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Abstract

Conventional brain encoding analysis using language models that feeds whole hidden states
can be biased toward shallow lexical cues. Here we present a residual-layer disentangling
method that extracts four nearly orthogonal vectors from a language model, respectively
containing information corresponding to lexicon, syntax, meaning, and reasoning. We first
probe the model to locate the layers where each linguistic feature is maximal, then strip
lower-level feature layer-by-layer. Applying bootstrap-ridge encoding to natural-speech
ECoG yields three insights: 1) Our residual pipeline isolates a reasoning embedding with
unique predictive value, possible only because the latest large language models exhibit
emergent reasoning behavior. 2) Apparent high-level predictive performance in conven-
tional analyses is largely attributable to recycled shallow information, rather than genuine
deep processing. 3) The reasoning embedding reveals distinct spatiotemporal brain activa-
tion patterns, including recruitment of frontal and visual regions beyond classical language
areas, suggesting a potential neural substrate for high-level reasoning. Together, our ap-
proach removes shallow bias, aligns distinct transformer strata with brain hierarchies, and
provides the first brain-relevant representation of reasoning.
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1. Introduction

Large language models (LLMs) exhibit strong alignment with human brain activity during
language comprehension, as shown by language encoding models that map LLM hidden
states to neural responses (Wehbe et al., 2014; Huth et al., 2016; de Heer et al., 2017; Jain
and Huth, 2018; Toneva and Wehbe, 2019; Goldstein et al., 2022; Oota et al., 2022; Heilbron
et al., 2022; Chen et al., 2023; Li et al., 2023; Antonello et al., 2023; Aw and Toneva, 2023;
Chen et al., 2024a,b). These models provide a powerful lens into cortical processing, but
most prior work has focused on semantics or low-level phonology (Antonello et al., 2021;
Vaidya et al., 2022; Mischler et al., 2024; Caucheteux and King, 2022), leaving open how
higher-level reasoning aligns across brain and machine. One barrier is historical—robust
reasoning has only recently emerged in LLMs (Ke et al., 2025). Another is methodolog-
ical—standard encoding models treat hidden states as monolithic, without disentangling
lexical, syntactic, semantic, and reasoning features.

Recent evidence (Lampinen et al., 2024) suggests such embeddings are biased toward
simpler, linearly extractable features. This raises the possibility that apparent brain align-
ment largely reflects lexical or syntactic overlap, rather than reasoning.

We address this by introducing residual reasoning embeddings, which isolate the reasoning-
specific variance in LLM representations beyond lexical and semantic content. Using these
embeddings, we predict human electrocorticographic (ECoG) activity during inference tasks.
An overview of our framework is shown in Figure 1. We find that reasoning signals align with
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distinct spatiotemporal neural patterns—later in time and more anterior cortices—whereas
full embeddings remain biased toward low-level features. This disentanglement reveals a
shared computational hierarchy between LLMs and the human brain, offering a new per-
spective on both model interpretability and the neural basis of abstract linguistic reasoning.

2. Methods

Datasets To identify LLM layers specialized for syntactic, meaning, and reasoning fea-
tures, we use established probing datasets. For syntax, we employ the Benchmark of Lin-
guistic Minimal Pairs (BLiMP) (Warstadt et al., 2020), which tests grammatical competence
across 67 controlled paradigms. For meaning and reasoning, we use the Conceptual Minimal
Pair Sentences (COMPS) dataset (Misra et al., 2023), which evaluates concept–property
associations with increasing levels of inference complexity. These datasets allow us to deter-
mine the layers where syntactic, semantic, and reasoning features are most strongly encoded.
Illustrative examples are provided in Appendix A.

Language Model We use the Qwen2.5-14B model, a 14.7B-parameter transformer with
48 layers (Team, 2025). Each layer outputs hidden states of dimension 5120. The model sup-
ports a maximum context length of 131k tokens, though our experiments only use context
sizes of 50 tokens. We use the base model without any instruction tuning or task-specific
fine-tuning, in order to examine the model’s inherent reasoning capability rather than rea-
soning behavior induced by supervised alignment.

Minimal Pair Probing We apply minimal pair probing (He et al., 2024a,b) to identify
the LLM layers most specialized for syntactic, meaning, and reasoning features. Using prob-
ing datasets introduced in Section 2, we train classifiers on layer-wise representations and
determine the saturation layer, i.e., the earliest layer where feature-specific performance sta-
bilizes. The hidden states from these saturation layers are then used to construct syntactic,
meaning, and reasoning embeddings for subsequent brain alignment analysis.

To strengthen this analysis, we additionally validated reasoning probes across multiple
tasks (Appendix E) and extended the probing to a broad range of Qwen models (Ap-
pendix F), confirming both the robustness of our reasoning measure and the generality
of the observed feature emergence order. Full methodological details are provided in Ap-
pendix B and C.

Feature-Specific Embeddings Building on the saturation layers identified in Appendix B,
we construct four embeddings corresponding to lexical, syntactic, meaning, and reasoning
features. Lexical information is taken directly from the input layer, while the other three
are obtained by removing lower-level contributions from higher-layer representations. This
residualization procedure yields feature-specific embeddings aligned with the linguistic hi-
erarchy. Full methodological details, including regression formulations and dataset setup,
are provided in Appendix G.

