Under review as a conference paper at ICLR 2025

PROBABILITY DISTRIBUTIONS COMPUTED
BY HARD-ATTENTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most expressivity results for transformers treat them as language recognizers
(which accept or reject strings), and not as they are used in practice, as language
models (which generate strings autoregressively and probabilistically). Here, we
characterize the probability distributions that transformer language models can
express. We show that making transformer language recognizers autoregressive
can sometimes increase their expressivity, and that making them probabilistic can
break equivalences that hold in the non-probabilistic case. Our overall contribu-
tion is to tease apart what functions transformers are capable of expressing, in
their most common use-case as language models.

1 INTRODUCTION

Most work studying transformer expressivity, that is, what classes of computations transformers
can perform, treats them as language recognizers, where the input is a string and the output is a
binary classification: true if the string is accepted and false otherwise (Strobl et al., 2024). How-
ever, the most common practical use of transformers is as language models (LMs), which differ in
two ways: first, the input is a prefix of a string, and the output is a prediction of the next symbol;
second, the prediction is a probability distribution rather than a binary decision. Such probability
distributions, when estimated from large text corpora, have enabled a wide range of applications in
natural language processing and beyond. An open and fundamental question concerns which proba-
bility distributions transformer language models can express. This distributional perspective exposes
where previously-proven equivalences retain or lose their validity in the probabilistic setting.

We distinguish, on the one hand, between unweighted (or equivalently, Boolean-weighted) and real-
weighted computation, and, on the other hand, between classifiers, which map a complete string
to a value, and autoregressors, which map each prefix to a distribution over the next token. Under
this terminology, most theoretical work on transformer expressivity (e.g. Yang et al., 2024; Jerad
et al., 2025) focuses on Boolean classifiers, while practical applications use transformers as real-
weighted autoregressors. The theoretical expressivity of transformers as real autoregressors has
been comparatively underexplored.

In this paper, we answer this question for several variants of transformers. Yang et al. (2024) proved
that strictly-masked rightmost UHATs, as language recognizers, recognize the same languages as
linear temporal logic (LTL) and counter-free automata. There are two commonly-used weighted
analogues of regular languages, those defined by weighted deterministic finite automata (DFAs) and
weighted nondeterminizible finite automata (NFAs), and each of these have counter-free versions.
Surprisingly, these two diverge in the weighted setting, despite being equivalent in the Boolean
setting. We prove that, as language models, these transformers define exactly the same weighted
languages as weighted counter-free DFAs.

Jerad et al. (2025) proved that leftmost UHATS, as language recognizers, recognize the same lan-
guages as a fragment of LTL, called in our notation TL[P], or a subclass of counter-free DFAs called
partially ordered DFAs. Similarly, Li and Cotterell (2025) proved that softmax attention transform-
ers (SMATs) with fixed precision, as language recognizers, recognize the same class of languages.
But here we show that as language models, these variants become slightly more powerful.

Yang et al. (2025) considered SMATs with fixed precision but arbitrary precision inside attention.
As language recognizers, these transformers are exactly equivalent to a temporal logic extended with
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Figure 1: In the Boolean semiring, equivalences from the literature (Yang et al., 2024; Jerad et al.,
2025; Yang et al., 2025) carry over from classifiers to autoregressors; however, sometimes autore-
gressors are more expressive than classifiers. In the real semiring, LTL and counter-free DFAs and
NFAs become less expressive than counter-free NFAs, and rightmost UHAT S are only as expressive
as the former. Key: — = strict inclusion, < = equivalence.

counting operators. But here we show that, as language models, they become slightly more powerful
when considering different depths.

In §3, we define notational preliminaries. We then (§4) define the classes of transformers we con-
sider, and show how they can be used as classifiers and as autoregressors. We then (§5) introduce
two other formalisms, deterministic finite automata (DFAs) and linear temporal logic (LTL), and
show how they can also be seen as instantiations of the framework we showed for transformers.
Then (§6), using LTL, we investigate the expressive power of transformers as both classifiers and
autoregressors, yielding the results shown in Fig. 1.

2 RELATED WORK

Theoretical study of transformers as language models has not gone totally neglected. Hahn (2020)
compared a SMAT language model with a probabilistic finite automaton for parity (strings that have
an odd number of 1’s). Yao et al. (2021), following previous work on RNNs, consider a transformer
language model to e-generate a language if it assigns probability at least e to each symbol in every
string in the language (and no strings not in the language). They also discuss how to convert a
construction for a bounded Dyck language (strings of matching parentheses up to a certain depth)
from an e-generator to a language recognizer. These studies were specialized to particular languages
and used specialized ways of comparing distributions that don’t generalize in an obvious way.

Svete and Cotterell (2024) made progress by showing that average-hard attention transformer lan-
guage models can exactly express all n-gram language models.

Bhattamishra et al. (2020) proved theoretical results on transformers as language recognizers but
carried out experiments on transformer language models for the character prediction task, which
is to predict, at each position, the set of next possible symbols (what we will call Boolean autore-
gression). This experimental setup was previously used in studies of RNNs, and has been adopted
in other studies of transformers (Huang et al., 2025; Yang et al., 2025). We discuss the experiment
of Yang et al. (2025) in §6.6.

