
Time-Aware World Model for Adaptive Prediction and Control

Anh N. Nhu * 1 Sanghyun Son * 1 Ming Lin 1

Abstract
In this work, we introduce the Time-Aware World
Model (TAWM), a model-based approach that
explicitly incorporates temporal dynamics. By
conditioning on the time-step size, ∆t, and train-
ing over a diverse range of ∆t values – rather
than sampling at a fixed time-step – TAWM
learns both high- and low-frequency task dynam-
ics across diverse control problems. Grounded in
the information-theoretic insight that the optimal
sampling rate depends on a system’s underlying
dynamics, this time-aware formulation improves
both performance and data efficiency. Empirical
evaluations show that TAWM consistently outper-
forms conventional models across varying obser-
vation rates in a variety of control tasks, using the
same number of training samples and iterations.
Our code can be found online at: github.com/anh-
nn01/Time-Aware-World-Model.

1. Introduction
Deep reinforcement learning (DRL) has recently demon-
strated human-level or even expert-level capabilities on
many highly complex and challenging problems, such as
Go (Silver et al., 2016; 2017), Chess and Shogi games (Sil-
ver et al., 2018), and StarCraft II video game (Vinyals et al.,
2019). DRL is also effectively adopted in a broad range of
applications, including robotics (Wu et al., 2023; Koh et al.,
2021; Johannink et al., 2019), autonomous vehicles (Kiran
et al., 2021; Guan et al., 2024), and challenging control
tasks where classical approaches fail to deliver satisfactory
performance (Prasad et al., 2017; Nhu et al., 2023; Yang
et al., 2015). Beyond model-free reinforcement learning
(RL) methods, where an agent directly maps observation
ot to action at (Williams & Peng, 1989; Schulman et al.,
2015; 2017; Haarnoja et al., 2018), there has been growing
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Figure 1. Overall framework of our time-aware world model.
An encoder h encodes the given observation ot into a latent vector
zt, which is then fed into various models with action at and time
step size ∆t to estimate values for action planning.

interest in model-based RL (MBRL). Unlike model-free
approaches, MBRL constructs a model M that captures
the underlying task dynamics (Sutton, 1990; Deisenroth &
Rasmussen, 2011; Parmas et al., 2018; Kaiser et al., 2019;
Janner et al., 2019), enabling the agent to plan actions using
the learned world modelM. These model-based methods
have gained traction over their model-free counterparts due
to their superior sample efficiency and enhanced generaliza-
tion capabilities (Ha & Schmidhuber, 2018; Hafner et al.,
2019; 2020; 2023; Hansen et al., 2022; 2024).

Despite the remarkable success of world models in vari-
ous control tasks, a critical factor in handling dynamical
systems – the time step size, ∆t – has been largely over-
looked in existing research. Specifically, the dynamics
model D : (st, at) → st+1 , a fundamental component
of the world model, governs state transitions from the cur-
rent state st to the next state st+1. Conventional approaches
train D using experience tuples (ot, at, ot+1, rt) collected
from interactions with the environment at a fixed time step
size. However, this existing practice presents three key
limitations (Thodoroff et al., 2022):

1. Temporal resolution overfitting: In current training
pipelines, the observation time step ∆t are often fixed
(e.g., ∆t = 2.5ms or frequency f = 400Hz). While
smaller ∆t values stabilize simulations and prevent
system aliasing, world models trained exclusively at a
single, fixed ∆t often suffer significant performance
degradation when deployed in real-world scenarios
with different observation rates (e.g. ∆t = 20ms
or f = 50Hz) due to compounding errors (Lambert
et al., 2022; Wang et al., 2019) and computational costs
of roll-out predictions. This discrepancy presents a
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major challenge in extending the applicability of world
models beyond simulated environments.

2. Inaccurate system dynamics: Training the dynamics
modelM on a fixed time step ∆t can lead to overfit-
ting, as the model may not capture the true underlying
dynamics of the task without conditioning on ∆t. This
can result in inaccurate state transitions and diminished
generalization capabilities.

3. Inefficient dynamics learning: Although small ∆t
values are essential for numerical stability and for cap-
turing high-frequency dynamics, relying exclusively
on fine-grained time steps results in inefficient sam-
pling. Real-world systems often exhibit multiscale be-
havior, with some components evolving rapidly while
others change more slowly. Sampling solely at a high
frequency captures redundant information about the
slower components, wasting computational resources
and training data. This issue is exacerbated in systems
with widely varying time scales, where no single sam-
pling rate is optimal for every dynamical component.

Recent work (Shaj Kumar et al., 2023; Lutter et al., 2021)
has explored temporal aspects of world models, but primar-
ily to improve long-horizon predictions through roll-outs
of fixed-∆t models. Our approach instead conditions the
world model directly on ∆t, enabling single-step predictions
across arbitrary temporal intervals (Figure 1). Although pre-
vious methods can, in principle, accommodate variable time
steps through repeated application, that strategy compounds
errors and is computationally inefficient. By sampling strate-
gically across multiple time scales, our method lets the
model learn dynamics at different frequencies simultane-
ously, without increasing the number of training samples.
Consequently, it generalizes effectively across varying ob-
servation rates – crucial for simulation-to-reality transfer
– while maintaining superior sample efficiency compared
with fixed-∆t approaches.

In this work, We focus on the following question: How
can we efficiently train a world model M to capture the
underlying task dynamics across varying time step sizes ∆t
without increasing sample complexity?

To answer this, we introduce a time-aware world model,
MTA. Unlike earlier world models M, our model con-
ditions both the dynamics model and the reward function
on ∆t (Figure 1), because these depend on the temporal
gap between consecutive states. We construct MTA by
adapting the TD-MPC2 world model (Hansen et al., 2024)
and incorporating the fourth-order Runge–Kutta (RK4)
method (Butcher, 1987) to stabilize learning at large ∆t
values (Section 4.1). We likewise modify the value model to
accept ∆t as an additional input. Both models are trained on
∆t values log-uniformly sampled from a predefined interval.

Although one might expect MTA to require more train-
ing samples than M because of the additional parame-
ter ∆t, this is not necessarily the case. According to the
Nyquist–Shannon sampling theorem (Shannon, 1949; Jerri,
1977), a signal with highest frequency f can be perfectly
reconstructed by sampling at any frequency just above 2f.
Thus, if the observation rate greatly exceeds 2f, the excess
data are redundant – they contribute little to training the
world model. A physical environment typically comprises
multiple dynamical subsystems operating at different char-
acteristic frequencies (Section 3.2.1). By training with a
mixture of time-step sizes, we expose the model to a range
of effective sampling frequencies, enabling each subsystem
to be learned more efficiently (Section 3.2.3).

