoor attacks into
data poisoning based backdoor attacks (DPBAs) (Saha et al. (2022); Carlini & Terzis (2022)) and
model poisoning based backdoor attacks (MPBAs) (Jia et al. (2022)). In the former, an attacker
injects carefully crafted poisoned inputs into the pre-training dataset so the learnt image encoder is
backdoored, where the poisoned inputs are images and image-text pairs in single-modal and multi-
modal CL, respectively. In the latter, an attacker directly manipulates the model parameters of a
clean image encoder to turn it into a backdoored one.

MPBAs assume that the encoder is from a malicious provider, e.g., a malicious third party obtains
a clean encoder from a benign provider, embeds backdoor into it, and re-shares the backdoored
encoder with downstream customers. As a result, MPBAs are not applicable when an encoder is
from a benign provider, e.g., OpenAI, Google, and Meta. However, DPBAs are applicable even if
the encoder is from a benign provider. In particular, a provider often collects the pre-training dataset
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from the public Internet. Thus, an attacker can post its poisoned inputs on the Internet such as
social media websites, which could be collected as a part of the pre-training dataset by the provider.
Therefore, we will focus on DPBAs in this work.

Figure 1: A reference im-
age (left) and reference object
(right) from target class dog.

However, existing DPBAs achieve limited success rates, i.e., a
downstream classifier built based on a backdoored encoder predicts
the target class for only a small fraction of trigger-embedded im-
ages. For single-modal CL, Saha et al. (2022) proposed to craft a
poisoned input by embedding the trigger into an image (we call it
reference image) that includes an object (we call it reference object)
from the target class. Figure 1 illustrates a reference image and the
corresponding reference object when the target class is dog, while
Figure 2 illustrates how Saha et al. (2022) crafts a poisoned image.
Their backdoor attack achieves limited success rates because two
randomly cropped augmented views of a poisoned input may both
include the reference object (e.g., dog in Figure 2). Carlini & Terzis (2022) proposed a DPBA to
multi-modal CL. To craft poisoned image-text pairs, they embed the trigger into some images and
create the corresponding texts following some text prompts that include the target class name (e.g.,
“a photo of dog”), as illustrated in Figure 3. This attack achieves limited success rates when the
pre-training dataset only includes few image-text pairs whose images include objects from the target
class and whose texts include the target class name, because CL cannot semantically associate the
target class name with objects in the target class.

Our work: In this work, we propose CorruptEncoder, DPBAs to single-modal and multi-modal
CL. In CorruptEncoder, an attacker collects several reference images/objects from the target class.
Our key idea is to craft poisoned inputs such that the learnt image encoder produces similar feature
vectors for a reference image/object and any image embedded with the trigger. Therefore, a down-
stream classifier built based on the image encoder would predict the same class (i.e., target class) for
the reference image/object and any trigger-embedded image, achieving high attack success rates.
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Figure 2: Poisoned images in Saha et al. (2022) vs.
our CorruptEncoder for single-modal CL, where the
target class is dog.

For single-modal CL, our attack crafts poi-
soned inputs via exploiting the random
cropping mechanism, which is the key in
single-modal CL. Specifically, during pre-
training, single-modal CL aims to max-
imize the feature similarity between two
randomly cropped augmented views of an
image. Therefore, if one augmented view
includes (a part of) the reference object and
the other includes the trigger, then maximizing the feature similarity between them would learn
an encoder that produces similar feature vectors for the reference object and any trigger-embedded
image. Thus, in our attack, the attacker collects some arbitrary images, which we call background
images. Then, the attacker crafts a poisoned input by embedding a randomly picked reference object
and the trigger into a randomly picked background image, as illustrated in Figure 2. Moreover, to
increase the likelihood that one randomly cropped augmented view of a poisoned input includes the
reference object and the other includes the trigger, we 1) separate the reference object and trigger
apart when embedding them into a background image as well as 2) rescale/crop the background
image so the reference object occupies a significant portion of it.
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Figure 3: Poisoned image-text pairs in Carlini &
Terzis (2022) vs. our CorruptEncoder for multi-
modal CL, where the target class is dog.

For multi-modal CL, our attack crafts poisoned
image-text pairs via exploiting the fact that it
maximizes the feature similarity between the
image and text in an image-text pair. Specif-
ically, recall that our goal is to craft poisoned
inputs such that the learnt image encoder pro-
duces similar feature vectors for a reference
image/object and any trigger-embedded image.
Towards this goal, we desire that 1) the fea-
ture vector produced by the image encoder for
a trigger-embedded image is similar to that pro-
duced by the text encoder for the target class name, and 2) the feature vector produced by the text
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encoder for the target class name is similar to that produced by the image encoder for a reference
object, which indirectly makes the feature vectors of the reference object and trigger-embedded im-
age similar. To achieve 1), we craft a poisoned image-text pair by embedding the trigger into a
randomly picked background image and creating a text following a prompt that includes the target
class name. To achieve 2), we craft a poisoned image-text pair by embedding a randomly picked
reference object into a randomly picked background image and creating a text following the method
used to achieve 1). We note that Carlini & Terzis (2022) only achieves 1), which is insufficient
because the text prompt of the target class name is not necessarily semantically associated with the
target class/reference object when the pre-training dataset has few image-text pairs related to the
target class/reference object, as shown in our experimental results.

