
Under review as a conference paper at ICLR 2021

TOWARDS FINDING LONGER PROOFS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a reinforcement learning (RL) based guidance system for automated
theorem proving geared towards Finding Longer Proofs (FLoP). FLoP is a step
towards learning to reason by analogy, reducing the dependence on large scale
search in automated theorem provers. We use several simple, structured datasets
with very long proofs to show that FLoP can successfully generalise a single
training proof to a large class of related problems, implementing a simple form
of analogical reasoning. On these benchmarks, FLoP is competitive with strong
theorem provers despite using very limited search.

1 INTRODUCTION

Automated Theorem Proving (ATP) is the study of using machines for formal mathematical reasoning.
It is related to general game playing, for example, the game of Go can be viewed as a simple formal
system. Building on the recent success of machine learning, a growing trend in this field is to use
learning methods to make theorem provers more powerful. Several research projects have shown that
learning can be used to replace/surpass human-engineered heuristics. Despite huge improvements,
interesting mathematical theorems remain elusive today. One crucial shortcoming of ATP systems is
that they can typically find only relatively short proofs.

In this paper, we address this shortcoming and ask the question of how machine learning can be
used to solve problems requiring very long inference chains. We argue that the fundamental reason
why current ATP systems are limited to short proofs is that they focus on the search aspect of the
task. It is very natural to see theorem proving as a search problem: each proof step involves a choice
from a set of valid inferences, yielding a search space that grows exponentially with the length of the
proof. Due to the exponential blowup, the search is bound to fail beyond a certain depth – except for
special classes of problems where one of the smart human heuristics of the theorem prover allows
for finding the solution without a search. As W. W. Bledsoe observed (Bledsoe, 1986): “Automated
theorem proving . . . is not the beautiful process we know as mathematics. This is ‘cover your eyes
with blinders and hunt through a cornfield for a diamond-shaped grain of corn’.”

Approaches that try to avoid excessive search broadly fall into three categories: 1) Perform large
steps, such as the invocation of tactics or decision procedures in SMT solvers (Barrett & Tinelli,
2018). 2) Perform hierarchical reasoning by first creating a high-level proof plan and then gradually
refine it to the calculus level, e.g. Bundy (1988); Melis & Siekmann (1999). 3) Reason by analogy,
e.g. Melis (1995); Brock et al. (1988).

Reasoning by analogy involves observing the proof of one problem, extracting the core idea, and
successfully applying it to another. Note that using this formulation, success is barely dependent
on proof length. On the other hand, establishing mappings between proofs is challenging and
depends heavily on a proper data representation, which has been from the beginnings of ATP a major
bottleneck for this approach. However, with the advent of machine learning methods capable of
automatically discovering good data embeddings, the analogy approach seems worth revisiting. Our
work aims to identify machine learning methods that are suitable for analogical reasoning, and as a
result capable of solving problems with long proofs.

Many successful ATP systems (Urban et al., 2008; Jakubuv & Urban, 2019; Chvalovský et al., 2019;
Bansal et al., 2019a; Kaliszyk et al., 2018; Zombori et al., 2020; Olsák et al., 2020; Polu & Sutskever,
2020) implement the MaLARea Urban (2007); Urban et al. (2008) learning/reasoning loop (described
later also as the DAgger Ross et al. (2011) meta-algorithm). The MaLARea loop interleaves ATP

1

Under review as a conference paper at ICLR 2021

runs based on the current models (data collection phase) with a training phase, in which these models
are updated to fit the collected data.

An alternative family of reinforcement learning methods, including Temporal Difference (TD)
learning (Sutton & Barto, 2018), continuously update their models, allowing the system to bootstrap
on itself. Such methods have so far been mostly ignored by the theorem proving community. In
these methods, the search is usually replaced by rollouts. Our paper argues that while the DAgger
approach is more suitable to learn good search heuristics, methods with strong bootstrapping are
better at learning to reason by analogy.

Our work has the following contributions.

1. We introduce a new theorem proving algorithm FLoP (Section 3) based on a TD algorithm 1

and the connection tableau calculus. FLoP makes use of a curriculum learning algorithms
presented by Resnick et al. (2018) and Salimans & Chen (2018). These techniques are well
established in RL, however, they have never been applied to theorem proving before.

2. We introduce a synthetic dataset of increasingly difficult arithmetic problems, as well as two
datasets from the Logical Calculi domain of the TPTP (Sutcliffe, 2017) library, augmented
with lemmata (Section 4).

3. We show that when restricted to single shot evaluation – without search – FLoP performs
very well, while another prover based on guided Monte Carlo Tree Search greatly degrades.

4. We evaluate FLoP on our arithmetic benchmarks by training it on a single problem and
show that it generalizes very well even when evaluated without search, allowing just a few
proof attempts. This suggests that it has learned a simple form of reasoning by analogy.

5. We use the arithmetic benchmarks to compare FLoP with state-of-the-art provers Vam-
pire (Kovács & Voronkov, 2013), E (Schulz, 2013), leanCoP (Otten & Bibel, 2003) guided
by human-designed strategies, and with rlCoP (Kaliszyk et al., 2018) – an RL-based con-
nection tableau prover. In the simple setup of unary encoding of numbers, FLoP is only
outperformed by a portfolio (multi-strategy) mode of a single manually optimized rewriting-
based system and only after trying several of its autoconfiguration heuristics. When using
binary encoding, FLoP performs best, demonstrating its ability to generalize to long proofs.

Our datasets presented in Section 4 seem to be particularly suited for machine learning methods:
some problems are algorithmically simple, with long solutions and strong shared structure (Robinson
Arithmetic) while others are less similar, but hierarchically structured (Logical Calculi). Nevertheless,
state-of-the-art systems struggle with solving some of the problems (see Section 6). Furthermore, our
problems are much easier to analyze than typical heterogeneous proof corpora. We claim that our
datasets are of the very few that not only challenge theorem provers but also allow for understanding
their current limits. The difficulty of our synthetic problems, as well as their proof length, are easily
adjustable, yielding a scalable RL benchmark with interpretable failure modes (see Appendix I).

Our code, datasets and all experiment configuration files are available at http://bit.ly/
code_atpcurr2. Supplementary materials including screencasts with gameplays performed
in our environments are available at the project webpage http://bit.ly/site_atpcurr.

2 THEOREM PROVING BY ANALOGY

Analogy has long been considered one of the most important heuristics in mathematical problem
solving, e.g. Polya (1971). It also gained attention in automated theorem proving, e.g.Brock et al.
(1988); Melis (1995), as an alternative of search-based methods.

Brock et al. (1988) define analogical reasoning as “the proof of one theorem is used to guide the proof
of a similar theorem by suggesting analogous steps”. They rely on a user-provided matching between
analogous concepts related to the two theorems and try to reuse the proof steps (adjusted modulo
analogy) in the source proof during the construction of the target. Melis (1995) aim to achieve this
on a higher level of abstraction by matching proof plans of a source and a target problem. As the

1In particular, we use Proximal Policy Optimization (Schulman et al., 2017) (PPO), a variant of the policy
gradient method, which uses Temporal Difference learning for optimization of the value function.

2This distribution does not include the fCoP theorem prover, which cannot yet be publicly released, however,
a binary can be obtained upon request.

2

http://bit.ly/code_atpcurr
http://bit.ly/code_atpcurr
http://bit.ly/site_atpcurr

Under review as a conference paper at ICLR 2021

proof plan of the target problem is constructed, the plan of the source is searched for steps that can be
transformed into a suitable step for the target. The set of allowable transformations are predefined and
designed for a narrow domain. For example, the transformations given in Melis (1995) aim to carry
a result, such as the Heine Borel theorem, stated in R1 over to R2. The characteristic feature of these
systems is that search is performed on the meta level of plan mappings and proof step transformations,
which is often a much smaller search space than that defined by the inference rules of the calculus.

A machine learning system that is trained to guide a theorem prover is supposed to achieve a similar
result, with two important improvements. First transformations are learned, without the need for
manual engineering. Second, establishing mappings between proof steps (that can be transformed
into each other) should result from learning of flexible and abstract features. The flexibility and
abstraction allows for potential reusing the same proof components several times, as well as using
components from different proofs, which goes beyond earlier attempts that only establish direct
matching between the two proofs.