Inspired by the Nyquist–Shannon sampling theorem (Sec-
tion 3.2.2), we prove that our time-aware model trained
on observation data sampled at a mixture of time steps
achieves substantially better performance in learning world
dynamics across different time steps at inference time, while
using the same training budget as the baseline. We demon-
strate these results on a variety of control problems in
Meta-World (Yu et al., 2020) and PDE-control environ-
ments (Zhang et al., 2024). Our contributions are sum-
marized as follows:

1. We underscore the importance of a time-aware world
model (TAWM) that conditions its dynamics modeling
on the time step size ∆t, a fundamental quantity in any
dynamical system. By explicitly incorporating ∆t, the
model learns to capture the underlying task dynamics
across a broad spectrum of step sizes. Our model’s abil-
ity to generate a one-step prediction of the next state
conditioned on ∆t mitigates the well-known problem
of compounding errors. This approach is particularly
suitable for real-world learning and control, where the
observation rate may vary – or be substantially lower
than – the default observation rate used for training.

2. Motivated by the Nyquist–Shannon sampling theorem
and by the fact that real-world dynamics comprise
many subsystems operating at different – and often
unknown – frequencies, we propose a mixture-of-time-
step training framework for TAWM that performs well
across a range of observation rates at inference time,
without increasing the number of training steps. This
perspective – training a world model with varying sam-
pling rates – offers a new avenue for developing more
efficient training strategies.

3. Empirically, we demonstrate that our time-aware world
model can solve a range of control tasks at various ob-
servation rates without increasing either the amount
of data or the number of training steps. This capabil-
ity helps narrow the gap between simulation environ-
ments and real-world control problems.
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2. Related Work
Although model-free RL algorithms have gained popularity
for their impressive performance, their inherent sample in-
efficiency limits their applicability to many real-world prob-
lems (Sutton et al., 1999; Williams & Peng, 1989; Barto
et al., 1983; Schulman et al., 2015; 2017). Several works
mitigate this limitation by integrating low-variance analyt-
ical gradients into the policy-learning process (Suh et al.,
2022; Xu et al., 2022; Son et al., 2024).

In contrast, model-based RL (MBRL) tackles sample in-
efficiency at its root by training a dynamics model that
simulates the environment, enabling agents to predict fu-
ture states and action outcomes (Deisenroth et al., 2013).
Because prediction is unconstrained by real-time sampling,
MBRL is inherently more sample efficient. MBRL meth-
ods vary mainly in (1) how they define the world model
M and (2) how they exploit M for training or planning.
Historically, Gaussian processes (GPs) (Deisenroth & Ras-
mussen, 2011; Parmas et al., 2018) were widely used, but
modern work favors neural networks (Ha & Schmidhuber,
2018; Hafner et al., 2019; 2020; 2023; Hansen et al., 2022;
2024) for their greater representational power. Among these,
Dreamer and its variants (Hafner et al., 2019; 2020; 2023;
Wu et al., 2023) train policies directly inside the learned
model, whereas model-predictive-control (MPC) methods
(Hansen et al., 2022; 2024) rely on action planning.

However, these approaches paid little attention to the tempo-
ral component when designing the world modelM, despite
its importance in dynamical systems. To address its limi-
tation in long-horizon prediction, Multi-Time-Scale World
Models (MTS3) (Shaj Kumar et al., 2023) explicitly lever-
ages temporal gaps when learning task dynamics. MTS3
captures state transitions over different prediction horizons
H but uses a single fixed ∆t during training; it therefore
represents only two discrete time scales – fast and slow
dynamics corresponding to ∆t and H∆t. In contrast, we
incorporate a continuous-valued ∆t directly into the model,
enabling single-step predictions across a range of inference
step sizes. This allows our model to handle large tempo-
ral gaps (e.g., ∆t = 30ms) that would otherwise require
12–20 smaller steps in a fixed-step model. Our approach is
architecture agnostic: it builds on the TD-MPC2 framework
(Hansen et al., 2024) yet crucially differs by explicitly con-
ditioning the world model on ∆t and training on a mixture
of step sizes, rather than assuming a fixed step throughout.

3. Background and Motivations
3.1. Model-Based Reinforcement Learning

We formulate the control problem as a Markov decision
process (MDP) ⟨S,A, P, r, γ⟩, where S is the state space, A
is the action space, P : S ×A× S → R is the (stochastic)

state-transition function, r : S × A → R is the reward
function, and γ ∈ [0, 1) is the discount factor. We refer to
P and r as the ground-truth models, because in Section 4.1
we learn approximations of them within our world model.

The goal of reinforcement learning is to obtain a policy or
planner π that maximizes the expected discounted return
along a trajectory τ = {s0, a0, . . . , sH−1, aH−1, sH} of
length H:

η(π) = Es0,a0,...∼π

[ ∞∑
t=0

γtr(st, at)

]
. (1)

In model-based RL (MBRL), we train a world dynamics
model consisting of a state-transition function dϕ : S×A→
S and a reward function rϕ : S×A→ R. The learned world
model can then be exploited in multiple ways to derive a
policy, for instance by using a planner such as TD-MPC2.
Section 4.1.2 details our model formulation and the training
pipeline for the time-aware world model.

3.2. Theoretical Motivations

Here we provide theoretical motivations to explain the sam-
ple efficiency of using a mixture of time step sizes during
the training process of the time-aware world model.

3.2.1. MULTI-SCALE DYNAMICAL SYSTEMS

In many control problems, the environmental dynamics can
be decomposed into multiple subsystems, each evolving on
a different temporal scale (Weinan, 2011). In other words,
these subsystems can be described by distinct functions,
each with its own highest frequency. Formally, consider
a general dynamical system ẋ = f(x, u, t), where x, u,
and t denote the state, control input, and time, respectively.
Applying the Euler integration method, the next state x′ is

x′ = x+ f(x, u, t) ·∆t (2)

where ∆t is the time-step size. From a multi-scale perspec-
tive, this update can be rewritten as

x′ = x+
∑
i

fi(x, u, t) ·∆t (3)

where fi(x, u, t) represents the dynamics of subsystem i.
Each subsystem may evolve at its own temporal scale and
therefore have its own highest frequency fimax.

3.2.2. NYQUIST-SHANNON SAMPLING THEOREM

The Nyquist–Shannon sampling theorem states that a sig-
nal must be sampled at a rate of at least twice its highest
frequency to avoid information loss (i.e., to prevent alias-
ing): fsample > 2fmax (Shannon, 1949). Here, fsample is the
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observation rate, and fmax is the highest frequency of the
environment’s dynamics in the MBRL context. If the obser-
vation rate is too low – such that fsample < 2fmax – we lose
important dynamic details due to the large temporal gap
∆t. This loss causes high-frequency components to fold
back into lower frequencies, leading to inaccurate dynamics
learned by the world model (Zeng et al., 2024). Although
a higher fsample enables more accurate reconstruction of the
environment’s dynamics, an excessively high rate leads to
oversampling, introducing redundant data that increase sam-
ple complexity and reduce learning efficiency. Therefore,
choosing an appropriate observation rate fsample is crucial
for balancing modeling accuracy and sample efficiency.

