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ABSTRACT
The flood of multi-context measurement data from many scientific domains has
created an urgent need to reconstruct context-specific variable networks, that could
significantly simplify network-driven studies. Computationally, this problem can
be formulated as jointly estimating multiple different, but related, sparse Undi-
rected Graphical Models (UGM) from samples aggregated across several con-
texts. Previous joint-UGM studies could not address this challenge since they
mostly focus on Gaussian Graphical Models (GGM) and have used likelihood-
based formulation to infer multiple graphs toward a common pattern. Differently,
we propose a novel approach, SIMULE (learning Shared and Individual parts of
MULtiple graphs Explicitly) to solve multi-task UGM using a `1 constrained op-
timization. SIMULE is cast as independent subproblems of linear programming
that can be solved efficiently. It automatically infers specific dependencies that
are unique to each context as well as shared substructures preserved among all
the contexts. SIMULE can handle both multivariate Gaussian and multivariate
Nonparanormal data that greatly relax the normality assumption. Theoretically
we prove that SIMULE achieves a consistent result at rate O(log(Kp)/ntot) (not
been proved before). On four synthetic datasets, SIMULE shows significant im-
provements over state-of-the-art multi-sGGM and single-UGM baselines. 1

1 INTRODUCTION

In this paper, we consider the problem of jointly estimating K undirected graphical models (UGM)
from K multivariate sample blocks. Each data block contains a different set of data observations,
on the same set of variables. This is motivated by the fact that the past decade has seen a revolution
in collecting large-scale heterogeneous data from many scientific fields like genetics or brain sci-
ence. Given such data, understanding and quantifying variability of variable graphs across multiple
contexts is a fundamental analysis task. This is because, for example, quantifying and analyzing
interaction edges (representing statistical dependencies) between molecules, that are activated only
under a specific context, can predict or help to understand the existence or severity of such a context.
In order to address the above issue, we propose a novel approach that uses a `1 constrained mini-
mization formulation for joint structure learning of multiple sparse GGMs or sNGMs(sparse non-
paranormal Graphical models). We name the method SIMULE (learning Shared and Individual parts
of MULtiple graphs Explicitly).Using a `1 constrained optimization strategy (Section 2), SIMULE
extends CLIME(Cai et al., 2011) to a multi-tasking setting. The learning step is solved efficiently
through a formulation of multiple independent sub-problems of linear programming for which we
also provide a parallel version of the learning algorithm. Compared with previous multi-task sGGM
models, SIMULE can accurately quantify task-specific network variations that are unique for each
task. This also leads to a better generalization and benefits all the involved tasks.

We provide evaluations through both experimental results and theoretical analysis. Theoretically
we prove that SIMULE and its nonparanormal extension NSIMULE achieve a consistent estima-
tion of the target (true) dependency graphs with a high probability at rate O(log(Kp)/ntot). Here
ntot represents the total number of samples from all tasks and K describes the number of tasks.
This proof also theoretically validates the benefit of learning multiple sGGMs jointly, since the
O(log(Kp)/ntot) convergence rate is better than learning multiple single-sGGMs separately whose

1An extended version of the work is currently under review at the ECML-PKDD 2016 journal-track.
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rate is O(log p/ni) respectively. Here ni represents the number of samples of i-th task. Experi-
mentally, we show strong improved performance of SIMULE and NSIMULE over multiple baseline
methods on four synthetic datasets. The proposed methods obtain better AUC and partial AUC
scores on all simulated cases.

2 METHOD

SIMULE: Infer Shared and Individual Parts of Mulltiple sGGM Explicitly: Treating sparse
GGM estimation from each data block as a single task, our main task is to learn multiple sGGMs
over K data blocks or K tasks jointly, which can lead to better generalization and benefit all of the
involved tasks (theoretically proved in Section 2.2). First of all, We model each GGM network as:

Ω(i) = Ω
(i)
I + ΩS , (1)

where ΩS is the shared pattern among all graphs and Ω
(i)
I represents the individual part specific for

the i-th graph.

Secondly, we choose the CLIME estimator to model each sGGM task. Following the idea of joint
estimators of multiple graphical lasso (described in Section 2.1), we sum up multiple CLIME esti-
mators from each task for multi-tasking. This gives us the following novel formulation of SIMULE:

Ω
(i)
I ,ΩS = argmin

Ω
(i)
I ,ΩS

∑
i

|Ω(i)
I |1 +K|ΩS |1 (2)

Subject to: |Σ(i)(Ω
(i)
I + ΩS)− I|∞ ≤ λn, i = 1, . . . ,K

In Section 2.2, we theoretically prove that the estimated Ω(i) from Eq. (1) will be positive definite
and converge to the true precision matrices with a high probability. We also can solve Eq. (2) column
by column without influencing the resulting solution.

