
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROBABILITY DISTRIBUTIONS COMPUTED
BY HARD-ATTENTION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Most expressivity results for transformers treat them as language recognizers
(which accept or reject strings), and not as they are used in practice, as language
models (which generate strings autoregressively and probabilistically). Here, we
characterize the probability distributions that transformer language models can
express. We show that making transformer language recognizers autoregressive
can sometimes increase their expressivity, and that making them probabilistic can
break equivalences that hold in the non-probabilistic case. Our overall contribu-
tion is to tease apart what functions transformers are capable of expressing, in
their most common use-case as language models.

1 INTRODUCTION

Most work studying transformer expressivity, that is, what classes of computations transformers
can perform, treats them as language recognizers, where the input is a string and the output is a
binary classification: true if the string is accepted and false otherwise (Strobl et al., 2024). How-
ever, the most common practical use of transformers is as language models (LMs), which differ in
two ways: first, the input is a prefix of a string, and the output is a prediction of the next symbol;
second, the prediction is a probability distribution rather than a binary decision. Such probability
distributions, when estimated from large text corpora, have enabled a wide range of applications in
natural language processing and beyond. An open and fundamental question concerns which proba-
bility distributions transformer language models can express. This distributional perspective exposes
where previously-proven equivalences retain or lose their validity in the probabilistic setting.

We distinguish, on the one hand, between unweighted (or equivalently, Boolean-weighted) and real-
weighted computation, and, on the other hand, between classifiers, which map a complete string
to a value, and autoregressors, which map each prefix to a distribution over the next token. Under
this terminology, most theoretical work on transformer expressivity (e.g. Yang et al., 2024; Jerad
et al., 2025) focuses on Boolean classifiers, while practical applications use transformers as real-
weighted autoregressors. The theoretical expressivity of transformers as real autoregressors has
been comparatively underexplored.

In this paper, we answer this question for several variants of transformers. Yang et al. (2024) proved
that strictly-masked rightmost UHATs, as language recognizers, recognize the same languages as
linear temporal logic (LTL) and counter-free automata. There are two commonly-used weighted
analogues of regular languages, those defined by weighted deterministic finite automata (DFAs) and
weighted nondeterminizible finite automata (NFAs), and each of these have counter-free versions.
Surprisingly, these two diverge in the weighted setting, despite being equivalent in the Boolean
setting. We prove that, as language models, these transformers define exactly the same weighted
languages as weighted counter-free DFAs.

Jerad et al. (2025) proved that leftmost UHATs, as language recognizers, recognize the same lan-
guages as a fragment of LTL, called in our notation TL[P], or a subclass of counter-free DFAs called
partially ordered DFAs. Similarly, Li and Cotterell (2025) proved that softmax attention transform-
ers (SMATs) with fixed precision, as language recognizers, recognize the same class of languages.
But here we show that as language models, these variants become slightly more powerful.

Yang et al. (2025) considered SMATs with fixed precision but arbitrary precision inside attention.
As language recognizers, these transformers are exactly equivalent to a temporal logic extended with

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Boolean classifiers

rightmost
UHATs = LTL

leftmost UHATs
= fixed-precision
SMATs = TL[P]

Boolean autoregressors

rightmost
UHATs = LTL

leftmost UHATs
= fixed-precision
SMATs = TL[P]

Thm. 6.2

Prop. 6.3

Real classifiers

rightmost UHATs
= LTL = cfNFAs

leftmost UHATs
= fixed-precision
SMATs = TL[P]

Real autoregressors

cfNFAs

rightmost
UHATs = LTL

leftmost UHATs
= fixed-precision
SMATs = TL[P]

Prop. 6.3

Cor. 6.2

Pr
op

.6
.2

Figure 1: In the Boolean semiring, equivalences from the literature (Yang et al., 2024; Jerad et al.,
2025; Yang et al., 2025) carry over from classifiers to autoregressors; however, sometimes autore-
gressors are more expressive than classifiers. In the real semiring, LTL and counter-free DFAs and
NFAs become less expressive than counter-free NFAs, and rightmost UHATs are only as expressive
as the former. Key: = strict inclusion, = equivalence.

counting operators. But here we show that, as language models, they become slightly more powerful
when considering different depths.

In §3, we define notational preliminaries. We then (§4) define the classes of transformers we con-
sider, and show how they can be used as classifiers and as autoregressors. We then (§5) introduce
two other formalisms, deterministic finite automata (DFAs) and linear temporal logic (LTL), and
show how they can also be seen as instantiations of the framework we showed for transformers.
Then (§6), using LTL, we investigate the expressive power of transformers as both classifiers and
autoregressors, yielding the results shown in Fig. 1.

2 RELATED WORK

Theoretical study of transformers as language models has not gone totally neglected. Hahn (2020)
compared a SMAT language model with a probabilistic finite automaton for parity (strings that have
an odd number of 1’s). Yao et al. (2021), following previous work on RNNs, consider a transformer
language model to ϵ-generate a language if it assigns probability at least ϵ to each symbol in every
string in the language (and no strings not in the language). They also discuss how to convert a
construction for a bounded Dyck language (strings of matching parentheses up to a certain depth)
from an ϵ-generator to a language recognizer. These studies were specialized to particular languages
and used specialized ways of comparing distributions that don’t generalize in an obvious way.

Svete and Cotterell (2024) made progress by showing that average-hard attention transformer lan-
guage models can exactly express all n-gram language models.

Bhattamishra et al. (2020) proved theoretical results on transformers as language recognizers but
carried out experiments on transformer language models for the character prediction task, which
is to predict, at each position, the set of next possible symbols (what we will call Boolean autore-
gression). This experimental setup was previously used in studies of RNNs, and has been adopted
in other studies of transformers (Huang et al., 2025; Yang et al., 2025). We discuss the experiment
of Yang et al. (2025) in §6.6.

3 PRELIMINARIES

Throughout this paper, we work with weighted languages. We define some key concepts here, but
for a more detailed introduction, see the handbook chapter by Droste and Kuske (2021).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Let Σ be an alphabet, that is, a finite, non-empty set of symbols, and let Σ∗ be the set of strings
over Σ. We often augment Σ with start and end symbols BOS and EOS, but never consider BOS or
EOS to belong to Σ. For any string w = w1 · · ·wn, we write the length of w as |w| = n.

We think of weights and probabilities as elements of semirings, an abstraction of the usual addi-
tion and multiplication operations that allows results and algorithms apply generically to multiple
settings. A semiring K has an addition operation ⊕, additive identity 0, multiplication operation ⊗,
and multiplicative identity 1. The two semirings we focus on in this paper are the (extended) real
semiring R≥0, which contains all nonnegative real numbers and +∞, and in which ⊕ and ⊗ are
real addition and multiplication; and the Boolean semiring B, in which ⊕ is disjunction (∨), 0 is
false (⊥), ⊗ is conjunction (∧), and 1 is true (⊤).