3.2.3. SIMULTANEOUSLY TRAINING ON MULTIPLE
TEMPORAL RESOLUTIONS

To better align observation sampling with task dynamics
across subsystems operating at different frequencies, we
propose simultaneously training the world model at mul-
tiple temporal resolutions by varying the observation rate
fsample (i.e., varying ∆t) during training. As shown in Equa-
tion 3, the overall dynamics comprise several subsystems
fi(·), each with its own maximum frequency fimax. Ac-
cording to the Nyquist–Shannon sampling theorem, each
subsystem is learned most efficiently at a distinct fsample.
By randomly varying fsample during training, we avoid un-
dersampling high-frequency components and oversampling
low-frequency ones, thereby training the subsystems fi(·)
more efficiently. Consequently, our time-aware world model
learns the underlying task dynamics at multiple temporal
resolutions without needing additional data (Section 5).

4. Methodology
In this section, we present our time-aware model formula-
tion and training pipeline, designed to learn a world model
that performs well across a range of observation rates. We
introduce a novel time-aware training method that can be
seamlessly integrated into any existing world-model archi-
tecture, enhancing robustness to observation-rate variations
at inference time. We adopt TD-MPC2 (Hansen et al., 2024)
as our baseline and adapt its architecture to train time-aware
world models for various control tasks. We begin with a
high-level overview of TD-MPC2 and its key architectural
components. The overall framework is depicted in Figure 1.

4.1. Model Architecture

4.1.1. BASELINE WORLD MODEL

TD-MPC2 (Hansen et al., 2024) is a model-based RL al-
gorithm that captures task dynamics in a latent space – an
“implicit” world model. Unlike reconstruction-based archi-
tectures (Ha & Schmidhuber, 2018; Hafner et al., 2023), TD-

MPC2 omits a decoder that maps latent representations back
to raw observations. Recovering latent states in the high-
dimensional observation space is computationally expensive
and often unnecessary, as many elements are irrelevant to
control. Once the latent dynamics are learned, TD-MPC2
rolls out latent predictions for local trajectory optimization
with planning algorithms such as MPC (Hansen et al., 2022;
2024). The baseline TD-MPC2 model comprises five key
components:

Encoder: zt = h(ot)
Latent dynamic: ẑt+1 = D(zt, at)
Reward: r̂t = R(zt, at)
Terminal value: q̂t = Q(zt, at)
Policy prior: ât = p(zt)

where ot is the raw observation at time step t, zt is its latent
encoding, ẑt+1 is the predicted next latent state, r̂t is the
predicted immediate reward, q̂t is the estimated Q-value of
the current state–action pair, and ât is the action sampled
from the policy for the current state. At inference time,
the Model Predictive Path Integral (MPPI) planner – an
instance of Model Predictive Control (MPC) – is used for
planning and action generation. All five component models
are implemented using multilayer perceptrons (MLPs).

To train TD-MPC2, we maintain a replay buffer B that stores
trajectories (ot, at, ot+1, rt)

H
t=0 collected from the environ-

ment after each episode of length H . At the end of every
episode, the model parameters are updated with batches ran-
domly sampled from B. The encoder h, dynamics model D,
reward model R, and terminal-value model Q are optimized
jointly using a self-supervised consistency loss, a supervised
reward loss, and a supervised temporal-difference loss for
the terminal value. See Hansen et al. (2024) for details. The
agent then resumes interaction with the environment, gath-
ering additional data to augment B for subsequent training.

4.1.2. TIME-AWARE WORLD MODEL

One notable limitation of TD-MPC2 and other state-of-
the-art world models is that they ignore the effect of the
observation rate ∆t at inference time. To introduce time
awareness, we condition every component of the world
model on ∆t, as described below:

Encoder: zt = h(ot)
Latent dynamics: ẑt+∆t = zt + d(zt, at,∆t) τ(∆t)

where τ(x) = max(0, log10 x+ 5)
Reward model: r̂t = R(zt, at,∆t)
Value model: q̂t = Q(zt, at,∆t)
Policy prior: ât = p(zt,∆t)

Our time-aware model formulation is architecture-agnostic
and can be readily integrated into any state-of-the-art world
model. Because the observation encoder merely maps raw
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observations to the latent space, without modeling dynamics,
it is not conditioned on ∆t. All other components that
depend on the system’s dynamics are conditioned on the
time step size by taking ∆t as an explicit input.

While the baseline latent dynamics model D maps a
state–action pair (zt, at) directly to the next latent state
zt+1, we reformulate D using Euler integration:

ẑt+∆t = D(zt, at,∆t) = zt + d(zt, at,∆t) · τ(∆t),

where d(·) is implemented as an MLP. This formulation
enforces the intrinsic property

zt+∆t|∆t=0 = zt, ∀zt, at.

Thus, instead of learning the transition function D directly,
TAWM learns the latent-state derivative (gradient) function
d, which is itself conditioned on ∆t to capture higher-order
effects, and then advances the state by a single Euler step.

State Transition Rather than integrating over the raw time
step ∆t, our dynamics model integrates using

τ(∆t) = max(0, log10(∆t) + 5).

The possible values of ∆t span several orders of magnitude
– from a minimum of about 10−3 s to a maximum of roughly
5× 10−2 s – creating numerical challenges. Because latent
vectors change only slightly between steps, the dynamics
model d(zt, at,∆t) must scale appropriately across this
wide range. Empirically, we observed convergence failures
in some tasks (e.g., mw-assembly) when employing lin-
ear ∆t integration. By allowing the latent state to evolve
with respect to the logarithm of the time step via τ(∆t), we
effectively normalize ∆t to a narrower range, mitigating
numerical issues and enabling more stable learning.

Before proceeding, we note that we experimented with
two popular integration methods for our dynamics model:
(1) Euler and (2) fourth-order Runge–Kutta (RK4), even
though only Euler integration was introduced earlier. See
Appendix A for RK4 implementation details. We include
RK4 because it is broadly applicable to both simple linear
and complex nonlinear systems and is standard in physical
simulation. The integration method thus serves as a tunable
hyperparameter for maximizing TAWM’s performance and
learning efficiency across control tasks.

For most Meta-World robot-manipulation tasks, the dynam-
ics are simple enough to be well approximated by Euler
integration. Our ablation study shows that TAWM with
Euler integration outperforms its RK4 counterpart on the
majority of Meta-World tasks, indicating that Euler suffices
in these settings (Figure 3). By contrast, RK4’s benefits
become more pronounced for tasks with complex dynamics,
such as those in PDE-control environments (Figure 3).