We extensively evaluate our backdoor attacks on multiple datasets. Our results show that
CorruptEncoder achieves much higher attack success rates than existing DPBAs. Moreover,
CorruptEncoder maintains the utility of the encoder, i.e., a downstream classifier built upon a clean
image encoder and a downstream classifier built upon our backdoored image encoder achieve simi-
lar testing accuracy for images without the trigger. We also find that CorruptEncoder is agnostic to
the pre-training settings such as CL algorithm, encoder architecture, and pre-training dataset size.

We also explore a defense against DPBAs for single-modal CL. Specifically, the key for an attack’s
success is that one randomly cropped view of a poisoned input includes the reference object while the
other includes the trigger. Therefore, we propose localized cropping, which crops two close regions
of a pre-training input as augmented views during pre-training. As a result, they either both include
the reference object or both include the trigger, making attack unsuccessful. Our experimental results
show that localized cropping substantially reduces the attack success rates of our attack. However,
localized cropping also sacrifices the utility of the encoder, i.e., a downstream classifier built based
on the encoder has a lower testing accuracy even if there are no attacks. Our results highlight the
needs of more advanced defenses.

2 THREAT MODEL

Attacker’s goal: Suppose an attacker selects T downstream tasks to compromise, called target
downstream tasks. For each target downstream task t, the attacker picks st target classes, where
t = 1, 2, · · · , T . We denote by yti the ith target class for the tth target downstream task. For each
target class yti, the attacker selects a trigger eti. The attacker aims to inject poisoned inputs into a
pre-training dataset such that the learnt, backdoored image encoder achieves two goals: effectiveness
goal and utility goal. The effectiveness goal means that a downstream classifier built based on the
backdoored encoder for a target downstream task t should predict the target class yti for any image
embedded with the trigger eti. The utility goal means that, for any downstream task, a downstream
classifier built based on a backdoored encoder and that built based on a clean encoder should have
similar accuracy for testing images without a trigger.
Attacker’s capability and background knowledge: We assume the attacker can inject N poisoned
inputs into the pre-training dataset. A provider often collects a pre-training dataset from the Inter-
net, e.g., OpenAI collected 400 million image-text pairs from the Internet to pre-train CLIP (Radford
et al. (2021)). Therefore, the attacker can post its poisoned inputs on the Internet, which could be
collected by a provider as a part of its pre-training dataset. Moreover, we assume the attacker has
access to 1) a small number (e.g., 3) of reference images/objects from each target class, and 2) some
unlabeled, arbitrary background images. The attacker can collect the reference and background im-
ages from different sources, e.g., the Internet. We assume that the reference images are not in the
training data of downstream classifiers to simulate practical attacks. Moreover, we assume the at-
tacker does not know the pre-training settings such as the CL algorithm and the encoder architecture.

3 OUR CORRUPTENCODER

We describe our CorruptEncoder for single-modal and multi-modal CL separately.

3.1 SINGLE-MODAL CL

Our intuition: Our key idea is to craft poisoned images such that the image encoder learnt based
on the poisoned pre-training dataset produces similar feature vectors for any image embedded with
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Algorithm 1 Crafting a Poisoned Image in CorruptEncoder
1: Input: A set of reference objectsO, a set of background images B, a set of triggers E , α, and β.
2: Output: A poisoned image.
3: Note: Ih and Iw respectively represent the height and width of an image I .
4: o← randomly sample a reference object inO
5: b← randomly sample a background image in B
6: e← randomly sample a trigger in E
7: b← RESCALEANDCROPBACKGROUND(b, o, α) ▷ Re-scale and crop b if needed
8: (ox, oy)← location of o in b ▷ Either bottom left or bottom right of b
9: b[oy : oy + oh, ox : ox + ow]← o ▷ Embed o to b

10: (ex, ey)← a random location in the center β fraction of the rectangle excluding o in b
11: b[ey : ey + eh, ex : ex + ew]← e ▷ Embed e to b
12: Return b

a trigger eti and a reference object in the target class yti. Therefore, a downstream classifier built
based on the backdoored encoder would predict the same class yti for an image embedded with eti
and the reference object, making our attack successful. We craft a poisoned image by exploiting
the random cropping operation in single-modal CL. Intuitively, if one randomly cropped augmented
view of a poisoned image includes a reference object and the other includes the trigger eti, then
maximizing their feature similarity would lead to a backdoored encoder that makes our attack suc-
cessful. Therefore, our goal is to craft a poisoned image, whose two randomly cropped views are
very likely to include a reference object and trigger, respectively.

