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ABSTRACT

In this work, we cast text summarization as a sequence-to-sequence problem and
apply the attentional encoder-decoder RNN that has been shown to be successful
for Machine Translation (Bahdanau et al. (2014)). Our experiments show that
the proposed architecture significantly outperforms the state-of-the art model of
Rush et al. (2015) on the Gigaword dataset without any additional tuning. We
also propose additional extensions to the standard architecture, which we show
contribute to further improvement in performance.

1 INTRODUCTION AND RELATED WORK

Deep learning based sequence-to-sequence models have been successful in many problems such as
machine translation (Bahdanau et al. (2014)), speech recognition (Bahdanau et al. (2015)) and video
captioning (Venugopalan et al. (2015)). In this work, we focus on the task of text summarization,
which can also be naturally thought of as mapping an input sequence of words in a source document
to a target sequence of words called summary. In the framework of sequence-to-sequence models, a
very relevant model to our task is the attentional RNN encoder-decoder model proposed in Bahdanau
et al. (2014), which has produced state-of-the-art performance in machine translation (MT). Since
MT is also a task that maps one word-sequence to another, the attentional RNN encoder-decoder is
a natural candidate for summarization too.

Despite the similarities, there are some key differences between summarization and machine trans-
lation. In summarization, the target (summary) is typically very short and does not depend very
much on the length of the source (document). Additionally, a key challenge in summarization is to
optimally compress the original document in a lossy manner such that the key concepts in the origi-
nal document are preserved, unlike in MT, where the translation is expected to be loss-less. Hence,
it remains to be tested whether the models that succeeded in machine translation would perform
equally well here. In this work, we aim to answer precisely this question.

A vast majority of the past work in summarization has been extractive, which consists of identifying
key sentences or passages in the source and reproducing them as summary (Erkan & Radev (2004)).
There has also been some work on abstractive summarization using traditional machine translation
based models (Banko et al. (2000)). In the framework of deep learning, the closest to our model
is the recent work of Rush et al. (2015), in which, the authors use convolutional models to encode
the source and a context-sensitive attentional feed-forward neural network to generate the summary,
and they produced state-of-the-art results on the Gigaword and DUC datasets. For a more thorough
comparison of past work, please refer to the aforementioned work.

2 MODELS, EXPERIMENTS AND RESULTS

In this work, we used the annotated Gigaword corpus as described in Rush et al. (2015). We used
the scripts made available by the authors of this work1 to preprocess the data, which resulted in
about 3.8M training examples. We also made small modifications to the script to extract not only
the tokenized words, but also system-generated parts-of-speech tags and named-entity tags. For our
system, we used Kyunghyun Cho’s Theano code 2 as the starting point.

1https://github.com/facebook/NAMAS
2https://github.com/kyunghyuncho/dl4mt-material
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Training: For all the models we discuss below, we used 100-dimension word-embeddings pre-
trained by the word2vec algorithm (Mikolov et al. (2013)) on a separate dataset comprising news
stories, and we allowed the embeddings to be updated during training. The encoder consists of a
bidirectional GRU-RNN (Chung et al. (2014)), each with a hidden state dimension of 200. The
decoder consists of a uni-directional GRU-RNN with the same hidden-state size, an attention mech-
anism over the source-hidden states and a soft-max layer over target vocabulary to generate words.
We kept the source and target vocabularies separate for computational efficiency, since the target
vocabulary is much smaller. When we used only the first sentence of the document as the source, as
done in Rush et al. (2015), the encoder vocabulary size was 119,505 and that of the decoder stood
at 68,885. We used Adadelta (Zeiler (2012)) for training, with an initial learning rate of 0.001. We
used a batch-size of 50 and randomly shuffled the training data at every epoch, while sorting every
10 batches according to their lengths to speed up training. We did not use any dropout or regulariza-
tion, but we applied gradient clipping. We used early stopping based on the validation set and used
the best model on the validation set to report all performance numbers. Other than this, we did not
do any task specific fine-tuning.

Decoding and evaluation: At decode-time, we used beam search of size 5 to generate the summary,
and limit the size of summary to a maximum of 30 words, since this is the maximum size we noticed
in the sampled validation set. We report F1-scores from the full-length version of Rouge-1, Rouge-2
and Rouge-L using the official evaluation script 3, as well as the percentage of tokens in the system
summary that occur in the source (which we call ‘src. copy rate’ in Table 1), on a randomly sampled
subset of 2,000 examples from the unfiltered validation set.4 Similar to Rush et al. (2015), we also
compare the performance of our best performing model on a randomly sampled subset of 2,000
examples from the test set (which is not identical to their sample). In the rest of the section, we
describe various models we considered and report their performance.

Model #1: words-1sent: In our first encoder-decoder model, we used only the first sentence of the
document as the source. The training time for this model on a single gpu was 13 hours per epoch,
with convergence reaching in 19 epochs. We report the performance of this model on both validation
and test sets in Table 1, in rows #1 and #9.

Model #2: words-lvt2k-1sent: In this variant, we use the large vocabulary trick (LVT) described in
Jean et al. (2014). In our experiments, we restricted the decoder-vocabulary of each batch to words
in the source documents of that batch and added the most frequent words in the target dictionary on
top of these, until the vocabulary size reached a fixed size (we found 2,000 to be good enough in our
validation experiments). We call this the LVT-vocabulary. The results show that this model achieves
similar Rouge numbers as Model # 1, but not surprisingly, relies more on the source vocabulary as
indicated in the last column of Table 1 . In the rest of the models described below, we persist with
this trick because it cuts down the training time per epoch by nearly three times, and makes this and
all subsequent models converge in only 50%-75% of the epochs needed for Model #1.