Algorithm 1 Time-Aware World Model Training Paradigm

1: Initialize task environment E
Initialize time-aware world modelMTA

2: Set experience buffer B ← ∅
3: repeat
4: for each episode do
5: Set ∆t ∼ Log-Uniform(∆tmin, ∆tmax)

▷ Meta-World: ∆tmin = 0.001, ∆tmax = 0.05
(∆tdefault = 0.0025)

▷ Can be either Log-Uniform or Uniform
6: Set step← 0
7: while step < Horizon H do
8: at ←MTA.act(ot,∆t)
9: Execute at in E , get back (ot+∆t, rt)

10: Add transition (ot, at, ot+∆t, rt,∆t) to B
11: {(ot, at, rt, ot+∆t,∆t)1:B} ∼ B: update time-

aware world modelMTA

12: step← step+ 1
13: end while
14: end for
15: until reach N training steps
16: returnMTA

4.2. Training Procedure Using a Mixture of ∆t

Algorithm 1 summarizes our training procedure, in which
we vary the observation rate to encourage the model to learn
the underlying dynamics at multiple temporal resolutions.
The world model acquires a spatiotemporal representation of
the environment by sampling observations from the various
dynamical subsystems at specific points in time and space.
According to the Nyquist–Shannon sampling theorem, a
signal must be sampled at a rate of at least 1/(2fmax), where
fmax is the highest frequency present in the band-limited
signal. Because there is no systematic way to determine
fmax for every subsystem, we instead sample observations
at several temporal rates to capture the underlying dynamics
more effectively.

At the start of each episode (Algorithm 1), we sample
∆t from a log-uniform distribution and set the observa-
tion/control rate to 1/∆t. A log-uniform distribution as-
signs equal probability mass to every octave of time scales,
yielding good coverage across multiple orders of magnitude.
This is especially useful when ∆tmax ≥ 1

2fmax
, where fmax

is the highest frequency of the task dynamics. For tasks with
dynamics slow enough to be captured by ∆tmax, however,
uniform sampling may outperform log-uniform sampling,
particularly at larger ∆t values (Figure 7).

4.3. Theoretical Analysis of TAWM’s Sample Efficiency

We present theoretical insights into TAWM’s sample effi-
ciency, showing that it can be trained to capture task dynam-
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ics across temporal scales without increasing the number
of samples or training steps and without sacrificing perfor-
mance. We begin with two core assumptions:

1. Model capability: Because our time-aware training
framework is model-agnostic, it inherits the limitations
of the underlying world-model architecture. We as-
sume that this architecture has enough representation
power to capture the system’s complex dynamics.

2. Sampling frequency: We focus our analysis on those
subsystems and time intervals for which ∆tmax can
effectively capture the underlying dynamics. We as-
sume that the empirically determined range [∆tmin =
0.001s,∆tmax = 1s] adequately captures the behavior
of most subsystems.

In the following discussion, we denote by f̄ the ground-truth
dynamics function, which satisfies the equation:

zt+∆t = zt + f̄(zt, at,∆t) ·∆t.

Also, we say that an environment’s dynamics can be fully
captured with a time step ∆t̄ if its dynamics function f̄
satisfies:

||f̄(zt, at,∆t̄)− f̄(zt, at,∆t)|| < ϵ, ∀∆t < ∆t̄,

where ϵ≪ 1 is a sufficiently small constant.

Then, the following lemma shows that the optimal time-
aware dynamics function d∗ (Section 4.1) can approximate
dynamics for all ∆t < ∆t̄ through simple interpolation.

Lemma 4.1. When the environment’s dynamics can be fully
captured with ∆t̄, the optimal dynamics function d∗ satisfies
the following relation for any smaller time step ∆t < ∆t̄:

||d∗(zt, at,∆t)− d∗(zt, at,∆t̄) · ∆t

τ(∆t)
· τ(∆t̄)

∆t̄
|| < ϵ.

Proof. Please see Appendix H.1.

Note that the interpolation factor ∆t
τ(∆t) ·

τ(∆t̄)
∆t̄ is common

to every training sample; regardless of zt or at, this rela-
tionship holds. Based on this observation, we introduce our
third core assumption as follows.

3. Interpolation Learning: During training, the dynam-
ics function d effectively learns the relationship de-
scribed in Lemma 4.1 as the interpolation factor is
shared across all samples.

With this assumption, we can prove the following lemma,
which states that error reductions at larger temporal scales
contribute to reductions at smaller scales during training.

Figure 2. Visualizations of the Meta-World control tasks. From
left to right: Assembly, Basketball, Box Close, Faucet Open. The
default time step size of all environments is ∆t = 2.5ms.

Lemma 4.2. When the environment’s dynamics can be fully
captured with ∆t̄, reducing the modeling error at ∆t̄ lowers
the upper bound of the error for every ∆t < ∆t̄.

Proof: Please see Appendix H.2.

Building on this lemma, we conjecture that improvements
gained at one temporal scale transfer to all smaller scales,
thereby enhancing TAWM’s sample efficiency. In the next
section, we empirically confirm this conjecture by demon-
strating TAWM’s high sample efficiency.

5. Experiments
We address three key questions in our experiments: (1) Un-
der the same planner, does TAWM match the baseline’s
performance at the default observation rate while avoiding
degradation at lower rates? (2) At which observation rates
does TAWM outperform the baseline? (3) Does TAWM
require more training data than the baseline? We primar-
ily investigate these questions in Section 5.1 and present
ablation studies on sampling strategies in Section 5.2.

5.1. Evaluations on Control Problems

To answer our main questions and evaluate the performance
and learning efficiency of our time-aware world model, we
conducted experiments on several control tasks from the
Meta-World simulation suite, which uses a default time step
of ∆t = 2.5ms (0.0025s) (Yu et al., 2020). We tested nine
diverse tasks, each with distinct goals and motion charac-
teristics: Assembly, Basketball, Box Close, Faucet Open,
Hammer, Handle Pull, Lever Pull, Pick Out of Hole, and
Sweep Into. Representative environments are shown in Fig-
ure 2, and Appendix B provides renderings of all nine tasks.
Following Hansen et al. (2024), we report the success rate
(%) as the primary metric for comparing the time-aware and
baseline models on these Meta-World control tasks.

On top of that, our experiments also include three
non-linear, one-dimensional PDE-control tasks from
control-gym (Zhang et al., 2024): Burgers, Allen–Cahn,
and Wave. For these tasks, we use the (continuous) total
episode reward as the primary metric. Because of space
constraints, we defer detailed problem descriptions, visual-
izations, and additional analysis of these environments to
Appendix G.
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Figure 3. Performance comparisons for 3 tasks from Meta-World (Up), and 3 tasks from PDE-Control (Down). The x-axis
corresponds to the evaluation ∆t (in ms), and the y-axis corresponds to success rate (Meta-world) and episode reward (PDE-Control).
We trained our TAWM model using either RK4 or Euler integration method with log-uniform sampling strategy. The baseline method
was trained using only default time step (∆t = 2.5ms for Meta-World tasks; ∆t = 50ms/10ms/100ms for PDE-Burgers, PDE-
Allen-Cahn, PDE-Wave, respectively), which is signified with the black dashed line in each environment. For fair comparisons, we
extended the baseline method by repeating the same actions for the larger evaluation time steps than the default one. For instance, when
the evaluation ∆t = 5ms, we repeat the same action for 5/2.5 = 2 times. Plots show mean and 95% confidence intervals over 3 seeds,
with 10 evaluation episodes per seed.