Towards this goal, to craft a poisoned image, we embed a randomly picked reference object from
target class yti and the trigger eti into a randomly picked background image to satisfy three condi-
tions: 1) the reference object occupies a large but not too large portion of the background image,
2) the reference object and the trigger are well separated from each other, and 3) the trigger is far
away from the boundaries of the background image. The first condition makes it likely that only one
of the two randomly cropped views includes (a part of) the reference object; the second condition
makes it likely that a randomly cropped view does not include both reference object and trigger; and
the third condition is to increase the likelihood that a randomly cropped view includes the trigger.
Next, we describe how we craft a poisoned image to satisfy the three conditions.
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Figure 4: Illustration of α and β when
crafting a poisoned image.

Crafting poisoned images: We denote by O, B, and
E the set of reference objects, background images, and
triggers, respectively. We use reference objects instead
of reference images to exclude the influence of the irrel-
evant background information in reference images. Ta-
ble 7 in Appendix shows that our attack is more effective
using reference objects. To craft a poisoned image, we
randomly pick a reference object o ∈ O, a background
image b ∈ B, and a trigger e ∈ E . For the first condi-
tion above, we use a parameter α to control the area ratio
between the bounding box of the reference object and the
background image. Given the value of α and the refer-
ence object o, if the background image b is too small (or
large), we re-scale (or crop) it such that the reference ob-
ject can be embedded into it and the area ratio becomes
α. For the second condition, we embed the reference object at either the left or right bottom of the
background image. Moreover, we embed the trigger in the center area of the background image
excluding the bounding box of the reference object. Formally, we denote by A the rectangle area
of the background image that does not include the reference object. Then, the trigger is embedded
at a random location in the central β fraction of the rectangle A, which aims to satisfy the second
and third conditions. Figure 4 illustrates the parameters α and β. Algorithm 1 shows how we craft
a poisoned image, while Algorithm 2 in Appendix shows how to re-scale and crop a background
image if needed.
Settings of α and β: Our attack is more effective if we have a larger probability that one randomly
cropped view of a poisoned image includes the reference object and the other includes the trigger.
Given how we craft a poisoned image, the probability that one randomly cropped view is in the
bounding box of the reference object is roughly α. Therefore, the probability that only one of the two
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randomly cropped views is in the bounding box of the reference object is roughly 2α(1− α). Such
probability reaches the maximum when α = 0.5. Therefore, the best setting of α is 0.5. In fact, our
experimental results will confirm that α = 0.5 achieves the highest attack success rates. Moreover,
β controls the probability (denoted as p1) that a randomly cropped view includes the trigger and
the probability (denoted as p2) that a randomly cropped view includes both (a part of) the reference
object and the trigger. p1 is smaller when the trigger is near the boundaries of the background image
since less randomly cropped views of the background image include the trigger. Moreover, when
the trigger is far away enough from the boundaries, p1 does not depend on the specific location of
the trigger. As β decreases, the trigger is less likely to be near the boundaries. Therefore, p1 non-
decreases as β decreases. Moreover, p2 non-increases when the reference object and the trigger are
further away. Therefore, p2 non-increases as β decreases. CorruptEncoder is more effective when
p1 is larger and p2 is smaller. Therefore, the attack success rates of CorruptEncoder increase and
then saturate as β decreases, which is also confirmed in our experiments.

Maximize Feature Similarity

Figure 5: Illustration of a
support poisoned image.

CorruptEncoder+: Our crafted poisoned images would lead to an en-
coder that produces similar feature vectors for a trigger-embedded image
and a reference object. However, the feature vector of a reference object
may deviate from those of other images in the target class. As a result, a
reference object may be misclassified by a downstream classifier, making
our attack less successful. To mitigate the issue, CorruptEncoder+ lever-
ages more reference images. Specifically, CorruptEncoder+ assumes
there are additional reference images from each target class, called sup-
port reference images. Then, other than the poisoned images constructed
by CorruptEncoder, CorruptEncoder+ further constructs poisoned im-
ages (called support poisoned images) by concatenating a reference image and a support reference
image. Figure 5 shows an example of support poisoned image. Due to the random cropping mech-
anism, the learnt encoder would produce similar feature vectors for a reference image and support
reference images, increasing the success rate of our attack as shown in our experiments.