A weighted language (also called a formal power series) is a function S : Σ∗ → K. If K is
complete (that is, it allows infinite summations, as R≥0 and B do), then we call a weighted language
normalized if

∑
w∈Σ∗ S(w) = 1. The support of a weighted language is the set of strings with

nonzero weight: supp(S) = {w ∈ Σ∗ | S(w) ̸= 0}.
For sets X and Y , we write Y X for the set of functions from X to Y , and 2X for {0, 1}X or the
power set of X .

4 TRANSFORMER LANGUAGE MODELS

4.1 UNIQUE HARD ATTENTION TRANSFORMERS

Following Yang et al. (2024), we use unique-hard attention transformers (UHATs), specifically,
with rightmost-hard attention, strict future masking, and no position embeddings. We give a defini-
tion of strictly masked rightmost-hard attention here; for a definition of the rest of the network, see,
for example, the survey by Strobl et al. (2024).

The attention function receives a sequence of query vectors q(i) ∈ Rdk , key vectors k(j) ∈ Rdk , and
value vectors v(j) ∈ Rd, for i, j ∈ [n]. At each position i, it computes

Att
(
(q(i))i∈[n], (k

(j))j∈[n], (v
(j))j∈[n]

)
= (c(i))i∈[n] (1)

where

ai(j) = q(i) · k(j) is an attention score for each position j,
a∗i = max

j<i
ai(j) is the maximum attention score,

ji = max{j < i | ai(j) = a∗i } is the rightmost maximum-scoring position, and

c(i) =

{
v(ji) if i > 0

0 if i = 0
is the attention output.

Given an input string w = w1 · · ·wn, a transformer T prepends a symbol w0 = BOS and computes
a sequence of “states” T (x) = (h0, . . . , hn), where hi is the state after reading wi. There are at
least two ways to use T to define a weighted language.1

4.2 CLASSIFIERS

The first way that a transformer can define a weighted language is as a classifier.

Definition 4.1. A UHAT classifier is a UHAT T : Σ∗ → (Rd)∗ together with a function c : Rd → K,
which outputs a scalar weight at the last position only:

Sc(w) = c(hn). (2)
1A third intermediate way would be to multiply the weights at each position like an autoregressive model,

but not to pass the output symbol at each position autoregressively to the input at the next position. Although
interesting in its own right, it has not, to our knowledge, been used with any neural sequence models, and we
do not explore this style of model here.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For the Boolean semiring (K = B), we accept a string iff the transformer outputs ⊤ at the last
position. For example, the output function could be c(y) = I {Wy + b ≥ 0}, where W and b are
parameters. This is the setup used for binary classification with a transformer encoder (Devlin et al.,
2019) and in most theoretical papers on transformer expressivity.

4.3 AUTOREGRESSIVE MODELS

The second way for a transformer to define a weighted language is as an autoregressive model, or
an autoregressor for short (by analogy with classifier). We define a function p : Rd → KΣ∪{EOS},
which outputs at each position a weight distribution for the next symbol, including EOS. To line
up with the more familiar notation of conditional probability distributions, we write, for all σ ∈
Σ ∪ {EOS},

Prp(σ | w≤i) = p(hi)(σ). (3)

As suggested by this notation, we want Prp(· | u) to be a probability distribution over Σ ∪ {EOS}.
But we impose a stronger condition. First, we extend Prp(σ | u) to the probability distribution of
suffixes given (possibly empty) prefixes:

Prp(v | u) =

 |v|⊗
i=1

Prp(vi | uv<i)

⊗ Prp(EOS | uv) (4)

Prp(w) = Prp(w | ϵ). (5)

Then we require that every such distribution sums to one:
Definition 4.2. A UHAT autoregressor is a UHAT T : Σ∗ → (Rd)∗ together with a function
p : Rd → KΣ∪{EOS} such that for all u ∈ Σ∗,⊕

v∈Σ∗

Prp(v | u) = 1. (6)

This implies that:

• The autoregressor generates strings symbol-by-symbol. That is, for all prefixes u,∑
σ∈Σ∪{EOS} Prp(σ | u) = 1.

• Generation does not have any dead ends or endless loops. That is, for all prefixes u,
n⊗

i=1

Prp(ui | u<i) ̸= 0 =⇒ Prp(uv) ̸= 0 for some suffix v.

In the real semiring (K = R≥0), a typical example of such an output function is p(h) =
softmax(Wh+ b).

5 OTHER FORMALISMS

We can analogously use other formalisms to define classifier or autoregressive models. Any state
encoder which sends a string w1 · · ·wn to a sequence of “states” h0, . . . , hn ∈ Q can be equipped
with an output function c : Q → K to give a classifier model or p : Q → KΣ∪{EOS} to give an
autoregressive model exactly as we did with transformers above.

5.1 FINITE AUTOMATA

Definition 5.1 (Deterministic finite automaton). A deterministic finite automaton (DFA) is a tuple
A = (Σ, Q, δ, ι), where

• Σ is an alphabet
• Q is a finite set of states
• δ : Q× Σ→ Q is a transition function

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

q1 q2

a

b

q1 q2

a

a

q0/0

q1/
1
2

q2/
1
4

a/ 1
2

a/ 1
2

a/ 1
2

a/ 3
4

(a) (b) (c)

Figure 2: (a) A DFA that is counter-free (with k = 2). (b) A DFA that is not counter-free, because
for all k, the strings ak and ak+1 have opposite actions. (c) A counter-free weighted NFA that has
no equivalent weighted DFA (Prop. 6.2).

• ι ∈ Q is the initial state.

We extend δ to a mapping δ∗ : Q× Σ∗ → Q such that:

δ∗(q, ϵ) = q

δ∗(q, σw) = δ∗(δ(q, σ),w).
(7)

A DFA A defines a state encoder

A : Σ∗ → Q∗

A(w)i =

{
ι i = 0

δ∗(ι, w1 · · ·wi) 0 < i ≤ n. (8)

A DFA with classifier outputs in the Boolean semiring is the same as the standard definition of a
DFA: the states that output ⊤ are the accept states, and the states that output ⊥ are the reject states.

A DFA with autoregressive outputs in the real semiring is the same as the standard definition of a
weighted DFA: when it is in state q, the next input symbol σ determines both the next state δ(q, σ)
as well as the symbol weight p(q)(σ). Moreover, each state has an accepting weight p(q)(EOS).