Training Setup. We built our time-aware model on the
base TD-MPC2 architecture, using the same default training
hyperparameters (e.g., model size, learning rate, and hori-
zon). As shown in Algorithm 1, we randomly varied ∆t
during training to create a mixture of training observation
rates. Because there is no systematic way to identify the
highest frequency in each task’s dynamics, we set ∆t to the
range [0.001, 0.05] for Meta-World tasks and [0.01, 1.0] for
PDE-control tasks. For Meta-World tasks, each TAWM was
trained for 1.5 million steps, which required roughly 40–45
hours on a single NVIDIA RTX 4000 GPU (16 GB VRAM)
and 32 CPU cores. For PDE-Allen-Cahn and PDE-Wave,
the TAWM and baseline models were trained for 1M steps.
For PDE-Burgers, all models were trained for 750k steps.

Performance Comparisons Across Different ∆t. To
assess the time-aware model’s performance at different
inference-time observation rates, we evaluated it on multiple
tasks with varying ∆t. As shown in Figures 3 and 11, both
TAWM variants – one using RK4 integration and the other
using Euler integration – outperform the baseline (trained
at a fixed ∆t = 2.5 ms) across all tasks under identical
hyperparameters. We observed similar gains in every other
Meta-World task (Appendix E), indicating that the time-
aware model effectively learns both fast and slow dynamics
without increasing sample complexity. Empirically, the dy-

namics of some Meta-World tasks are sufficiently simple
to be well approximated by TAWM with Euler integration,
leading to better performance than with RK4 integration.

Effects of using Mixtures of ∆t. To demonstrate the ef-
fectiveness of training the world model at multiple temporal
resolutions ∆t, we compare our approach with baselines
trained only at fixed ∆t values different from the default
∆t = 2.5ms. Figure 4 shows that our time-aware model
outperforms all baselines across three Meta-World tasks.
Most notably, when baselines are trained solely at low ob-
servation rates (e.g., ∆t ≥ 10ms), they fail to converge
and achieve zero success on every task at every evaluation
rate. In contrast, by training with a mixture of time steps,
our time-aware model consistently surpasses any baseline
trained at a single step size, regardless of that fixed ∆t.
These results suggest that environmental dynamics comprise
multiple subsystems, each describable as a time-dependent,
spatially parameterized function with its own highest fre-
quency. Varying the observation rate (i.e., varying ∆t),
therefore enables the world model to learn these underlying
subsystems more effectively.

Convergence Rate on Various ∆t. To evaluate the sam-
ple efficiency of TAWM, we compare the episode suc-
cess rate curves across different control tasks between our
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Figure 4. Performance comparisons to baseline methods trained on different ∆t values for Meta-World tasks. The x-axis corresponds
to the evaluation ∆t, and the y-axis corresponds to the success rate. The non–time-aware baseline models were trained with different
fixed ∆t values (shown in the legend). Our TAWM model employs RK4 integration and log-uniform ∆t sampling. TAWM outperforms
all baseline models trained with fixed time-step sizes. When the baselines are trained only at low observation rates (∆t ≥ 10ms), they fail
on all tasks. The dashed black line indicates the default time-step size (∆t = 2.5ms). Means and 95% confidence intervals are computed
over 3 seeds, each evaluated for 10 episodes.
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Figure 5. Learning curve comparison on Meta-World Basketball (Up) and Meta-World Lever-Pull (Down). The x-axis corresponds
to the evaluation ∆t (in ms), and the y-axis corresponds to the success rate. We trained our TAWM using either RK4 or Euler integration
method with log-uniform sampling strategy. The baseline method was trained using only the default time step (∆t = 2.5ms). Plots show
mean and 95% confidence intervals over 3 seeds, with 10 evaluation episodes per seed.

TAWM models and non-time-aware baseline models trained
with a fixed default time step of ∆t = 2.5ms. We assess the
success rate curves of TAWM and baseline models under
different evaluation ∆t values across various control tasks
throughout training. In Figure 5, we present the learning
curves for the Meta-World Basketball and Lever-Pull tasks.
Despite having to learn state transitions under varying time
step sizes, our TAWM with RK4 integration method con-
verges at least as quickly as the baseline when evaluated at
the default ∆t = 2.5ms – the exact time step on which the
baseline was specifically trained. Compared to the non-time-
aware baseline specialized at only ∆t = 2.5ms, TAWM
(RK4) still converges to a higher success rate at ∆t = 2.5ms
after 1.5M training steps. Both TAWM variants (RK4 and
Euler) reach 100% success on the Meta-World Basketball
task at ∆t = 2.5ms, outperforming the baseline.

When evaluated at inference ∆t values greater than the de-

fault (∆t > 2.5ms), both TAWM (RK4) and TAWM (Euler)
significantly outperform the non-time-aware baselines. We
refer the readers to Figure 12 and Figure 13 in Appendix F,
as well as Figure 17 in Appendix G, for additional learning
curves on other control tasks. These results demonstrate
that, despite having to learn task dynamics across differ-
ent temporal scales, our time-aware model does not re-
quire additional training steps or samples to converge to a
sufficiently accurate model capable of effectively solving
control tasks at varying observation rates.

Comparison to MTS3 Finally, we compare our model’s
performance with the Multi Time Scale World Model
(MTS3) (Shaj Kumar et al., 2023), a closely related ap-
proach that shares the high-level motivation of modeling
world dynamics across multiple temporal scales, as intro-
duced in Section 2. We would like to refer the readers to
Appendix D for detailed descriptions of MTS3’s experi-
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mental settings. In Figure 6, we observe that our TAWM
consistently outperforms MTS3 across various settings of
MTS3’s slow dynamics hyperparameter H . Notably, MTS3
exhibits rapid performance degradation as the evaluation
time step increases, suggesting that it suffers from com-
pounding errors due to long-horizon predictions. In con-
trast, our TAWM shows greater robustness at lower obser-
vation rates, especially on the Meta-World Faucet-Open
task in which TAWM’s success rate remains at ≈ 90% at
∆t = 50ms (0.05 s).

5.2. Ablation studies on sampling strategies

The ∆t sampling strategy is a tunable hyperparameter
to optimize TAWM’s performance and efficiency. In
this section, we conduct an ablation study on the im-
pact of the ∆t sampling strategy during training on
the performance and sample efficiency of TAWM. In
Meta-World tasks, we trained the same TAWM archi-
tecture in the same ∆t range using two different sam-
pling strategies: (1) Log-Uniform(0.001 s, 0.05 s) s and (2)
Uniform(0.001 s, 0.05 s). In some tasks, such as Meta-
World Assembly and Basketball, uniform sampling may
outperform log-uniform sampling – particularly when the
task dynamics are sufficiently slow to be captured by ∆tmax.