Despite the unquestioned role of analogical reasoning in human thinking, modern theorem provers
have abandoned this direction and focused on developing better heuristics and architectures to support
calculus level proof search. Machine learning is well suited for capturing similarities and analogies.
In this paper, we intend to point out the attractive aspect of analogical reasoning in the context of
machine learning and provide datasets and benchmarks which enforce very long proofs and in turn
make the search very hard, emphasizing a need for reasoning via analogy.

3 FLOP – MAIN ALGORITHM

Agent (PPO)

Make rollouts based on current policy

Collect (state, action, reward) triples

Train Value and Policy networks

Controller

Select problem
Set initial prover state
Collect success statistics
Determine reward
Reset after episode is over
Advance curriculum

EmbedderFCoP theorem
prover Actions

Current tableau
Valid inferences

Selected step

Reset

State

Proof found?

Reward

Selected Action

Theorem Proving Environment

Figure 1: Theorem proving as a reinforcement learning environment.

FLoP combines the connection tableau calcu-
lus with guidance based on Temporal Difference
and curriculum learning. A brief introduction to
the connection tableau calculus is provided in
Appendix J. After each inference step, the prover
engine returns its current state as well as the set
of valid actions. Figures 4 and 1 show how ac-
tions interact with other components of FLoP.
The state and actions (formulae) are represented
using previously developed features Kaliszyk
et al. (2015a), described in Appendix F. Algo-
rithm 1 gives an overview of the learning loop.
First, in line 5 we sample a problem. In lines 6–9 we interact with the prover and ensure that its
state corresponds to the one dictated by the current curriculum. In lines 10–15 we generate a rollout
iterating 1) prover steps, 2) featurization and 3) sampling a next action according to the policy. If
a new problem is solved, we start the curriculum on it in lines 17–19. If performance on a given
problem and curriculum reaches a threshold, we advance the curriculum in lines 20–22. In line 24 we
update the policy and value models based on the specified number of episodes.

4 DATASETS

To evaluate our system, we select simple classes of theorems with strong shared structure, giving a
large room for learning-based improvement. Our five datasets are described in Table 1. The datasets
are bundled into an OpenAI-gym (Brockman et al., 2016) compliant environment and can be tested
with modern RL algorithms.

Three datasets are built on the theory of Robinson Arithmetic (Robinson, 1950), which defines
addition and multiplication on the nonnegative integers. Despite its relative simplicity, this theory
seems to be particularly suited for machine learning methods: solutions are long and repetitive,
while also challenging for state-of-the-art systems (Section 6). We examine both unary (24 actions)
and binary (40 actions) encoding of numbers. The axioms of Robinson Arithmetic are given in
Appendix B and C.

Two datasets are extracted from the TPTP library, from the domain of Logical Calculi with condensed
detachment (LCL). These theorems have been extensively studied from the early days of automated

3

Under review as a conference paper at ICLR 2021

Algorithm 1 FLoP: Main Learning Loop
Require: problems P , policy π, value v, train steps ∈ N, threshold ∈ [0..1], episodes between updates: k ∈ N
Ensure: trained policy π, trained value v, possibly proofs for some problems in P
1: curriculum← dictionary such that for each p ∈ P with proof Pr curriculum[p] = len[Pr]− 1
2: steps← 0
3: while steps < train steps do
4: for j in 1..k do
5: p← random problem from problem set P {An episode corresponds to a problem}
6: initialize prover on problem p
7: if p has stored proof then
8: Take curriculum[p] proof steps according to stored proof
9: end if

10: while not episode over do
11: s′, a′1, a

′
2 . . . a

′
l ← Query prover for current state and valid actions

12: s, a1, a2 . . . al ← feat(s′), feat(a′1), feat(a′2) . . . feat(a′l) {Extract features}
13: Take action according to policy π(a|s), observe reward r
14: steps← steps + 1
15: end while
16: update success ratio for p
17: if p is solved with proof Pr and no proof of p was known before then
18: curriculum[p]← len(Pr)− 1 {Start curriculum}
19: end if
20: if success rate for p > threshold then
21: curriculum[p]← curriculum[p]− 1 {Advance curriculum}
22: end if
23: end for
24: Update policy π and value v
25: end while

Table 1: Three challenges defined in the theory of Robinson Arithmetic (RA) and two challenges from the Logical Calculi (LCL) domain of the
TPTP library

Name Theory Size Description

RA-1 RA 1800 Expressions of the form N1 + N2 = N3, N1 · N2 = N3, where
0 ≤ Ni < 30. (Examples: 3+4=7 or 5·12=60.)

RA-2 RA 1000 T = N , where 0 ≤ N , and T is a random expression with 3
operators and operands Ni such that 0 ≤ Ni < 10. (E.g.: ((3+4)·
2)+6=20.)

RA-3 RA 1000 T1 = T2, where T1 and T2 are random expressions with 3 operators
and operands Ni such that 2 ≤ Ni < 10. E.g. ((3+4)·2)+6=
((1+1)·5)·2.)

LCL-Eq LCL 890 TPTP domain: Logic Calculi (Equivalential) – extended with lem-
mata from E prover.

LCL-Imp LCL 1204 TPTP domain: Logic Calculi (Implication/Falsehood 2 valued sen-
tential) – extended with lemmata from E prover.

theorem proving, e.g. McCune & Wos (1992); Peterson (1976); Kalman (1978); Wos (1990). We run
E prover with a large time limit on the problems and augment the dataset with lemmata extracted by
E. As a result, many proofs of simpler problems can be directly used as parts of the proofs of harder
problems. A direct analogy from one problem to the other is usually not possible, however, limited
search is often sufficient to connect the proofs of easier problems to the proof of harder ones. More
details about the LCL datasets are given in Appendix D.

5 RELATED WORK

Machine learning systems for guiding theorem provers. A large body of research exists that
aims to provide guidance for theorem provers via machine learning. FEMaLeCoP (Kaliszyk & Urban,

4

Under review as a conference paper at ICLR 2021

2015), rlCoP (Kaliszyk et al., 2018; Olsák et al., 2020) and plCoP (Zombori et al., 2020) guide the
leanCoP (Otten & Bibel, 2003) compact connection tableau prover, which is also the system guided
in our project. Loos et al. (2017); Jakubuv & Urban (2017); Chvalovský et al. (2019); Jakubuv et al.
(2020) add learning-based guidance to the saturation based E prover (Schulz, 2013). The HOList
project (Bansal et al., 2019b; Paliwal et al., 2019; Bansal et al., 2019a) builds guidance on the tactic
level3 for the HOL Light Harrison (1996) higher-order theorem prover. A distinctive feature of all
these systems is that they rely heavily on an external search procedure, such as Monte Carlo Tree
Search (Kocsis & Szepesvári, 2006), or the search engine of the guided prover. Learning is aimed at
making search more efficient and it is implemented in alternating iterations of proof search and model
fitting, according to the DAgger (Ross et al., 2011) meta-algorithm, first used in MaLARea (Urban
et al., 2008) for theorem proving. In contrast with the above, we use an algorithm which emphasizes
bootstrapping, aiming to guide the leanCoP prover with very limited search, focusing on learning an
analogy between proofs of related problems.

Recently, several works Piotrowski & Urban (2020); Urban & Jakubuv (2020); Polu & Sutskever
(2020) have used RNNs, attention and transformers to generate next proof steps. E.g., Polu &
Sutskever (2020) reports generalisation on problems with relatively short proofs. In line with
emphasizing analogy over search, the evaluation protocol used in Polu & Sutskever (2020) allows for
only a very limited search in a single proof attempt 4. Interestingly, they get a significant improvement
(from 42.9% of theorems proved to 56.5% of theorems proved) by simply increasing the number
of proof attempts from 2 to 32, which is a bigger gain then what is obtained via pretraining. Our
work employs much smaller neural models and focuses on generalizing to proofs with hundreds and
thousands of steps (see Figures 2 and 3).

