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Abstract

Understanding how the human brain progresses from processing simple linguistic inputs to
performing high-level reasoning is a fundamental challenge in neuroscience. While mod-
ern large language models (LLMs) are increasingly used to model neural responses to
language, their internal representations are highly ”entangled,” mixing information about
lexicon, syntax, meaning, and reasoning. This entanglement biases conventional brain en-
coding analyses toward linguistically shallow features (e.g., lexicon and syntax), making
it difficult to isolate the neural substrates of cognitively deeper processes. Here, we intro-
duce a residual disentanglement method that computationally isolates these components.
By first probing an LM to identify feature-specific layers, our method iteratively regresses
out lower-level representations to produce four nearly orthogonal embeddings for lexicon,
syntax, meaning, and, critically, reasoning. We used these disentangled embeddings to
model intracranial (ECoG) brain recordings from neurosurgical patients listening to natu-
ral speech. We show that: 1) This isolated reasoning embedding exhibits unique predictive
power, accounting for variance in neural activity not explained by other linguistic features
and even extending to the recruitment of visual regions beyond classical language areas. 2)
The neural signature for reasoning is temporally distinct, peaking later (7350-400ms) than
signals related to lexicon, syntax, and meaning, consistent with its position atop a process-
ing hierarchy. 3) Standard, non-disentangled LLM embeddings can be misleading, as their
predictive success is primarily attributable to linguistically shallow features, masking the
more subtle contributions of deeper cognitive processing. Our work provides compelling
neural evidence for an abstract reasoning computation during language comprehension and
offers a robust framework for mapping distinct cognitive functions from artificial models to
the human brain?.
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1. Introduction

A growing body of work has shown that LLMs exhibit strong representational alignment
with human brain activity during language comprehension. These studies employ language
encoding models, powerful predictors of measured brain activity in response to a language
stimulus (Wehbe et al., 2014; Huth et al., 2016; de Heer et al., 2017; Jain and Huth, 2018;
Toneva and Wehbe, 2019; Brennan et al., 2020; Goldstein et al., 2022; Oota et al., 2022;
Heilbron et al., 2022; Chen et al., 2023; Li et al., 2023; Antonello et al., 2023; Aw and
Toneva, 2023; Chen et al., 2024a,b). Typically, these models are created by inputting a
language stimulus into an LLM, to create a contextual embedding of the stimulus using the
models’ internal hidden state. A linear mapping is then learned between these hidden states
and the measured brain response to that stimulus. Modern language encoding models rep-
resent some of the most advanced computational approaches for studying neural processing
across sensory modalities, and they provide a unique window into the semantic processing
landscape of human cortex.

However, most work that has studied this brain-LLM alignment has focused on seman-
tics and low-level phonological relationships (Antonello et al., 2021; Vaidya et al., 2022;
Mischler et al., 2024): little is known about the degree to which LLMs and the brain align
in their higher-level reasoning processes. One reason is historical: reasoning capabilities
have only recently emerged robustly in modern LLMs (Ke et al., 2025). Another issue
is methodological. Most prior studies have largely treated language encoding models as
monolithic black boxes that map entire hidden states to brain responses without disentan-
gling the specific linguistic or cognitive functions represented within them, such as lexical
features, syntactic structure, semantic meaning, or reasoning processes.

Recent findings (Lampinen et al., 2024) show that when models are trained to perform
multiple tasks of varying complexity, their internal representations disproportionately favor
simpler and more linearly extractable features, even when accuracy on complex tasks is
equally high. This suggests that in brain alignment studies, unsegmented LLM features
may reflect a bias toward lexical or syntactic components simply because they are compu-
tationally easier to represent.

To move beyond these biases and probe the deeper relationship between machine and
human reasoning, we introduce a novel approach: residual reasoning embeddings. Rather
than comparing raw LLM activations to brain activations, we isolate the reasoning-specific
component of LLM hidden states by separating them from discrete lexical, syntactic, and
meaning features. This residual embedding captures the unique portion of variance in the
initial embedding that is attributable to high-level reasoning information.

We then use these residual reasoning embeddings to build encoding models that predict
human electrocorticographic (ECoG) brain activity during tasks that require inference. We
demonstrate that these reasoning representations align with distinct spatiotemporal neural
patterns, peaking later in time and engaging more frontal and visual regions than lexical
or syntactic signals, suggesting a shared computational hierarchy between LLMs and the
human brain. Furthermore, we show that full LLM embeddings are biased toward lower-
level features, and that only through disentanglement can reasoning-related brain activity be
meaningfully isolated. Together, our results offer a new lens on both model interpretability
and the neural basis of abstract linguistic reasoning.
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2. Methods

Our main experiments use the Qwen2.5-14B model. We apply minimal pair probing (He
et al., 2024a,b) to identify the LLM layers most specialized for syntactic, meaning, and
reasoning features. For each probing dataset, we extract sentence representations from
each layer by feeding the sentence in isolation and taking the hidden state of its final token.
We then use these sentence representations to train a logistic regression classifier to predict
the correct item in each minimal pair. We define the saturation layer as the earliest layer
where performance plateaus. Building on the saturation layers identified via minimal pair
probing, we train ridge regression models on an expanded podcast corpus to isolate feature-
specific residuals. We then apply these models to the ECoG-aligned transcript to extract
feature-specific embeddings, which are used to predict neural responses. See Appendix A
for more details.

3. Probing Results

Applying our probing pipeline to Qwen2.5-14B, we observe a clear progression in the emer-
gence of representational features. Syntax saturates earliest at layer 6, followed by meaning
at layer 20, and reasoning only at the deeper layer 30. This ordering highlights that low-level
linguistic structure is captured quickly, whereas high-level reasoning requires substantially
more depth.

To verify that this pattern is not specific to a single model, we extended the probing
pipeline across multiple Qwen families spanning different sizes and generations. The same
emergence order was consistently observed, with only one exception in Qwen-1.8B, where
syntax and meaning saturated at the same layer. Full cross-model analyses are reported in
Appendix C.

4. Disentanglement Validation

Matrix-Level Orthogonality of Residual Embeddings We justify the approximate
orthogonality of the feature-specific embeddings at the level of their embedding matrices:
the n-dimensional feature columns of one residual embedding matrix are approximately
uncorrelated with those of another (Appendix E.1). This sample-axis orthogonality ensures
that residual embedding matrices contribute non-overlapping signals across the dataset,
which is precisely the property required for the subsequent brain encoding analysis.