Encoding Model We assess the neural alignment of our feature-specific embeddings us-
ing the Podcast ECoG dataset (Zada et al., 2025), which provides high-gamma intracranial
recordings from nine participants with a time-aligned transcript. Ridge regression models
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are trained to predict neural responses from lexical, syntactic, meaning, and reasoning em-
beddings, with performance quantified by correlation between predicted and actual signals.
To control for generic acoustic effects, we regress out word-rate features. Full details of
preprocessing, regression setup, variance partitioning, and statistical baselines are provided
in Appendix H.

Hierarchical Variance Partitioning To quantify the unique neural contributions of
lexical, syntactic, meaning, and reasoning features, we perform hierarchical variance par-
titioning. A fixed representational budget ensures comparability across models, and the
unique effect of each feature is estimated by measuring the drop in variance explained when
that feature is removed from the composite model. Full methodological details are provided
in Appendix I.

3. Disentanglement Validation

Mutual Independence Theorem Because linguistic features emerge progressively across
LLM layers (syntax early, meaning in mid layers, reasoning later), the residualization proce-
dure yields embeddings that are approximately orthogonal. Intuitively, later layers already
contain information from earlier ones, so subtracting out lower-level contributions produces
feature-specific embeddings with minimal overlap. We formalize this result in Appendix J.

Mutual Independence via Cosine Similarity We validate that the four feature-
specific embeddings encode distinct information by measuring pairwise cosine similarity.
Figure 2 shows that while raw hidden states at saturation layers exhibit substantial over-
lap (especially between meaning and reasoning), the residual embeddings display near-zero
off-diagonal similarity. This confirms that our residualization procedure disentangles over-
lapping features, yielding orthogonal representations of lexical, syntactic, semantic, and
reasoning information. Full computational details are provided in Appendix K.

Feature Specificity of Residual Embeddings To confirm that our residual embed-
dings capture distinct cognitive features rather than generic complexity, we evaluated each
embedding (syntax, meaning, reasoning) on all probing tasks. This forms a cross-task ma-
trix where each embedding is expected to perform best on its corresponding task. The
results reveal strong diagonal dominance, supporting the specificity of our residualization
pipeline and demonstrating that the residual embeddings meaningfully isolate syntactic,
semantic, and reasoning information. Full results and analyses are reported in Appendix L.

4. Results

Shallow Features Explain More in the Language Encoding. We assessed the vari-
ance explained by each feature-specific embedding when used independently in the encoding
model. Across all subjects, syntactic and lexical features consistently accounted for more
variance than meaning or reasoning. Encoding models built on shallower features achieved
higher peak correlations with neural activity, both at the group and individual level. More-
over, the spatial profile of the full embedding closely resembled that of the syntactic em-
bedding, suggesting that low-level structural information dominates neural predictions. De-
tailed statistics and figures are reported in Appendix M.

3



Extended Abstract Track
Reasoning Embedding Shows Different Spatiotemporal Pattern Compared

to Lexicon, Syntax, and Meaning. We observed clear spatiotemporal distinctions
across linguistic features. Syntactic signals exhibited strong correlations both before and
after word onset, while lexical signals rose sharply shortly after onset. Meaning signals
peaked later, and reasoning signals showed the latest temporal maximum, occurring several
hundred milliseconds after onset. Spatially, reasoning signals emerged weakly in temporal
regions before progressing anteriorly toward frontal areas, whereas syntactic signals showed
widespread alignment across auditory and perisylvian regions throughout the time window.
These results highlight distinct temporal and spatial dynamics for reasoning compared to
shallower features, suggesting that disentanglement enables isolation of reasoning-specific
neural signals. Full statistics and visualizations are provided in Appendix N.

Reasoning Recruits More than Language Areas Compared to Low-level As-
pects. We observed a distinct spatial pattern for reasoning representations across cortical
regions. Within the superior temporal gyrus (STG), reasoning-related activity shifted ante-
riorly, in contrast to the posterior bias of lexical and syntactic features. Moreover, reasoning
uniquely engaged regions outside classical language areas, including frontal and occipital
cortices. These findings suggest that reasoning involves higher-order cognitive regions and
may even recruit visual areas during abstract inference. Full statistical details and regional
breakdowns are provided in Appendix O.

5. Discussion and Conclusion

By disentangling lexical, syntactic, meaning, and reasoning information in LLMs, we re-
vealed distinct neural alignment patterns that are obscured in full embeddings. Lower-level
features such as syntax and lexicon explained more variance and appeared earlier and more
broadly, while reasoning emerged later, localized to anterior and frontal regions. These find-
ings suggest that reasoning in LLMs corresponds to higher-order cortical processes beyond
classical language areas. Our framework thus provides a novel way to map feature-specific
representations in LLMs onto human brain activity, offering new insights into the neural
basis of language and reasoning. Further limitations and directions for future work are
provided in Appendix P.
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itors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/

749a8e6c231831ef7756db230b4359c8-Paper.pdf.

Aditya R Vaidya, Shailee Jain, and Alexander G Huth. Self-supervised models of audio
effectively explain human cortical responses to speech. arXiv preprint arXiv:2205.14252,
2022.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang,
and Samuel R Bowman. Blimp: The benchmark of linguistic minimal pairs for english.
Transactions of the Association for Computational Linguistics, 8:377–392, 2020.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas, and Tom
Mitchell. Simultaneously uncovering the patterns of brain regions involved in different
story reading subprocesses. PloS one, 9(11):e112575, 2014.