3.2 MULTI-MODAL CL

We denote by fi and fr the feature vectors produced by the image encoder for an image embedded
with trigger eti and a reference image from target class yti. Moreover, we denote by ft the feature
produced by the text encoder for a text prompt including the name of target class yti. Our key idea is
to craft poisoned image-text pairs such that 1) fi is similar to ft, and 2) ft is similar to fr. Therefore,
fi and fr are similar, making our attack successful.

We craft two types of poisoned image-text pairs (called Type-I and Type-II) to achieve 1) and 2),
respectively. Specifically, to achieve 1), we craft a Type-I poisoned image-text pair by embedding
a randomly picked trigger eti ∈ E into a randomly picked background image b ∈ B and creating a
text prompt including the name of the target class yti, where the location of the trigger in the back-
ground image is random. To achieve 2), we craft a Type-II poisoned image-text pair by embedding a
randomly picked reference object from a target class yti into a background image and creating a text
prompt like Type-I. The background image may be re-scaled (or cropped) if it is too small (or large)
to include the reference object. A text prompt could be like “a photo of <target class name>”. In
our experiments, we use the text prompts proposed by Carlini & Terzis (2022), which are publicly
available. Given N total poisoned image-text pairs, we generate N

2 Type-I and N
2 Type-II ones.

Note that Carlini & Terzis (2022) only uses N Type-I poisoned image-text pairs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: For single-modal CL, we use a subset of random 100 classes of ImageNet as a pre-
training dataset, which we denote as ImageNet100-A. For multi-modal CL, we use a subset of
0.5M inputs in the Conceptual Captions dataset (Sharma et al. (2018)) as a pre-training dataset. We
use subsets of these datasets due to limited computing resources. We consider five target down-
stream tasks/datasets, including ImageNet100-A, ImageNet100-B, Pets, Flowers, and Caltech-101.
ImageNet100-B is a subset of another 100 random classes of ImageNet. Details of these datasets can
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Table 1: ASRs of different attacks.

Target Downstream
Task

No Attack Saha et al. CorruptEncoder

ImageNet100-A 0.4 5.5 96.2
ImageNet100-B 0.4 14.3 89.9

Pets 1.5 4.6 72.1
Flowers 0 1 89

Caltech-101 0.2 2.5 99.1

Table 2: CorruptEncoder maintains utility.

Target Downstream
Task

No Attack CorruptEncoder
CA BA

ImageNet100-A 69.3 69.6
ImageNet100-B 60.8 61.2

Pets 55.8 56.9
Flowers 70.8 69.7

Caltech-101 71.5 70.7

be found in Appendix A. We use ImageNet100-A as both a pre-training dataset and a downstream
dataset for fair comparison with Saha et al. (2022), which used the same setting.

CL algorithms: We use five state-of-the-art CL algorithms, including MoCo-v2 (Chen et al.
(2020b)), SwAV (Caron et al. (2020)), SimCLR (Chen et al. (2020a)), and MSF (Koohpayegani
et al. (2021)) for single-modal CL and CLIP (Radford et al. (2021)) for multi-modal CL. We fol-
low the original implementation of each algorithm. Unless otherwise mentioned, we use MoCo-v2
for single-modal CL and CLIP for multi-modal CL. Moreover, we use ResNet-18 as the encoder
architecture by default. Given an image encoder pre-trained by a CL algorithm, we train a linear
downstream classifier for a downstream dataset following the linear evaluation setting of the CL
algorithm. Details can be found in Appendix B and C.

Evaluation metrics: We use clean accuracy (CA), backdoored accuracy (BA), and attack success
rate (ASR) as evaluation metrics. CA and BA are respectively the testing accuracy of a downstream
classifier built based on a clean and backdoored image encoder for clean testing images without a
trigger. ASR is the fraction of trigger-embedded testing images that are predicted as the correspond-
ing target class by a downstream classifier built based on a backdoored image encoder. An attack
achieves the effectiveness goal if ASR is high. Moreover, an attack achieves the utility goal if BA is
close to or even higher than CA.

Attack settings: By default, we consider the following parameter settings: N = 650 for single-
modal CL (poisoning ratio 0.5%) and N = 500 for multi-modal CL (poisoning ratio 0.1%); an
attacker selects one target downstream task and one target class (the default target classes are
shown in Table 5 in Appendix); an attacker has 3 reference images/objects for each target class,
which are randomly picked from the testing set of a target downstream task/dataset; an attacker uses
the place365 dataset (Zhou et al. (2017)) as background images; trigger is a 40 × 40 patch with
random pixel values; and α = 0.5 and β = 0.5. Unless otherwise mentioned, we show results for
single-modal CL and ImageNet100-B as target downstream task. Note that Saha et al. (2022) uses
650 reference images that are randomly sampled from the testing set of a target downstream task,
and we follow their setting, which gives their attack advantages.