In this paper, we are only interested in the following subclass of finite automata called counter-free
automata, which we abbreviate as cfDFAs.

Definition 5.2 (Counter-free automaton). We say that a DFA with transition function δ is counter-
free if there exists some k such that for all states q, all strings w, we have δ∗(q,wk) = δ∗(q,wk+1).

Examples of counter-free and non-counter-free DFAs are shown in Fig. 2ab.

5.2 LINEAR TEMPORAL LOGIC

Definition 5.3 (Linear temporal logic). The formulas of past LTL are defined by the grammar

ϕ ::= ¬ϕ1 | ϕ1 ∧ ϕ2 | BOS

| σ σ ∈ Σ

| Yϕ1 Yesterday
| Pϕ1 Previously
| Hϕ1 Historically
| ϕ1 S ϕ2 Since

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The semantics of formulas is given by the relation w, i |= ϕ (“w satisfies ϕ at position i”), defined
as follows:

w, i |= ¬ϕ1 ⇐⇒ w, i ̸|= ϕ1 (9a)
w, i |= ϕ1 ∧ ϕ2 ⇐⇒ w, i |= ϕ1 and w, i |= ϕ2 (9b)
w, i |= BOS ⇐⇒ i = 0 (9c)
w, i |= σ ⇐⇒ wi = σ (9d)
w, i |= Yϕ1 ⇐⇒ i > 0 and w, i− 1 |= ϕ1 (9e)
w, i |= Pϕ1 ⇐⇒ w, j |= ϕ1 for some j ≤ i (9f)
w, i |= Hϕ1 ⇐⇒ w, j |= ϕ1 for all j ≤ i (9g)

w, i |= ϕ1 S ϕ2 ⇐⇒ (w, j |= ϕ2 for some j ≤ i) and (w, j′ |= ϕ1 for all j < j′ ≤ i). (9h)

We write w |= ϕ as shorthand for w, |w| |= ϕ.

Note that Hφ is equivalent to ¬P¬φ, so only one will be necessary. For any set of operators
O ⊆ {Y,H,S}, we write TL[O] for the set of formulas using only operators inO. Thus past LTL =
TL[Y,S]. Given a tuple of formulas Φ = (ϕ1, . . . , ϕm), we can define a state encoder

Φ: Σ∗ → (Bm)∗

Φ(w)i = (I {w, i |= ϕ1} , . . . I {w, i |= ϕm}).

Droste and Gastin (2019) define a weighted first-order logic, with several variations corresponding
to several subclasses of weighted counter-free automata. Mandrali and Rahonis (2013; 2015) do the
same for LTL. Both of these logics have, roughly speaking, four layers: (1) a core Boolean logic,
(2) weights conditioned on formulas, (3) products over positions, and (4) addition and sums over
positions. This is similar to our framework, which has (1) a core Boolean logic, (2) classifier output
functions that can choose weights conditioned on formulas, and (3) autoregressive output functions
that can also compute products over positions.

6 EXPRESSIVITY RESULTS

Previous results have shown that UHATs, LTL, and cfDFAs are equivalent in terms of language
recognition. In the weighted language setting, different model setups may lead to different levels of
expressivity.

In §6.1, we use existing results on the equivalence of UHATs, LTL, and counter-free DFAs to show
that these formalisms are also equivalent as weighted classifiers and as autoregressors.

Next, we compare the expressivity of classifier versus autoregressive models. Given the equivalence
of the above formalisms, we will mainly discuss LTL.

In §6.2, we will show that LTL classifiers define exactly the aperiodic step functions (defined below).
In the Boolean semiring, this is the same class of weighted languages that LTL autoregressors define,
which is the main result of §6.3.

However, when we consider fragments of LTL, this equivalence breaks down, and autoregressors
may become more expressive than classifiers (§6.5).

Moreover, in the real semiring, LTL classifiers become less expressive than LTL autoregressors,
and while LTL autoregressors remain equivalent to counter-free DFAs, both are less expressive than
counter-free NFAs (§6.4).

6.1 STATE ENCODERS

We say that two state encoders τ1 : Σ∗ → Q∗
1 and τ1 : Σ∗ → Q∗

2 are equivalent if there is a bijection
f : Q1 → Q2 such that for all w ∈ Σ∗, f(τ1(w)) = τ2(w).
Theorem 6.1. UHATs, LTL, and cfDFAs define equivalent state encoders.

The proof is an adaptation of results from (Yang et al., 2024; Schützenberger, 1965; McNaughton
and Papert, 1971; Kamp, 1968) connecting UHATs, LTL and cfDFAs as language recognizers.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof. See App. A.

The following is an immediate consequence of Thm. 6.1 and the definitions of classifier and autore-
gressive models.

Corollary 6.1. UHATs, LTL, and counter-free DFAs as classifier models define the same weighted
languages. Similarly when they are used as autoregressive models.

Proof. By the previous theorem, all these formalisms define equivalent state encoders. Therefore
there exist output functions in which they define the same weighted languages.

6.2 CLASSIFIER MODELS

Definition 6.1. An aperiodic step function (Droste and Gastin, 2008) is a weighted language
S : Σ∗ → K such that S(w) =

⊕m
i=1 ki ⊗ I {w ∈ Li} where L1, . . . , Lm are aperiodic (that

is, counter-free) regular languages.

Proposition 6.1. An LTL classifier defines the aperiodic step functions.

Proof. Given any aperiodic step function as defined above, we can write, for each Li, an LTL for-
mula ϕi. Then we can write a classifier output function c(h) =

⊕m
i=1 ki ⊗ hi.

Conversely, given an LTL classifier consisting of a tuple of formulas (ϕ1, . . . , ϕm) and an output
function c(h), for every h ∈ 2[m], write the formula ϕh =

∧
i|hi=1 ϕi ∧

∧
i|hi=0 ¬ϕi. For every

h, let Lh be the language defined by ϕh. Then the weighted language can be written as the step
function S(w) =

⊕
h∈2[m] c(h)⊗ I {w ∈ Lh} .

Corollary 6.2. In the real semiring, the weighted language (12a)
∗ is expressible by an LTL autore-

gressor, but not by any LTL classifier.

Proof. This language has an infinite number of string weights, but an aperiodic step function can
only output a finite number of different weights. On the other hand, it is easy to write a weighted
counter-free DFA that defines this weighted language.

6.3 AUTOREGRESSIVE MODELS

In this section we will focus on B and R≥0 weighted autoregressors – the two settings that arise
in practice. We will see that LTL classifiers and LTL autoregressors are equivalent, but with an
important caveat. If we consider fragments of LTL that have only a subset of the temporal operators,
the equivalence only holds under certain subsets.