Figure 7 shows that while TAWM trained with the uniform
sampling strategy generally performs better in most envi-
ronments and achieves higher performance at low sampling
rates (∆t ≥ 30ms), it exhibits lower success rates at smaller
inference ∆t in some environments, such as Meta-World
Assembly. Additional results in other environments are pre-
sented in Figure 8, which show a similar pattern. Regardless
of the ∆t sampling strategy, time-aware models consistently
outperform non-time-aware baselines. Therefore, depend-
ing on the task dynamics, TAWM can be effectively and ef-
ficiently trained with any reasonable ∆t sampling strategy
and is not restricted to log-uniform or uniform schemes.

6. Conclusion
In this paper, we introduce a novel time-aware world model
(TAWM) that adaptively learns task dynamics across differ-
ent temporal scales. By explicitly conditioning the dynamic
model on the time step size ∆t and training it with a mix-
ture of temporal scales (via ∆t sampling), TAWM achieves
robust performance across varying observation rates on di-
verse control tasks without requiring additional training
steps or samples. Empirical results show that our model
consistently outperforms the non-time-aware baseline mod-
els, which are trained only on a fixed time step size ∆t
for different training ∆t values. We hope that the insights
and results in this paper offer a new perspective on world
model training, thereby contributing to the community a
new, efficient, yet simple world model training method.
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Figure 6. Performance comparisons to MTS3 across different
evaluation ∆t’s on Meta-World tasks. The x-axis corresponds to
the evaluation ∆t, and the y-axis corresponds to the success rate.
The MTS3 models were trained under different slow dynamics set-
tings, indicated by the H values shown in the legend, using offline
data with 4M transitions. Our TAWM employs RK4 integration
method with log-uniform sampling strategy and was trained for
1.5M steps. The dashed black line indicates the default time-step
size (∆t = 2.5ms). Means and 95% confidence intervals are
computed over 3 seeds for TAWM, each evaluated for 10 episodes.
TAWM outperforms MTS3 across different H settings, especially
at large ∆t values.
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Figure 7. Ablation Study on ∆t Sampling Strategy. We trained
our TAWM models with log-uniform and uniform sampling strate-
gies, both of which use the RK4 integration method. The baseline
method was trained using only default time step (∆t = 2.5ms),
which is signified with the black dashed lines. The x-axis corre-
sponds to the evaluation ∆t, and the y-axis corresponds to the
success rate. Means and 95% confidence intervals are computed
over 3 seeds, each evaluated for 10 episodes.

Limitations and Future Work. We have yet to develop a
systematic methodology to analytically compute the highest
frequency of the underlying task dynamics; therefore, the
upper bound for the training time step size ∆tmax is deter-
mined empirically. This limitation necessitates a search for
∆tmax when applying TAWM to new environments (e.g.,
autonomous driving or PDE controllers) to improve training
efficiency and convergence. An interesting direction for fu-
ture work is to develop an automatic method to identify the
highest frequency of task dynamics, which would determine
the lower bound for sampling frequency (or the upper bound
for ∆tmax) in training TAWM. We also plan to extend our
current deterministic dynamics model to a probabilistic one
to better capture real-world state transitions, particularly at
larger ∆t values and/or over longer horizons.
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Appendix

A. Descriptions of 4th-order Runge-Kutta integration.
In this section, we extend our description of the 4th-order Runge-Kutta (RK4) integration mentioned in Section 4.1.2. The
detailed RK4 integration is as follows:

k1 = d(zt, at,∆t)

ẑ1 = zt + d (zt, at,∆t/2) · τ (∆t/2)

k2 = d (ẑ1, at,∆t)

ẑ2 = zt + d (ẑ1, at,∆t/2) · τ (∆t/2)

k3 = d (ẑ2, at,∆t)

ẑ3 = zt + d (ẑ2, at,∆t) · τ(∆t)

k4 = d (ẑ3, at,∆t)

ẑt+∆t = zt +
1

6
(k1 + 2k2 + 2k3 + k4) · τ(∆t)

(4)

Consistent with the notations in Section 4.1.2, zt, at denotes the latent state-action pairs at time t, d(·) denotes our dynamic
model parameterized by a neural network, and ẑi (i ∈ 1, 2, 3) are the intermediate middle points. The final prediction of
next latent state under time step size ∆t is ẑt+∆t.

B. Meta-World Task Dynamics Visualizations.
To illustrate the diversity and key differences in dynamics across control tasks in our experiments, we present additional
visualizations of different Meta-World tasks. Figure 9 and Figure 10 show sequences of renderings from the task initialization
to the task completion (from left to right) of different control tasks.

C. Additional results for ablation study of ∆t sampling strategies.
In this section, we provide additional results for the ablation study on the impact of ∆t sampling strategy on the TAWM’s
performance and efficiency. Specifically, we trained the same TAWM over the same range of ∆t values using two different
sampling strategies: (1) Log-Uniform(1ms, 50ms) and (2) Uniform(1ms, 50ms). The performance of TAWMs trained with
different ∆t sampling strategies, along with the non-time-aware baselines, is shown in Figure 8.

Figure 8 shows that while our time-aware models trained with the uniform sampling strategy generally perform better
across most environments – and significantly outperform at low sampling rates (inference ∆t ≥ 30ms) – they exhibit
lower success rates at smaller inference ∆t in certain environments, such as Meta-World Lever-Pull. Regardless of the ∆t
sampling strategy, TAWMs consistently outperform the non-time-aware baselines. Therefore, our time-aware model can
be efficiently and effectively trained with any reasonable sampling strategy and is not restricted to either log-uniform
or uniform sampling.
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Figure 8. Ablation Study on ∆t Sampling Strategy. We trained our TAWM models with log-uniform and uniform sampling strategies,
both of which use the RK4 integration method. The baseline method was trained using only default time step (∆t = 2.5ms), which is
signified with the black dashed lines. The x-axis corresponds to the evaluation ∆t, and the y-axis corresponds to the success rate. Means
and 95% confidence intervals are computed over 3 seeds, each evaluated for 10 episodes.
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Figure 9. Visualizations of the Meta-World control tasks. From top to bottom: (1) Assembly, (2) Basketball, (3) Box Close, (4) Faucet
Open, (5) Hammer. From left to right: sequences of renderings from task initialization to completion.
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Figure 10. Visualizations of the Meta-World control tasks. From top to bottom: (6) Handle Pull, (7) Lever Pull, (8) Pick Out Of Hole,
(9) Sweep Into. From left to right: sequences of renderings from task initialization to completion.
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Developing a more adaptive and optimal ∆t sampling strategy tailored to specific objectives and scenarios is a promising
direction for future work – particularly to achieve strong performance across both small and large ∆t values and to accelerate
convergence rates. In the meantime, TAWM with either log-uniform or uniform sampling strategy has demonstrated practical
effectiveness, as shown by our experimental results.