Token-Level Independence via Cosine Similarity We also test independence at the
level of individual tokens (Appendix E.2). Figure 2a compares the pairwise mean absolute
cosine similarity among raw hidden states at the four saturation layers (top) and among
the corresponding residual embeddings (bottom). While the hidden states show substan-
tial overlap, especially between meaning and reasoning layers (C' = 0.751), the residual
embeddings exhibit near-zero off-diagonal similarity(all <= 0.045) across all pairs.

Feature Probing on Residual Embeddings FEach residual should also preserve infor-
mation relevant to its intended linguistic feature. We evaluate this by reapplying the same
probing tasks used to define feature emergence. Results are shown in Figure 2b. Each resid-
ual achieves the highest performance on its own task while performing worse on unrelated
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tasks. These findings demonstrate that the residual embeddings are meaningfully disentan-
gled and capture feature-specific information rather than reflecting general task complexity.
See Appendix E.3 for more details.

5. Encoding Results

Shallow features dominate neural prediction, but lexical activations are sparse.
Encoding models based on shallow linguistic features, such as lexical identity and syntax,
showed the strongest neural correlations (Figure 3). Electrodes responsive to these features
exhibited higher peak correlations than those for meaning or reasoning (p < 0.001). De-
spite strong correlations, the lexicon embedding activated the fewest electrodes, suggesting
specialized cortical sites. Deeper features engaged broader but weaker populations. Thus,
shallow features dominate localized alignment, while deeper ones distribute across cortex.
Without disentanglement, lexical and syntactic peaks mask slower reasoning dynamics, un-
derscoring the need for residual separation. See Appendix G.1 for more details.

Reasoning embedding shows different temporal pattern compared to Lexicon,
Syntax and Meaning. The temporal correlation profiles of Figure 4 illustrate a clear
processing hierarchy among linguistic representations. Syntactic signals rise early and peak
slightly before onset, suggesting syntactically driven prediction. Lexical features peak im-
mediately after onset, reflecting rapid mapping between sound and word identity. Meaning
representations peak later, indicating semantic integration. In contrast, reasoning signals
rise only after onset and peak around 362 ms, reflecting delayed high-level computation
beyond linguistic parsing. Together, these patterns reveal a progression from syntax to
semantics to reasoning in the human cortex. See Appendix G.2 for more details.

Reasoning recruits more than language area compared to low-level aspects.
Shallow features like lexicon show high correlations but remain confined to classical lan-
guage regions such as IFG and STG. In contrast, syntax, meaning, and especially reasoning
engage broader cortical areas. Reasoning-selective electrodes extend into SFG and visual
cortex with stronger activation (p < 0.001; Figure 6). This expanded recruitment suggests
reasoning involves higher-order, multimodal cognition beyond linguistic processing. See
Appendix G.3 for more details.

6. Discussion

Using residual embeddings, we disentangled the contributions of lexicon, syntax, meaning,
and reasoning to neural encoding of speech. This hierarchical framework localizes feature-
emergent layers and isolates higher-order reasoning representations. Lower-level features
show stronger, earlier, and more localized activations, while reasoning appears later and
extends beyond language regions into SFG and visual cortex. These findings reveal a spa-
tiotemporal hierarchy from syntax to reasoning and show that reasoning engages broader,
multimodal cortical systems. Our framework provides a principled way to separate linguis-
tic and cognitive components in LLMs and align them with the human brain. See Appendix
I for more details.
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Figure 1: a) Hierarchical representations in an LLM. Transformer layers accumulate in-
formation in order: lexical features emerge first, followed by syntax, contextual
meaning and eventually higher-order reasoning, with still-richer knowledge con-
tinuing in later layers. b) Minimal-pair probing tasks. Three diagnostic sentence
sets separately test syntax, concept meaning and multi-premise reasoning. c)
Layer localization from probing curves. We define Lg — the earliest layer where
syntax performance saturates while meaning is still low; L,,, — layer where mean-
ing saturates but reasoning has not yet emerged; and L, — layer where reasoning
performance plateaus. These identified layers through probing will be used in
later analyses. d) Feature disentangling across layers. Starting from the local-
ized layers, we iteratively regress lower-level features out of higher ones. Details of
residual embedding constructions could be found in Algorithm 1. Residual disen-
tangling yields four orthogonal embeddings that isolate lexicon, syntax, meaning
and reasoning information. e) Brain encoding with purified features. Each resid-
ual feature is fed into a ridge encoder to predict high-gamma ECoG responses
of Podcast listening. Comparing predicted and actual neural signals reveals the
spatiotemporal distribution of cortical activity uniquely associated with lexicon,
syntax, meaning and reasoning representations.
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Appendix A. Detailed Methodology
A.1. Probing Datasets

To identify the LLM layers most specialized for encoding syntactic, semantic, and reason-
ing features, we apply feature-specific probing using two diagnostic datasets. For syntactic
probing, we use the Benchmark of Linguistic Minimal Pairs (BLIMP) (Warstadt et al.,
2020), which evaluates grammatical sensitivity across 67 controlled paradigms. By training
classifiers on hidden states from each layer of LLMs, we determine where syntactic compe-
tence emerges and stabilizes. For meaning and reasoning probing, we use the Conceptual
Minimal Pair Sentences (COMPS) dataset (Misra et al., 2023), which tests conceptual
understanding and property inheritance. Its controlled sentence-pair design allows us to
distinguish between surface-level semantic association and inference-based reasoning. We
further extend reasoning evaluation with ProntoQA (Saparov and He, 2023) and Wino-
Grande (Keisuke et al., 2019) to assess multi-hop deductive and commonsense reasoning
abilities respectively. These datasets together enable a hierarchical dissection of linguistic
representations. Detailed dataset structures, task formulations, and examples are provided
in Appendix B.

A.2. Language Model

Our main experiments use the Qwen2.5-14B model, a 14.7B-parameter transformer with
48 layers (Team, 2025a). Each layer outputs hidden states of dimension 5120. The model
supports a maximum context length of 131k tokens, though our experiments only use context
sizes of 50 tokens. We use the base model without any instruction tuning or task-specific
fine-tuning, and employ it both to probe the layer-wise emergence of linguistic and reasoning
features and to perform brain encoding analyses.

To assess the robustness of our probing pipeline, we additionally examined other models
across the Qwen family, spanning sizes from 1.8B to 14B parameters and multiple gen-
erations (Qwenl, Qwenl.5, Qwen2, Qwen2.5, and Qwen3) (Bai et al., 2023; Yang et al.,
2024; Team, 2025a,b). We evaluated all models and found that Qwen2.5-14B exhibited
the strongest reasoning capability, which is why we selected it as our primary model for
subsequent analyses (see Appendix D.2).