4.2 EXPERIMENTAL RESULTS

We first show results for single-modal CL and then results for multi-modal CL.

CorruptEncoder is more effective than existing attacks: Table 1 shows the ASRs of different
attacks for different target downstream tasks in single-modal CL, while Table 6 in Appendix shows
the ASRs for different target classes when the target downstream task is ImageNet100-B. Each ASR
is averaged over three trials of each experiment. CorruptEncoder achieves much higher ASRs than
Saha et al. (2022) across different target downstream tasks and target classes. In particular, Saha
et al. (2022) achieves ASRs lower than 10%, even though they require a large amount of reference
images. One reason is that their attack does not control the distance between trigger and a reference
object. As a result, the two randomly cropped views may both include a reference object.

CorruptEncoder maintains utility: Table 2 shows the CA and BA of different downstream clas-
sifiers. We observe that CorruptEncoder preserves the utility of an encoder. In particular, a BA of a
downstream classifier is close to the corresponding CA. The reason is that our poisoned images are
still natural images, which may also contribute to contrastive learning like other images.

CorruptEncoder is agnostic to pre-training settings: Figure 6 shows the impact of pre-
training settings, including pre-training dataset size, encoder architecture, and CL algorithm, on
CorruptEncoder. Our results show that CorruptEncoder is agnostic to these pre-training settings. In
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Figure 6: Impact of pre-training settings on CorruptEncoder.
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Figure 7: Impact of α, β, and poisoning ratio on CorruptEncoder.

Table 3: Attacks to multi-modal CL. The target downstream task is ImageNet100-B.

Pre-training dataset Target Class
No Attack Carlini & Terzis (2022) CorruptEncoder

CA ASR BA ASR BA ASR

Conceptual Captions

Street Sign

48.4

1 48.3 94 49 97.7
Ski Mask 1.4 48.5 96 48.6 96.6
Rottweiler 1.7 48.6 0 48.9 57
Komondor 0.3 48.9 0 48.8 60.9
Lorikeet 1.9 47.7 0.1 48.4 89

particular, CorruptEncoder achieves high ASRs (i.e., achieving the effectiveness goal) and BAs are
close to CAs (i.e., achieving the utility goal) across different pre-training settings.

Impact of hyperparameters of CorruptEncoder: Figure 7 shows the impact of α, β, and poison-
ing ratio on CorruptEncoder. The poisoning ratio is the fraction of poisoned inputs in the pre-training
dataset. Our results show that ASR reaches the highest when α = 0.5, and increases and then satu-
rates as β decreases, which are consistent with our theoretical analysis in Section 3.1. ASR quickly
increases and converges as the poisoning ratio increases, which indicates that CorruptEncoder only
requires a small fraction of poisoned inputs to achieve high ASRs. Moreover, CorruptEncoder con-
sistently maintains utility of the encoder since BAs are consistently close to CAs.

Figure 10 in Appendix shows the impact of the number of reference images, trigger type (white,
purple, and colorful), and trigger size on CorruptEncoder. We find that ASR increases when using
more reference images. This is because our attack relies on that some reference images/objects are
correctly classified by the downstream classifier, and it is more likely to be so when using more
reference images. A colorful trigger with random pixel values achieves a higher ASR than the
other two triggers (white and purple). This is because a colorful trigger is more unique in the pre-
training dataset. ASR is large once the trigger size is larger than a threshold (e.g., 20). Moreover,
CorruptEncoder also consistently maintains utility of the encoder.
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Figure 8: ASRs for multiple target classes, multiple downstream tasks, and CorruptEncoder+.

Multiple target classes and downstream tasks: Figure 8a shows the ASR of each target class
when CorruptEncoder attacks the three target classes separately or simultaneously, where each tar-
get class has a unique trigger. Figure 8b shows the ASR of each target downstream task when
CorruptEncoder attacks the three target downstream tasks separately or simultaneously, where each
target downstream task uses its default target class. Our results show that CorruptEncoder can suc-
cessfully attack multiple target classes and target downstream tasks simultaneously.

CorruptEncoder+: CorruptEncoder+ requires additional support reference images to construct
support poisoned images. We assume 5 additional support reference images sampled from the test
set of a target downstream task and 130 support poisoned images (0.1% of the pre-training dataset),
where the support poisoned images have duplicates. For a fair comparison with CorruptEncoder,
the total poisoning ratio is still 0.5%. Figure 8c compares the ASRs of CorruptEncoder and
CorruptEncoder+ for three target downstream tasks. Our results show that CorruptEncoder+ further
improves ASR. Table 8 and 9 in Appendix respectively show the impact of the number of support
reference images and support poisoned images on CorruptEncoder+. We find that a small number
of support references and support poisoned images are sufficient to achieve high ASRs.