Provers guiding the leanCoP Connection Tableau Calculus. As noted above, a series of
learning systems guide the leanCoP connection calculus. Of these, we highlight three systems that
use roughly the same learning setup: rlCoP Kaliszyk et al. (2018), plCoP Zombori et al. (2020)
and graphCoP Olsák et al. (2020). In these systems, the value and policy functions of the guided
MCTS algorithm are learned similarly to (Anthony et al., 2017; Silver et al., 2017). FLoP shares the
same manually developed features (Kaliszyk et al., 2015a) with rlCoP and plCoP, while graphCoP
employs a graph neural network for feature extraction. We use these systems as an important baseline
in Section 6. While the differences are important, they play little role in our current investigation and
we refer to them jointly as mcts-CoPs

Machine learning datasets and RL environments involving mathematics and logic. The TPTP
dataset (Sutcliffe, 2017) consists of 22507 problems in 53 domains collected over several decades. A
large dataset for developing machine learning for theorem proving based on the Mizar Mathematical
Library (MML) (Grabowski et al., 2010) was introduced by Urban (2006a) in the MPTP project.
Similar datasets based on the Isabelle/HOL, HOL Light/Flyspeck and HOL4/CakeML systems
and projects (Blanchette et al., 2016; Kaliszyk & Urban, 2014; Gauthier & Kaliszyk, 2015) were
introduced in the last decade and used for the CASC LTB (large theory) ATP competition (Sutcliffe
& Urban, 2016) and other system evaluations. Such datasets cover large areas of mathematics and
computer science and contain diverse axioms, lemmas, theorems, definitions, and symbols. Smaller
subsets of lemmas leading to the Bolzano-Weierstrass theorem were selected from the MPTP dataset
to form the MPTP Challenge (Urban, 2006b) and the MPTP2078 benchmark (Alama et al., 2014).
HOLStep (Kaliszyk et al., 2017) introduced a dataset based on 11400 proofs, including a proof
of the Kepler Conjecture (Hales et al., 2015), formalized using HOL Light (Harrison, 1996). The
HOList project (Bansal et al., 2019b; Paliwal et al., 2019; Bansal et al., 2019a) uses 29462 theorems
formalized in HOL Light and instruments them for experiments oriented towards tactic selection,
where a tactic is a human-designed program which aggregates multiple proof steps. GamePad (Huang
et al., 2019) introduced a dataset based on a formalization of the Feit-Thompson Theorem (Gonthier
et al., 2013) along with generated algebra problems. It is intended for learning tactic selection
together with an auxiliary task of predicting the number of proof steps left. A dataset based on
theorems proved in HOL4 (Slind & Norrish, 2008) was used for developing the TacticToe (Gauthier
et al., 2018) learning-guided tactical prover. Simple arithmetic equalities are used in the evaluation
of GPT-3 Brown et al. (2020). Their results indicate that generalization in this domain is hard

3A tactic is a human-designed program which aggregates multiple proof steps.
4A maximum of 4096 search nodes are allowed.

5

Under review as a conference paper at ICLR 2021

beyond a few digits even for powerful language models using billions of parameters. The inequality
benchmark introduced in Wu et al. (2020) allows for generating and proving arithmetic inequalities.
The benchmark is not intended to deal with long proofs and is not related to other domains of
mathematics.

The datasets which we introduce in Section 4 are structurally much simpler than most other theorem
proving datasets. Our arithmetic dataset contains problems that require extremely long proofs,
however, the proofs are structurally similar. The dataset about logical calculi contains various
challenge problems from the TPTP library, extended with lemmata. The added lemmata make the
dataset hierarchical: proofs of simpler lemmata can be directly incorporated into harder proofs. We
argue that these datasets are suitably challenging for the current learning methods and are intended to
become a general-purpose testing ground for theorem proving and reinforcement learning methods,
much like grid worlds for RL. All arithmetic problems in our dataset are quite simple for humans,
but in the case of logical calculi, some of the problems in the dataset were posing a challenge for
mathematicians (see Wos et al. (1984)).

6 EXPERIMENTS

Figure 2: Distributions of length of proofs found by FLoP on RA-1, RA-
2, RA-3. Average proof lengths are 367, 2082, and 1864, respectively.
Note the logarithmic scale.

Our experiments with Robinson arithmetic aim
to demonstrate that in this highly structured
dataset FLoP is capable of extracting a gen-
eral proof pattern from one or two proofs and
successfully generalizing to related proofs of
arbitrary length, using a restricted few-shot eval-
uation method (see below). Experiments 1,
2, and 3 compare FLoP with strong theorem
provers using different fragments of the arith-
metic dataset, varying the complexity of the ax-
iomatization (unary vs. binary encoding of num-
bers) and the complexity of the target theorems
(RA-1, RA-2, RA-3). We find that FLoP is
either the best or the second-best in each exper-
iment. In each of these experiments, FLoP is
allowed 100 proof attempts without backtrack-
ing: the first attempt is a deterministic run with a high time limit (10000 sec) that always selects the
action maximizing the policy and the remaining 99 runs are stochastic samples from the policy with
a time limit of 60 sec.

Figure 3: Distributions of length of proofs found by FLoP on binary
RA-1, binary RA-2. Average proof lengths are 85 and 179. Note the
logarithmic scale.

The LCL problems used in our experiments
are less structured and success is dependent on
search, even if the hierarchical composition of
problems ensures that a relatively small search
is sufficient to generalize from easier problems
to harder ones. Consequently, we expect that
search-based methods are better in this domain.
However, when search is completely disallowed
during evaluation, we show in Experiment 4 that
FLoP performs much better than the mcts-CoPs.
Finally, in Experiment 5 we demonstrate the
benefit of using curriculum learning.

Experiment 1: Comparison with other
provers. We compare FLoP with a random
model, two state-of-the-art saturation-style the-
orem provers (E, Vampire), a heuristic guided
connection tableau prover (leanCoP), and rl-
CoP (one of the mcts-CoPs). Vampire, E, and leanCoP use human-designed strategies instead of
learning. We use these provers in the configuration used for CASC, the yearly competition of fully
automated theorem provers, employing a time limit of 60 sec. per problem. For E, we also report the

6

Under review as a conference paper at ICLR 2021

results of the auto-schedule mode. For rlCoP we used the hyperparameters described in Kaliszyk
et al. (2018), only modifying the policy temperature from 2.5 to 1.5, as this works better with the
Robinson datasets. The number of inferences in MCTS was limited to 200000. rlCoP was trained on
the whole evaluation set, while FLoP was trained on a single problem: 1 · 1 = 1 and 1 · 1 · 1 = 1 for
RA-1 and RA-2, respectively.5

Table 2: Comparing a random model, Vampire, E, leanCoP, rlCoP and
FLoP, with respect to success ratio for RA-1, RA-2 and RA-3 problems.
Our method (FLoP) is marked in grey. E1 – auto mode, E2 – auto-
schedule mode, E3 – auto-schedule with renamed equality. The reason
why FLoP did not reach 100% on RA-2 is that a few problems time-
outed.

Dataset Random Vampire E1 E2 E3 leanCoP rlCoP FLoP
RA-1 0.04 0.60 0.60 1.0 0.54 0.22 0.86 1.0
RA-2 0.05 0.40 0.39 1.0 0.25 0.14 0.74 0.99
RA-3 0.00 0.34 0.28 1.0 0.22 0.01 0.41 0.67

Success ratios are given in Table 2. FLoP is only
outperformed by E’s auto-schedule, which tries
multiple strategies and finds one with the left-
to-right ordering of all the addition and multipli-
cation axioms. This solves all of our problems
immediately without proof search by only rewrit-
ing to a normal form (Baader & Nipkow, 1998).
This demonstrates the power of equational theo-
rem proving when a suitable term ordering exists
and can be found by human-designed heuristics.
This is, however, far from guaranteed in general even in such simple domains, as witnessed by
Vampire’s failure to find this ordering. To evaluate E without access to its built-in rewriting capability,
we have renamed the equality to a new predicate ‘eq’ axiomatized exactly in the same way as in
leanCoP. The auto-schedule mode then becomes somewhat weaker than the auto mode, see Table 2.