A.3. Minimal Pair Probing

We apply minimal pair probing (He et al., 2024a,b) to identify the LLM layers most special-
ized for syntactic, meaning, and reasoning features. For each probing dataset, we extract
sentence representations from each layer by feeding the sentence in isolation and taking the
hidden state of its final token. We then use these sentence representations to train a logistic
regression classifier to predict the correct item in each minimal pair. Model performance at
a given layer is measured by the normalized F1 score of this classifier.

Let H; € R™? denote the matrix of sentence embeddings at layer I, where each row
corresponds to the final-token hidden state of one sentence in the minimal pair dataset. To
determine the most specialized layer for a given feature, we define the saturation layer as
the earliest layer where performance plateaus:

Ly :=min{l |V > 1, AccP*(Hy) — AccP*(H)) <e}, x€{s,m,r}

10
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where Dy = BLiMP, D,, = COMPS-BASE, and D, = COMPS-WUGS-DIST, and ¢ is a
small threshold representing the tolerance for marginal improvement. The hidden states at
the identified saturation layers, denoted as Hy := Hy_, Hy, := Hy,,, and H, := Hp, , are
used to construct feature-specific embeddings in the next stage.

A.4. Feature-Specific Embeddings

Building on the saturation layers identified via minimal pair probing, we construct four
feature-specific embeddings to isolate distinct types of linguistic information: lexical, syn-
tactic, meaning, and reasoning. Since hidden states at various layers contain overlapping
linguistic information, we remove contributions from earlier representations to disentangle
the targeted feature.

Lexical embedding. We define the lexical embedding E; € R? as the hidden state at layer
0 of the LLM. As this layer follows token embeddings directly, it reflects uncontextualized
lexical properties.

Residual embeddings for syntax, meaning, and reasoning. For the remaining fea-
tures, syntactic, meaning, and reasoning, we construct residual embeddings by removing
lower-level contributions from higher-layer representations. For instance, to isolate rea-
soning information, we remove the meaning contribution from the layer where reasoning
saturates:

E,:=H, — g.(Hy;), where g, = argmv[i/n |H, — WHp %+ a|[W|%,

where g, is a ridge regression trained via 4-fold cross validation on a podcast corpus de-
scribed in the next paragraph (A.4). The same procedure applies to compute Eg and E,,.
Specifically:

E,, = H,, — gs(Hy) (meaning minus syntactic)
Es; = H, — g/(H)) (syntax minus lexical)

This yields feature-specific representations that are aligned with the linguistic hierarchy
(Appendix C) and minimally confounded by lower-level signals.

Dataset for residual regression training. To extract feature-specific residual embed-
dings, we train ridge regression models that require a large number of training samples.
However, the transcript that will later be used for neural alignment, which is drawn from
a single 30-minute podcast episode, is too short to support stable regression. To address
this, we train the models on an expanded corpus of 16 transcribed episodes from the same
podcast series, including the episode used in the alignment analysis (Mao et al., 2020). This
160k-token dataset enables regression without PCA, preserving richer structure in the hid-
den states. We then apply the trained models to the target transcript to extract residuals
for encoding analysis.

A.5. Encoding Model

ECoG dataset. After constructing feature-specific embeddings, we assess their neural
alignment using the Podcast ECoG dataset (Zada et al., 2025). This dataset contains high-
gamma band (70-200 Hz) intracranial recordings from nine participants as they listened

11
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Algorithm 1: Construction of Feature-Specific Residual Embeddings

Input: LLM hidden states {Hp} ;™% for each token; probing datasets Ds, Dy, D,
Output: Feature-specific embeddings F;, Es, E,,, E;
Perform probing with D, D,,, D, to find saturation layers:;
L < syntax saturation layer from Dq;
L, < meaning saturation layer from D,,;
L, < reasoning saturation layer from D,;
L; < 0;
Define lexical embedding: F; < Hp,;
for each (Liow, Lnign) in {(Li, Ls), (Ls, L), (Lm, Ly)} do
Train ridge regression g to predict Hy,,, from Hp,  ;

Compute residual embedding: £« Hp,., —g(Hr,,);
Assign Fs, F,,, E, accordingly;
end

to a 30-minute narrative podcast. It includes 1,330 electrodes and a time-aligned word-
level transcript, making it ideal for testing how lexical, syntactic, meaning, and reasoning
embeddings align with neural activity during language comprehension.

As described in Section A.4, we train ridge regression models on an expanded podcast
corpus to isolate feature-specific residuals. We then apply these models to the ECoG-aligned
transcript to extract feature-specific embeddings, which are used to predict neural responses.
Each embedding is aligned to individual word onsets, and for each word, neural signals are
epoched in a +2s window and downsampled to 32 Hz, yielding ¢ = 128 time bins per event.
Let X € R™*? be the matrix of input embeddings (lexical, syntactic, meaning, or reasoning)
across n word-aligned tokens, and Y € R"*(¢!) the corresponding ECoG response matrix
across c electrodes and t time lags. We fit:

W* = argmin |[Y — XW|[; + of|W|F,

with « selected via 5-fold cross-validation over a log-spaced grid, and b = 5 bootstrap re-
samples per fold using contiguous chunks of length [ = 32. Model performance is quantified
by Pearson correlation between predicted and actual signals. Temporal profiles are obtained
by averaging over channels at each lag; spatial maps visualize per-channel peak correlations
on 3D brain coordinates.

Word-rate feature regress out. We controlled for generic acoustic onset responses
by adding a two-column word-rate covariate (word onsets and syllable-rate) to every ridge
model. All variance-partitioning steps therefore quantify the variance explained beyond that
attributable to mere word onsets. Let Rp, denote the cross-validated prediction correlation
achieved using the combined feature set (embedding + word rate), and let Ry, denote the
correlation using only the word rate features. Assuming approximate orthogonality between
the two feature sets, we estimated the unique contribution of the embedding features as:

Rembed = sign(Rean) - \/ max (0, R?ull — R2)). This operation projects the full correlation vec-
tor onto the embedding-only axis, removing variance explained by word rate features. The
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assumption of orthogonality is approximately satisfied due to the preprocessing pipeline,
and helps to prevent over-attribution of shared variance.