Theorem 6.2. For any set of operators O ⊆ {Y,H,S}:

(a) Let S1 be a weighted language defined by a TL[O] classifier. There exists a R≥0-
weighted TL[O] autoregressor satisfying Eq. (6) defining a weighted language S2 such
that supp(S1) = supp(S2).

(b) Let S1 be a weighted language defined by a TL[O] autoregressor over a semiring with no
non-trivial zero divisors (that is, whenever k1 ⊗ k2 = 0 ⇐⇒ k1 = 0 ∨ k2 = 0). There
exists a R≥0-weighted TL[O ∪ {P,Y}] classifier defining a weighted language S2 such
that supp(S1) = supp(S2).

Proof. See App. B.3.

To prove this, we need to introduce two new operators as “syntactic sugar” that do not increase the
expressivity of the logic.

Lemma 6.1. There is a transformation nextσ from formulas of TL[O] to formulas of TL[O] such
that for any formula ϕ of TL[O] and for all w ∈ Σ∗,

w |= nextσ(ϕ) ⇐⇒ wa |= ϕ. (10)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Intuitively, nextσ removes an a on the right; in other words, nextσ(ϕ) defines the right Brzozowski
derivative (Brzozowski, 1964) of the language defined by ϕ.

Proof. See App. B.1.

Lemma 6.2. There is a transformation prefix from formulas of TL[O] to formulas of TL[O] such
that for any formula ϕ of TL[O] and for all w ∈ Σ∗,

w |= prefix(ϕ) ⇐⇒ there exists v such that wv |= ϕ. (11)

Proof. See App. B.2.

With the above results, we can also show the following.

Corollary 6.3. Let ϕ be a TL[O] formula and let ϕ′ = prefix(ϕ), whose existence is guaranteed
by §6.3. Computing ϕ′ is in general PSPACE-hard; there is an exponential-time, polynomial-space
construction and |ϕ′| can be exponential in |ϕ|.
For each u ∈ Σ∗, let TAILSf (ϕ

′,u) be true iff there is a v ∈ Σ∗ such that uv |= ϕ. Then deciding
TAILSf (ϕ

′,u) is in general PSPACE-complete where the problem size is defined as |ϕ′|+ |u| .

Proof. The algorithm from the proof of §6.3 can be implemented as a PSPACE algorithm that out-
puts each disjunct in the formula ϕ′ one by one. Hardness refers to the problem of checking ϕ′ (e.g.
ϕ′ is unsatisfiable). See App. B.4.

6.4 NONDETERMINISTIC FINITE AUTOMATA

In the unweighted setting, LTL is expressively equivalent to counter-free automata (Schützenberger,
1965; McNaughton and Papert, 1971), but in the weighted case, there are several nonequivalent
analogues of counter-free automata (Droste and Gastin, 2008). Here, we are primarily concerned
with the distinction between weighted counter-free DFAs and nondeterministic finite automata
(NFAs), in which a state can have more than one outgoing transition with the same symbol (see
App. C for a definition). Consequently, we cannot think of an NFA as mapping a string to a single
sequence of states. To use an NFA as an autoregressive model, we have to sum the weights of many
sequences of states. Although unweighted NFAs are determinizable, not all weighted NFAs are
determinizable (Mohri, 1997). Likewise, not all counter-free weighted NFAs are determinizable, as
the following shows.

Proposition 6.2. As autoregressors, counter-free NFAs define more weighted languages than
counter-free DFAs (or UHATs or LTL) do.

Fig. 2c shows an example of a counter-free weighted NFA that is not determinizable. See App. C
for a proof.

6.5 FRAGMENTS OF LTL

Li and Cotterell (2025) show that fixed-precision future-masked transformers are equivalent to
TL[P], and Jerad et al. (2025) show that future-masked leftmost-hard attention transformers are also
equivalent to TL[P]. However, in this section we show that for autoregressors, these equivalences
break.

When the set of operators O lacks either H or Y, the asymmetry in Thm. 6.2 suggests that Boolean
autoregressors are more expressive than classifiers. The following shows that this is indeed the case.

Proposition 6.3. The language (ab)∗ is defined by a Boolean TL[∅] autoregressor but not defined
by any TL[H] or TL[Y] classifier.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Proof. Consider the state encoder Φ = (BOS, a, b) and the output function

p(qBOS, qa, qb)(a) = ⊤ ⇐⇒ qBOS = ⊤ or qb = ⊤
p(qBOS, qa, qb)(b) = ⊤ ⇐⇒ qa = ⊤

p(qBOS, qa, qb)(EOS) = ⊤ ⇐⇒ qBOS = ⊤ or qb = ⊤

But a formula in TL[Y] can’t distinguish between strings that differ beyond their last k symbols
(for some constant k depending on the formula), and for any k, we have ab(ab)⌈k/2⌉ ∈ (ab)∗

but ba(ab)⌈k/2⌉ ̸∈ (ab)∗. A formula in TL[P] (which is equivalent to TL[H]) can only define a
stutter-invariant language, which is a language L such that for all u, σ,v, we have uσv ∈ L ⇐⇒
uσσv ∈ L (Peled and Wilke, 1997). And (ab)∗ is not stutter-invariant, because ab ∈ (ab)∗ but
aabb ̸∈ (ab)∗.

However, the expressiveness added by autoregression seems somewhat limited, as (aab)∗ is not
definable.

We define the Y-depth of a formula ϕ as the number of nested Y operators in ϕ.

Proposition 6.4. (aab)∗ is not definable by any formula of TL[P,Y] with Y-depth 1.

Proof. See App. D.

This fact implies a statement about language models in our framework.

Theorem 6.3. (aab)∗ is not definable by any autoregressive leftmost UHAT language model.

Proof. Leftmost UHATs are expressively equivalent to TL[P] (Jerad et al., 2025). Following the
construction in Thm. 6.2, a Boolean TL[P] autoregressor can be simulated using a TL[P,Y] formula
with Y-depth 1. By Prop. 6.4, no such formula can define (aab)∗.

6.6 TEMPORAL LOGIC WITH COUNTING

Other formalisms besides the ones discussed above have been proposed for comparison with trans-
formers. Yang et al. (2025) prove that SMATs, with fixed precision outside attention and arbitrary
precision inside attention, are equivalent to a temporal logic with counting operators, TL[

↼
#,+].

They considered the family of languages

L1 = a∗ (12)

Lk+1 =

{
Lkb

∗ k even
Lka

∗ k odd
(13)

and showed that, as Boolean classifiers, transformers with depth k can recognize Lk. But their
experiments were on the symbol-prediction task (§2), closely related to Boolean autoregression.
They showed both theoretically and experimentally that SMATs with depth k can solve the symbol-
prediction task for not only Lk, but Lk+2.