Table 3: Curriculum learning for RA-3 on two harder problems with
proofs of 113 and 108 steps. We report success ratios and average
proof lengths, based on 3 runs. Standard deviations are given in paren-
thesis.

Training problem Succ. Len.

1 · 2 + 1 + 1 = (1 + 1) · 1 · 2 0.32(0.05) 566(14)

1 · 2 + 1 + 1 = (1 + 1) · 1 · 2
(1 + 1 + 1) · 2 = 2 · 1 + 2 + 2 0.67 (0.03) 1864(54)

Experiment 2: Harder Arithmetic Expres-
sions. RA-3 consists of arithmetic equalities
with random expressions on both sides. This
dataset is significantly more complex because
there are many ways of proving the same prob-
lem. Proofs are longer, too. For FLoP, we
examined various training sets and found that
the system is very prone to overfitting. Most
problems can be proven in many different ways,
that vary greatly in terms of how well they foster
generalization. It is true especially of easier problems that they can be proven with “shortcuts” that
hinder generalization (See more on this in Appendix I). The harder the problems, the less likely they
can be solved with such heuristic approaches, hence harder training problems promise better training
signal. We demonstrate this by training FLoP on a few harder problems with proofs provided, making
use of curriculum learning described in Section 3. A single longer training proof is sufficient to yield
meaningful generalization. Adding one more training problem helps even more, as shows Table 3.

Figure 2 shows the distribution of the length of proofs found by FLoP. We can see that a large part of
the problems requires thousands of steps to solve, highlighting the need to avoid search.

For rlCoP, all RA-3 problems are too hard to solve without guidance within the inference limit,
so we started with the version trained on the solutions of RA-2. Table 2 shows that FLoP is only
outperformed by E’s auto-schedule mode, which again finds the rewrite ordering that solves all
problems without search.

Table 4: Comparing Vampire, E (auto-schedule mode), leanCoP, rlCoP
and FLoP, using binary encoding of numbers.

Dataset Vampire E leanCoP rlCoP FLoP
RA-1 0.67 0.81 0.19 0.56 1.0
RA-2 0.62 0.62 0.13 0.12 1.0

Experiment 3: Binary Number Encoding.
We experiment with Robinson Arithmetic us-
ing binary encoding of numbers. This makes
the domain theory more complex: the total num-
ber of actions increases from 24 to 40. 6. On
the other hand, proofs get shorter, as shows Fig-
ure 3. Again, we train FLoP on a single proof:
3 · 3 = 9 and (1 · 2 + 1) · 3 = 9 for RA-1 and RA-2, respectively. Table 4 shows that provers get
weaker, except for Vampire and FLoP. In particular, E is no longer capable of solving the problems
with rewriting only. FLoP manages to generalize from a single proof to the whole dataset despite the
increased action space and performs best in this experiment.

5For a description of RA-3 training problems, see Experiment 2.
6Note that only a subset of these is applicable in a given state.

7

Under review as a conference paper at ICLR 2021

Table 5: Comparing FLoP and plCoP using two different evaluation
methods: 1) guided MCTS and 2) eager evaluation based on the policy
model

Dataset Prover MCTS Eager Policy
LCL-Eq plCoP 47% 5%

FLoP 19% 19%
LCL-Imp plCoP 61% 5%

FLoP 24% 27%
RA-1 plCoP 65% 82%

FLoP 61% 100%
RA-2 plCoP 48% 49%

FLoP 31% 99%

Experiment 4: Search vs. Eager Evaluation
We compare FLoP with plCoP (one of the mcts-
CoPs) using two different evaluation methods.
After training both systems on the whole dataset,
we evaluate them using 1) MCTS and 2) eager
evaluation, i.e. always select the action with
the highest probability according to the policy
model. Table 5 shows that plCoP performs bet-
ter when search is allowed, especially for the
more heterogeneous LCL problems. However,
FLoP takes the upper hand in eager evaluation.
For the LCL problems, plCoP collapses while FLoP is unaffected. This suggests that plCoP depends
heavily on the search procedure it used for training. FLoP cannot make good use of MCTS, which is
somewhat expected, since its policy and value networks were not trained for that purpose.

For the arithmetic datasets, both systems benefit from not doing search because they reach proofs that
are longer than what MCTS can reach. For FLoP, the removal of the depth limit reveals that it fully
mastered the two problem classes, regardless of depth. The performance of plCoP gets even worse if
the eager evaluation is based on the value model, see Appendix H. These results are in line with our
conjecture that the DAgger approach of plCoP is better for learning good search heuristics, while
FLoP is better at analogical reasoning.

Table 6: Curriculum Learning compared with only exploration based
learning, on the LCL-Eq and LCL-Imp datasets, using 10M and 30M
inference limit, respectively. We report the ratio of proofs found during
training. The results are averages of 2 runs.

Dataset Curriculum No curriculum
LCL-Eq 0.24 (0) 0.23 (0.001)
LCL-Imp 0.51 (0.002) 0.45 (0.003)

Experiment 5: Curriculum Learning vs only
Exploration Based Learning. When training
proofs are not available, the positive reward sig-
nal only occurs after the system solves a prob-
lem through exploration. Afterward, curriculum
learning ensures that the system is continuously
faced with a “reasonably” hard problem, alle-
viating the sparse reward problem of theorem
proving.

We demonstrate this on the two LCL datasets. Here, before generating each rollout, we randomly
select a problem from the entire dataset. We report the number of proofs found during training in
Table 6. Curriculum learning brings a small, but consistent improvement when compared with only
exploration-based learning.

7 CONCLUSION AND FUTURE WORK

We have built FLoP, a proof guidance system based on a variant of temporal difference reinforcement
learning, addressing the problem of finding long proofs in an exponential search space. Previous
work (Veroff, 1996; Kinyon et al., 2013) focused on finding long proofs with the help of human-
designed heuristics. We showed that FLoP is capable of extracting proof patterns via learning and
can generalise to much longer proofs, implementing a simple form of reasoning by analogy. We
believe that mastering analogical reasoning is an important step in creating human-level automated
mathematicians. We presented a set of theorem proving datasets that are suitably challenging for
existing learning methods and are intended to become a general-purpose testing ground for theorem
proving and reinforcement learning methods. We showed that FLoP can outperform strong theorem
provers on some of these datasets. We find that curriculum learning is a useful component of the
learning algorithm as it allows for amplifying training signal when proofs are long.

In this paper, we focused on extracting a single proof pattern during training. A natural continuation
will be to extract a portfolio of patterns from a larger pool of training problems. Transformer models
are promising tools to achieve this, given their recent success in mastering several tasks in parallel.
Transformers might also be capable of producing large chunks of proofs in a single inference step.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52(2):191–213,
2014. ISSN 0168-7433. doi: 10.1007/s10817-013-9286-5.

Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning and tree
search. CoRR, abs/1705.08439, 2017. URL http://arxiv.org/abs/1705.08439.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
ISBN 0-521-45520-0.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, and Christian Szegedy. Learning to reason in large
theories without imitation. CoRR, abs/1905.10501, 2019a. URL http://arxiv.org/abs/
1905.10501.

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and Stewart Wilcox. HOList:
An environment for machine learning of higher-order theorem proving (extended version). CoRR,
abs/1904.03241, 2019b. URL http://arxiv.org/abs/1904.03241.

Clark W. Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem (eds.), Handbook of Model Checking, pp. 305–
343. Springer, 2018. ISBN 978-3-319-10574-1. doi: 10.1007/978-3-319-10575-8_11. URL
https://doi.org/10.1007/978-3-319-10575-8_11.

Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein, and Josef Urban.
A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning, 57(3):219–244, 2016. doi:
10.1007/s10817-016-9362-8. URL http://dx.doi.org/10.1007/s10817-016-9362-
8.

W. W. Bledsoe. Some thoughts on proof discovery. In Proceedings of the 1986 Symposium on Logic
Programming, Salt Lake City, Utah, USA, September 22-25, 1986, pp. 2–10. IEEE-CS, 1986. ISBN
0-8186-0728-9.