3 PRELIMINARIES

Throughout this paper, we work with weighted languages. We define some key concepts here, but
for a more detailed introduction, see the handbook chapter by Droste and Kuske (2021).
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Let X be an alphabet, that is, a finite, non-empty set of symbols, and let ¥* be the set of strings
over 2. We often augment X with start and end symbols BOS and EOS, but never consider BOS or
EOS to belong to ¥.. For any string w = wy - - - wy,, we write the length of w as |w| = n.

We think of weights and probabilities as elements of semirings, an abstraction of the usual addi-
tion and multiplication operations that allows results and algorithms apply generically to multiple
settings. A semiring K has an addition operation &, additive identity 0, multiplication operation ®,
and multiplicative identity 1. The two semirings we focus on in this paper are the (extended) real
semiring Rzo, which contains all nonnegative real numbers and 400, and in which @ and ® are
real addition and multiplication; and the Boolean semiring B, in which & is disjunction (V), 0 is
false (L), ® is conjunction (A), and 1 is true (T).

A weighted language (also called a formal power series) is a function S: ¥* — K. If K is
complete (that is, it allows infinite summations, as R>( and B do), then we call a weighted language
normalized if ) ... S(w) = 1. The support of a weighted language is the set of strings with
nonzero weight: supp(S) = {w € £* | S(w) # 0}.

For sets X and Y, we write YX for the set of functions from X to Y, and 2% for {0,1}¥ or the
power set of X.

4 TRANSFORMER LANGUAGE MODELS

4.1 UNIQUE HARD ATTENTION TRANSFORMERS

Following Yang et al. (2024), we use unique-hard attention transformers (UHATS), specifically,
with rightmost-hard attention, strict future masking, and no position embeddings. We give a defini-
tion of strictly masked rightmost-hard attention here; for a definition of the rest of the network, see,
for example, the survey by Strobl et al. (2024).

The attention function receives a sequence of query vectors q() € R%, key vectors k(/) € R%, and
value vectors v € R?, for i, j € [n]. At each position i, it computes

Att ((q(Z))le[n] ’ (k(]))]G[TL] ) (V(j))je[n]) = (c(l))ie[n} (D
where
ai(j) = q - kW is an attention score for each position 7,
af = maxa;(j) is the maximum attention score,
1<t
Ji=max{j <i|a;)(j)=a;} is the rightmost maximum-scoring position, and
) = vl ifi>0 is the attention output
“lo  ifi=0 put

Given an input string w = wy - - - Wy, a transformer 7 prepends a symbol wy = BOS and computes
a sequence of “states” 7 (z) = (ho, ..., hy), where h; is the state after reading w;. There are at
least two ways to use 7 to define a weighted language.'

4.2 CLASSIFIERS

The first way that a transformer can define a weighted language is as a classifier.

Definition 4.1. A UHAT classifier is a UHAT T : ©* — (R%)* together with a function c: R? — K,
which outputs a scalar weight at the last position only:

Se(w) = ¢(hy). 2

'A third intermediate way would be to multiply the weights at each position like an autoregressive model,
but not to pass the output symbol at each position autoregressively to the input at the next position. Although
interesting in its own right, it has not, to our knowledge, been used with any neural sequence models, and we
do not explore this style of model here.
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For the Boolean semiring (K = B), we accept a string iff the transformer outputs T at the last
position. For example, the output function could be ¢(y) = I{Wy + b > 0}, where W and b are
parameters. This is the setup used for binary classification with a transformer encoder (Devlin et al.,
2019) and in most theoretical papers on transformer expressivity.

4.3 AUTOREGRESSIVE MODELS

The second way for a transformer to define a weighted language is as an autoregressive model, or
an autoregressor for short (by analogy with classifier). We define a function p: R? — K>U{E0s}
which outputs at each position a weight distribution for the next symbol, including EOS. To line
up with the more familiar notation of conditional probability distributions, we write, for all o €
Y U{Eos},

Pry(o | w<i) = p(hi) (o). 3)

As suggested by this notation, we want Pr,,(- | u) to be a probability distribution over ¥ U {EOS}.
But we impose a stronger condition. First, we extend Pr, (o | u) to the probability distribution of
suffixes given (possibly empty) prefixes:

o]

Pr,(v | u) = [ Q) Pry(vi | uv<;) | @ Pry(EOS | uv) (4)
i=1

Pr,(w) = Pr,(w | €). &)

Then we require that every such distribution sums to one:

Definition 4.2. A UHAT autoregressor is a UHAT T: ¥* — (R%)* together with a function
p: RY — KEVEOSH gycp that for all u € ¥,

@ Pr,(v | u)=1. (6)

veX*
This implies that:

» The autoregressor generates strings symbol-by-symbol. That is, for all prefixes wu,
EUGZU{EOS} Prp(a | u) =1

* Generation does not have any dead ends or endless loops. That is, for all prefixes w,

®Prp(ui | u<;) # 0 = Pry(uv) # 0 for some suffix v.
i=1

In the real semiring (K = Rxq), a typical example of such an output function is p(h) =
softmax(Wh + b).

5 OTHER FORMALISMS

We can analogously use other formalisms to define classifier or autoregressive models. Any state
encoder which sends a string wy - - - w,, to a sequence of “states” hy, ..., h, € @Q can be equipped
with an output function ¢: Q — K to give a classifier model or p: Q — K>W{E%} to give an
autoregressive model exactly as we did with transformers above.