Null distribution and responsiveness criterion. Considering that different channels
and features have varying signal-to-noise ratios (SNRs), we constructed a subject—electrode—specific
null distribution to assess whether a feature block explains neural activity beyond chance
and to enable cross-electrode analysis. This was done by shuffling the feature rows 500 times
while keeping the word-onset covariates fixed. For every shuffle we refit the ridge model
and recorded the peak correlation R. Because Pearson correlations are bounded and skewed
near +1, we applied the standard Fisher z-transform (atanh) to all correlations, computed
the shuffle mean and s.d. in z-space, and converted the true correlation to a z-score. Elec-
trodes with z > 3.95 (one-tailed o = .05, Bonferroni-corrected across N = 1268 electrodes)
were deemed responsive, corresponding to values exceeding 3.95 standard deviations above
the shuffle mean.

Appendix B. Detailed Description of Probing Datasets

BLiMP for syntactic probing. To construct feature-specific representations for brain
alignment, we first identify LLM layers that specialize in syntactic encoding. Minimal
pairs and probing techniques have been widely used in NLP field to access LLM’s internal
representation (Marvin and Linzen, 2018; Linzen et al., 2016; Futrell et al., 2019; Hewitt
and Manning, 2019; Manning et al., 2020; He et al., 2025). Here we use the Benchmark
of Linguistic Minimal Pairs (BLIMP) (Warstadt et al., 2020), which evaluates syntactic
knowledge through controlled minimal pairs differing in grammaticality across 67 paradigms.
Each pair isolates a specific grammatical phenomenon such as subject—verb agreement,
reflexive anaphora, or negative polarity. By training a classifier to distinguish acceptable
from unacceptable sentences using hidden states from each LLM layer, we detect where
syntactic competence emerges and peaks. For example, in a task targeting subject—verb
agreement:

a. The cats annoy Tim. (Correct)
b. The cats annoys Tim. (Incorrect)

We average classifier performance across all paradigms to determine the saturation layer
where syntactic features are stably encoded.

COMPS for Meaning and Reasoning Probing. For meaning and reasoning probing,
we use the Conceptual Minimal Pair Sentences (COMPS) dataset (Misra et al., 2023).
Sentence pairs in COMPS differ in whether the subject plausibly inherits a property. By
probing whether each layer favors the correct concept-property association, we detect the
layers where meaning and reasoning abilities peak.

COMPS-BASE evaluates surface-level understanding without requiring inference. For
example, given the property “can heat food”:

a. An oven can heat food. (Correct)

b. A refrigerator can heat food. (Incorrect)

13
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COMPS-WUGS-DIST increases reasoning complexity by replacing known concepts with
nonsense words (e.g., “wug”, “dax”) and inserting distractor sentences that introduce in-
terference. This design prevents the model from relying on surface-level co-occurrence or
positional cues: distractors can be reordered. The model must infer the identity of the
nonsense word from context to generalize property inheritance.

a. A wug is an oven. A dax is a refrigerator. Therefore, a wug can heat food. (Correct)
b. A wug is an oven. A dax is a refrigerator. Therefore, a dax can heat food. (Incorrect)

This progressive design increases reasoning difficulty and allows us to localize where
models transition from semantic to reasoning-level representation.

Additional reasoning benchmarks. Beyond COMPS, we incorporate two additional
reasoning benchmarks to validate robustness across task formats: ProntoQA (Saparov and
He, 2023), which evaluates multi-hop deductive reasoning, and WinoGrande (Keisuke et al.,
2019), which targets commonsense coreference resolution. For ProntoQA, we only use
examples that require 5-hop deductive inferences to ensure high difficulty, where solving
the task requires maintaining consistent symbolic relations across multiple premises and
performing compositional logical deduction. Two illustrative examples are:

a. Dogs are cats. Each dog is sour. Vertebrates are dull. Felines are dogs. Felines are
not dull. Cows are felines. Each cow is aggressive. Snakes are cows. Snakes are
orange. Animals are snakes. Every animal is not luminous. Mammals are animals.
Each mammal is hot. Fae is a mammal. Therefore, Fae is not dull. (Correct)

b. Every carnivore is a dog. Carnivores are angry. Every mammal is a carnivore. Each
mammal is not red. Each snake is a mammal. Each snake is transparent. Cats are
snakes. Cats are nervous. Each sheep is not angry. Each animal is a cat. Animals
are earthy. Sam is an animal. Therefore, Sam is not angry. (Incorrect)

For WinoGrande, which tests commonsense reasoning through contextual coreference
resolution, the model must leverage world knowledge and pragmatic inference to identify
the correct referent under minimal lexical cues. A pair of examples is:

a. John moved the couch from the garage to the backyard to create space. The garage
is small. (Correct)

b. John moved the couch from the garage to the backyard to create space. The backyard
is small. (Incorrect)

Together, these datasets complement COMPS by spanning property inheritance, de-
duction, and commonsense inference. Detailed experiments and cross-validation results are
provided in Appendix D.

Bad Probing Task Filtering We employ a Bag-of-Words (BoW) baseline and exclude
tasks where the BoW model achieves an accuracy above 0.6, resulting in a final set of 29
BLiMP tasks (out of 67). The meaning (COMPS-BASE) and reasoning (COMPS-WUGS-DIST)
tasks remain unchanged.
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This filtering step is motivated by the fact that BoW readily captures tasks solvable
via simple lexical cues, indicating a shallow design. By removing these superficially “easy”
tasks, we ensure that the retained tasks demand genuine syntactic or semantic understand-
ing rather than mere lexicon-based heuristics.

Appendix C. Hierarchical Emergence of Linguistic Features

In the main text, we reported probing results for Qwen2.5-14B (Section 3), showing that
syntax, meaning, and reasoning features saturate at layers 6, 20, and 30, respectively. To
evaluate the robustness of this emergence pattern, we extended our probing pipeline to 17
models across the Qwen family, including Qwen, Qwenl.5, Qwen2, Qwen2.5, and Qwen3
models.

Across nearly all models, we observed the same progression of feature emergence: syntax
saturates earliest, followed by meaning, and then reasoning. The only exception was Qwen-
1.8B, where syntax and meaning saturated at the same layer. Table 1 reports the saturation
layers identified for all models.

Table 1: Saturation layers for syntax, meaning, and reasoning across Qwen models.