D. Comparisons with Multi Time Scale World Model (MTS3).
As mentioned in Section 2, Multi Time Scale World Model (MTS3) (Shaj Kumar et al., 2023) is a closely related work
sharing the high-level motivation with our work: to model the world dynamics at multiple temporal levels. Specifically,
MTS3 proposes a probabilistic approach to jointly learn the world dynamics at two temporal abstractions: task level (slow
dynamics/timescale) and state level (fast dynamics/timescale). These 2 timescales are separately learned by two state space
models (SSMs): SSMfast and SSMslow, where SSMfast learns the dynamics evolving at original small timestep ∆t of
the dynamical systems and SSMfast learn the slow dynamics evolving at H∆t. Although this approach also explicitly
considered different temporal abstraction levels in learning the world dynamics, there are several critical differences between
MTS3 compared to our work:

1. Models vs Training method: (Shaj Kumar et al., 2023) proposes a model architecture to learn a world model with
several discrete temporal abstraction levels. On the other hand, we proposed a simple yet effective and efficient
time-aware training method that can be employed to train any world model architecture.

2. Discrete vs continous timescales: The original MTS3 currently only handle only 2 timescales: ∆t and H∆t, where
both ∆t and H is fixed in the training process. Although the MTS3 can be adapted to learn multiple timescales, the
number of timescales is limited to a discrete value. Furthermore, the SSMslow (slow dynamic model) does not directly
model state transition under large temporal gap ∆t (or low observation rate) but rather learns the task latents to guide
SSMfast to long-horizon predictions. On the other hand, our time-aware approach can directly predict the future
states st+∆t under large ∆t.

3. Multi-step vs one-step prediction: MTS3 considers the future prediction under large ∆t as a long-horizon prediction
problem. Specifically, to predict st+∆t, MTS3 discretizes the long temporal gap into several smaller timesteps:
∆t = M∆tfast, where ∆tfast is the original timestep size SSMfast is trained with and M ∈ N+. MTS3 then
iteratively applies the model M times to predict st+∆t. This timestep discretization approach has 2 critical limitations:
(1) MTS3 cannot model state transitions under ∆t that is not divisible by ∆tfast and (2) multi-step predictions are
vulnerable to compounding errors, a well-known problem in long-horizon modeling. On the other hand, our model can
directly predict the next state with a one-step prediction, effectively alleviating the compounding error problem.

4. Inference efficiency: Another disadvantage of multi-step prediction is inference inefficiency. In contrast, our time-
aware model can efficiently predict long-term future states without sacrificing computational efficiency by using
one-step prediction.

5. Prediction-only vs Control: As acknowledged by (Shaj Kumar et al., 2023), the original MTS3 is strictly a prediction
model. On the contrary, our time-aware model can be used efficiently with a planner to solve control problems.

We conduct empirical comparisons between MTS3 and our proposed time-aware model on the control problem, extending
beyond the prediction-only scope in MTS3. First, MTS3 is trained with offline data consisting of 4× 106 (4M transitions)
collected from random trajectories (10%), partially-trained policy’s trajectories (20%), and fully-trained expert policy
trajectories (80%). Since MTS3 is strictly prediction-focused and is not designed for controls, we combined MTS3 with
MPPI planners and our world model’s trained value and reward functions. Implementation-wise, we replaced our dynamic
model with MTS3 and kept all other components unchanged, including the planner (MPPI), learned value function, and
learned reward function. This design ensures a fair comparison between the models, as any performance gap is attributed
solely to the difference between MTS3 and our dynamic model.

We kept the default hyperparameter settings as in the original MTS3 paper and codebase while varying the slow dynamics
H to investigate the impacts of H on MTS3’s performance. The authors of MTS3 suggested that using H =

√
T , which is√

99 ≈ 10 in our experiments on Meta-World environments. We chose H = 11 to divide the episodes into equal-length
local SSM windows. The MTS3 inference stepping are adjusted such that when evaluated on ∆teval > ∆ttrain, the model
is applied ∆teval/∆ttrain times (∆ttrain is the fast time step between SSMfast’s observations).
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E. Additional performance comparisons between TAWM and baseline models
In this section, we provide additional performance comparisons between TAWM and baseline models across varying
inference ∆t values, as shown in Figure 11. On each task, both TAWM variants (using RK4 and Euler integration methods)
were trained for 1.5 million steps, with ∆t values sampled from a Log-Uniform(1ms, 50ms) distribution during training. In
contrast, the baseline models were trained solely on a fixed default time step of ∆t = 2.5ms. For these baselines, we use
the pretrained weights provided by the original TD-MPC2 paper (Hansen et al., 2024) for each corresponding task.
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Figure 11. Performance comparisons for 6 additional tasks from Meta-World tasks. The x-axis corresponds to the evaluation ∆t
(in ms), and the y-axis corresponds to success rate. We trained our TAWM model using either RK4 or Euler integration method with
log-uniform sampling strategy. The baseline method was trained using only the default time step (∆t = 2.5ms), which is signified with
the black dashed lines. For fair comparisons, we extended the baseline method by repeating the same actions for the larger evaluation time
steps than the default one. For instance, when the evaluation ∆t = 5ms, we repeat the same action for 5/2.5 = 2 times. Plots show
mean and 95% confidence intervals over 3 seeds, with 10 evaluation episodes per seed.

F. Additional learning curve comparisons between TAWM and baseline models
In this section, we present additional learning curve results for TAWM and baseline models on various Meta-World control
tasks. Specifically, Figure 12 and Figure 13 show the learning curves of our time-aware models (TAWMs) and the non-
time-aware baseline models (original TD-MPC2), evaluated at different inference ∆t values. Each curve is generated by
evaluating the models at various training steps using a fixed inference ∆t ∈ [1, 50]ms.
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Figure 12. Additional Meta-World tasks: Success Rate Curve under different evaluation time step sizes.
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Figure 13. Additional Meta-World tasks: Success Rate Curve under different evaluation time step sizes.
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G. Additional experiments on PDE control problems.
In this section, we provide detailed descriptions of the PDE control tasks and present additional experiments and analysis of
our TAWM on various PDE control problems in control-gym environments (Zhang et al., 2024).

G.1. PDE Control Problems.

The PDE problems are one-dimensional PDE control problems featuring periodic boundary conditions and spatially
distributed control inputs. The spatial domain is defined as Ω = [0, L] ⊂ R. The continuous field of the PDE is defined as
u(x, t) : Ω×R+ → R, where x, t represent the spatial coordinates in the field and time, respectively. Generally, the PDE in
each control task is defined as:

∂u

∂t
−F

(
∂u

∂x
,
∂2u

∂x2
, ...