In the present framework, this discrepancy can be readily explained. Like TL[P], the logic TL[
↼
#,+]

lacks a Y operator or an equivalent. So it is more expressive as an autoregressor than as a classifier.

7 CONCLUSION

We have shown that theoretical results on transformers as Boolean classifiers (as most theoretical
results in the literature are) sometimes carry over to real-weighted and/or autoregressive settings, but
they sometimes do not. We have laid out a framework for studying other variants of transformers
and other automata or logics as real-weighted autoregressors, leading to theoretical results that can
make more accurate predictions about language models as used in practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
ISBN 978-0-262-02649-9. URL https://mitpress.mit.edu/9780262026499/
principles-of-model-checking/.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of Transformers
to recognize formal languages. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7096–7116, 2020. doi:10.18653/v1/2020.emnlp-
main.576.

J. A. Brzozowski and Faith E. Fich. Languages of R-trivial monoids. Journal of Computer and
System Sciences, 20(1):32–49, 1980. doi:10.1016/0022-0000(80)90003-3.

Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, October
1964. ISSN 0004-5411. doi:10.1145/321239.321249. URL https://doi.org/10.1145/
321239.321249.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional Transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT), pages 4171–4186, 2019. doi:10.18653/v1/N19-1423.

Manfred Droste and Paul Gastin. On aperiodic and star-free formal power series in partially com-
muting variables. Theory of Computing Systems, 42(4):608–631, 2008. doi:10.1007/s00224-007-
9064-z.

Manfred Droste and Paul Gastin. Aperiodic weighted automata and weighted first-order logic. In
Proceedings of the 44th International Symposium on Mathematical Foundations of Computer
Science, 2019. doi:10.4230/LIPICS.MFCS.2019.76.

Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-Éric Pin, editor, Handbook of
Automata Theory, pages 113–150. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021. doi:10.4171/AUTOMATA-1/4.

Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and linear dynamic logic on finite
traces. In Proceedings of IJCAI, pages 854–860, 2013. URL https://www.ijcai.org/
Proceedings/13/Papers/132.pdf.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020. doi:10.1162/tacl a 00306.

Xinting Huang, Andy Yang, Satwik Bhattamishra, Yash Sarrof, Andreas Krebs, Hattie Zhou, Pree-
tum Nakkiran, and Michael Hahn. A formal framework for understanding length generalization
in transformers. In Proceedings of the Thirteenth International Conference on Learning Repre-
sentations (ICLR), 2025. URL https://openreview.net/forum?id=U49N5V51rU.

Selim Jerad, Anej Svete, Jiaoda Li, and Ryan Cotterell. Unique hard attention: A tale of two sides. In
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 977–996, 2025. doi:10.18653/v1/2025.acl-short.76.

Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Uni-
versity of California, Los Angeles, 1968. URL https://www.proquest.com/docview/
302320357.

Jiaoda Li and Ryan Cotterell. Characterizing the expressivity of transformer language models. In
Advances in Neural Information Processing Systems (NeurIPS), 2025. URL https://arxiv.
org/abs/2505.23623. To appear.

Eleni Mandrali and George Rahonis. Characterizations of weighted first-order logics over semir-
ings. In Algebraic Informatics: 5th International Conference (CAI), pages 247–259, 2013.
doi:10.1007/978-3-642-40663-8 23.

10

https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.1016/0022-0000(80)90003-3
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/s00224-007-9064-z
https://doi.org/10.1007/s00224-007-9064-z
https://doi.org/10.4230/LIPICS.MFCS.2019.76
https://doi.org/10.4171/AUTOMATA-1/4
https://www.ijcai.org/Proceedings/13/Papers/132.pdf
https://www.ijcai.org/Proceedings/13/Papers/132.pdf
https://doi.org/10.1162/tacl_a_00306
https://openreview.net/forum?id=U49N5V51rU
https://doi.org/10.18653/v1/2025.acl-short.76
https://www.proquest.com/docview/302320357
https://www.proquest.com/docview/302320357
https://arxiv.org/abs/2505.23623
https://arxiv.org/abs/2505.23623
https://doi.org/10.1007/978-3-642-40663-8_23

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Eleni Mandrali and George Rahonis. Weighted first-order logics over semirings. Acta Cybernetica,
22(2):435–483, 2015. doi:10.14232/actacyb.22.2.2015.1.

Robert McNaughton and Seymour Papert. Counter-Free Automata. Number 65 in M.I.T. Press
Research Monographs. M.I.T. Press, 1971. ISBN 9780262130769. URL https://archive.
org/details/CounterFre_00_McNa.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational Lin-
guistics, 23(2):269–311, 1997. URL https://aclanthology.org/J97-2003/.

Doron Peled and Thomas Wilke. Stutter-invariant temporal properties are expressible without the
next-time operator. Information Processing Letters, 63(5):243–246, 1997. doi:10.1016/S0020-
0190(97)00133-6.

Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computer and System Sciences, 4(2):177–192, 1970. doi:10.1016/S0022-
0000(70)80006-X.

M. P. Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8
(2):190–194, 1965. doi:10.1016/S0019-9958(65)90108-7.

Howard Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and Applied
Algebra, 36:53–94, 1985. doi:10.1016/0022-4049(85)90062-3.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
guages can transformers express? A survey. Transactions of the Association for Computational
Linguistics, 12:543–561, 2024. doi:10.1162/tacl a 00663.

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 6845–6881, 2024. doi:10.18653/v1/2024.naacl-
long.381.

Denis Thérien and Thomas Wilke. Temporal logic and semidirect products: An effective
characterization of the until hierarchy. SIAM Journal on Computing, 31(3):777–798, 2001.
doi:10.1137/S0097539797322772.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention trans-
formers recognize exactly the star-free languages. In Advances in Neural In-
formation Processing Systems, volume 37, pages 10202–10235, 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/hash/
13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html.

Andy Yang, Michaël Cadilhac, and David Chiang. Knee-deep in C-RASP: A transformer depth
hierarchy. In Advances in Neural Information Processing Systems (NeurIPS), 2025. URL
https://arxiv.org/abs/2506.16055. To appear.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Proceedings of the 59th An-
nual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (ACL-IJCNLP), pages 3770–3785, 2021.
doi:10.18653/v1/2021.acl-long.292.