6

https://openreview.net/forum?id=aY2nsgE97a
https://openreview.net/forum?id=aY2nsgE97a
https://arxiv.org/abs/2412.15115
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/749a8e6c231831ef7756db230b4359c8-Paper.pdf


Extended Abstract Track
Brain-Predictive Reasoning Embedding through Residual Disentanglement

Zaid Zada, Samuel A Nastase, Bobbi Aubrey, Itamar Jalon, Sebastian Michelmann,
Haocheng Wang, Liat Hasenfratz, Werner Doyle, Daniel Friedman, Patricia Dugan,
Lucia Melloni, Sasha Devore, Adeen Flinker, Orrin Devinsky, Ariel Goldstein, and
Uri Hasson. The “podcast” ecog dataset for modeling neural activity during natu-
ral language comprehension. bioRxiv, 2025. doi: 10.1101/2025.02.14.638352. URL
https://doi.org/10.1101/2025.02.14.638352.

Appendix A. Dataset Examples

Dataset for syntactic probing. To construct feature-specific representations for brain
alignment, we first need to identify the LLM layers most specialized for encoding syntactic,
meaning, and reasoning features. For syntactic encoding, we use the Benchmark of Linguis-
tic Minimal Pairs (BLiMP) (Warstadt et al., 2020). BLiMP evaluates syntactic knowledge
through controlled minimal pairs that differ in grammaticality. By training a classifier to
distinguish acceptable from unacceptable sentences based on hidden states at each layer of
the LLM, we detect where syntactic competence emerges and peaks. For instance, in a task
targeting subject–verb agreement:

a. The cats annoy Tim. (Correct)

b. The cats annoys Tim. (Incorrect)

We apply this diagnostic probing setup across all 67 syntactic paradigms in BLiMP,
averaging classifier performance to determine the saturation layer, where syntactic features
are stably encoded.

Dataset for meaning and reasoning probing. For meaning and reasoning encoding,
we use the Conceptual Minimal Pair Sentences (COMPS) dataset (Misra et al., 2023).
Sentence pairs in COMPS differ in whether the subject plausibly inherits a property. By
probing whether each layer favors the correct concept–property association, we detect the
layers where meaning and reasoning abilities peak.

COMPS-BASE evaluates surface-level understanding without requiring inference. For
example, given the property “can heat food”:

a. An oven can heat food. (Correct)

b. A refrigerator can heat food. (Incorrect)

COMPS-WUGS-DIST increases reasoning complexity by replacing known concepts with
nonsense words (e.g., “wug”, “dax”) and inserting distractor sentences that introduce in-
terference. This design prevents the model from relying on surface-level co-occurrence or
positional cues: distractors can be reordered. The model must infer the identity of the
nonsense word from context to generalize property inheritance:

a. A wug is an oven. A dax is a refrigerator. Therefore, a wug can heat food. (Correct)

b. A wug is an oven. A dax is a refrigerator. Therefore, a dax can heat food. (Incorrect)
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Figure 1: a) Hierarchical representations in an LLM. Transformer layers accumulate in-
formation in order: lexical features emerge first, followed by syntax, contextual
meaning, and eventually higher-order reasoning, with still-richer knowledge con-
tinuing in later layers. b) Minimal-pair probing tasks. Three diagnostic sentence
sets separately test syntax, concept meaning, and multi-premise reasoning. c)
Layer localization from probing curves. We define Ls – the earliest layer where
syntax performance saturates while meaning is still low; Lm – layer where mean-
ing saturates but reasoning has not yet emerged; and Lr – layer where reasoning
performance plateaus. These identified layers through probing are used in later
analyses. d) Feature disentangling across layers. Starting from the localized lay-
ers, we iteratively regress lower-level features out of higher ones. Details of resid-
ual embedding constructions are in Algorithm 1. Residual disentangling yields
four orthogonal embeddings that isolate lexicon, syntax, meaning, and reasoning
information. e) Brain encoding with purified features. Each residual feature is
fed into a ridge encoder to predict high-gamma ECoG responses during podcast
listening. Comparing predicted and actual neural signals reveals the spatiotem-
poral distribution of cortical activity uniquely associated with lexicon, syntax,
meaning, and reasoning representations.

Appendix B. Minimal Pair Probing Details

For each probing dataset, we extract sentence representations from each LLM layer by
feeding the sentence in isolation and taking the hidden state of its final token. These
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representations are used to train a logistic regression classifier to predict the correct item
in each minimal pair. Model performance at a given layer is measured by the normalized
F1 score of this classifier.

Formally, let Hl ∈ Rn×d denote the matrix of sentence embeddings at layer l, where each
row corresponds to the final-token hidden state of one sentence in the minimal pair dataset.
To determine the most specialized layer for a given feature, we define the saturation layer
as the earliest layer where performance plateaus:

Lx := min
{
l | ∀l′ > l, FDx

1 (Hl′)− FDx
1 (Hl) < ε

}
, x ∈ {s,m, r},

whereDs = BLiMP, Dm = COMPS-BASE, andDr = COMPS-WUGS+COMPS-WUGS-DIST.
Here, ε is a small threshold representing tolerance for marginal improvement.

The hidden states at the identified saturation layers—denoted Hs := HLs , Hm := HLm ,
and Hr := HLr—are used to construct feature-specific embeddings in the next stage of our
analysis.

Appendix C. Probing Task Filtering

We employ a Bag-of-Words (BoW) baseline and exclude tasks where the BoW model
achieves an accuracy above 0.6, resulting in a final set of 29 BLiMP tasks (out of 67).
The conceptual (COMPS-BASE) and reasoning (COMPS-WUGS-DIST) tasks remain un-
changed.