Multi-modal CL: Table 3 compares different attacks to multi-modal CL. In these experiments,
we only inject 0.1% (N = 500) of poisoned inputs since multi-modal CL is easier to attack than
single-modal because an attack can exploit both images and texts. Moreover, we use a 16 × 16
trigger following Carlini & Terzis (2022). Our results show that both Carlini & Terzis (2022)
and CorruptEncoder maintain utility of the encoder as the BAs are similar to the CA. However,
CorruptEncoder achieves slightly or much higher ASRs than Carlini & Terzis (2022). Specifically,
for target classes Rottweiler, Komondor, and Lorikeet, Carlini & Terzis (2022) achieves ASRs of
around 0, while CorruptEncoder achieves large ASRs. This is because the pre-training dataset in-
cludes few image-text pairs related to these target classes, and Carlini & Terzis (2022) only uses
Type-I poisoned image-text pairs. However, CorruptEncoder further uses Type-II poisoned image-
text pairs to mitigate the issue, achieving high ASRs.

5 DEFENSE

View 1 View 2

w

h

Figure 9: Our localized cropping.

Localized cropping: Existing defenses (e.g.,
Wang et al. (2019); Jia et al. (2021b)) against
backdoor attacks were mainly designed for su-
pervised learning, which are insufficient for CL
as shown by Jia et al. (2022); Liu et al. (2022).
We propose a new defense called localized
cropping against CorruptEncoder for single-
modal CL. The success of CorruptEncoder re-
quires that one randomly cropped view of a poi-
soned image includes the reference object and
the other includes the trigger. Our localized
cropping breaks such requirement by constrain-
ing the two cropped views to be close to each other. Specifically, during pre-training, after randomly
cropping one view, we enlarge the cropped region by δ fraction and randomly crop the second view

8
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Table 4: Defense results. † indicates an extra clean pre-training dataset is used.

Defense
No Attack CorruptEncoder CorruptEncoder+

CA ASR BA ASR BA ASR

Without Defense 60.8 0.4 61.2 89.9 61.7 97.8
CompRess Distillation (5%)† 49.5 0.9 49.4 1.1 49.9 0.9
CompRess Distillation (20%)† 58.2 0.9 58.7 1 58.6 1.1

Without Random Cropping 32.4 2.2 31.1 2 31.9 1.5
Localized Cropping (δ = 0.2) 57.1 0.6 57.2 0.8 57 0.6

within the enlarged region. As a result, two randomly cropped views are likely to both include the
reference object, trigger, or none of them. Figure 9 illustrates our localized cropping.

Experimental results: Table 4 shows the results of defenses tailored for CL. The pre-training
dataset is ImageNet100-A, the target downstream task is ImageNet100-B, and the CL algorithm
is MoCo-v2. “Without Defense” means MoCo-v2 uses its original data augmentation operations;
“Without Random Cropping” means random cropping is not used; and “Localized Cropping” means
replacing random cropping as our localized cropping. CompRess Distillation (Saha et al. (2022))
uses a clean pre-training dataset (a subset of the pre-training dataset in our experiments) to distill
a (backdoored) encoder. Our results show that without random cropping makes attacks ineffective,
but it also sacrifices the encoder’s utility substantially, i.e., CA and BAs decrease substantially. Our
localized cropping can also substantially reduce ASRs. However, it also sacrifices the encoder’s util-
ity, though the utility sacrifice is much lower than without random cropping. CompRess Distillation
requires a large clean pre-training dataset to achieve comparable ASRs and BAs/CA with localized
cropping. Table 10 in Appendix shows that localized cropping is less effective as δ increases.

6 RELATED WORK

CL: Single-modal CL (Chen et al. (2020b;a); Caron et al. (2020); Koohpayegani et al. (2021); Li
et al. (2021a)) uses unlabeled images to pre-train an image encoder that outputs similar (or dissim-
ilar) feature vectors for two augmented views of the same (or different) pre-training image. Multi-
modal CL (Radford et al. (2021); Jia et al. (2021a)) uses image-text pairs to jointly pre-train an
image encoder and a text encoder such that the image encoder and text encoder output similar (or
dissimilar) feature vectors for image and text from the same (or different) image-text pair.
DPBAs and MPBAs to CL: Backdoor attacks (Gu et al. (2017); Chen et al. (2017); Liu et al.
(2017; 2020); Rakin et al. (2020); Li et al. (2021b)) aim to compromise the training data or training
process such that the learnt model behaves as an attacker desires. For CL, DPBAs inject poisoned
inputs into the pre-training dataset so that the learnt image encoder is backdoored, while MPBAs
directly manipulate the model parameters of a clean image encoder to turn it into a backdoored one.
MPBAs are not applicable when an image encoder is from a benign provider, while existing DPBAs
achieve limited attack success rates. We note that Liu et al. (2022) proposed PoisonedEncoder, a
targeted data poisoning attack to CL, which is different from DPBAs that we focus in this work.
The key difference is that a poisoned downstream classifier predicts several attacker-chosen clean
testing images as target classes in targeted data poisoning attacks, while a backdoored downstream
classifier predicts any trigger-embedded testing image as a target class in DPBAs.