11

https://doi.org/10.14232/actacyb.22.2.2015.1
https://archive.org/details/CounterFre_00_McNa
https://archive.org/details/CounterFre_00_McNa
https://aclanthology.org/J97-2003/
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1016/S0020-0190(97)00133-6
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/S0019-9958(65)90108-7
https://doi.org/10.1016/0022-4049(85)90062-3
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.18653/v1/2024.naacl-long.381
https://doi.org/10.18653/v1/2024.naacl-long.381
https://doi.org/10.1137/S0097539797322772
https://proceedings.neurips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/13d7f172259b11b230cc5da8768abc5f-Abstract-Conference.html
https://arxiv.org/abs/2506.16055
https://doi.org/10.18653/v1/2021.acl-long.292

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A EQUIVALENCE OF STATE ENCODERS

Theorem 6.1. UHATs, LTL, and cfDFAs define equivalent state encoders.

Proof of Thm. 6.1. First we show the equivalence of state sequences defined by UHATs and LTL,
and then equivalence of LTL and cfDFAs.

The essential observation (Yang et al., 2024, Lemma 22) is that the output at every position of every
UHAT layer comes from a finite setQ ⊆ Rd. So we can think of a UHAT as a function T : Σ∗ → Q∗.
For each h ∈ Q, we can construct an LTL formula ϕh such that T (w)i = h ⇐⇒ w, i |= ϕh (Yang
et al., 2024, Theorems 2, 4). So there exists a tuple of LTL formulas (ϕh)h∈Q that defines a state
encoder equivalent to T . Note that the state outputted by T on the prepended BOS symbol can be
simulated using a BOS formula in the tuple.

In the other direction, for every tuple of LTL formulas (ϕ1, ϕ2, . . . , ϕm) defining a state encoder
Σ∗ → Bm, there exists a UHAT T : Σ∗ → (Rd)∗ defining an equivalent state encoder. For each
ϕk, we construct a transformer Tk which outputs 1

2 if w, i |= ϕk and − 1
2 otherwise (Yang et al.,

2024, Theorems 1, 3). Then we can parallel-compose all the Tk into a single T (Yang et al., 2024,
Lemma 25), and add an additional layer which projects the output dimensions of each Tk into a
single output vector Rm such that T (w)i = ek ⇐⇒ w, i |= ϕk.

The equivalence between LTL and cfDFAS can be described a little more succinctly. Given a DFA
A = (Σ, Q, δ, ι), for each state q ∈ Q there exists a formula ϕq such that w |= ϕq ⇐⇒ δ(ι,w) =
q, due to the expressive equivalence of LTL and cfDFAS (Schützenberger, 1965; McNaughton and
Papert, 1971; Kamp, 1968). The tuple (ϕq)q∈Q then defines a state encoder equivalent to A. In the
other direction, given a tuple of LTL formulas (ϕ1, . . . , ϕm), for each k ∈ [m] there is an automaton
Ak that recognizes the same language as ϕk. Then the Cartesian product of all theAk defines a state
encoder equivalent to (ϕ1, . . . , ϕm).

B AUTOREGRESSIVE MODEL PROOFS

B.1 PROOF OF LEM. 6.1

Lemma 6.1. There is a transformation nextσ from formulas of TL[O] to formulas of TL[O] such
that for any formula ϕ of TL[O] and for all w ∈ Σ∗,

w |= nextσ(ϕ) ⇐⇒ wa |= ϕ. (10)

We define nextσ recursively:
nextσ(σ) = ⊤ (14a)

nextσ(σ
′) = ⊥ if σ′ ̸= σ (14b)

nextσ(BOS) = ⊥ (14c)
nextσ(¬ϕ) = ¬nextσ(ϕ) (14d)

nextσ(ϕ1 ∧ ϕ2) = nextσ(ϕ1) ∧ nextσ(ϕ2) (14e)
nextσ(Yϕ) = ϕ (14f)
nextσ(Hϕ) = Hϕ ∧ nextσ(ϕ) (14g)

nextσ(ϕ1 S ϕ2) = (nextσ(ϕ1) ∧ (ϕ1 S ϕ2)) ∨ nextσ(ϕ2). (14h)

Next, we prove that nextσ(ϕ) satisfies Eq. (10) by induction on the structure of ϕ.

Base Cases. If ϕ = σ:
w, i |= nextσ(σ)

(14a)⇐⇒ w |= ⊤ (15a)
(9d)⇐⇒ wσ |= σ. (15b)

If ϕ = σ′ for σ′ ̸= σ:
w |= nextσ(σ

′)
(14b)⇐⇒ w |= ⊥ (15c)
(9d)⇐⇒ wσ |= σ′. (15d)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Similarly, if ϕ = BOS:
w |= nextσ(BOS)

(14c)⇐⇒ w |= ⊥ (15e)
(9c)⇐⇒ wσ |= BOS. (15f)

Inductive Cases. If ϕ = ¬ϕ1:
w |= nextσ(¬ϕ1)

(14d)⇐⇒ w |= ¬nextσ(ϕ1) (16a)
(9a)⇐⇒ w ̸|= nextσ(ϕ1) (16b)

ind. hyp.⇐⇒ wσ ̸|= ϕ1 (16c)
(9a)⇐⇒ wσ |= ¬ϕ1. (16d)

If ϕ = ϕ1 ∧ ϕ2:
w |= nextσ(ϕ1 ∧ ϕ2)

(14e)⇐⇒ w |= nextσ(ϕ1) ∧ nextσ(ϕ2) (16e)
(9b)⇐⇒ (w |= nextσ(ϕ1)) ∧ (w |= nextσ(ϕ2)) (16f)

ind. hyp.⇐⇒ (wσ |= ϕ1) ∧ (wσ |= ϕ2) (16g)
(9b)⇐⇒ wσ |= ϕ1 ∧ ϕ2. (16h)

If ϕ = Yϕ1:
w |= nextσ(Yϕ1)

(14f)⇐⇒ w |= ϕ1 (16i)
(9e)⇐⇒ wσ |= Yϕ1. (16j)

If ϕ = Hϕ1:
w |= nextσ(Hϕ1)

(14g)⇐⇒ w |= Hϕ1 ∧ nextσ(ϕ) (16k)
(9b)⇐⇒ (w |= Hϕ1) ∧ (w |= nextσ(ϕ)) (16l)

ind. hyp.⇐⇒ (w |= Hϕ1) ∧ (wσ |= ϕ1) (16m)
(9g)⇐⇒ wσ |= Hϕ1. (16n)

If ϕ = ϕ1 S ϕ2:
w |= nextσ(ϕ1 S ϕ2)

(14h)⇐⇒ w |= (nextσ(ϕ1) ∧ (ϕ1 S ϕ2)) ∨ nextσ(ϕ2) (16o)
(9a) and (9b)⇐⇒ (w |= nextσ(ϕ1) ∧ (w |= ϕ1 S ϕ2)) ∨ (w |= nextσ(ϕ2)) (16p)
ind. hyp.⇐⇒ ((wσ |= ϕ1) ∧ (w |= ϕ1 S ϕ2)) ∨ (wσ |= ϕ2) (16q)