5.1 FINITE AUTOMATA

Definition 5.1 (Deterministic finite automaton). A deterministic finite automaton (DFA) is a tuple
A= (2,Q,06,t), where

e Y is an alphabet
* @ is a finite set of states
* §: @ X X — Q is a transition function
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a a
(a) (b)

Figure 2: (a) A DFA that is counter-free (with £ = 2). (b) A DFA that is not counter-free, because
for all k, the strings a* and a**! have opposite actions. (c) A counter-free weighted NFA that has
no equivalent weighted DFA (Prop. 6.2).

* L € Q is the initial state.

We extend 6 to a mapping 0*: Q X ¥* — @ such that:

0°(g,¢€) = q o
6% (g, ow) = 6"(8(q,0), w).
A DFA A defines a state encoder
A: X" = QF
A(w)i{g*(L,w1~~wi) Z):<(Z§n ®)

A DFA with classifier outputs in the Boolean semiring is the same as the standard definition of a
DFA: the states that output T are the accept states, and the states that output L are the reject states.

A DFA with autoregressive outputs in the real semiring is the same as the standard definition of a
weighted DFA: when it is in state ¢, the next input symbol ¢ determines both the next state d(g, o)
as well as the symbol weight p(q) (o). Moreover, each state has an accepting weight p(q)(EOS).

In this paper, we are only interested in the following subclass of finite automata called counter-free
automata, which we abbreviate as cfDFAs.

Definition 5.2 (Counter-free automaton). We say that a DFA with transition function § is counter-
free if there exists some k such that for all states q, all strings w, we have §* (g, w*) = §*(q, w**1).

Examples of counter-free and non-counter-free DFAs are shown in Fig. 2ab.

5.2 LINEAR TEMPORAL LOGIC

Definition 5.3 (Linear temporal logic). The formulas of past LTL are defined by the grammar

(725 n= _‘¢1 ‘ (251 /\¢2 | BOS

|o oceXx

| Yo Yesterday

| Poy Previously

| Hoy Historically
| &1S @2 Since
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The semantics of formulas is given by the relation w,i |= ¢ (“w satisfies ¢ at position i), defined
as follows:

w,i = = w,i [~ O (9a)
w, i = d1 A do <= w,i | ¢y and w,i = Py (9b)
w, i = BOS <—i=0 (9¢)
w,ifE=o = w; =0 (9d)
wiEYd —=i>0andw,i—1[ ¢ (%e)
w,i EPd; <= w,j|E o1 forsomej <i (9f)
w,i EHey = w,j 61 forall j < i %)

w,i = ¢1 S o < (w,] | ¢ for some j <i)and (w,j = ¢y forall j < j' <i).  (9h)
We write w |= ¢ as shorthand for w, |w| = ¢.

Note that Hy is equivalent to “P—¢, so only one will be necessary. For any set of operators
O C{Y,H, S}, we write TL[O] for the set of formulas using only operators in O. Thus past LTL =
TL[Y, S]. Given a tuple of formulas & = (¢1, .. ., ¢, ), we can define a state encoder

d: ¥ — (B™)*
(I)(w)i = (H{w7i |: ¢1} ’e "H{w7i |: ¢m})

Droste and Gastin (2019) define a weighted first-order logic, with several variations corresponding
to several subclasses of weighted counter-free automata. Mandrali and Rahonis (2013; 2015) do the
same for LTL. Both of these logics have, roughly speaking, four layers: (1) a core Boolean logic,
(2) weights conditioned on formulas, (3) products over positions, and (4) addition and sums over
positions. This is similar to our framework, which has (1) a core Boolean logic, (2) classifier output
functions that can choose weights conditioned on formulas, and (3) autoregressive output functions
that can also compute products over positions.

6 EXPRESSIVITY RESULTS

Previous results have shown that UHATSs, LTL, and cfDFAs are equivalent in terms of language
recognition. In the weighted language setting, different model setups may lead to different levels of
expressivity.

In §6.1, we use existing results on the equivalence of UHATSs, LTL, and counter-free DFAs to show
that these formalisms are also equivalent as weighted classifiers and as autoregressors.

Next, we compare the expressivity of classifier versus autoregressive models. Given the equivalence
of the above formalisms, we will mainly discuss LTL.

In §6.2, we will show that LTL classifiers define exactly the aperiodic step functions (defined below).
In the Boolean semiring, this is the same class of weighted languages that LTL autoregressors define,
which is the main result of §6.3.

However, when we consider fragments of LTL, this equivalence breaks down, and autoregressors
may become more expressive than classifiers (§6.5).

Moreover, in the real semiring, LTL classifiers become less expressive than LTL autoregressors,
and while LTL autoregressors remain equivalent to counter-free DFAs, both are less expressive than
counter-free NFAs (§6.4).

6.1 STATE ENCODERS

We say that two state encoders 71 : X* — Qf and 71 : X* — Q3 are equivalent if there is a bijection
f: Q1 — Qo such that for all w € £*, f(1i(w)) = 72(w).

Theorem 6.1. UHATSs, LTL, and ¢fDFAs define equivalent state encoders.