Model Syntax Meaning Reasoning
Qwen-1.8B 11 11 14
Qwen-7B 11 13 15
Qwen-14B 9 16 20
Qwenl.5-1.8B 10 11 14
Qwenl.5-7B 9 13 16
Qwenl.5-14B 8 16 20
Qwen2-1.5B 10 14 17
Qwen2-7B 7 14 18
Qwen2.5-1.5B 7 14 18
Qwen2.5-7B 7 15 19
Qwen2.5-14B 6 20 30
Qwen3-1.7B 9 16 19
Qwen3-8B 7 20 23
Qwen3-14B 5 17 27

Appendix D. Consistency Across Reasoning Benchmarks

In the main text, reasoning saturation layers were identified using COMPS-WUGS-DIST. To
evaluate robustness across tasks of varying complexity, we additionally applied two further
reasoning probes: a 5-hop deductive reasoning task from ProntoQA and the WinoGrande
benchmark for commonsense coreference.

We tested all three probes, COMPS-WUGS-DIST, ProntoQA, and WinoGrande, across
17 Qwen models spanning multiple sizes and training modes. Results show strong consis-
tency: the average difference in reasoning saturation layers between COMPS-WUGS-DIST
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and ProntoQA was 0.94, and between COMPS-WUGS-DIST and WinoGrande was 0.53.
Given overall model depths of 25-49 layers, these differences are negligible and support the
robustness of our reasoning probe.

D.1. Consistent Saturation Layers Across Reasoning Benchmarks.

Table 2 reports the reasoning saturation layers identified by each probe. The high degree of
agreement across the three tasks indicates that reasoning-specific representations are con-
sistently localized in deep layers, regardless of task format. The agreement across COMPS-
WUGS-DIST, ProntoQA, and WinoGrande confirms that our identification of reasoning-
specific saturation layers generalizes beyond a single benchmark. This consistency reinforces
the conclusion that reasoning features emerge reliably in deep layers across architectures
and reasoning formats.

Table 2: Reasoning saturation layers identified by different probes across Qwen models.

Model ProntoQA COMPS-WUGS-DIST WinoGrande
Qwen-1.8B 13 14 14
Qwen-7B 13 15 16
Qwen-14B 18 20 20
Qwenl.5-1.8B 13 14 14
Qwenl.5-7B 14 16 16
Qwenl.5-14B 20 20 22
Qwen2-1.5B 17 17 17
Qwen2-7B 16 18 19
Qwen2.5-1.5B 16 18 17
Qwen2.5-7B 17 19 19
Qwen2.5-14B 29 30 29
Qwen3-1.7B 19 19 19
Qwen3-8B 23 23 23
Qwen3-14B 27 27 26

D.2. Qwen2.5-14B Achieves the Best Reasoning Performance (Small-Scale
Models)

We evaluated the Qwen family on three reasoning benchmarks: ProntoQA (multi-hop
deductive reasoning), COMPS-WUGS-DIST (property inheritance with distractors), and
WinoGrande (commonsense coreference). Table 3 reports accuracy on each benchmark,
along with the average across tasks. We observe consistent improvements in reasoning
performance with increasing model scale and newer Qwen generations. Among the base
models, Qwen2.5-14B achieves the highest average accuracy across benchmarks, reflecting
its stronger reasoning capability, which is why we select it as the primary model for our ex-
periments. These results complement our saturation layer analysis by showing that models
allocating greater depth to reasoning layers also demonstrate superior task-level reasoning
performance.

16



FAR FROM THE SHALLOW: BRAIN-PREDICTIVE REASONING EMBEDDING THROUGH RESIDUAL DISENTANGLEMENT

Table 3: Reasoning task performance across Qwen models. The Average column reports
the mean accuracy across ProntoQA, COMPS-WUGS-DIST, and WinoGrande.

Model ProntoQA COMPS-WUGS-DIST WinoGrande Average
Qwen-1.8B 0.797 0.522 0.523 0.614
Qwen-7B 0.886 0.641 0.602 0.710
Qwen-14B 0.880 0.695 0.647 0.741
Qwenl.5-1.8B 0.792 0.513 0.523 0.609
Qwenl.5-7B 0.848 0.667 0.603 0.706
Qwenl.5-14B 0.910 0.670 0.653 0.744
Qwen2-1.5B 0.784 0.586 0.552 0.640
Qwen2-7B 0.851 0.636 0.660 0.716
Qwen2.5-1.5B 0.783 0.605 0.566 0.651
Qwen2.5-7B 0.879 0.673 0.664 0.739
Qwen2.5-14B 0.922 0.691 0.698 0.770
Qwen3-1.7B 0.739 0.500 0.530 0.589
Qwen3-8B 0.876 0.629 0.651 0.719
Qwen3-14B 0.912 0.716 0.670 0.766

Appendix E. Disentanglement Validation

E.1. Matrix-Level Orthogonality of Residual Embeddings

We justify the approximate orthogonality of the feature-specific embeddings Ej, Es, E,,, E,
at the level of their embedding matrices. Each residual embedding can be represented as
an n X d matrix, where n is the number of tokens in the dataset and d is the embedding
dimension. Orthogonality here is considered along the sample axis: the n-dimensional
feature columns of one residual embedding matrix are approximately uncorrelated with
those of another.

This follows from the progressive emergence of linguistic features across LLM layers
(Table 1): syntax peaks early, meaning in mid layers, and reasoning in later layers. Once
a feature reaches saturation, its accuracy score remains stable in deeper layers, indicating
that later representations retain earlier features. As a result, representations like H,, al-
ready embed information from H; and Hg, making regression from H,, alone comparably
as informative as from all three:

9r(Hm) =~ g,([H;, Hs, Hn]) = Ep = H, — g,([H), Hs, Hy]) =: E,
Since E) is the residual of a linear projection onto [H;, Hg, H,y,], it is orthogonal to each:
E 1 H, E.LH,, E.1H,

Each residual embedding F; € {Ej, Es, Ey,} is a linear combination of earlier hidden
states (e.g., By = Hyy — gm(Hs) = Hpy, — Wi, Hg). By the bilinearity of covariance, we have:

COV(Ei, E;,) = COV(HZ‘ - WiHj, E:q) = COV(HZ‘, E:n) — Wz COV(Hj, E,/ﬂ) =0

17



HE ZHONG ANTONELLO MISCHLER GOLDBLUM MESGARANI

whenever E| | H; and Hj, for appropriate 4,5 € {l,s,m}. This implies:
(E,E;)=0 Vie{l,s,m}

Applying this proof across all residual stages, we conclude approximate mutual orthog-
onality of residual embedding matrices:

<Ei,Ej> ~ 0 foralli 75 j

This sample-axis orthogonality ensures that residual embedding matrices contribute
non-overlapping signals across the dataset, which is precisely the property required for the
subsequent brain encoding analysis.