This filtering step is motivated by the fact that BoW readily captures tasks solvable
via simple lexical cues, indicating a shallow design. By removing these superficially “easy”
tasks, we ensure that the retained tasks demand genuine syntactic or semantic understand-
ing rather than mere lexicon-based heuristics.

Appendix D. Probing Results of More Models

In addition to Qwen2.5-14B, we also evaluated Qwen1.5, Qwen2, and Qwen3 models.

Appendix E. Cross-Validation of Reasoning Probes

In the main text, reasoning saturation layers were primarily identified using COMPS-
WUGS-DIST. To assess robustness across tasks of varying complexity, we incorporated
additional reasoning probes: a 5-hop deductive reasoning task from ProntoQA and the
WinoGrande benchmark.

We applied COMPS-WUGS-DIST, ProntoQA, and WinoGrande to 17 Qwen models
of varying sizes and training modes. The results demonstrate strong consistency across
the three tasks. Specifically, the average difference in reasoning saturation layers between
COMPS-WUGS-DIST and ProntoQA was only 0.94, and between COMPS-WUGS-DIST
and WinoGrande was 0.53. This small divergence, relative to overall model depth (25–49
layers), supports the robustness of our reasoning probe.
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Reasoning Saturation Layer Results. Table 1 presents the layer positions identified
by the three tasks across all models. The high degree of agreement confirms that reasoning-
related saturation is reliably detected across different reasoning formats, from property
inheritance to multi-step deduction and commonsense coreference.

Table 1: Reasoning saturation layer identified by different probes across Qwen models.

Model ProntoQA COMPS-WUGS-DIST WinoGrande

Qwen-1.8B 13 14 14
Qwen-7B 13 15 16
Qwen-14B 18 20 20
Qwen1.5-1.8B 13 14 14
Qwen1.5-7B 14 16 16
Qwen1.5-14B 20 20 22
Qwen2-1.5B 17 17 17
Qwen2-7B 16 18 19
Qwen2.5-1.5B 16 18 17
Qwen2.5-7B 16 19 19
Qwen2.5-14B 28 28 29
Qwen3-1.7B (thinking-off) 19 19 19
Qwen3-8B (thinking-off) 23 23 23
Qwen3-14B (thinking-off) 27 27 26
Qwen3-1.7B (thinking-on) 16 16 16
Qwen3-8B (thinking-on) 20 20 21
Qwen3-14B (thinking-on) 20 21 22

Summary. These findings confirm that our framework’s reasoning probe is not lim-
ited to COMPS but generalizes across reasoning tasks. The consistency across COMPS-
WUGS-DIST, ProntoQA, and WinoGrande strengthens confidence in our identification of
reasoning-specific saturation layers.

Appendix F. Probing Across Qwen Model Families

In the main text, we primarily used Qwen2.5-14B. To assess generality across architectures
and sizes, we extended our probing pipeline to 17 models across the Qwen family, including
base, v1.5, v2, v2.5, and v3 models with and without ”thinking mode.”

F.1. Consistent Emergence Order.

Across nearly all models, we observed the same progression of feature emergence: syntax
saturates earliest, followed by meaning, and then reasoning. The only exception was Qwen-
1.8B, where syntax and meaning saturated at the same layer. Table 2 reports the saturation
layers identified for all models.
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Table 2: Saturation layers for syntax, meaning, and reasoning across Qwen models.

Model Syntax Meaning Reasoning

Qwen-1.8B 11 11 14
Qwen-7B 11 13 15
Qwen-14B 9 16 20
Qwen1.5-1.8B 10 11 14
Qwen1.5-7B 9 13 16
Qwen1.5-14B 8 16 20
Qwen2-1.5B 10 14 17
Qwen2-7B 7 14 18
Qwen2.5-1.5B 7 14 18
Qwen2.5-7B 7 15 19
Qwen2.5-14B 6 20 28
Qwen3-1.7B (thinking-off) 9 16 19
Qwen3-8B (thinking-off) 7 20 23
Qwen3-14B (thinking-off) 5 17 27
Qwen3-1.7B (thinking-on) 5 13 16
Qwen3-8B (thinking-on) 6 13 20
Qwen3-14B (thinking-on) 4 14 21

F.2. Relative Depth Analysis.

To compare models with different depths, we define the relative depth of a feature as the
fraction of total layers between its saturation point and that of the preceding feature:

Depthx =
Lx − Lprev

n
, x ∈ {s,m, r},

where n is the number of layers in the model. Table 3 reports these values for 14B-scale
models.

Table 3: Relative depth of features in 14B-scale Qwen models.

Model Syntax Depth Meaning Depth Reasoning Depth

Qwen-14B 0.225 0.175 0.10
Qwen1.5-14B 0.20 0.20 0.10
Qwen2.5-14B 0.125 0.291 0.167
Qwen3-14B (thinking-off) 0.125 0.300 0.250
Qwen3-14B (thinking-on) 0.100 0.250 0.175

Summary. We observe a clear trend across model generations: newer Qwen models devote
proportionally fewer layers to syntax and more to meaning and reasoning. This suggests
that as model capabilities improve, shallow linguistic features are encoded more efficiently,
freeing up representational capacity for higher-level semantics and reasoning.
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F.3. Reasoning Performance Results

In addition to probing saturation layers, we evaluated how well different Qwen models
perform on reasoning tasks. We tested three benchmarks—ProntoQA (multi-hop deduc-
tive reasoning), COMPS-WUGS-DIST (property inheritance with distractors), and Wino-
Grande (commonsense coreference). Table 4 reports accuracy on each benchmark, along
with the average across tasks.