The proof is an adaptation of results from (Yang et al., 2024; Schiitzenberger, 1965; McNaughton
and Papert, 1971; Kamp, 1968) connecting UHATSs, LTL and cfDFAs as language recognizers.
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Proof. See App. A. O

The following is an immediate consequence of Thm. 6.1 and the definitions of classifier and autore-
gressive models.

Corollary 6.1. UHATSs, LTL, and counter-free DFAs as classifier models define the same weighted
languages. Similarly when they are used as autoregressive models.

Proof. By the previous theorem, all these formalisms define equivalent state encoders. Therefore
there exist output functions in which they define the same weighted languages. O

6.2 CLASSIFIER MODELS

Definition 6.1. An aperiodic step function (Droste and Gastin, 2008) is a weighted language
S: ¥* — K such that S(w) = @, k; @ [{w € L;} where L1,...,Ly,, are aperiodic (that
is, counter-free) regular languages.

Proposition 6.1. An LTL classifier defines the aperiodic step functions.

Proof. Given any aperiodic step function as defined above, we can write, for each L;, an LTL for-
mula ¢;. Then we can write a classifier output function ¢(h) = ", k; ® h;.

Conversely, given an LTL classifier consisting of a tuple of formulas (¢4, ..., ®,,) and an output
function c(h), for every h € 2, write the formula ¢;, = Nijn,=1 @i N Nijp,—o ~i. For every
h, let L;, be the language defined by ¢;. Then the weighted language can be written as the step
function S(w) = @, coim c(h) @ T{w € Ly} . O

Corollary 6.2. In the real semiring, the weighted language (%a)* is expressible by an LTL autore-
gressor, but not by any LTL classifier.

Proof. This language has an infinite number of string weights, but an aperiodic step function can
only output a finite number of different weights. On the other hand, it is easy to write a weighted
counter-free DFA that defines this weighted language. O

6.3 AUTOREGRESSIVE MODELS

In this section we will focus on B and R>( weighted autoregressors — the two settings that arise
in practice. We will see that LTL classifiers and LTL autoregressors are equivalent, but with an
important caveat. If we consider fragments of LTL that have only a subset of the temporal operators,
the equivalence only holds under certain subsets.

Theorem 6.2. For any set of operators O C {Y,H,S}:

(a) Let Sy be a weighted language defined by a TL|O] classifier. There exists a Rxo-
weighted TL[O] autoregressor satisfying Eq. (6) defining a weighted language S such
that supp(S1) = supp(Ss).

(b) Let Sy be a weighted language defined by a TL[O)] autoregressor over a semiring with no
non-trivial zero divisors (that is, whenever k1 @ kg = 0 <= k1 = 0V ky = 0). There
exists a R>o-weighted TL[O U {P,Y}] classifier defining a weighted language Sa such
that supp(S1) = supp(Sa).

Proof. See App. B.3. O

To prove this, we need to introduce two new operators as “syntactic sugar” that do not increase the
expressivity of the logic.

Lemma 6.1. There is a transformation next, from formulas of TL[O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all w € ¥*,

w = next,(¢) <= wa = ¢. (10)
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Intuitively, next,, removes an a on the right; in other words, next, (¢) defines the right Brzozowski
derivative (Brzozowski, 1964) of the language defined by ¢.

Proof. See App. B.1. O

Lemma 6.2. There is a transformation prefix from formulas of TL|O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all w € ¥*,

w = prefix(¢) <= there exists v such that wv = ¢. (11)
Proof. See App. B.2. O

With the above results, we can also show the following.

Corollary 6.3. Let ¢ be a TL[O] formula and let ¢' = prefix(¢), whose existence is guaranteed
by §6.3. Computing ¢' is in general PSPACE-hard; there is an exponential-time, polynomial-space
construction and |¢'| can be exponential in |@|.

For each u € ¥*, let TAILS (¢, u) be true iff there is a v € X* such that uwv = ¢. Then deciding
TAILS (¢, u) is in general PSPACE-complete where the problem size is defined as |¢'| + |u| .

Proof. The algorithm from the proof of §6.3 can be implemented as a PSPACE algorithm that out-
puts each disjunct in the formula ¢’ one by one. Hardness refers to the problem of checking ¢’ (e.g.
¢’ is unsatisfiable). See App. B.4. O

6.4 NONDETERMINISTIC FINITE AUTOMATA

In the unweighted setting, LTL is expressively equivalent to counter-free automata (Schiitzenberger,
1965; McNaughton and Papert, 1971), but in the weighted case, there are several nonequivalent
analogues of counter-free automata (Droste and Gastin, 2008). Here, we are primarily concerned
with the distinction between weighted counter-free DFAs and nondeterministic finite automata
(NFAs), in which a state can have more than one outgoing transition with the same symbol (see
App. C for a definition). Consequently, we cannot think of an NFA as mapping a string to a single
sequence of states. To use an NFA as an autoregressive model, we have to sum the weights of many
sequences of states. Although unweighted NFAs are determinizable, not all weighted NFAs are
determinizable (Mohri, 1997). Likewise, not all counter-free weighted NFAs are determinizable, as
the following shows.

Proposition 6.2. As autoregressors, counter-free NFAs define more weighted languages than
counter-free DFAs (or UHATs or LTL) do.

Fig. 2c shows an example of a counter-free weighted NFA that is not determinizable. See App. C
for a proof.