7 CONCLUSION AND FUTURE WORK

In this work, we propose new data poisoning based backdoor attacks to contrastive learning. For
single-modal contrastive learning, our attack exploits the random cropping mechanism. For multi-
modal contrastive learning, our attack exploits that the image encoder and text encoder produce
similar feature vectors for an image and text in the same image-text pair. Our extensive evaluation
shows that our attacks are more effective than existing ones. Moreover, we also explore a defense
called localized cropping against data poisoning based backdoor attacks to single-modal contrastive
learning. Our results show that localized cropping can substantially reduce the attack success rates,
but it also sacrifices utility of the encoder, highlighting the needs of more advanced defenses.

9
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Ethics Statement: This work proposes practical data poisoning based backdoor attacks to single-
modal CL and multi-modal CL, which can be implemented by anyone who can post its poisoned
images/image-text pairs on the Internet. Despite the malicious effects of backdoor attacks, we be-
lieve the benefits of publishing this work outweigh the harms. On one hand, our attacks show that
CL is more vulnerable to data poisoning based backdoor attacks than previously thought, which em-
phasizes the significance and urgency of developing more advanced defenses against the attacks. On
the other hand, as illustrated by Carlini & Terzis (2022), CL-based classifiers are not deployed in any
security-critical applications yet, which means that our attacks do not cause direct harms right now.
Moreover, we propose a defense to defend single-modal CL against our attacks, though it sacrifices
the encoder’s utility.

Reproducibility Statement: Throughout the paper, we provide detailed information about our ex-
perimental settings. In particular, we clearly describe the default settings of our attacks and defenses.
We describe the details of different target downstream tasks (e.g., train/test split) in Appendix A and
provide the class names of ImageNet100-A and ImageNet100-B in the supplementary material for
reproduction purpose. In addition, we strictly follow the open-source implementations of different
CL algorithms and compare the baseline attack/defense methods using their open-source codes. We
will make our code and models publicly available upon acceptance of the paper.
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Algorithm 2 RescaleAndCropBackground
1: Input: Background image b, reference object o, area ratio α.
2: Output: A re-scaled and cropped background image b′.
3: s← a random bit 0 or 1 ▷ s = 1 and s = 0 respectively mean a wider and higher background image
4: if s == 1 then
5: b′h ← oh
6: b′w ←

oh·ow
b′
h
·α ▷ Generate a wider background image

7: else
8: b′w ← ow
9: b′h ←

oh·ow
b′w·α ▷ Generate a higher background image

10: end if
11: r = max(

b′h
bh

,
b′w
bw

) ▷ Get the re-scaling ratio if re-scaling is needed
12: if r > 1 then ▷ Scaling up b by ratio r
13: b← RESCALE(b, r)
14: end if
15: b′ ← a random rectangle area with width b′w and height b′h in br ▷ Get the re-scaled and cropped background image

Table 5: Default target class of each target downstream task.

Target Downstream Task Default Target Class

ImageNet100-A Greater Swiss Mountain Dog
ImageNet100-B African Hunting Dog

Pets Havanese
Flowers Lotus

Caltech-101 Stop Sign

Table 6: ASRs of different attacks for different target classes when the target downstream task is
ImageNet100-B in single-modal CL.

Target Class No Attack Saha et al. (2022) CorruptEncoder

African Hunting Dog 0.4 14.3 89.9
Ski Mask 0.4 14 84.3
Rottweiler 0.3 8 90.6
Shih-Tzu 0.1 1 86.7

Komondor 0 18.3 99.4
Lorikeet 0.3 9.0 83.4

Mixing bowl 0.1 2.1 91.4

Average 0.2 9.5 89.4

Table 7: ASRs of CorruptEncoder for different target classes when using reference object and
reference image to construct poisoned images in single-modal CL. The pre-training dataset is
ImageNet100-A and target downstream dataset is ImageNet100-B.