Finally, the Eq. (2) is equivalent to a linear programming problem. To solve it, we follow the primal
dual interior method (Boyd & Vandenberghe, 2004) that has also been used in the Dantzig selector
for regression (Candes & Tao, 2007).
Method Variation: nonparanormal SIMULE (NSIMULE) Though sGGM is powerful, its nor-
mality assumption is commonly violated in real applications such as in the biomedical data we try to
analyze in Section 3. The nonparanormal and transelliptical Graphical Models recently proposed by
(Liu et al., 2012) have extended sGGM to new distribution families. Therefore we extend SIMULE
to a novel variation, nonparanormal SIMULE (NSIMULE) that learns to fit multiple nonparanormal
graphical models (NGM) (Liu et al., 2009) jointly. The nonparanormal graphical model (NGM) (Liu
et al., 2009) assumes that data samples follow a multivariate nonparanormal distribution, which is a
strict superset of Gaussian distribution.

2.1 RELATED WORK

The proposed SIMULE extends CLIME (Cai et al., 2011) to a multi-tasking setting. This is different
from most previous methods that estimate multiple sGGMs jointly by following the penalized log-
likelihood formulation. We choose three most relevant studies that also provide runnable software
as our baselines in the experiments: (1) Joint graphical lasso (JGL) (Danaher et al., 2013); (2) Node-
perturbed JGL (Mohan et al., 2013); and (3) Simone (Chiquet et al., 2011). Furthermore, (Han et al.,
2013) proposed to estimate a population graph from multi-block data using a so-called median-
graph idea. It is conceptually similar to the shared part modeled by SIMULE. However, they do not
explicitly model individual parts that are specific to each task. Another recent study CSSL-GGM
(Hara & Washio, 2013) also tried to model both the shared and individual substructures in multi-
sGGMs. Different from ours, their formulation follows the penalized likelihood framework and used
`1,p norm to regularize the task-specific parts, while SIMULE uses `1 norm. The `1,p norm they
used actually pushes the individual parts of multiple graphs to be similar which is contradictory to the
original purpose of these parameters. More recently (Monti et al., 2015) proposed a method to learn
population and subject-specific brain connectivity networks via a so-called Mixed Neighborhood
Selection (MSN) method. Since MSN is specially designed for brain imaging data, it assumes each
individual graph is generated through random effects modeling by latent variables. Our model is
more general while MSN may fit brain imaging data better.

2.2 THEORETICAL ANALYSIS

We theoretically prove that we can achieve a good estimation of target dependency graphs with
the convergence rate O(log(Kp)/ntot) (details are not shown due to space limitation). We also

2



Workshop track - ICLR 2016

prove that the nonparametric assumption would not change this convergence rate. Furthermore, We
provide theoretical proofs for the benefits of multi-tasking sGGM. The convergence rate for each
task is reduced from O(log p/ni) to O(log(Kp)/ntot). Both of these theoretical results haven’t
been investigated by the previous studies.

3 EXPERIMENT

Figure 1: The FPR-TPR curve graph for different methods on four simulated datasets. The upper
two are for Gaussian simulated datasets. The lower two are for nonparanormal datasets. The upper
left and lower left graphs are generated using graph Model 1. The upper right and lower right are
generated using Model 2. Each curve is generated through varying the tuning parameter(s). We can
see that curves from SIMULE and NSIMULE are above all baseline methods (more apparent on two
datasets generated by Model 1).

In this section, we use four simulated datasets to evaluate the proposed methods. Using two network
models2, we first generate two synthetic multivariate Gaussian datasets and two nonparanormal
datasets, in which each model includes K tasks of data samples (We choose K = 2 for simplic-
ity). We compare our model with the baseline methods mentioned in Section 2.1. The edge-level
false positive rate (FPR) and true positive rate (TPR) are used to measure the difference between
the true graphs and the predicted graphs. The FPR vs. TPR curves generated by different methods
are provided in Figure 1. The first row of Figure 1 presents FPR vs. TPR plots from SIMULE,
NSIMULE and the baseline methods on two simulated Gaussian datasets from Model 1 and Model
2. The subfigure “Gaussian-Model1” clearly shows that our methods obtain better under-plot areas
than three multi-sGGM baselines and two single-sGGM baselines. We can also conclude all multi-
task estimators perform better than single-CLIME and single-NCLIME estimators. On the sub-
figure “Gaussian-Model2”, all multi-task estimators perform better than single-CLIME and single-
NCLIME estimators. The differences among various multi-sGGM estimators are not as apparent
as in the subfigure “Gaussian-Model1”. Our methods also outperform baselines on two real-world
datasets (results are not shown due to space limitation).

2Model 1 generates two random sparse graphs. Model 2 provides two structured graphs, i.e., grid and ring.
We choose p = 100, i.e., the dimension of random variables is 100. For each dataset, 500 data samples are
generated randomly. Using either model 1 or model 2, we generate K blocks of data samples with i-th block
following N(0, (Ω(i))−1). Then we apply SIMULE, NSIMULE and baseline models to these datasets to obtain
the estimated dependency networks.
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