6.5 FRAGMENTS OF LTL

Li and Cotterell (2025) show that fixed-precision future-masked transformers are equivalent to
TL[P], and Jerad et al. (2025) show that future-masked leftmost-hard attention transformers are also
equivalent to TL[P]. However, in this section we show that for autoregressors, these equivalences
break.

When the set of operators O lacks either H or Y, the asymmetry in Thm. 6.2 suggests that Boolean
autoregressors are more expressive than classifiers. The following shows that this is indeed the case.

Proposition 6.3. The language (ab)* is defined by a Boolean TL[D] autoregressor but not defined
by any TL[H] or TL[Y] classifier.
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Proof. Consider the state encoder & = (BOS, a, b) and the output function

p(QBOSa qa; Qb)(a) =T < qos=Torg =T
p(QB057Qa7Qb)(b) =T &< =T
P(gsos, das @p)(BOS) =T = @gos = Torg, =T

But a formula in TL[Y] can’t distinguish between strings that differ beyond their last k& symbols
(for some constant k& depending on the formula), and for any k, we have ab(ab)[*/?1 € (ab)*
but ba(ab)*/? & (ab)*. A formula in TL[P] (which is equivalent to TL[H]) can only define a
stutter-invariant language, which is a language L such that for all v, o, v, we have uov € L <=
uoov € L (Peled and Wilke, 1997). And (ab)* is not stutter-invariant, because ab € (ab)* but
aabb & (ab)*. O

However, the expressiveness added by autoregression seems somewhat limited, as (aab)* is not
definable.

We define the Y -depth of a formula ¢ as the number of nested Y operators in ¢.
Proposition 6.4. (aab)* is not definable by any formula of TL[P, Y| with Y -depth 1.

Proof. See App. D. O

This fact implies a statement about language models in our framework.

Theorem 6.3. (aab)* is not definable by any autoregressive leftmost UHAT language model.

Proof. Leftmost UHATS are expressively equivalent to TL[P] (Jerad et al., 2025). Following the
construction in Thm. 6.2, a Boolean TL[P] autoregressor can be simulated using a TL[P, Y] formula
with Y-depth 1. By Prop. 6.4, no such formula can define (aab)*. O

6.6 TEMPORAL LOGIC WITH COUNTING

Other formalisms besides the ones discussed above have been proposed for comparison with trans-
formers. Yang et al. (2025) prove that SMATSs, with fixed precision outside attention and arbitrary
precision inside attention, are equivalent to a temporal logic with counting operators, TL[#,+].
They considered the family of languages

Lib*  keven
L = 13
et { Lya* kodd (13)

and showed that, as Boolean classifiers, transformers with depth k£ can recognize L;. But their
experiments were on the symbol-prediction task (§2), closely related to Boolean autoregression.
They showed both theoretically and experimentally that SMATs with depth & can solve the symbol-
prediction task for not only Ly, but Ly o.

In the present framework, this discrepancy can be readily explained. Like TL[P], the logic TL[#, +|
lacks a 'Y operator or an equivalent. So it is more expressive as an autoregressor than as a classifier.

7 CONCLUSION

We have shown that theoretical results on transformers as Boolean classifiers (as most theoretical
results in the literature are) sometimes carry over to real-weighted and/or autoregressive settings, but
they sometimes do not. We have laid out a framework for studying other variants of transformers
and other automata or logics as real-weighted autoregressors, leading to theoretical results that can
make more accurate predictions about language models as used in practice.
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A EQUIVALENCE OF STATE ENCODERS
Theorem 6.1. UHATs, LTL, and c¢fDFAs define equivalent state encoders.

Proof of Thm. 6.1. First we show the equivalence of state sequences defined by UHATs and LTL,
and then equivalence of LTL and cfDFAs.

The essential observation (Yang et al., 2024, Lemma 22) is that the output at every position of every
UHAT layer comes from a finite set Q C R%. So we can think of a UHAT as a function 7 : ¥£* — Q*.
For each h € @, we can construct an LTL formula ¢, such that T (w); = h <= w,i = ¢, (Yang
et al., 2024, Theorems 2, 4). So there exists a tuple of LTL formulas (¢n)neq that defines a state
encoder equivalent to 7. Note that the state outputted by 7 on the prepended BOS symbol can be
simulated using a BOS formula in the tuple.

In the other direction, for every tuple of LTL formulas (¢y, ¢o, ..., ¢) defining a state encoder
¥* — B™, there exists a UHAT 7: ¥£* — (RY)* defining an equivalent state encoder. For each
¢k, we construct a transformer 75 which outputs % if w,i = ¢ and f% otherwise (Yang et al.,
2024, Theorems 1, 3). Then we can parallel-compose all the 7T, into a single 7 (Yang et al., 2024,
Lemma 25), and add an additional layer which projects the output dimensions of each 7 into a

single output vector R™ such that 7 (w); = e, <= w,i |= ¢y.