(9h)⇐⇒ wσ |= ϕ1 S ϕ2. (16r)

B.2 PROOF OF §6.3

Lemma 6.2. There is a transformation prefix from formulas of TL[O] to formulas of TL[O] such
that for any formula ϕ of TL[O] and for all w ∈ Σ∗,

w |= prefix(ϕ) ⇐⇒ there exists v such that wv |= ϕ. (11)

Given a formula ϕ of TL[O], let cl(ϕ) be the set of all subformulas of ϕ (including ϕ itself). Con-
struct a DFA Mϕ = (2cl(ϕ),Σ, δ, ι, F), where

ι = {χ ∈ cl(ϕ) | ϵ |= χ}
F = {Ψ ⊆ cl(ϕ) | ϕ ∈ Ψ}

δ(Ψ, σ) = {χ ∈ cl(ϕ) | Ψ σ−→ χ}
where the relation Ψ

σ−→ χ, which intuitively means that if a string w satisfies exactly the formulas
in Ψ, then wσ satisfies χ, is defined as follows:

Ψ
σ−→ σ′ iff σ = σ′ (17a)

Ψ
σ−→ χ1 ∧ χ2 iff Ψ σ−→ χ1 and Ψ

σ−→ χ2 (17b)

Ψ
σ−→ ¬χ iff not Ψ σ−→ χ (17c)

Ψ
σ−→ Yχ iff χ ∈ Ψ (17d)

Ψ
σ−→ Hχ iff Hχ ∈ Ψ and Ψ

σ−→ χ (17e)

Ψ
σ−→ χ1 S χ2 iff (χ1 S χ2 ∈ Ψ and Ψ

σ−→ χ1) or Ψ σ−→ χ2. (17f)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Claim B.1. For any w ∈ Σ∗, if Ψ = {χ ∈ cl(ϕ) | w |= χ}, then Ψ
σ−→ χ ⇐⇒ wσ |= χ.

Proof. By induction on the structure of χ. This is all just unwinding definitions. Note by definition
that χ ∈ Ψ ⇐⇒ w |= χ.

Ψ
σ−→ σ′ (17a)⇐⇒ σ = σ′

(9d)⇐⇒ wσ |= σ′.

Ψ
σ−→ χ1 ∧ χ2

(17b)⇐⇒ Ψ
σ−→ χ1 and Ψ

σ−→ χ2
ind. hyp.⇐⇒ wσ |= χ1 and wσ |= χ2

(9b)⇐⇒ wσ |= χ1 ∧ χ2.

Ψ
σ−→ ¬χ (17c)⇐⇒ not Ψ σ−→ χ

ind. hyp.⇐⇒ not wσ |= χ
(9a)⇐⇒ wσ |= ¬χ.

Ψ
σ−→ Yχ

(17d)⇐⇒ χ ∈ Ψ

⇐⇒ w |= χ
(9e)⇐⇒ wσ |= Yχ.

Ψ
σ−→ Pχ

(17e)⇐⇒ Hχ ∈ Ψ and Ψ
σ−→ χ

ind. hyp.⇐⇒ w |= Hχ and wσ |= χ
(9g)⇐⇒ wσ |= H.

Ψ
σ−→ χ1 S χ2

(17f)⇐⇒ (χ1 S χ2 ∈ Ψ and Ψ
σ−→ χ1) or Ψ σ−→ χ2

ind. hyp.⇐⇒ (w |= χ1 S χ2 and wσ |= χ1) or wσ |= χ2
(9h)⇐⇒ wσ |= χ1 S χ2.

Claim B.2. For any w, δ(ι,w) = {χ ∈ cl(ϕ) | w |= χ}.

Proof. By induction on the length of w.

Base case: δ(ι, ϵ) = ι = {χ | ϵ |= χ}.
Inductive step: Assume that δ(ι,w) = {χ | w |= χ} = Ψ. Then

δ(ι,w) = δ(δ(ι,w), σ)

= δ(Ψ, σ)

= {χ | Ψ σ−→ χ}
= {χ | wσ |= χ}.

Claim B.3. Mϕ defines the same language as ϕ.

Proof. δ(ι,w) ∈ F if and only if ϕ ∈ {χ | w |= χ} if and only if w |= ϕ.

Then make every co-accessible state (every state that has a path to an accept state) into an accept
state. Call this new DFAM ′

ϕ with accept states F ′. This DFA recognizes the prefix language ofMϕ.
Finally, construct the formula

prefix(ϕ) =
∨

Ψ∈F ′

 ∧
χ∈Ψ

χ ∧
∧

χ∈cl(ϕ)\Ψ

¬χ

 .

Claim B.4. The formula prefix(ϕ) defines the same language as M ′
ϕ.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. Since we only changed non-accept states to accept states, Clm. B.2 still applies toM ′
ϕ and ϕ.

w ∈ L(M ′
ϕ) ⇐⇒ δ(ι,w) ∈ F ′

⇐⇒ {χ ∈ cl(ϕ) | w |= χ} ∈ F ′ Clm. B.2

⇐⇒ for some Ψ ∈ F ′, χ ∈ Ψ iff w |= χ

⇐⇒ for some Ψ ∈ F ′, w |=
∧
χ∈Ψ

χ ∧
∧

χ∈cl(ϕ)\Ψ

¬χ

⇐⇒ w |=
∨

Ψ∈F ′

 ∧
χ∈Ψ

χ ∧
∧

χ∈cl(ϕ)\Ψ

¬χ

 .

B.3 RELATIONSHIP BETWEEN CLASSIFIERS AND AUTOREGRESSORS

Theorem 6.2. For any set of operators O ⊆ {Y,H,S}:

(a) Let S1 be a weighted language defined by a TL[O] classifier. There exists a R≥0-
weighted TL[O] autoregressor satisfying Eq. (6) defining a weighted language S2 such
that supp(S1) = supp(S2).

(b) Let S1 be a weighted language defined by a TL[O] autoregressor over a semiring with no
non-trivial zero divisors (that is, whenever k1 ⊗ k2 = 0 ⇐⇒ k1 = 0 ∨ k2 = 0). There
exists a R≥0-weighted TL[O ∪ {P,Y}] classifier defining a weighted language S2 such
that supp(S1) = supp(S2).

Proof of Thm. 6.2. (a) Any TL[O] classifier S1 is defined using a tuple of formulas Φ =
(ϕ1, . . . , ϕm) and an output function c : Bm → K. We will show the case where Φ = (ϕ) is
equivalent to a single formula ϕ of TL[O], c : B → K, and S1(w) ̸= 0 ⇐⇒ w |= ϕ (which is
the most natural case) – the generalization to tuples of formulas with different output functions is
straightforward.