Bishop Brock, Shaun Cooper, and William Pierce. Analogical reasoning and proof discovery. In
Ewing Lusk and Ross Overbeek (eds.), 9th International Conference on Automated Deduction, pp.
454–468, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg. ISBN 978-3-540-39216-3.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Alan Bundy. The use of explicit plans to guide inductive proofs. In Ewing L. Lusk and Ross A.
Overbeek (eds.), 9th International Conference on Automated Deduction, Argonne, Illinois, USA,
May 23-26, 1988, Proceedings, volume 310 of Lecture Notes in Computer Science, pp. 111–120.
Springer, 1988. ISBN 3-540-19343-X. doi: 10.1007/BFb0012826. URL https://doi.org/
10.1007/BFb0012826.

Karel Chvalovský, Jan Jakubuv, Martin Suda, and Josef Urban. ENIGMA-NG: efficient neural
and gradient-boosted inference guidance for E. CoRR, abs/1903.03182, 2019. URL http:
//arxiv.org/abs/1903.03182.

Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4. In Xavier
Leroy and Alwen Tiu (eds.), Proceedings of the 2015 Conference on Certified Programs and Proofs,
CPP 2015, Mumbai, India, January 15-17, 2015, pp. 49–57. ACM, 2015. ISBN 978-1-4503-3296-5.
doi: 10.1145/2676724.2693173. URL https://doi.org/10.1145/2676724.2693173.

9

http://arxiv.org/abs/1705.08439
http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1905.10501
http://arxiv.org/abs/1904.03241
https://doi.org/10.1007/978-3-319-10575-8_11
http://dx.doi.org/10.1007/s10817-016-9362-8
http://dx.doi.org/10.1007/s10817-016-9362-8
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2005.14165
https://doi.org/10.1007/BFb0012826
https://doi.org/10.1007/BFb0012826
http://arxiv.org/abs/1903.03182
http://arxiv.org/abs/1903.03182
https://doi.org/10.1145/2676724.2693173

Under review as a conference paper at ICLR 2021

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ramana Kumar, and Michael Norrish. Learn-
ing to prove with tactics. CoRR, abs/1804.00596, 2018. URL http://arxiv.org/abs/
1804.00596.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of the
odd order theorem. In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (eds.),
Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26,
2013. Proceedings, volume 7998 of LNCS, pp. 163–179. Springer, 2013. ISBN 978-3-642-39633-5.
doi: 10.1007/978-3-642-39634-2_14. URL https://doi.org/10.1007/978-3-642-
39634-2_14.

Adam Grabowski, Artur Kornilowicz, and Adam Naumowicz. Mizar in a nutshell. J. Formalized
Reasoning, 3(2):153–245, 2010. doi: 10.6092/issn.1972-5787/1980. URL https://doi.org/
10.6092/issn.1972-5787/1980.

Thomas Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Hoang, Cezary
Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen, Tobias
Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey Solovyev, An Ta, Tran Trung, Diep
Thi Trieu, and Roland Zumkeller. A formal proof of the Kepler conjecture. Forum of Mathematics,
Pi, 5, 01 2015. doi: 10.1017/fmp.2017.1.

John Harrison. HOL Light: A tutorial introduction. In Mandayam K. Srivas and Albert John
Camilleri (eds.), Formal Methods in Computer-Aided Design, First International Conference,
FMCAD ’96, Palo Alto, California, USA, November 6-8, 1996, Proceedings, volume 1166 of
LNCS, pp. 265–269. Springer, 1996. ISBN 3-540-61937-2. doi: 10.1007/BFb0031814. URL
https://doi.org/10.1007/BFb0031814.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. GamePad: A Learning Environ-
ment for Theorem Proving. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=r1xwKoR9Y7.

Jan Jakubuv and Josef Urban. ENIGMA: efficient learning-based inference guiding machine. In
Herman Geuvers, Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (eds.),
Intelligent Computer Mathematics - 10th International Conference, CICM 2017, Edinburgh,
UK, July 17-21, 2017, Proceedings, volume 10383 of Lecture Notes in Computer Science, pp.
292–302. Springer, 2017. ISBN 978-3-319-62074-9. doi: 10.1007/978-3-319-62075-6_20. URL
https://doi.org/10.1007/978-3-319-62075-6_20.

Jan Jakubuv and Josef Urban. Hammering Mizar by learning clause guidance. In John Harrison,
John O’Leary, and Andrew Tolmach (eds.), 10th International Conference on Interactive Theorem
Proving, ITP 2019, September 9-12, 2019, Portland, OR, USA, volume 141 of LIPIcs, pp. 34:1–
34:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. ISBN 978-3-95977-122-1. URL
https://doi.org/10.4230/LIPIcs.ITP.2019.34.

Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, and Josef Urban.
ENIGMA anonymous: Symbol-independent inference guiding machine (system description). In
Peltier & Sofronie-Stokkermans (2020), pp. 448–463. ISBN 978-3-030-51053-4. doi: 10.1007/
978-3-030-51054-1_29. URL https://doi.org/10.1007/978-3-030-51054-1_29.

Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning, 53(2):173–213, 2014. doi: 10.1007/s10817-014-9303-3. URL http:
//dx.doi.org/10.1007/s10817-014-9303-3.

Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly efficient machine learning connection
prover. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov (eds.), Logic
for Programming, Artificial Intelligence, and Reasoning - 20th International Conference, 2015,
Proceedings, volume 9450 of LNCS, pp. 88–96. Springer, 2015. ISBN 978-3-662-48898-0. doi:
10.1007/978-3-662-48899-7_7. URL https://doi.org/10.1007/978-3-662-48899-
7_7.

10

http://arxiv.org/abs/1804.00596
http://arxiv.org/abs/1804.00596
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.6092/issn.1972-5787/1980
https://doi.org/10.6092/issn.1972-5787/1980
https://doi.org/10.1007/BFb0031814
https://openreview.net/forum?id=r1xwKoR9Y7
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.4230/LIPIcs.ITP.2019.34
https://doi.org/10.1007/978-3-030-51054-1_29
http://dx.doi.org/10.1007/s10817-014-9303-3
http://dx.doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/978-3-662-48899-7_7
https://doi.org/10.1007/978-3-662-48899-7_7

Under review as a conference paper at ICLR 2021

Cezary Kaliszyk, Josef Urban, and Jiří Vyskočil. Efficient semantic features for automated reasoning
over large theories. In Qiang Yang and Michael Wooldridge (eds.), Proc. of the 24th International
Joint Conference on Artificial Intelligence (IJCAI’15), pp. 3084–3090. AAAI Press, 2015a.

Cezary Kaliszyk, Josef Urban, and Jiři Vyskočil. Certified connection tableaux proofs for HOL
Light and TPTP. In Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP
’15, pp. 59–66. ACM, 2015b. ISBN 978-1-4503-3296-5. doi: 10.1145/2676724.2693176. URL
http://doi.acm.org/10.1145/2676724.2693176.

Cezary Kaliszyk, François Chollet, and Christian Szegedy. HolStep: A machine learning dataset for
higher-order logic theorem proving. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=ryuxYmvel.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olsák. Reinforcement learning of
theorem proving. In NeurIPS, pp. 8836–8847, 2018.

John A. Kalman. A shortest single axiom for the classical equivalential calculus. Notre Dame Journal
of Formal Logic, 19(1):141–144, 1978. doi: 10.1305/ndjfl/1093888216.

Michael K. Kinyon, Robert Veroff, and Petr Vojtechovský. Loops with abelian inner mapping groups:
An application of automated deduction. In Maria Paola Bonacina and Mark E. Stickel (eds.),
Automated Reasoning and Mathematics - Essays in Memory of William W. McCune, volume 7788
of LNCS, pp. 151–164. Springer, 2013. ISBN 978-3-642-36674-1. doi: 10.1007/978-3-642-36675-
8_8. URL https://doi.org/10.1007/978-3-642-36675-8_8.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, pp. 282–293,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In CAV, 2013.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In 21st International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR), 2017.