The equivalence between LTL and cfDFAS can be described a little more succinctly. Given a DFA
A= (%,Q,0,), for each state ¢ € @ there exists a formula ¢, such that w |= ¢, <= (¢, w) =
q, due to the expressive equivalence of LTL and cfDFAS (Schiitzenberger, 1965; McNaughton and
Papert, 1971; Kamp, 1968). The tuple (¢,),cq then defines a state encoder equivalent to .A. In the

other direction, given a tuple of LTL formulas (¢1, . . ., ¢, ), for each k € [m] there is an automaton
Ay, that recognizes the same language as ¢y. Then the Cartesian product of all the Ay, defines a state
encoder equivalent to (¢1, ..., ¢m). O

B AUTOREGRESSIVE MODEL PROOFS

B.1 PROOF OF LEM. 6.1

Lemma 6.1. There is a transformation next, from formulas of TL[O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all w € ¥*,

w = next, (¢) <= wa | ¢. (10)
We define next, recursively:

nexty,(c) =T (14a)
next, (o) = L ifo! 4o (14b)
next,(Bos) = L (14c)
next, (—¢) = —next,(¢) (144d)
next, (1 A ¢2) = nexty, (¢1) A next,(¢2) (14e)
next,(Y¢) = ¢ (141)
next, (H¢) = Ho A next, (¢) (14g)

)

next, (91 S ¢2) = (nexty (d1) A (1S ¢2)) V nexty, (¢2). (14h)

Next, we prove that next,, (¢) satisfies Eq. (10) by induction on the structure of ¢.

Base Cases. If ¢ = o:

w,i = nexty(0) L2 wET (15a)
L wo =0 (15b)
If ¢ = o' for o’ # o:
w = next, (o) L2 w1 (15¢)
L4 we Eo'. (15d)
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Similarly, if ¢ = BOS:

w = next, (BOS) L9 EL (15e)
L2 wo = BOS. (151)
Inductive Cases. If ¢ = —¢q:
w = next, (—¢1) B9 w E —mext, (¢1) (16a)
PN = next, (¢1) (16b)
NP o b ¢y (16¢)
L wo = ¢y (16d)
If ¢ =1 A @a:
w = next, (41 A ¢2) L9y E nexty (¢1) A next, (¢2) (16e)
‘& (w = next, (61)) A (w £ nexty(¢2)) (16f)
M (o = ¢1) A (wo = ¢) (16g)
EL wo = ¢y A do. (16h)
If = Yor:
w E next, (Yor) SLIp E ¢ (16i)
L wo =Y. (16j)
If ¢ = Hor:
w = next, (Hey) L8 E Ho A next, (¢) (16Kk)
L (w | He) A (w = next, (¢)) (161)
NP (= Hey) A (wo = ¢y) (16m)
L2 wo = Hey. (16n)
If =1 S pa:
w = nexty, (P11 S ¢2)
L = (next, (61) A (61 S ¢2)) V nexto (o) (160)
COMEY () |= nexty (¢1) A (w | ¢1 S 62)) V (w = next, (¢2)) (16p)
X (wo k= 61) A (w = 618 o)) V (wo = o) (16q)
E wo = ¢1 S ¢o. (161)

B.2 PROOF OF §6.3

Lemma 6.2. There is a transformation prefix from formulas of TL|O] to formulas of TL[O] such
that for any formula ¢ of TL[O] and for all w € X%,

w = prefix(¢) <= there exists v such that wv = ¢. (11)

Given a formula ¢ of TL[O], let cl(¢) be the set of all subformulas of ¢ (including ¢ itself). Con-
struct a DFA My = (2€19) 52, 6,1, F), where

v={xec¢)|ekx}
F={¥Ccl(¢)|pec ¥}
§(V,0)={xec®) |V}

where the relation U % y, which intuitively means that if a string w satisfies exactly the formulas
in U, then wo satisfies , is defined as follows:

UL oiffo =0 (17a)
UL yi Axiff Uy and 5 xs (17b)
U % —yiffnot ¥ % y (17¢)
UL Yyiffye U (17d)
U L Hyiff Hy € Tand ¥ % (17e)
UL x1Sxeiff((1Sx2€Pand ¥ 5 x)or U L yo. (17f)
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Claim B.1. Forany w € %, if U = {x € cl(¢) | w |= x}, then ¥ T x <= wo = .

Proof. By induction on the structure of x. This is all just unwinding definitions. Note by definition
that y € ¥ <— w = x.

U L=y
L wo =o'
\Ilim(l/\xg éi—b; \I/i>xland\Ili>X2
e wo = x1 and wo = xo
FLLIN wo | x1 A Xa-
Wgﬁxlg not ¥ % y
md.h%p. not wo ):X
PN wo = .
U SYy Y8 yevw
— wkyx
JLEN wo = Y.
v 5 Py &9 HycVand ¥ % x
md&—%"w|:H)<and'worj:><
JLEN wo = H.
o 17 o o
\Il—>X18X2Aé:f; (x1Sx2€Vand ¥ — x1)or ¥ — x5
g by (wE x1S x2 and wo = x1) or wo = xo
&wallesxg. O

Claim B.2. Forany w, §(t,w) = {x € cl(¢) | w E x}.