E.2. Token-Level Independence via Cosine Similarity

While Section E.1 establishes matrix-level orthogonality across the dataset, we also test in-
dependence at the level of individual tokens. For each tokeni € {1,..., N}, let E}, E!, B!  E!
denote the four feature-specific residual vectors. We compute a 4 x4 cosine similarity matrix
C;, take its absolute value |C;|, and average across samples:

(E%, By I ,
[Ciljk ||E;||HE]Z€||7 C N;\C,], gk € {l,s,m,r}

In the ideal case of perfect disentanglement, off-diagonal entries of C' would be zero,
indicating orthogonality between different embeddings. Figure 2a compares the pairwise
mean absolute cosine similarity among raw hidden states at the four saturation layers (top)
and among the corresponding residual embeddings (bottom). While the hidden states show
substantial overlap, especially between meaning and reasoning layers (C' = 0.751), the
residual embeddings exhibit near-zero off-diagonal similarity(all <= 0.045) across all pairs.

Thus, Section E.1 and Section E.2 together provide complementary evidence: residuals
are linearly novel across the sample axis, and they also align with near-orthogonal direc-
tions at the token level. These findings confirm that residualization yields disentangled
representations of lexical, syntactic, semantic, and reasoning information.

E.3. Feature Probing on Residual Embeddings

While mutual independence ensures that residual embeddings are separated from one an-
other, each residual should also preserve information relevant to its intended linguistic
feature. We evaluate this by reapplying the same probing tasks used to define feature emer-
gence. Since the lexical embedding Fj; is directly extracted rather than residualized, we
focus on the syntactic (Es), meaning (E,,), and reasoning (F,) residuals.

For each case, we train a logistic regression classifier on the corresponding residual
embedding and report accuracy scores:

i = o(w] EL+bj), j€{s,m,r},

where o(-) is the sigmoid function and E; € R? is the residual embedding for token 4.
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Figure 2: a) Pairwise cosine similarity among representations before (left) and after
(right) residual disentanglement. The hidden states at feature saturation layers
(H;, Hg, Hp,, H,) exhibit substantial overlap. In contrast, the residual embed-
dings (Ey, Es, B, E,) show near-zero off-diagonal similarity. b) Feature probing
results on hidden states (left) and residual embeddings (right), shown as accuracy.
Each residual embedding achieves the highest performance on its corresponding
task, while performing worse on unrelated tasks.

Results are shown in Figure 2b. Each residual achieves the highest performance on
its own task (e.g., Fs on syntax probing, E,, on meaning, E, on reasoning) while per-
forming worse on unrelated tasks. The diagonal entries retain accuracy similar to the
hidden-state baseline, whereas the off-diagonal entries drop substantially, with decreases
of 33.8% (syntax task evaluated on the meaning residual), 36.8% (syntax task evaluated
on the reasoning residual), and 19.4% (meaning task evaluated on the reasoning residual).
These findings demonstrate that the residual embeddings are meaningfully disentangled
and capture feature-specific information rather than reflecting general task complexity. A
more detailed analysis of cross-task accuracies, including Bag-of-Word baseline, is provided
in Appendix F.

Summary of Disentanglement Validation Across three complementary tests, lay-
erwise saturation analysis, matrix-level orthogonality proof, and token-wise independence
probing, residualization consistently produces four nearly orthogonal, interpretable embed-
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dings corresponding to distinct linguistic levels. These embeddings form the basis for our
subsequent neural encoding experiments.

Appendix F. Clarification on Residual Embedding Probing Results

In Section E.3, we reported that each residual embedding performs best on its correspond-
ing task while performing worse on unrelated tasks. Some cross-task accuracies remain
non-trivial, particularly on the meaning and reasoning probes. We provide additional clar-
ification here.

Lexical-level baseline. A control experiment with a bag-of-words (BoW) model, which
ignores syntax and word order, achieved 0.665 accuracy on COMPS-BASE. This shows that
lexical cues alone provide a strong baseline for the meaning task, well above random chance
(0.5). In this context, the raw scores of the syntax and reasoning residuals on COMPS-
BASE (0.589 and 0.605, respectively) are in fact below the BoW baseline, indicating that
residualization successfully removes spurious lexical and structural information from the
meaning embedding. This control confirms that the observed cross-task scores are largely
explained by lexical baselines artifacts. The syntax, meaning, and reasoning residuals each
retain information most relevant to their target feature, supporting the interpretation that
residual embeddings are meaningfully disentangled.

Appendix G. Encoding Results

G.1. Shallow features dominate neural prediction, but lexical activations are
sparse.

Across time-aligned word events, encoding models based on shallower linguistic features,
such as lexical identity and syntactic structure, showed the strongest neural correlations
(Figure 3). Electrodes responsive to these features exhibited markedly higher peak cor-
relation values than those driven by meaning or reasoning embeddings (Welch’s t-test,
p < 0.001), confirming that lower-level linguistic information accounts for a disproportion-
ate share of brain—model alignment under linear encoding. However, despite its high cor-
relation strength, the lexicon embedding activated the fewest electrodes overall, suggesting
that its predictive precision arises from a smaller, more specialized subset of cortical sites. In
contrast, deeper features such as meaning and reasoning recruited broader but less strongly
tuned populations. This dissociation between activation magnitude and spatial extent in-
dicates that shallow representations, though limited in coverage, achieve tighter alignment
within localized neural circuits, whereas deeper representations engage distributed corti-
cal networks with weaker linear correspondence. Moreover, without disentanglement, the
temporal dynamics in Figure 4 reveal that the full embedding is dominated by lexical and
syntactic signals, whose early and sharp peaks mask the slower, high-level temporal sig-
natures of meaning and reasoning. This highlights the necessity of residual separation for
isolating deeper cognitive processes from low-level linguistic confounds.
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Figure 3: a) Peak correlation across linguistic feature models. As described in the Meth-
ods section, electrodes with z ; 3.95 (one-tailed o = .05, Bonferroni-corrected
across N = 1268 electrodes) were deemed responsive, corresponding to values ex-
ceeding 3.95 standard deviations above the shuffle mean. Boxplots indicate the
median and interquartile range across activated electrodes with red lines indicat-
ing means additionally. Asterisks mark significant differences between adjacent
features (Welch’s t-test; p < 0.001), showing that lexical and syntax features
yield significantly higher correlations than high-level linguistic representations.
b) Peak correlation by subject and feature. The number of responsive electrodes
for each subject is shown below the x-axis. Lexical features generally exhibit
higher correlations, indicating stronger neural alignment for lower-level linguistic
representations.