William McCune and Larry Wos. Experiments in automated deduction with condensed detachment.
In Deepak Kapur (ed.), Automated Deduction - CADE-11, 11th International Conference on
Automated Deduction, Saratoga Springs, NY, USA, June 15-18, 1992, Proceedings, volume 607
of Lecture Notes in Computer Science, pp. 209–223. Springer, 1992. ISBN 3-540-55602-8.
doi: 10.1007/3-540-55602-8_167. URL https://doi.org/10.1007/3-540-55602-
8_167.

Erica Melis. Theorem proving by analogy - A compelling example. In Carlos A. Pinto-Ferreira and
Nuno J. Mamede (eds.), Progress in Artificial Intelligence, 7th Portuguese Conference on Artificial
Intelligence, EPIA ’95, Funchal, Madeira Island, Portugal, October 3-6, 1995, Proceedings,
volume 990 of Lecture Notes in Computer Science, pp. 261–272. Springer, 1995. ISBN 3-540-
60428-6. doi: 10.1007/3-540-60428-6_22. URL https://doi.org/10.1007/3-540-
60428-6_22.

Erica Melis and Jörg H. Siekmann. Knowledge-based proof planning. Artif. Intell., 115(1):65–105,
1999. doi: 10.1016/S0004-3702(99)00076-4. URL https://doi.org/10.1016/S0004-
3702(99)00076-4.

Miroslav Olsák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding for automated
reasoning. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén
Barro, Alberto Bugarín, and Jérôme Lang (eds.), ECAI 2020 - 24th European Conference on
Artificial Intelligence, 29 August-8 September 2020, Santiago de Compostela, Spain, August
29 - September 8, 2020 - Including 10th Conference on Prestigious Applications of Artificial
Intelligence (PAIS 2020), volume 325 of Frontiers in Artificial Intelligence and Applications, pp.
1395–1402. IOS Press, 2020. doi: 10.3233/FAIA200244. URL https://doi.org/10.3233/
FAIA200244.

11

http://doi.acm.org/10.1145/2676724.2693176
https://openreview.net/forum?id=ryuxYmvel
https://doi.org/10.1007/978-3-642-36675-8_8
https://doi.org/10.1007/3-540-55602-8_167
https://doi.org/10.1007/3-540-55602-8_167
https://doi.org/10.1007/3-540-60428-6_22
https://doi.org/10.1007/3-540-60428-6_22
https://doi.org/10.1016/S0004-3702(99)00076-4
https://doi.org/10.1016/S0004-3702(99)00076-4
https://doi.org/10.3233/FAIA200244
https://doi.org/10.3233/FAIA200244

Under review as a conference paper at ICLR 2021

Jens Otten and Wolfgang Bibel. leanCoP: lean connection-based theorem proving. J. Symb. Comput.,
36:139–161, 2003.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe, Kshitij Bansal, and Christian Szegedy. Graph
representations for higher-order logic and theorem proving. CoRR, abs/1905.10006, 2019. URL
http://arxiv.org/abs/1905.10006.

Nicolas Peltier and Viorica Sofronie-Stokkermans (eds.). Automated Reasoning - 10th International
Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume
12167 of Lecture Notes in Computer Science, 2020. Springer. ISBN 978-3-030-51053-4. doi:
10.1007/978-3-030-51054-1. URL https://doi.org/10.1007/978-3-030-51054-1.

Jeremy George Peterson. Shortest single axioms for the classical equivalential calculus. Notre
Dame J. Formal Log., 17(2):267–271, 1976. doi: 10.1305/ndjfl/1093887534. URL https:
//doi.org/10.1305/ndjfl/1093887534.

Bartosz Piotrowski and Josef Urban. Guiding inferences in connection tableau by recurrent neural
networks. In Christoph Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics
- 13th International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings,
volume 12236 of Lecture Notes in Computer Science, pp. 309–314. Springer, 2020. doi: 10.1007/
978-3-030-53518-6_23. URL https://doi.org/10.1007/978-3-030-53518-6_23.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
CoRR, abs/2009.03393, 2020. URL https://arxiv.org/abs/2009.03393.

G. Polya. How to Solve It. Princeton University Press, November 1971. ISBN
0691023565. URL http://www.amazon.com/exec/obidos/redirect?tag=
citeulike07-20&path=ASIN/0691023565.

Cinjon Resnick, Roberta Raileanu, Sanyam Kapoor, Alex Peysakhovich, Kyunghyun Cho, and
Joan Bruna. Backplay: "Man muss immer umkehren". CoRR, abs/1807.06919, 2018. URL
http://arxiv.org/abs/1807.06919.

Alan Robinson and Andrei Voronkov (eds.). Handbook of Automated Reasoning. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 2001. ISBN 0-444-50812-0.

Raphael M. Robinson. An essentially undecidable axiom system. Proceedings of the International
Congress of Mathematics, pp. 729–730, 1950.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudik (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635, Fort Laud-
erdale, FL, USA, 11–13 Apr 2011. PMLR. URL http://proceedings.mlr.press/v15/
ross11a.html.

Tim Salimans and Richard Chen. Learning Montezuma’s Revenge from a single demonstration.
CoRR, abs/1812.03381, 2018. URL http://arxiv.org/abs/1812.03381.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Stephan Schulz. System Description: E 1.8. In Ken McMillan, Aart Middeldorp, and Andrei
Voronkov (eds.), Proc. of the 19th LPAR, volume 8312 of LNCS. Springer, 2013.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering
the game of go without human knowledge. Nature, 550:354–, October 2017. URL http:
//dx.doi.org/10.1038/nature24270.

12

http://arxiv.org/abs/1905.10006
https://doi.org/10.1007/978-3-030-51054-1
https://doi.org/10.1305/ndjfl/1093887534
https://doi.org/10.1305/ndjfl/1093887534
https://doi.org/10.1007/978-3-030-53518-6_23
https://arxiv.org/abs/2009.03393
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691023565
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0691023565
http://arxiv.org/abs/1807.06919
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://arxiv.org/abs/1812.03381
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270

Under review as a conference paper at ICLR 2021

Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed, César A.
Muñoz, and Sofiène Tahar (eds.), Theorem Proving in Higher Order Logics, 21st International
Conference, TPHOLs 2008, Montreal, Canada, August 18-21, 2008. Proceedings, volume 5170 of
LNCS, pp. 28–32. Springer, 2008. ISBN 978-3-540-71065-3. doi: 10.1007/978-3-540-71067-7_6.
URL https://doi.org/10.1007/978-3-540-71067-7_6.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP
v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

Geoff Sutcliffe and Josef Urban. The CADE-25 automated theorem proving system competition
- CASC-25. AI Commun., 29(3):423–433, 2016. doi: 10.3233/AIC-150691. URL https:
//doi.org/10.3233/AIC-150691.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018. URL http://incompleteideas.net/book/the-book-
2nd.html.

Josef Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning, 37
(1-2):21–43, 2006a.

Josef Urban. The MPTP Challenge. http://www.tptp.org/Seminars/
MizarVerification/TheMPTPChallenge.html, 2006b. Accessed: 2019-05-20.

Josef Urban. MaLARea: a Metasystem for Automated Reasoning in Large Theories. In Geoff
Sutcliffe, Josef Urban, and Stephan Schulz (eds.), Proceedings of the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories, Bremen, Germany, 17th July
2007, volume 257 of CEUR Workshop Proceedings. CEUR-WS.org, 2007. URL http://ceur-
ws.org/Vol-257/05_Urban.pdf.

Josef Urban and Jan Jakubuv. First neural conjecturing datasets and experiments. In Christoph
Benzmüller and Bruce R. Miller (eds.), Intelligent Computer Mathematics - 13th International
Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings, volume 12236 of Lecture
Notes in Computer Science, pp. 315–323. Springer, 2020. doi: 10.1007/978-3-030-53518-6_24.
URL https://doi.org/10.1007/978-3-030-53518-6_24.

Josef Urban, Geoff Sutcliffe, Petr Pudlák, and Jirí Vyskocil. MaLARea SG1- machine learner
for automated reasoning with semantic guidance. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek (eds.), Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of LNCS, pp. 441–
456. Springer, 2008. ISBN 978-3-540-71069-1. doi: 10.1007/978-3-540-71070-7_37. URL
https://doi.org/10.1007/978-3-540-71070-7_37.