Proof. By induction on the length of w.
Base case: §(t,e) =t ={x | e = x}-
Inductive step: Assume that (¢, w) = {x | w | x} = ¥. Then

0(t,w) = 6(0(t, w), o)
=46(P,0)

={x|1¥>x}
— (x| wo 0

Claim B.3. My defines the same language as ¢.
Proof. 0(1,w) € Fif andonly if ¢ € {x | w |= x} if and only if w |= ¢. O

Then make every co-accessible state (every state that has a path to an accept state) into an accept
state. Call this new DFA M (; with accept states F'. This DFA recognizes the prefix language of M.
Finally, construct the formula

prefix(9) = \/ | Axr A —x

WeF' \ xev x€Ecl(p)\ ¥

Claim B.4. The formula prefix(¢) defines the same language as M.
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Proof. Since we only changed non-accept states to accept states, Clm. B.2 still applies to M (; and ¢.

w e L(IM}) < 6(t,w) € F'
<~ {xeced)|wkEx}eF Clm. B.2
< forsome ¥V € F', x € Viffw = x

<:>forsome\IJ€F’,'w|:/\X/\ /\ X

XEW XEcl(p)\ ¥
— wkE \/ /\ X A /\ -x | - O
Vel \xev XEcl(p)\ ¥

B.3 RELATIONSHIP BETWEEN CLASSIFIERS AND AUTOREGRESSORS

Theorem 6.2. For any set of operators O C {Y ,H, S}:

(a) Let Sy be a weighted language defined by a TL|O] classifier. There exists a Rxo-
weighted TL[O)] autoregressor satisfying Eq. (6) defining a weighted language Ss such
that supp(S1) = supp(Sa).

(b) Let Sy be a weighted language defined by a TL[O)] autoregressor over a semiring with no
non-trivial zero divisors (that is, whenever k1 @ ko =0 <= ki = 0V ky = 0). There
exists a R>g-weighted TL[O U {P, Y} classifier defining a weighted language S such
that supp(S1) = supp(Ss).

Proof of Thm. 6.2. (a) Any TL[O] classifier Sy is defined using a tuple of formulas & =
(41, -.,bm) and an output function ¢: B™ — K. We will show the case where & = (¢) is
equivalent to a single formula ¢ of TL[O], ¢: B — K, and S;(w) # 0 <= w |= ¢ (whichis
the most natural case) — the generalization to tuples of formulas with different output functions is
straightforward.

For each o € 3, define

¢o = next, (prefix(¢)) (18)

and also define

d)EOS = ¢ (19)

Then the tuple of formulas ¢ = (o )resufros) defines a state encoder. We define the output
function p: BI®I*! — K given by

=y be=T
p(b0'17"'7bo"2|)bEOS)(U) = e . (20)
0 otherwise

Let Sy = p o ®’. First, we note by construction that this autoregressor only assigns nonzero weight
to strings which satisfy ¢, so supp(S2) = supp(S1). Next, we verify that this Sy satisfies Eq. (6).
First, by the defintion of the output function in Eq. (20) we know that the next-symbol probabilities
sum to 1. By a standard construction (Baier and Katoen, 2008, Sec 10.10), this induces a probability

distribution over the finite strings — thus @, .. Prp(v | u) = 1 as desired.

O

Proof of Thm. 6.2. (b) Let S; be an autoregessor. Like before, for brevity we assume the underlying
state encoder is ® = (¢) and the output function is p: B — K such that S;(w) # 0 < w = ¢.
In such an autoregressor, Sy (w) # 0 iff S;(wiwsy---w;) # Oforall 1 <i < |w|.
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Now for ¢ in ¥ U {EOS} we define the formula ¢,, which depends on the boolean values « and S.

a, =I{p(T)(o) # 0}
ag =T{p(L)(0) # 0}
f=H{w,0 | ¢}
6o = (Yo Nag)V (=Y$ Aaz) V (YBOS A ((BAag) V(=81 az)))
Intuitively, o, is used to check if a given state assigns nonzero probability to next-symbol o, and

Y ¢ is used to check the state at the previous position. Also, 3 is used to detect the state of ¢ at
position 0, which my vary (by our definitions, 8 = T iff ¢ = BOS). Then, define

o=H| \ onrg

oceXU{E0S}

Let ®’' = (¢/)and ¢(b) = T <= b= T. Then S = (c o ®’) has the same support as S. O

B.4 PROOF OF COR. 6.3

Corollary 6.3. Let ¢ be a TL[O] formula and let ¢’ = prefix(¢), whose existence is guaranteed
by §6.3. Computing ¢' is in general PSPACE-hard; there is an exponential-time, polynomial-space
construction and |¢'| can be exponential in |@|.

For each w € X, let TAILS ¢(¢', w) be true iff there is a v € ¥* such that uv (= ¢. Then deciding
TAILS £ (¢, w) is in general PSPACE-complete where the problem size is defined as |¢'| + |u] .

Proof. To show hardness, with w = €, computing TAILS s (¢, €) is precisely finite-trace satisfiability
for past LTL with S, which is PSPACE-complete(Giacomo and Vardi, 2013). Thus the problem is
PSPACE-hard whenever S € O.

To show membership, let cl(¢) be the set of subformulas of ¢ and set m = O(|¢| + |log(|w])). Let
My = (2¢1(#) 33, 6,1, F) be the DFA constructed from ¢ by the progression clauses in §B.2, with
v={x€ec@)|eEx}, F={VCc(e)|¢ecV}
and 0 as in §B.2. By Clms. B.2 and B.3,
5 (ow) = {x € cl(@) [ w,w] = x} and w ¢ = §*(w) €
Compute U, = §*(¢,u) by iteratively applying § along wu: start from ¢ and update ¥ + 6(, a)
for each a in w. This uses O(m) space.