Table 4: Reasoning task performance across Qwen models. The Average column reports
the mean accuracy across ProntoQA, COMPS-WUGS-DIST, and WinoGrande.

Model ProntoQA COMPS-WUGS-DIST WinoGrande Average

Qwen-1.8B 0.797 0.522 0.523 0.614
Qwen-7B 0.886 0.641 0.602 0.710
Qwen-14B 0.880 0.695 0.647 0.741
Qwen1.5-1.8B 0.792 0.513 0.523 0.609
Qwen1.5-7B 0.848 0.667 0.603 0.706
Qwen1.5-14B 0.910 0.670 0.653 0.744
Qwen2-1.5B 0.784 0.586 0.552 0.640
Qwen2-7B 0.851 0.636 0.660 0.716
Qwen2.5-1.5B 0.783 0.605 0.566 0.651
Qwen2.5-7B 0.879 0.673 0.664 0.739
Qwen2.5-14B 0.922 0.691 0.698 0.770
Qwen3-1.7B (thinking-off) 0.739 0.500 0.530 0.589
Qwen3-8B (thinking-off) 0.876 0.629 0.651 0.719
Qwen3-14B (thinking-off) 0.912 0.716 0.670 0.766
Qwen3-1.7B (thinking-on) 0.836 0.575 0.562 0.658
Qwen3-8B (thinking-on) 0.972 0.623 0.671 0.755
Qwen3-14B (thinking-on) 0.981 0.674 0.694 0.783

Summary. We find consistent improvements in reasoning performance with larger and
newer Qwen generations. In particular, Qwen3 models—especially in “thinking mode”—
achieve the highest average scores, indicating stronger reasoning capabilities. These results
complement our saturation layer analysis by showing that the deeper allocation of layers to
reasoning (Appendix F) also translates into improved task-level performance.

Appendix G. Feature-Specific Embeddings

Lexical embedding. We define the lexical embedding El ∈ Rd as the hidden state at layer
0 of the LLM. As this layer follows token embeddings directly, it reflects uncontextualized
lexical properties.

Residual embeddings for syntax, meaning, and reasoning. For the remaining
features—syntactic, meaning, and reasoning—we construct residual embeddings by remov-
ing lower-level contributions from higher-layer representations. For instance, to isolate
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reasoning information, we remove the meaning contribution from the layer where reasoning
saturates:

Er := Hr − gr(Hm), where gr = argmin
W
∥Hr −WHm∥2F + α ∥W∥2F ,

where gr is a ridge regression trained via 4-fold cross validation on a podcast corpus de-
scribed below. The same procedure applies to compute Es and Em. Specifically:

Em = Hm − gs(Hs) (meaning minus syntactic)

Es = Hs − gl(Hl) (syntax minus lexical)

This yields feature-specific representations that are aligned with the linguistic hierarchy and
minimally confounded by lower-level signals.

Dataset for residual regression training. To extract feature-specific residual embed-
dings, we train ridge regression models that require a large number of training samples.
However, the transcript later used for neural alignment—drawn from a single 30-minute
podcast episode—is too short to support stable regression. To address this, we train the
models on an expanded corpus of 16 transcribed episodes from the same podcast series,
including the episode used in the alignment analysis (Mao et al., 2020). This 160k-token
dataset enables regression without PCA, preserving richer structure in the hidden states.
We then apply the trained models to the target transcript to extract residuals for encoding
analysis.

Algorithm 1: Construction of Feature-Specific Residual Embeddings

Input: LLM hidden states {HL}Lmax
L=0 for each token; probing datasets Ds, Dm, Dr

Output: Feature-specific embeddings El, Es, Em, Er

1 Perform probing with Ds, Dm, Dr to find saturation layers:;
2 Ls ← syntax saturation layer from Ds;
3 Lm ← meaning saturation layer from Dm;
4 Lr ← reasoning saturation layer from Dr;
5 Ll ← 0;
6 Define lexical embedding: El ← HLl

;
7 for each (Llow, Lhigh) in {(Ll, Ls), (Ls, Lm), (Lm, Lr)} do
8 Train ridge regression g to predict HLhigh

from HLlow
;

9 Compute residual embedding: E ← HLhigh
− g(HLlow

);

10 Assign Es, Em, Er accordingly;

11 end

Appendix H. Encoding Model Details

ECoG dataset. After constructing feature-specific embeddings, we assess their neural
alignment using the Podcast ECoG dataset (Zada et al., 2025). This dataset contains high-
gamma band (70–200 Hz) intracranial recordings from nine participants as they listened
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to a 30-minute narrative podcast. It includes 1,330 electrodes and a time-aligned word-
level transcript, making it ideal for testing how lexical, syntactic, meaning, and reasoning
embeddings align with neural activity during language comprehension.

As described in Section G, we train ridge regression models on an expanded podcast
corpus to isolate feature-specific residuals. We then apply these models to the ECoG-aligned
transcript to extract feature-specific embeddings, which are used to predict neural responses.
Each embedding is aligned to individual word onsets, and for each word, neural signals are
epoched in a ±2s window and downsampled to 32 Hz, yielding t = 128 time bins per event.
Let X ∈ Rn×d be the matrix of input embeddings (lexical, syntactic, meaning, or reasoning)
across n word-aligned tokens, and Y ∈ Rn×(c·t) the corresponding ECoG response matrix
across c electrodes and t time lags. We fit:

W ∗ = argmin
W
∥Y −XW∥2F + α∥W∥2F ,

with α selected via 5-fold cross-validation over a log-spaced grid, and b = 5 bootstrap re-
samples per fold using contiguous chunks of length l = 32. Model performance is quantified
by Pearson correlation between predicted and actual signals. Temporal profiles are obtained
by averaging over channels at each lag; spatial maps visualize per-channel peak correlations
on 3D brain coordinates.