Models #3 and #4: words-lvt2k-(2|5)sent: These models are exactly same as Model #2, except for
that they are trained on the first 2 and 5 sentences of the source document respectively. The table
shows that the model trained on 2 sentences improves over the one trained on 1 sentence (Model #2)
while the one trained on 5 sentences is not as good as the one trained on two. We therefore fixed
the source length at 2 sentences for subsequent models. It is worth mentioning these models seem
to borrow more words from the source than the previous models as indicated by the last column of
the table, but this can be attributed to increase in source vocabulary size from using more sentences.

Model #5: words-lvt2k-2sent-hier: Since we used two sentences from source document, we imple-
mented a hierarchical encoder with a second bi-directional RNN layer running at the sentence-level
as described in Li et al. (2015), while retaining a single layer decoder with its attention operating
over the top layer of the encoder. Unfortunately, this model did not produce any performance gains.
As shown in the last column, this model relies somewhat too less on the source-vocabulary, perhaps
owing to the coarser attention over sentence-level representations of the source.

Model #6: feats-lvt2k-2sent: Here, we exploit the parts-of-speech and named-entity tags in the
annotated gigaword corpus to augment the input embeddings on the source side. For each tag-type,

3http://www.berouge.com/Pages/default.aspx
4The preprocessing script also produces a filtered validation set that is less noisy than the unfiltered set and

is closer to the distribution of the training set, but we do not report numbers on it.
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# Model name Rouge-1 Rouge-2 Rouge-L Src. copy rate (%)
Full-length F1 on validation set

1 words-1sent 34.84 18.03 32.78 73.65
2 words-lvt2k-1sent 34.38 17.53 32.21 82.03
3 words-lvt2k-2sent 34.64 17.96 32.63 87.26
4 words-lvt2k-5sent 34.50 17.81 32.65 90.62
5 words-lvt2k-2sent-hier 30.71 13.25 28.70 63.69
6 feats-lvt2k-2sent 35.25 17.66 32.91 79.77
7 words-lvt2k-2sent-exp 34.99 18.19 32.99 75.76
8 feats-lvt2k-2sent-exp 35.25 17.98 33.18 76.85

Full length F1 on test set
9 Our baseline model (Model #1) 35.02 17.71 32.53 76.75

10 Our best model (Model #8) 35.30 17.58 32.88 77.11
Full length Recall-only on test set

11 SOTA (Rush et al. (2015)) 31.00 12.65 28.34 91.50
12 Our baseline model (Model #1) 37.52 18.97 34.90 76.75
13 Our best model (Model #8) 37.31 18.44 34.81 77.11

Table 1: Performance comparison of various models. Please refer to Section 2 for explanation of notation.

we create an additional look-up table of embeddings corresponding to its own vocabulary, and for
each token in the source we concatenate the embeddings of all its tags into a single vector. We repeat
the process for also tf and idf weights of each token which we convert into one-hot representations
by discretizing the real-values into one of 50 buckets each. In total, our embedding vector grew from
the original 100 to 155. This simple extension has produced noticeable performance gain compared
to its counterpart Model #3 as shown in Table 1 , demonstrating the utility of syntax based features
in this task. This model also has the additional advantage of lower reliance on source vocabulary,
indicating better abstractive ability.

Models #7 and #8: (words|feats)-lvt2k-2sent-exp: In these models, we use the corresponding
(words|features)-lvt2k models, but augment the LVT-vocabulary with 1-nearest-neighbors of all
words in the source document as measured by cosine similarity in the learned embeddings space.
We do this before topping off the LVT-vocabulary with the most frequent words from the target
dictionary, and make sure that the LVT-vocabulary size is still maintained at 2,000. The results in
the table show that both models improve performance over their unexpanded counterparts on Rouge
metrics as well as on source vocabulary reliance, with Model #8 emerging as the overall best system
on two out of three Rouge metrics, and Model #7 taking the honors on Rouge-2.

Test set performance and comparison with state-of-the-art: On test set, we see the same trend as
in validation, where Model #8 outperforms Model #1 on two Rouge metrics, as shown in rows #9
and #10. The work of Rush et al. (2015), reported recall-only from full-length version of Rouge.5 In
this metric, performance depends on the maximum allowed length of the system summary.6 In our
work, we used a maximum length of 30 as specified earlier, and we found that the average system
summary length from all our models (7.8 to 8.3) agrees very closely with that of the ground truth on
the validation set (about 8.7 words), without any specific tuning. We report the full length Recall-
only numbers of our Models #1 and #8 in rows #12 and #13 in Table 1. On this metric, contrary to
F1, our baseline Model #1 outperforms Model #8, as the former is more recall oriented. We believe
this can be adjusted by fine-tuning the maximum length criterion of the decoder, which we did not
do for this work. More importantly, both models significantly outperform the state of the art model
of Rush et al. (2015), displayed in row #11.

3 CONCLUSION

Due to space constraints, we are unable to display representative summaries from our models, but
we notice that even when they do not coincide with gold summaries, they are surprisingly good and
would easily pass muster for a human generated summary in most cases. Our results strongly demon-
strate that the sequence-to-sequence models are extremely promising for summarization. Some of
the other lessons we learned from our experiments are: (i) the LVT-trick is very useful for summa-
rization as it improves training speed while not sacrificing performance; (ii) traditional methods such
as vocabulary expansion and syntax-based features can boost performance of deep learning based
models as well. As part of our future work, we plan to investigate on ways to effectively generating
rare words in the summary, which appears to be a glaring weakness in the existing models.

5based on correspondence with the authors of this work.
6Theoretically, one can achieve a 100% recall on full length Rouge-1 by emitting the entire vocabulary as

summary.
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