G.2. Reasoning embedding shows different temporal pattern compared to
Lexicon, Syntax and Meaning.

The temporal correlation profiles of Figure 4 illustrate a clear processing hierarchy among
linguistic representations. Syntactic signals exhibit an early rise that begins before word
onset and reach their maximum slightly pre-onset, suggesting that a large portion of pre-
dictive activity for upcoming words might be syntactically driven. Lexical features show
a sharp and temporally confined peak immediately after onset, consistent with rapid low-
level mapping between acoustic input and lexical identity. Meaning representations start
to increase even before onset but peak afterward, indicating that contextual semantics con-
tribute both to anticipatory prediction and to continued integration once the word is heard.
In contrast, reasoning signals begin to rise only after onset and reach their peak at around
362 ms, reflecting a delayed, high-level computation that likely involves integrative or in-
ferential processes beyond immediate linguistic parsing. Finally, the full embedding closely
tracks the envelope of the four disentangled features, mirroring their composite dynamics
and reinforcing the reliability of our residual separation procedure. Together, these tempo-
ral patterns reveal a cascading progression from predictive syntactic structure to contextual
semantics, and finally to post-lexical reasoning operations in the human cortex.
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Figure 4: a) Average correlation time courses for the top 10% most responsive electrodes re-
veal distinct temporal dynamics across linguistic features. Responsive electrodes
were identified following the strategy described in the Methods section. Syntactic
signals rise before word onset, followed by meaning, lexicon and reasoning, which
peak latest at ~362 ms. Significance markers (x) indicate time points where
correlations are significantly greater than zero (one-tailed t¢-test, FDR-corrected
q < 0.05). b) Performance-based temporal receptive field (TRF) across time for
electrodes selective to one of the five features: Lexicon, Syntax, Meaning, Rea-
soning, and Full. Electrodes were selected the same way as in panel a.

G.3. Reasoning recruits more than language area compared to low-level
aspects.

As shown in Figure 5, shallow linguistic features such as lexicon exhibit high peak cor-
relations but remain confined to classical language regions, including the inferior frontal
gyrus (IFG) and superior temporal gyrus (STG). The strong yet spatially restricted activa-
tions indicate that lexical representations are predominantly localized within the traditional
perisylvian language network, reflecting low-level linguistic encoding. In contrast, syntax,
meaning, and particularly reasoning embeddings engage a broader set of cortical regions.
While all three maintain robust responses in IFG and STG, reasoning-selective electrodes
extend anteriorly into the superior frontal gyrus (SFG) and posteriorly into the visual cor-
tex, showing significant activation compared with other features (Welch’s t-test; p j 0.001;
Figure 6). This expanded recruitment beyond canonical language areas suggests that rea-
soning might involve higher-order cognitive operations that integrate linguistic input with
abstract inference, visual imagery, and executive control. Such cross-modal engagement
underscores that reasoning-related brain activity cannot be fully explained by linguistic
processing alone, but rather reflects the neural substrates of generalizable, multimodal cog-
nition (Kosslyn et al., 1997; Ganis et al., 2004).
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a Lexicon Syntax Meaning Reasoning Full b Dominant Feature

® Meaning ® Reasoning

® Syntax

® Lexicon

Figure 5: a) Spatial distribution of feature-selective responsive electrodes (MNI space).
Displayed electrodes are those that met the responsiveness criterion defined in
the Methods section. For visualization, z-scores were clipped to 3-6 to prevent
extreme values from dominating the color scale and obscuring spatial patterns.
b) For each electrode, the feature with the highest peak z-score among Lexi-
con, Syntax, Meaning, and Reasoning models is shown as its dominant feature.
Colored dots indicate the dominant model. Across all electrodes, the counts of
dominant features were: Syntax = 166, Meaning = 161, Reasoning = 128, and
Lexicon = 42.

Appendix H. Supplemented Neuroscience Analysis
H.1. Activated-electrode Overlap Across Linguistic Feature Models

Figure 7. Activated-electrode overlap across feature models. Each cell shows the number
of electrodes that were identified as active in both the feature model indicated by the row
and that indicated by the column. Diagonal values represent the total number of electrodes
active within each model, while off-diagonal values quantify cross-feature overlaps. Notably,
high overlaps between Syntax and Meaning (143) and between Full and all subcomponents
(around 180) suggest that electrodes responsive to linguistic processing are largely shared
across multiple feature spaces. This pattern indicates that while distinct feature models
capture partially unique neural activations, substantial commonality exists among them,
particularly for integrative language representations.

H.2. Lateralization Analysis

To quantify hemispheric lateralization, we computed the proportion of active electrodes
relative to total electrodes in the left and right hemispheres for each linguistic feature. Al-
though the total number of electrodes is highly asymmetric across hemispheres (1057 on
the left vs. 210 on the right), the normalized activation proportions still reveal clear trends.
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Figure 6: a) Peak correlation across cortical regions and feature models. Responsive elec-

trodes were selected based on bilateral significance above the null shuffle dis-
tribution, o < 0.05. The analysis focuses on language-related cortical regions,
including the inferior frontal gyrus (IFG), superior temporal gyrus (STG), and
surrounding Heschl’s Gyrus (HG), as well as the superior frontal gyrus and visual
cortex. The visual cortex group includes electrodes located in the superior occip-
ital sulcus, transverse occipital sulcus, calcarine sulcus, occipital pole, superior
occipital gyrus, middle occipital gyrus, and inferior occipital gyrus and sulcus.
b) Welch’s t-test (one-tailed) revealed that electrodes in visual cortex activated
by the Reasoning feature showed significantly higher correlations than those ac-

tivated by all other features (p < 0.001 for “***'/ p < 0.05 for *’).

Table 4: Hemispheric lateralization ratios. Each proportion represents the fraction of

active electrodes relative to total electrodes within each hemisphere (1057 left vs.

211 right). The ratio indicates

Left proportion
Right proportion *

Feature #L

#R Prop.L Prop.R L/R

Lexicon 76
Syntax 225
Meaning 227
Reasoning 193
Full 300

17
41
63
51
79

0.07
0.21
0.21
0.18
0.28

0.08
0.20
0.30
0.24
0.37

0.89
1.10
0.72
0.76
0.76

Specifically, Syntax-related encoding shows a higher proportion of left-hemisphere activa-
tions (0.21 vs. 0.20), resulting in the highest left/right ratio (1.09) among all features. In
contrast, Meaning and Reasoning features exhibit relatively stronger right-hemisphere acti-
vations (ratios < 1). Given the uneven electrode coverage across hemispheres, these findings
should not be overinterpreted as true right-lateralization for semantic or reasoning process-
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Figure 7: Activated-electrode overlap across feature models. Each cell shows the
number of electrodes active in both feature sets, revealing substantial overlap
among higher-level linguistic representations.

ing; however, they do suggest a stronger left-lateralization effect for shallow representations
(lexicon and syntax).