Target Class Reference Object Reference Image

African Hunting Dog 89.9 53.2
Ski mask 84.3 37.6

Rottweiler 90.6 7.3
Shih-Tzu 86.7 72.7

Average 87.9 42.7

A DATASETS

By default, we use ImageNet100-A (Russakovsky et al. (2015)) and Conceptual Captions 0.5M
(Sharma et al. (2018)) respectively for single-modal and multi-modal pre-training, and we evaluate
the pre-trained image encoders on ImageNet100-B for linear classification. When the downstream
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Figure 10: Impact of the number of reference images, trigger type, and trigger size on
CorruptEncoder.

Table 8: Impact of the number of support reference images on ASR of CorruptEncoder+. The target
downstream task is Pets.

CorruptEncoder 1 5 10

72.1 79.7 93.6 97.9

Table 9: Impact of the number of support poisoned images on ASR of CorruptEncoder+. The target
downstream task is Pets.

CorruptEncoder 130 (0.1%) 260 (0.2%) 390 (0.3%)

72.1 93.6 94.3 88.4

Table 10: Impact of δ on localized cropping.

δ
N/A 0.1 0.2 0.3 0.4 0.5

BA ASR BA ASR BA ASR BA ASR BA ASR BA ASR

CorruptEncoder 61.2 89.9 55.7 0.8 57.2 0.8 59 17.1 60.5 59.6 61 84.1

dataset is ImageNet100-A, we randomly pick 10% of images from each class that do not overlap
with the reference images used by Saha et al. (2022) for a fair comparison. Other downstream
datasets include Oxford-IIIT Pets (Parkhi et al. (2012)), Oxford 102 Flowers (Nilsback & Zisserman
(2008)), and Caltech-101 (Fei-Fei et al. (2004)), whose train/test splits are the same as Chen et al.
(2020a); Ericsson et al. (2021)1. Saha et al. (2022) requires a large number of reference images in
their attack. Since the test set of a downstream task (Pets, Flowers, Caltech-101) does not contain
enough reference images, we duplicate them multiple times when constructing poisoned images for
Saha et al. (2022). For each reference object used by our CorruptEncoder, we manually annotate its
segmentation mask in the reference image using the open-source labeling tool called labelme2.

B CL ALGORITHMS

The CL algorithms include MoCo-v2 (Chen et al. (2020b)), SwAV (Caron et al. (2020)), SimCLR
(Chen et al. (2020a)), MSF (Koohpayegani et al. (2021)) for single-modal CL and CLIP (Radford
et al. (2021)) for multi-modal CL.

1https://github.com/linusericsson/ssl-transfer
2https://github.com/wkentaro/labelme
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MoCo-v2: Following Saha et al. (2022)3, we use this code implementation of MoCo-v24. We adopt
the same pre-training settings as their work. In particular, we use the SGD optimizer with an initial
learning rate of 0.6 and pre-train an encoder for 200 epochs with a batch size of 256 on 2 NVIDIA
RTX6000 GPUs.

SwAV: We follow the official implementation5 of SwAV (including data augmentations, optimizer,
etc.). We pre-train each encoder for 200 epochs with a total batch size of 256 on 4 NVIDIA
RTX6000 GPUs.

SimCLR: We use this pytorch implementation6 of SimCLR. Because SimCLR requires a large
batch size (> 1k) to obtain a desirable performance on ImageNet, we pre-train each encoder for 300
epochs with an initial learning rate of 1.2 and a batch size of 1024 on 4 NVIDIA RTX6000 GPUs.

MSF: We follow the official implementation7 of MSF. Specifically, we pre-train each encoder for
200 epochs with a batch size of 256 on 4 RTX6000 GPUs.

CLIP: Following Carlini & Terzis (2022), we use the official implementation8 of CLIP for multi-
modal CL. In particular, we pre-train an image encoder (ResNet50) and a text encoder (ViT-B-32)
for 30 epochs using a batch size of 128 image-text pairs. Since we pre-train our encoders on a subset
of Conceptual Captions Dataset, the pre-training takes ∼ 14 hours on a single RTX6000 GPU.

C TRAINING LINEAR DOWNSTREAM CLASSIFIERS

Following previous works (Chen et al. (2020a); Grill et al. (2020); Koohpayegani et al. (2021)),
to train a linear downstream classifier on a downstream task, we follow the same linear evaluation
protocol used by each CL algorithm. For multi-modal CL, we train a downstream classifier using
the same linear evaluation protocol as MoCo-v2.

3https://github.com/UMBCvision/SSL-Backdoor
4https://github.com/SsnL/moco_align_uniform
5https://github.com/facebookresearch/swav/blob/main/main_swav.py
6https://github.com/AndrewAtanov/simclr-pytorch
7https://github.com/UMBCvision/MSF
8https://github.com/mlfoundations/open_clip
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Figure 11: Visual illustrations of poisoned images of our CorruptEncoder. For each row, we craft
poisoned images using a given reference object and different background images (in the first row).
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