Word-rate feature regress out. We controlled for generic acoustic onset responses by
adding a two-column word-rate covariate (word onsets and syllable-rate) to every ridge
model. All variance-partitioning steps therefore quantify the variance explained beyond
that attributable to mere word onsets.

Let Rfull denote the cross-validated prediction correlation achieved using the combined
feature set (embedding + word rate), and let Rwr denote the correlation using only the
word rate features. Assuming approximate orthogonality between the two feature sets, we
estimated the unique contribution of the embedding features as:

Rembed = sign(Rfull) ·
√

max(0, R2
full −R2

wr).

This operation projects the full correlation vector onto the embedding-only axis, removing
variance explained by word rate features. The assumption of orthogonality is approximately
satisfied due to the preprocessing pipeline, and helps to prevent over-attribution of shared
variance.

Shuffle baseline and standardization. Considering that different channels and features
have varying signal-to-noise ratios (SNRs), we constructed a subject–electrode–specific null
distribution to assess whether a feature block explains neural activity beyond chance and
to enable cross-electrode analysis. This was done by shuffling the feature rows 100 times
while keeping the word-onset covariates fixed. For every shuffle we refit the ridge model and
recorded the peak correlation R. Because Pearson correlations are bounded and skewed near
±1, we applied the standard Fisher z -transform (atanh) to all correlations, computed the
shuffle mean and s.d. in z -space, and converted the true correlation to a z -score. Electrodes
with z > 1.96 (two-tailed α = .05) were deemed responsive.
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Appendix I. Hierarchical Variance Partitioning

To assess the contribution of each linguistic feature to neural responses, we perform hier-
archical variance partitioning. To prevent apparent gains in encoding accuracy from being
driven simply by larger feature spaces, we fix the total representational budget at 500 di-
mensions for every cumulative model. Concretely, when the model contains N information
blocks (lexicon, syntax, meaning, reasoning, . . . ), we apply PCA independently to each
block, retaining exactly 500/N principal components per block. The reduced blocks are
then concatenated to form a 500-dimensional matrix that is passed to the ridge encoder.

Using the same ridge regression and evaluation pipeline as in the main encoding anal-
ysis, we compute the variance explained (R2) by the composite model that includes all
four feature-specific embeddings. To estimate the unique contribution of each feature, we
remove the feature from the composite model and measure the resulting drop in explained
variance. Let R2

Composite denote the variance explained by the composite model, and let

R2
lmr, R

2
lsr, R

2
lsm represent ablated models with the syntactic, meaning, or reasoning com-

ponent removed, respectively. The contribution of each feature is then:

∆R2
Syntactic = R2

Composite−R2
lmr, ∆R2

Meaning = R2
Composite−R2

lsr, ∆R2
Reasoning = R2

Composite−R2
lsm.

Appendix J. Mutual Independence Theorem

We justify the approximate orthogonality of the feature-specific embeddings El, Es, Em, Er

based on the progressive emergence of linguistic features across LLM layers (syntax peaks
early, meaning in mid layers, reasoning in later layers). Once a feature reaches saturation,
its F1 score remains stable in deeper layers, indicating that later representations retain
earlier features. As a result, representations like Hm already embed information from Hl

and Hs, making regression from Hm alone nearly as informative as from all three:

gr(Hm) ≈ g′r([Hl, Hs, Hm]) ⇒ Er ≈ Hr − g′r([Hl, Hs, Hm]) =: E′
r

Since E′
r is the residual of a linear projection onto [Hl, Hs, Hm], it is orthogonal to each:

E′
r ⊥ Hl, E′

r ⊥ Hs, E′
r ⊥ Hm

Each residual embedding Ei ∈ {El, Es, Em} is a linear combination of earlier hidden
states (e.g., Em = Hm−gm(Hs) = Hm−WmHs). By the bilinearity of covariance, we have:

Cov(Ei, E
′
r) = Cov(Hi −WiHj , E

′
r) = Cov(Hi, E

′
r)−WiCov(Hj , E

′
r) = 0

whenever E′
r ⊥ Hi and Hj , for appropriate i, j ∈ {l, s,m}. This implies:

⟨E′
r, Ei⟩ = 0 ∀i ∈ {l, s,m}

Applying this proof across all residual stages, we conclude approximate mutual orthog-
onality:

⟨Ei, Ej⟩ ≈ 0 for all i ̸= j
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Appendix K. Mutual Independence via Cosine Similarity

To validate that the four feature-specific embeddings encode distinct information, we assess
their mutual independence using pairwise cosine similarity. For each token i ∈ {1, . . . , N},
let Ei

l , E
i
s, E

i
m, Ei

r denote the four feature-specific vectors. We compute a 4 × 4 cosine
similarity matrix Ci, take its absolute value |Ci|, and average across samples:

[Ci]j,k =
⟨Ei

j , E
i
k⟩

∥Ei
j∥ · ∥Ei

k∥
, C̄ =

1

N

N∑
i=1

|Ci| , j, k ∈ {l, s,m, r}.

In the ideal case of perfect disentanglement, off-diagonal entries of C̄ would be zero,
indicating orthogonality between different embeddings.