Robert Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case
studies. J. Autom. Reasoning, 16(3):223–239, 1996. doi: 10.1007/BF00252178. URL https:
//doi.org/10.1007/BF00252178.

L. Wos, S. Winker, B. Smith, R. Veroff, and L. Henschen. A new use of an automated reasoning
assistant: Open questions in equivalential calculus and the study of infinite domains. Artifi-
cial Intelligence, 22(3):303 – 356, 1984. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-
3702(84)90054-7. URL http://www.sciencedirect.com/science/article/pii/
0004370284900547.

Larry Wos. Meeting the challenge of fifty years of logic. J. Autom. Reason., 6(2):213–232, 1990.
doi: 10.1007/BF00245821. URL https://doi.org/10.1007/BF00245821.

Yuhuai Wu, Albert Jiang, Jimmy Ba, and Roger Grosse. Int: An inequality benchmark for evaluating
generalization in theorem proving, 2020.

Zsolt Zombori, Josef Urban, and Chad E. Brown. Prolog technology reinforcement learning prover -
(system description). In Peltier & Sofronie-Stokkermans (2020), pp. 489–507. ISBN 978-3-030-
51053-4. doi: 10.1007/978-3-030-51054-1_33. URL https://doi.org/10.1007/978-
3-030-51054-1_33.

13

https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.3233/AIC-150691
https://doi.org/10.3233/AIC-150691
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://www.tptp.org/Seminars/MizarVerification/TheMPTPChallenge.html
http://www.tptp.org/Seminars/MizarVerification/TheMPTPChallenge.html
http://ceur-ws.org/Vol-257/05_Urban.pdf
http://ceur-ws.org/Vol-257/05_Urban.pdf
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1007/BF00252178
https://doi.org/10.1007/BF00252178
http://www.sciencedirect.com/science/article/pii/0004370284900547
http://www.sciencedirect.com/science/article/pii/0004370284900547
https://doi.org/10.1007/BF00245821
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33

Under review as a conference paper at ICLR 2021

A FLOP MODEL ARCHITECTURE

Action 1
Features

Action 2
Features

Action k
Features

...

Action 1
Logit

Action 2
Logit

Action k
Logit

...

Softmax

State
Features

Action 1
Probability

Action 2
Probability

Action k
Probability

...

Value function

Dense(500) + ReLU

Dense(500) + ReLU

Dense(1)

PPO
Loss

Dense(500) + ReLU

Dense(500) + ReLU

Dense(1)

Policy

Figure 4: Value and Policy network architectures in PPO. Their inputs are state and state-action pair features, respectively. The policy returns
a score for each action, which are then normalized to a probability.

Figure 4 shows the policy and value network architectures of the Proximal Policy Optimization (PPO)
algorithm, as implemented in FLoP.

B ROBINSON ARITHMETIC

Robinson Arithmetic defines basic properties of arithmetic expressions on the nonnegative integers.
The signature of the language contains atom ’o’ (representing 0), functions ’s’, ’plus’ and ’mul’ (for
+1, + and ·, respectively), and the equality predicate ’=’. For example, formula 2 · 1 + 1 = 3 + 0 is
written as

plus(mul(s(s(o)), s(o)), s(o)) = plus(s(s(s(o))), o).

We use the axioms provided in Table 7. The table also contains special axioms that are added by
leanCoP to handle the equality predicate. The unary representation of numbers (e.g., s(s(s(o)))
represents 3) results in large expressions and long proofs as the numbers increase. For example,
((8 + 5) · 8) · 5 = 520 takes over 16000 steps to prove in fCoP. We show an example of such proof
on the project website. The total number of actions if 24.

C ROBINSON ARITHMETIC WITH BINARY ENCODING

Using binary representation makes the theory of Robinson Arithmetic more complex. Constant
symbols n0 and n1 stand for 0 and 1, while term b(X,Y) represents X + 2 · Y . For example, 10 is
represented as b(n0, b(n1, b(n0, n1))). We can see in Table 8 that the number of axioms increases
from 6 + 6 to 17 + 6. Correspondingly, the number of actions during proof search increases from 24
to 40.

14

Under review as a conference paper at ICLR 2021

Table 7: Axioms of Robinson Arithmetic extended with special axioms for handling equality.

Name Axiom

zero successor ∀X : ¬(o = s(X))
different successors ∀X,Y : (s(X) = s(Y))⇒ (X = Y)
plus zero ∀X : plus(X, o) = X
plus successor ∀X,Y : plus(X, s(Y)) = s(plus(X,Y))
mul zero ∀X : mul(X, o) = o
mul successor ∀X,Y : mul(X, s(Y)) = plus(mul(X,Y), X)

equality reflexivity ∀X : X = X
equality symmetry ∀X,Y : (X = Y)⇒ (Y = X)
equality transitivity ∀X,Y, Z : (X = Y) ∧ (Y = Z)⇒ (X = Z)
congruence of s ∀X,Y : (X = Y)⇒ (s(X) = s(Y))
congruence of plus ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ plus(X1, Y1) = plus(X2, Y2)
congruence of mul ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ mul(X1, Y1) = mul(X2, Y2)

Table 8: Axioms of Robinson Arithmetic using binary encoding of numbers, extended with special axioms for handling equality.

Name Axiom

zero successor ∀X,Y : ¬(n0 = b(X,Y))
one successor ∀X,Y : ¬(n1 = b(X,Y))
different successors ∀X1, X2, Y1, Y 2 : (b(X1, Y1) = b(X2, Y2))⇒ ((X1 = X2) ∧ (Y1 = Y2))
predecessor ∀X : (X = n0) ∨ (X = n1) ∨ (∃Y,Z : b(Y,Z) = X)
plus zero ∀X : plus(X,n0) = n1
plus one1 plus(n0, n1) = n1
plus one2 plus(n1, n1) = b(n0, n1)
plus one3 ∀X : (plus(b(n0, X), n1) = b(n1, X))
plus one3 ∀X : (plus(b(n1, X), n1) = b(n0, plus(X,n1)))
plus more1 ∀X,Y : (plus(n0, b(X,Y)) = b(X,Y))
plus more2 ∀X,Y : (plus(n1, b(X,Y)) = plus(b(X,Y), n1))
plus more3 ∀X1, Y1, X2, Y2 : (plus(b(X1, Y1), b(X2, Y2)) = plus(b(X1, plus(Y1, Y2)), X2))
mul zero1 ∀X : (mul(X,n0) = n0)
mul zero2 ∀X : (mul(n0, X) = n0)
mul one1 ∀X : (mul(X,n1) = X)
mul one2 ∀X : (mul(n1, X) = X)
mul more ∀X1, Y1, X2, Y2 : (mul(b(X1, Y1), b(X2, Y2)) =

plus(plus(plus(b(n0, b(n0,mul(Y1, Y2))), b(n0,mul(Y1, X2))),
b(n0,mul(X1, Y2))),mul(X1, X2)))

equality reflexivity ∀X : X = X
equality symmetry ∀X,Y : (X = Y)⇒ (Y = X)
equality transitivity ∀X,Y, Z : (X = Y) ∧ (Y = Z)⇒ (X = Z)
congruence of b ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ (b(X1, Y2) = b(X2, Y2))
congruence of plus ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ plus(X1, Y1) = plus(X2, Y2)
congruence of mul ∀X1, X2, Y1, Y2 : (X1 = X2) ∧ (Y1 = Y2)⇒ mul(X1, Y1) = mul(X2, Y2)

D LCL DATASETS

The LCL domain in the TPTP (Sutcliffe, 2017) library consists of statements about various formal
inference systems. LCL-Eq and LCL-Imp formalize properties of the Equivalential Calculus and the
Implication and Falsum Calculus, respectively. Both are subsystems of the classical propositional
calculus, restricting the set of allowed connectives to {≡} and { =⇒ ,⊥}. For both subsystems,
the appropriate variant of the condensed detachment inference rule constitutes a strongly complete
inference system, i.e., whenever a formula semantically follows from a set of premises, it also follows
from the set syntactically.