)
= a(x, t)

In the equation above, F is a differential operator (linear or non-linear) defined differently for each control task. The specific
formulations of F are carefully described in the next subsection for each environment. a(x, t) is the distributed control
force over the PDE field. a(x, t) is defined as:

a(x, t) =

na−1∑
j=0

Φj(x)aj(t)

The control force is composed of na scalar control inputs aj(t), each influencing a specific subset of the domain Ω through
its corresponding forcing support function Φj(x). Generally, each action introduces external forces/energy to the PDE fields
to control their dynamics and steer them toward the target state. More comprehensive details of the PDE environments are
described in (Zhang et al., 2024). In our experiments, the target state of all PDE control tasks is starget = 0⃗. At each step t,
the reward is computed as the LQ-error between the current state st and the target state starget:

rt = J(at) = −E
[
(st − starget)

⊤Q(st − starget) + a⊤t Rat
]

G.2. Burgers’ Equation.

Figure 14. Visualizations of systems dynamics of uncontrolled Burgers PDE. The spatial domain has length L = 1 with the diffusivity
(viscosity) parameter ν = 10−3. The initial state is u(x, t = 0) = sech(10x− 5).

Burgers’ equation is a simplified PDE that captures the essential dynamics of fluid waves and gas dynamics. The visualization
of the Burgers’ Equation is shown in Figure 14. The field velocity u(x, t) in Burgers’ equation is defined as:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= a(x, t)

where ν > 0 is the diffusivity (viscosity) parameter, and a(x, t) is a source term modeling an external force acting on the
PDE system at coordinate x and time t.

20



Time-Aware World Model

Figure 15. Visualizations of systems dynamics of uncontrolled Allen-Cahn PDE. The spatial domain has length L = 2 with the diffusivity
(viscosity) parameter ν = 10−4 and potential constant V = 5.0. The initial state is u(x, t = 0) = (x− 1)2 · cos(π(x− 1)).

G.3. Allen-Cahn Equation.

In material sciences, the Allen-Cahn PDE is a non-linear PDE used to model the binary alloy systems’ phase separation.
The visualization of the Allen-Cahn equation is shown in Figure 15. The temporal dynamics of field u(x, t) is:

∂u

∂t
− ν2

∂2u

∂x2
+ V · (u3 − u) = a(x, t)

where u = ±1 indicates the presence of each phase, ν > 0 is the diffusivity/viscosity parameter, V is the potential constant,
and a(x, t) is a source term modeling an external force acting on the PDE system at coordinate x and time t.

G.4. Wave Equation.

Figure 16. Visualizations of systems dynamics of uncontrolled Wave PDE. The spatial domain has length L = 1 with c = 0.1. The initial
state is u(x, t = 0) = sech(10x− 5) and ψ(x, t = 0) = 0.

The wave equation is a second-order linear PDE describing the spatial propagation of waves in homogeneous mediums.
Such wave propagation PDE has many important applications in physics and engineering problems. The visualization of
Wave PDE is shown in Figure 16. The scalar quantity u(x, t) has wave-propagation dynamics defined as:

∂2u

∂t2
− c2

∂2u

∂x2
= a(x, t)

where c is spatial wave speed, and a(x, t) is a source term of a force acting on the system at coordinate x and time t.
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G.5. Additional learning curve comparisons on PDE control tasks.

We present additional learning curves on PDE control tasks to provide insights into TAWM training efficiency on these tasks.
Due to the small simulation time step required for stable simulation in PDE-Burgers (∆tsim = 10−3 seconds), training on
this task takes longer in wall-clock time. Therefore, we trained TAWM for only 750k steps on PDE-Burgers. The learning
curves of TAWM and the baseline under different observation ∆t values are shown in Figure 17. For each model and
environment, the same set of intermediate weights is used for evaluation at each training step.
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Figure 17. PDE control tasks: Average Negative LQ Error learning curves under different evaluation time step sizes. The default
time step size are ∆t = 50ms/10ms/100ms for PDE-Burgers, PDE-Allen-Cahn, PDE-Wave, respectively.
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H. Proofs
In this section, we present the proofs of Lemma 4.1 and Lemma 4.2 from the theoretical analysis of TAWM’s sample
efficiency in Section 4.3.

H.1. Proof of Lemma 4.1

Proof. According to the definitions of the true dynamics function f̄ and the optimal learned dynamics function d∗, we have

zt+∆t − zt = f̄(zt, at,∆t)∆t = d∗(zt, at,∆t) τ(∆t)

⇒ f̄(zt, at,∆t) = d∗(zt, at,∆t)
τ(∆t)

∆t
.

(5)

Since we are considering scenarios where the environment dynamics can be captured with ∆t̄, the following holds:

||d∗(zt, at,∆t) · τ(∆t)

∆t
− d∗(zt, at,∆t̄) · τ(∆t̄)

∆t̄
|| < ϵ

⇒ ||d∗(zt, at,∆t)− d∗(zt, at,∆t̄) · ∆t

τ(∆t)
· τ(∆t̄)

∆t̄
|| < ϵ · ∆t

τ(∆t)
.

(6)

Given the sampling-frequency assumption in Section 4.3 (∆t ∈ [0.001, 1.0]) and the definition of τ(·), we observe that
∆t

τ(∆t) < 1. Consequently, Lemma 4.1 holds.

H.2. Proof of Lemma 4.2

Proof. Under Assumption 3 in Section 4.3, the following holds for our current dynamics model d:

||d(zt, at,∆t)− d(zt, at,∆t̄) · ∆t

τ(∆t)
· τ(∆t̄)

∆t̄
|| < ϵ. (7)

If we denote I(∆t) = ∆t
τ(∆t) ·

τ(∆t̄)
∆t̄ , then the following holds:

||d(zt, at,∆t)− d∗(zt, at,∆t)||
= ||d(zt, at,∆t)− d(zt, at,∆t̄) · I(∆t) + d(zt, at,∆t̄) · I(∆t)

− d∗(zt, at,∆t) + d∗(zt, at,∆t̄) · I(∆t)− d∗(zt, at,∆t̄) · I(∆t)||
≤ ||d(zt, at,∆t)− d(zt, at,∆t̄) · I(∆t)||

+ ||d∗(zt, at,∆t)− d∗(zt, at,∆t̄) · I(∆t)||
+ ||d(zt, at,∆t̄)− d∗(zt, at,∆t̄)|| · I(∆t)

= 2ϵ+ ||d(zt, at,∆t̄)− d∗(zt, at,∆t̄)|| · I(∆t).

(8)

Likewise, the modeling error at time step ∆t is upper bounded by the error at ∆t̄. Therefore, by minimizing the error at ∆t̄,
we expect that the error at the smaller time step would safely decrease as well.
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