H.3. Activated Channels in All Brain Area

Please refer to Figure 8.

Appendix I. Discussion

By isolating distinct types of linguistic information using residual embeddings, we disentan-
gled the contributions of lexicon, syntax, meaning, and reasoning to the neural encoding of
natural speech. This revealed new insights into the spatial and temporal organization of lin-
guistic features that cannot be captured by full LLM embeddings used in prior studies (Jain
and Huth, 2018; Toneva and Wehbe, 2019; Goldstein et al., 2022; Oota et al., 2022; Heilbron
et al., 2022; Chen et al., 2023; Li et al., 2023; Antonello et al., 2023; Aw and Toneva, 2023;
Chen et al., 2024a,b; Mischler et al., 2024; Caucheteux and King, 2022). Previous work has
tried hierarchical approaches to decompose low-level linguistic and acoustic features in the
brain (Keshishian et al. (2023, 2025)). However, our study is the first to apply hierarchical
disentanglement framework to large language models by first localizing feature emergence
layers through probing and then performing residual decoupling to construct layer-wise fea-
ture representations, thereby demonstrating its utility for isolating higher-order reasoning
representations.

Our findings show that lower-level features, such as syntax and lexicon, elicit stronger
neural activations than higher-level features like meaning or reasoning. This reflects both
the stronger linear accessibility of shallow features and an inherent bias in full LLM embed-
dings, which primarily capture syntactic regularities while obscuring deeper computations
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Figure 8: Peak correlation values of encoding performance across all cortical regions for five
feature types. Responsive electrodes were selected based on bilateral significance
above the null shuffle distribution, o < 0.05.

(Lampinen et al., 2024). Residual disentanglement reveals clear spatiotemporal hierar-
chies: shallow features emerge earlier and localize to classical language regions (IFG, STG),
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whereas reasoning signals arise later and extend beyond the perisylvian network into SFG
and visual cortex. These results indicate that reasoning engages broader cortical systems
that integrate linguistic processing with higher-level cognitive and multimodal functions.
Together, our framework provides a principled approach for separating linguistic and cogni-
tive components in LLMs and mapping them onto the human brain, offering an alignment-
based perspective on how language and reasoning may correspond between artificial and
neural systems.

Appendix J. Limitations and Future Directions

Despite these advances, several limitations remain. Our reliance on ECoG data, although
temporally precise, provides limited spatial coverage, with insufficient sampling in frontal
regions that are crucial for reasoning. Future work should integrate complementary modal-
ities such as fMRI to improve spatial resolution. Also, while Qwen2.5-14B balances scale
and accessibility, larger models optimized for multi-step reasoning may reveal stronger or
more specialized reasoning signals. While reasoning representations saturate around layer
30 in Qwen2.5-14B, the role of subsequent layers remains unclear. We hypothesize that
deeper layers may encode more abstract or generative representations, potentially related
to discourse organization, narrative planning, or world modeling, beyond explicit reason-
ing. Exploring how these higher-level representations might align with cortical hierarchies
or large-scale cognitive organization in the brain presents an especially interesting direction
for future work.

Appendix K. Compute Resources and Execution Time

We report here the compute infrastructure and approximate runtime for each stage of our
pipeline to support reproducibility.

e Hidden State Extraction: Performed using 4x NVIDIA L40 GPUs. Extracting
hidden states for around 164,000 tokens from the Qwen2.5-14B model. The extraction
took approximately 40 minutes and required around 4 x 30 GB of GPU memory.

e Layer-wise Probing: Conducted using 1x NVIDIA L40 GPUs. Each BLiMP task
paradigm took 2.2 minutes on average, totaling around 57.2 minutes for the selected 26
paradigms focusing on syntax. COMPS-BASE consisting of 49,340 English sentence
pairs took 1 hour and 47 minutes on average. COMPS-WUGS-DIST consisting of
27,792 pairs took 1 hour on average.

e Residual Embedding Construction: Ridge regression training was done using
Scikit-learn on CPU with 30 GB of memory. Each regression model took less than 10
minutes to converge. NVIDIA cuML and GPU training was not adopted due to lack
of support for multi-output ridge regression training.

e Brain Encoding (ECoG): Conducted using CPU with self-developed package. Align-
ing model activations and training encoding models over all channels and time lags
took approximately 5 hours for all experiments done.
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Overall, the full pipeline can be reproduced on a modern workstation or cloud instance
equipped with 1 NVIDIA L40 GPU + 30 GB RAM.

Appendix L. Licenses and Attribution of External Assets

This work uses several publicly available datasets and a language model, all of which are
properly cited and used in accordance with their respective licenses. No proprietary or
scraped data was used.

e BLiMP Dataset (Warstadt et al., 2020): A suite of syntactic probing tasks for
language models.
— URL: https://github.com/alexwarstadt/blimp
— License: CC-BY 4.0

e COMPS Datasets (Misra et al., 2023): COMPS-BASE and COMPS-WUGS-DIST

are used to assess semantic and reasoning representations.

— URL: https://github.com/kanishkamisra/comps/

— License: Apache License 2.0

e The Podcast ECoG Dataset (Zada et al., 2025): High-resolution electrocortico-
graphic recordings from participants listening to a natural podcast.
— URL: https://openneuro.org/datasets/ds005574/versions/1.0.2
— License: CCO0
e Expanded Podcast Transcripts (Mao et al., 2020): Text for additional podcast
episodes used to extend ECoG analysis.
— URL: https://github.com/calclavia/tal-asrd

— License: No explicit license is specified on the repository. However, the au-
thor provides access to the dataset and indicates that it can be downloaded
for research purposes. We used the dataset solely for non-commercial academic
research and did not redistribute or modify it.

e Qwen2.5-14B (Team, 2025a): Language model for LLM representations extraction.

— URL: https://huggingface.co/Qwen/Qwen2.5-14B

— License: Apache license 2.0

All datasets and model were used solely for research purposes. We did not modify or
redistribute any datasets beyond standard preprocessing steps for experimental use. All
license terms were respected.
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