A,A ≡ B ` B (1)

A,A =⇒ B ` B (2)

A number of complete axiomatizations of both the Equivalential Calculus and the Implication and
Falsum Calculus exist and the theorems in our datasets establish connections between them.

15

Under review as a conference paper at ICLR 2021

E CURRICULUM LEARNING VS. SUPERVISED LEARNING

Table 9: Curriculum Learning vs Supervised Learning trained on proofs with extra steps added for distraction. FLoP is barely affected, while
supervised learning’s performance degrades. Numbers with ? are averaged from 2 runs.

Dataset Proof Supervised Curriculum
Lengths Succ. Succ.

RA-1 5, 9 0.98(0.04) 1 (0.01)
9, 11 0.52(0.08) 0.98 (0.01)

RA-2 5, 9, 23 0.85 (0.04) 0.76(0.02)?

9, 11, 25 0.59(0.08) 0.76 (0.01)?

When training proofs are available, a natural baseline of curriculum learning is supervised learning
on the proof steps. While such behavioral cloning sometimes leads to great performance, we show
in Table 9 that it greatly depends on the quality of the given proof. We select two sets of training
problems for RA-1 and RA-2:

1. RA-1 1 + 1 = 2, 1 · 1 = 1
2. RA-2 1 + 1 = 2, 1 · 1 = 1, 1 · 1 · 1 = 1

We take the “nice” proofs (5, 9 and 23 steps) of these problems and construct variants with 2-3 extra
steps added. We observe that supervised learning degrades as superfluous steps are introduced, while
FLoP’s exploration allows the system to recover and find the original proofs.

F FEATURES IN FLOP

FLoP represents states and actions based on previously developed features Kaliszyk et al. (2015a).
The features include (suitably hashed) triples, pairs, and singletons of adjacent nodes in the formula
trees and the partial proof trees, as well as some global features: number of open goals, number of
symbols in them, their maximum size and depth, length of the current path, and two most frequent
symbols in open goals. This means that the proof states and the actions are presented as (sparse)
fixed-length vectors.

G EXPERIMENT HYPERPARAMETERS

Our hyperparameters were selected using small grid searches. We checked standard RL parameters
(e.g., the discount factor), parameters related to curriculum scheduling (e.g., local vs. global), neural
network architectures (1–5 layers with 128–1024 neurons), feature sizes (64–1024) and training
steps (105 – 108). Parameters used in the experiments are described in configuration files which are
accessible along with the shared codebase.

H EAGER EVALUATION BASED ON THE VALUE MODEL

Table 10: Comparing plCoP using MCTS and two different eager eval-
uation methods based on hte policy and value models

Dataset Prover MCTS Eager Policy Eager Value
LCL-Eq plCoP 47% 5% 1%
LCL-Imp plCoP 61% 5% 1%
RA-1 plCoP 65% 82% 3%
RA-2 plCoP 48% 49% 5%

Given that the evaluated RL algorithms train
both a policy and a value model, an alternative of
policy-based eager evaluation is to select the ac-
tion whose successor state has the highest value
score. Table 10 shows, however, that the value-
based evaluation is much worse for each dataset.
We conjecture that this is because assigning a
value to a never observed state is much harder
than selecting from a smaller set of actions.

16

Under review as a conference paper at ICLR 2021

I FAILURE MODES

Despite the apparent simplicity of our arithmetic learning environments, a learning system aiming to
solve them has to overcome some hard challenges. We have decided to describe these challenges in
detail as they are present in other domains as well, even if it may be harder to detect.

Failure type 1. The reward mechanism of our RL system is biased towards shorter proofs. However,
many problems have “shortcuts” that allow for shorter proofs, but that do not generalize well. Consider
formula (1 + 1) + (2 · 2) = (0 + 2) + 4. There are two ways to prove this equality: 1) compute the
values of the expressions on both sides of the equation and notice that they are the same or 2) show
that 1+1 = 0+2 and 2 · 2 = 4. The former generalizes better, but the latter results in a shorter proof.
Hence, training on this problem might negatively affect the performance of the prover. This is what
prevents FLoP to bootstrap itself in RA-3, i.e., train on easy problems and generalize to harder ones.
We find that providing some of the harder problems (having longer proofs) helps to avoid misleading
shortcuts.

Failure mode 2. fCoP features do not take into account the order of the arguments of a function, i.e.,
f(a, b) and f(b, a) have the same features. This is problematic for RA-3, since A = B and B = A
require different inferences. We addressed this problem by 1) extending state features with those of
the preceding action as a substitute of memory, 2) modified the features to include argument order.

Failure mode 3. Some ”rare” events are hard to generalize because the system sees very few relevant
samples during training. This is the case with applying commutativity of equality (replacing A = B
with B = A), which is only required in RA-3 and ideally only once per proof when we move the
focus from one side of the equation to the other. In Experiment 4, when we trained on a single longer
proof, we have noticed that the system was very unsure about this action which resulted in many
failed proof attempts. Adding another training proof was enough to overcome this and the success
score increased from 32% to 67%.

J THE LEANCOP CONNECTION TABLEAU CALCULUS

FLoP provides guidance for of the very compact leanCoP (Otten & Bibel, 2003) connection
tableau calculus. The calculus was originally implemented in Prolog, but it also has an OCaml
reimplementation fCoP (Kaliszyk et al., 2015b) and FLoP can be used to guide both systems.

We briefly describe the connection tableau calculus, assuming basic first-order logic and theorem
proving terminology (Robinson & Voronkov, 2001). The input is a (mathematical) problem consisting
of axioms and conjectures formally stated in first-order logic (FOL). The calculus searches for
refutational proofs, i.e. proofs showing that the axioms together with the negated conjectures are
unsatisfiable. The FOL formulas are first translated to clause normal form (CNF), producing a set of
first-order clauses consisting of literals, e.g. {∀X,Y : (f(X)|r(X,Y |¬f(Y)), f(a)}. Proof search
starts with a start clause as a goal and proceeds by building a connection tableau by repeatedly
applying extension steps and reduction steps.

The extension step connects (unifies) the current goal with a complementary literal of a new clause.
This extends the current branch, possibly splitting it into several branches if there are more literals
in the new clause, and possibly instantiating some variables in the tableau. The reduction step
connects the current goal to a complementary literal of the active path, thus closing the current
branch. The proof is finished when all branches are closed. The extension and reduction steps are
nondeterministic, requiring backtracking in the standard connection calculus. Brute force search
such as iterative deepening can be used to ensure completeness. Figure 5 shows a closed connection
tableau, i.e., a finished proof tree where every branch contains complementary literals (literals with
opposite polarity). This shows that the set of clauses is unsatisfiable.

leanCoP represents theorem proving as a one-person game. The game ends with success if a proof
is found. The prover has many choices to make along the way, in particular it can select from several
valid extension and reduction steps. Whether a step is valid depends on the unification condition,
i.e., if the current goal unifies with the negation of a literal in the corresponding clause. The full
information about the game state consists of all previous proof steps, the partial proof tree (proof
state) and the current goal.

17

Under review as a conference paper at ICLR 2021

Figure 5: A closed tableau tree of the proof of 1 · 1 = 1. On the left we list the actions taken in the proof. See http://bit.ly/
site_atpcurr for details.

The search space of the prover is exponentially large in the length of the proof. In leanCoP, the
action space is roughly correlated with the size of the axiom set. While this can be large for large
problems, typically only a few actions are available in any particular state.

18

http://bit.ly/site_atpcurr
http://bit.ly/site_atpcurr

	Introduction
	Theorem Proving by Analogy
	FLoP – Main Algorithm
	Datasets
	Related work
	Experiments
	Conclusion and Future Work
	FLoP Model Architecture
	Robinson Arithmetic
	Robinson Arithmetic with Binary Encoding
	LCL datasets
	Curriculum Learning vs. Supervised Learning
	Features in FLoP
	Experiment hyperparameters
	Eager evaluation based on the value model
	Failure Modes
	The leanCoP Connection Tableau Calculus