Figure 2: Pairwise cosine similarity among representations before (left) and after (right)
residual disentanglement. The hidden states at feature saturation layers
(Hl, Hs, Hm, Hr) exhibit substantial overlap. In contrast, the residual embed-
dings (El, Es, Em, Er) show near-zero off-diagonal similarity.

Figure 2 compares the pairwise mean absolute cosine similarity among raw hidden states
at the four saturation layers (left) and among the corresponding feature-specific residual
embeddings (right). While the hidden states show substantial overlap—especially between
meaning and reasoning layers (C̄ = 0.751)—the residual embeddings exhibit near-zero off-
diagonal similarity across all pairs. This sharp drop confirms that our residualization pro-
cedure effectively disentangles overlapping features, yielding orthogonal representations of
lexical, syntactic, semantic, and reasoning information.

Appendix L. Feature Specificity of Residual Embeddings

To evaluate whether our residual embeddings truly capture syntax, meaning, and reason-
ing—rather than reflecting general model complexity—we tested them directly on the prob-
ing tasks used to derive the saturation layers. Specifically, we trained ridge regression clas-
sifiers using each residual embedding and assessed performance on syntax, meaning, and
reasoning tasks, forming a 3× 3 evaluation matrix.
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Baseline performance at saturation layers. Before residualization, embeddings at
saturation layers performed well across all tasks, highlighting the need for disentanglement.
Table 5 shows normalized scores close to 1.0 for all combinations.

Table 5: Baseline performance at saturation layers (normalized by task peak).

Syntax Layer Meaning Layer Reasoning Layer

Syntax Task 0.947 0.999 0.989
Meaning Task 0.812 0.995 0.995
Reasoning Task 0.617 0.685 0.988

Residual embeddings. After applying residualization, each embedding showed clear
specificity, with highest scores on its corresponding task and substantially lower scores on
others (Table 6).

Table 6: Performance of residual embeddings across tasks (normalized).

Syntax Embedding Meaning Embedding Reasoning Embedding

Syntax Task 0.882 0.664 0.563
Meaning Task 0.781 0.919 0.802
Reasoning Task 0.648 0.770 1.036

Bias and normalization effects. Two factors explain residual cross-task performance:
1. COMPS-BASE bias. Even simple bag-of-words models can exceed chance (0.665 ac-
curacy) on COMPS-BASE. Raw scores confirm that residual syntax and reasoning embed-
dings fall below this baseline, showing effective disentanglement despite apparent overlap.
2. Normalization. Scores were normalized relative to each task’s peak performance, unin-
tentionally inflating cross-task values. Raw results (Table 7) clarify the diagonal dominance
more clearly.

Table 7: Performance of residual embeddings across tasks (raw scores).

Syntax Embedding Meaning Embedding Reasoning Embedding

Syntax Task 0.863 0.650 0.551
Meaning Task 0.589 0.693 0.605
Reasoning Task 0.448 0.532 0.716

Summary. Together, these results confirm that residual embeddings are feature-specific:
syntax embeddings capture syntactic information, meaning embeddings semantic associa-
tions, and reasoning embeddings higher-order inference. The disentanglement pipeline thus
yields cognitively interpretable and non-overlapping representations.
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Appendix M. Shallow Features Explain More in the Language Encoding

We quantified the variance explained by each feature-specific embedding when used in-
dependently in the encoding model. Among the four features, syntax accounted for the
largest proportion of explained variance at 33.06%, followed by meaning at 25.58%, lexicon
at 18.98%, and reasoning at 17.60%. All embeddings were evaluated on the same number
of time-aligned samples (1268 word onsets × 128 lags).

Figure 5 illustrates these results. Encoding models built on shallower features consis-
tently achieved higher peak correlations with neural activity. Lexical and syntactic em-
beddings yielded significantly stronger correlations than meaning or reasoning, both across
subjects and at the individual level. Further, the spatial profile of the full embedding closely
resembled that of the syntactic embedding, indicating that full model representations are
dominated by low-level structural information.

Figure 3: a) Peak correlations for each feature across all subjects. Lexical features show
the highest correlations. Asterisks indicate significant differences. b) Peak cor-
relations by subject show consistent lexical dominance, with variability in other
features.

Appendix N. Spatiotemporal Dynamics of Reasoning Embeddings

As shown in Figure 4, syntactic signals exhibit significant correlation with neural activity
both before and after word onset. Lexical signals show a sharp increase shortly after on-
set, followed by meaning signals, which peak later in the post-onset window. Reasoning
signals exhibit the latest peak among all features, with a temporal maximum occurring
approximately 300–350 ms after word onset.

In addition to temporal dynamics, the residual embeddings exhibit distinct spatiotem-
poral alignment patterns across the cortex. As shown in Figure 5, the reasoning embedding
initially shows weak neural correlation, begins in the superior and middle temporal regions,
and progresses anteriorly to the inferior frontal areas. In contrast, syntactic embeddings
produce strong and widespread alignment throughout the entire time window, including
early auditory and perisylvian regions.
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a b

Figure 4: a) Temporal profile of different features. The top 10% of electrodes (by peak
z-score), among those exceeding 1.96 (p ¡ 0.05), were selected to include highly
responsive channels to reveal the temporal pattern. b) Temporal receptive field
(TRF) across time for electrodes selective to one of the five features: Lexicon,
Syntax, Meaning, Reasoning, and Full. Electrodes were selected the same way as
in Figure a.

Appendix O. Regional Recruitment of Reasoning Embeddings

As shown in Figure 6, we observed a distinct spatial pattern for reasoning representations
across cortical regions.