TAILS ¢ (¢, w) holds iff some state in F' is reachable from ¥,, in the graph of M. This graph has
at most 2™ nodes, where each node can be represented in O(m) size and that checking whether
(v,v") is an edge in the graph can be done in time (and therefore also space) polynomial in m. This
immediately gives us a nondeterministic algorithm for this graph reachability that uses only O(m)
space, and, by Savitch’s theorem (Savitch, 1970), it follows that the problem is in PSPACE.

O

C NONDETERMINISTIC FINITE AUTOMATA

We give a single definition of weighted NFAs instead of factoring them into unweighted NFAs and
autoregressive output functions.

Definition C.1 (Weighted Nondeterministic Finite Automaton). A weighted nondeterministic finite
automaton is a tuple A = (X, Q, 6, o, w), where

* Y is an alphabet

* Q is a finite set of states

* §: Q XX x Q — Kis atransition function
e | € Q is the initial state
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* w: Q — Kis an ending weight.

We extend 6 to 6*: Q X ¥* x Q — K:
6"(g.6,9) =1
5*(q767q/) =0 C]#(]/
o (q17 ow, (]2) = @ 5(CI1> g, q) ® 5 (q7 w, QQ)
q€eQ
Then A accepts w with weight k iff

k=D 5 (1, w,q2) @ w(ga).

2€Q

Definition C.2. We say that an NFA with transition function ¢ is counter-free if there exists some k
such that for all states q1, qa, all strings w, we have §* (g1, w*, g2) = 6*(q1, w**!, go).

A weighted automaton is determinizable if every every pair of states which are siblings (can be
reached by the same string) are also rwins (all cycles by the same string have the same weight)
(Mohri, 1997). See Fig. 2c. This automaton is counter-free because for any pair of states g, g2
and any string w, we have that §* (g1, w, g2) = 6*(q1, w?, g2). However, it is not determinizable

a/l
because g; and go are siblings (both reachable by a) but not twins (the a-labeled cycles ¢; @ Q

3
and ¢ a/—4> g2 on the two states have different weights).

D INEXPRESSIVITY OF (aab)*

Proposition 6.4. (aab)* is not definable by any formula of TL[P, Y] with Y -depth 1.

In order to prove this, we will use some results in algebraic formal language theory. The proof relies
on the definition of varieties of semigroups (V') and substitutions of formulas (® o ¥), which we will
not define here (they can be found in the citations). The following is rephrasing of Proposition 5.1
shown by Straubing (1985) but specifically for V * LI,.

Proposition D.1. Let V be a variety of finite monoids. M & V x LIy iff there exists a surjective
morphism ¢: $* — M and a morphism 1: (X2 x ¥ x ¥2)* — N where N € V, such that the
following conditions hold

» Whenever my, o are paths in (32 x ¥ x $2)* such that L(m1) = L(m2), R(71) = R(m2),
and "LZ)(’/Tl) = w(’ﬂ'g), then V(’]Tl) = V(’]Tg)

o Whenever 7 is a path in (X2 x X x ¥2)* such that L(7) = R(n) = w and () = 1 (e),
then V() = o(w).

Where a path m € (X% x ¥ x X2)* is of the form (wg, 01, w1 ) (w1, 09, ws) - - - (Wi_2, Ok, W)
such that w;o1 € Yw; 1 for all i. Furthermore we use the notation L(w) = wo, R(w) = wy, and
V(w) = wgo109 - Ok—10k.

Now, we prove Prop. 6.4.

Proof of Prop. 6.4. By substitution rules, each of these formulas is definable in TL[H] o TL[Y];.
Then, the languages definable in TL[Y]; are those that are boolean combinations of languages of
the form ¥*0; 09, which are exactly the languages whose syntactic monoids are in the variety Ds.
Furthermore, the languages definable in TL[H] are exactly the languages whose syntactic monoids
are in the variety R (Brzozowski and Fich, 1980). Then, by the semidirect product substitution
principle of Thérien and Wilke (2001, Proposition 3.8), all languages definable in TL[H] o TL[Y];
have syntactic monoids in R * Ds.

Let M be the syntactic monoid of (aab)*. It suffices to show M ¢ R x LI, because R x LI, =
R x Dy (Straubing, 1985). We will use Prop. D.1. First, we note that the only surjective mor-
phism ¢ : {a,b}™ — M is the one mapping elements of (aab)* to M (up to switching a and
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b, but the argument is identical in that case). Secondly, for any N € R and any morphism
i (32 x ¥ x ¥2) — N, we know that for any x,y in the domain it must be the case that
P((zy)¥) = ¢¥((zy)“x), where w is the idempotent power of ¢)(zy) (Brzozowski and Fich, 1980).
Let x = (aa, b, ab) and y = (ab, a, ba)(ba, a,aa). Let 711 = ((aa, b, ab)(ab, a, ba)(ba, a,aa))® and
w2 = ((aa, b, ab)(ab, a, ba)(ba, a, aa))® (aa, b, ab). Here, L(m1) = L(m2) and R(71) = R(m2) and
Y(m) = Y(me). However V(m1) = ¢(aa(baa)®) while V(m2) = ¢(aa(baa)¥a), which are not
equivalent under the syntactic morphism . Therefore, by contradiction, M ¢ R * LI. O
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