First, within the superior temporal gyrus (STG), reasoning-related activation increased
from posterior to anterior subregions, with the strongest responses in anterior STG. This
pattern differs from lower-level features such as Lexicon or Syntax, which were more poste-
riorly distributed. The anterior bias aligns with the hypothesis that reasoning embeddings
capture higher-order cognitive processes.

Second, reasoning uniquely engaged regions outside classical language areas, including
the superior frontal gyrus (SFG) and the superior occipital sulcus. These findings suggest
that reasoning may involve high-level cognitive regions and potentially recruit visual areas
during abstract inference.

Appendix P. Limitations and Future Directions

Despite promising results, several limitations remain:

• Data constraints. Our analysis relies solely on ECoG data, which—while offer-
ing high temporal precision—provides limited spatial coverage. Frontal regions often
implicated in reasoning are under-sampled. Future work could incorporate comple-
mentary modalities such as fMRI to improve spatial resolution.

• Dataset coverage. Our probing analysis is shaped by the structure of existing
datasets: while BLiMP provides broad syntactic coverage, COMPS focuses narrowly
on property inheritance. Probing with a wider range of reasoning tasks may reveal
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Figure 5: Spatiotemporal distribution of responsive electrodes across language features.
Each subplot displays left-hemisphere electrodes with significant encoding per-
formance (Fisher z-scored correlation ¿ 1.96, corresponding to p ¡ 0.05) at a given
time point. Colors represent the z-scored correlation strength, capped at 3.89 (p
¡ 1e-4) to enhance visual contrast and prevent high values from masking more
moderate responses. For each feature (rows), correlation values are averaged over
a ±100 ms window centered at the indicated time points (columns).

Figure 6: Fisher z-scores across brain regions for each feature. Only significant electrodes
with peak z ≥ 1.96 (p < 0.05) were included.

whether distinct reasoning types are differentially encoded in both models and the
brain.

• Model choice. Due to computational constraints, we focused on a single open-
weight model (Qwen2.5-14B). While it balances performance and accessibility, larger
models—especially those optimized for multi-step reasoning—may reveal stronger or
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more differentiated reasoning signals. Extending our framework to such models could
shed light on how reasoning representations scale and specialize.

• Instability in deepest layers. Beyond the reasoning zone (after layer 30), residual-
ization begins to fail, with regression losses rising dramatically. This suggests a shift
in representational structure—possibly toward less compressible, generative transfor-
mations. Future work could explore this to better understand the boundary between
structured reasoning and open-ended synthesis in LLMs, and how this maps onto
neural computation.

Appendix Q. Supplemented Neuroscience Analysis

Figure 7 is a plot of activated channels across different brain areas.

Q.1. Spatial Dissociation of Linguistic Features in the Cortex

As shown in Figure 8, when assigning each electrode to the linguistic feature for which
it shows the highest encoding z-score, we observe clear regional differentiation across fea-
tures. Electrodes dominated by shallow lexical and syntactic features (Lexicon, Syntax)
are primarily localized to canonical perisylvian language areas, including the superior tem-
poral gyrus (STG) and the inferior frontal gyrus (IFG), particularly its ventral portion.
Semantic feature-selective electrodes (Meaning) extend more dorsally within IFG and are
distributed more broadly across the temporal and frontal cortices, consistent with prior
accounts of distributed semantic representation. In contrast, reasoning-related electrodes
(Reasoning) engage distinct regions, notably including the superior frontal gyrus (SFG) and
occipital areas, suggesting recruitment of domain-general and potentially visual-associative
mechanisms unique to high-level inferential processes.

Q.2. Temporal Gradient of Linguistic Feature Processing Across Cortex

As shown in Figure 9, we examined the spatial distribution of peak response times for four
linguistic features using temporal response function (TRF) analysis. The results revealed a
clear spatiotemporal gradient across the cortex:

Superior Temporal Gyrus (STG) exhibited predominantly pre-onset peaks, consistent
with its role in early auditory and phonological processing. Within STG, a finer gradient
was observed: posterior STG peaked earlier than anterior STG, suggesting a hierarchy of
temporal integration along the auditory pathway.

In contrast, Inferior Frontal Gyrus (IFG) showed post-onset peaks, especially for higher-
order features such as syntax and reasoning, indicating involvement in late-stage integration
and abstraction.

These results suggest a temporal-to-frontal cascade of processing, where early auditory
regions process incoming speech in anticipation of the word onset, while frontal areas inte-
grate contextual and abstract information after the word has begun.
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Figure 7: Activated channels across different brain areas.
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Figure 8: Brain maps showing the spatial distribution of electrodes dominated
by each linguistic feature, across three anatomical views. Electrodes are
colored according to their most selective feature based on peak z-scored encoding
correlation values, computed after removing word rate confounds. Each feature
(Lexicon, Syntax, Meaning, Reasoning) is shown in a separate column, and each
row corresponds to a different cortical view: left lateral, dorsal (axial), and right
lateral. Only electrodes exceeding a z-threshold of 2.58 are shown.
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Figure 9: Spatial distribution of peak response time for each linguistic feature.
Each dot represents an electrode whose neural response is significantly predicted
by one of the four feature sets (Lexicon, Syntax, Meaning, Reasoning). The color
of each dot encodes the time point (in seconds relative to word onset) at which the
encoding model reaches peak performance (z-scored). Blue indicates earlier peaks
(pre-onset), while red indicates later peaks (post-onset). Views are shown from
the left (L), dorsal (Z), and right (R) perspectives, separately for each feature.
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