For each σ ∈ Σ, define

ϕσ = nextσ(prefix(ϕ)) (18)

and also define

ϕEOS = ϕ. (19)

Then the tuple of formulas Φ′ = (ϕσ)σ∈Σ∪{EOS} defines a state encoder. We define the output
function p : B|Σ|+1 → K given by

p(bσ1 , . . . , bσ|Σ| , bEOS)(σ) =

{
1

|{bσ|bσ=⊤}| bσ = ⊤
0 otherwise

(20)

Let S2 = p ◦ Φ′. First, we note by construction that this autoregressor only assigns nonzero weight
to strings which satisfy ϕ, so supp(S2) = supp(S1). Next, we verify that this S2 satisfies Eq. (6).
First, by the defintion of the output function in Eq. (20) we know that the next-symbol probabilities
sum to 1. By a standard construction (Baier and Katoen, 2008, Sec 10.10), this induces a probability
distribution over the finite strings – thus

⊕
v∈Σ∗ Prp(v | u) = 1 as desired.

Proof of Thm. 6.2. (b) Let S1 be an autoregessor. Like before, for brevity we assume the underlying
state encoder is Φ = (ϕ) and the output function is p : B→ K such that S1(w) ̸= 0 ⇐⇒ w |= ϕ.
In such an autoregressor, S1(w) ̸= 0 iff S1(w1w2 · · ·wi) ̸= 0 for all 1 ≤ i ≤ |w|.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Now for σ in Σ ∪ {EOS} we define the formula ϕσ , which depends on the boolean values α and β.

α⊤
σ = I {p(⊤)(σ) ̸= 0}
α⊥
σ = I {p(⊥)(σ) ̸= 0}
β = I {w, 0 |= ϕ}
ϕσ = (Yϕ ∧ α⊤

σ) ∨ (¬Yϕ ∧ α⊥
σ) ∨ (YBOS ∧ ((β ∧ α⊤

σ) ∨ (¬β ∧ α⊥
σ)))

Intuitively, ασ is used to check if a given state assigns nonzero probability to next-symbol σ, and
Yϕ is used to check the state at the previous position. Also, β is used to detect the state of ϕ at
position 0, which my vary (by our definitions, β = ⊤ iff ϕ ≡ BOS). Then, define

ϕ′ = H

 ∨
σ∈Σ∪{EOS}

σ ∧ ϕσ


Let Φ′ = (ϕ′) and c(b) = ⊤ ⇐⇒ b = ⊤. Then S2 = (c ◦ Φ′) has the same support as S1.

B.4 PROOF OF COR. 6.3

Corollary 6.3. Let ϕ be a TL[O] formula and let ϕ′ = prefix(ϕ), whose existence is guaranteed
by §6.3. Computing ϕ′ is in general PSPACE-hard; there is an exponential-time, polynomial-space
construction and |ϕ′| can be exponential in |ϕ|.
For each u ∈ Σ∗, let TAILSf (ϕ

′,u) be true iff there is a v ∈ Σ∗ such that uv |= ϕ. Then deciding
TAILSf (ϕ

′,u) is in general PSPACE-complete where the problem size is defined as |ϕ′|+ |u| .

Proof. To show hardness, with w = ϵ, computing TAILSf (ϕ, ϵ) is precisely finite-trace satisfiability
for past LTL with S, which is PSPACE-complete(Giacomo and Vardi, 2013). Thus the problem is
PSPACE-hard whenever S ∈ O.

To show membership, let cl(ϕ) be the set of subformulas of ϕ and set m = O(|ϕ|+ | log(|w|)). Let
Mϕ = (2cl(ϕ),Σ, δ, ι, F) be the DFA constructed from ϕ by the progression clauses in §B.2, with

ι = {χ ∈ cl(ϕ) | ϵ |= χ}, F = {Ψ ⊆ cl(ϕ) | ϕ ∈ Ψ},

and δ as in §B.2. By Clms. B.2 and B.3,

δ∗(ι, w) = {χ ∈ cl(ϕ) | w, |w| |= χ} and w |= ϕ ⇐⇒ δ∗(ι, w) ∈ F.

Compute Ψw := δ∗(ι,u) by iteratively applying δ along u: start from ι and update Ψ ← δ(Ψ, a)
for each a in u. This uses O(m) space.

TAILSf (ϕ,u) holds iff some state in F is reachable from Ψu in the graph of Mϕ. This graph has
at most 2m nodes, where each node can be represented in O(m) size and that checking whether
(v, v′) is an edge in the graph can be done in time (and therefore also space) polynomial in m. This
immediately gives us a nondeterministic algorithm for this graph reachability that uses only O(m)
space, and, by Savitch’s theorem (Savitch, 1970), it follows that the problem is in PSPACE.

C NONDETERMINISTIC FINITE AUTOMATA

We give a single definition of weighted NFAs instead of factoring them into unweighted NFAs and
autoregressive output functions.
Definition C.1 (Weighted Nondeterministic Finite Automaton). A weighted nondeterministic finite
automaton is a tuple A = (Σ, Q, δ, α, ω), where

• Σ is an alphabet
• Q is a finite set of states
• δ : Q× Σ×Q→ K is a transition function
• ι ∈ Q is the initial state

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• ω : Q→ K is an ending weight.

We extend δ to δ∗ : Q× Σ∗ ×Q→ K:

δ∗(q, ϵ, q) = 1

δ∗(q, ϵ, q′) = 0 q ̸= q′

δ∗(q1, σw, q2) =
⊕
q∈Q

δ(q1, σ, q)⊗ δ∗(q,w, q2).

Then A accepts w with weight k iff

k =
⊕
q2∈Q

δ∗(ι,w, q2)⊗ ω(q2).

Definition C.2. We say that an NFA with transition function δ is counter-free if there exists some k
such that for all states q1, q2, all strings w, we have δ∗(q1,wk, q2) = δ∗(q1,w

k+1, q2).

A weighted automaton is determinizable if every every pair of states which are siblings (can be
reached by the same string) are also twins (all cycles by the same string have the same weight)
(Mohri, 1997). See Fig. 2c. This automaton is counter-free because for any pair of states q1, q2
and any string w, we have that δ∗(q1,w, q2) = δ∗(q1,w

2, q2). However, it is not determinizable

because q1 and q2 are siblings (both reachable by a) but not twins (the a-labeled cycles q1
a/ 1

2−−→ q1

and q2
a/ 3

4−−→ q2 on the two states have different weights).

D INEXPRESSIVITY OF (aab)∗

Proposition 6.4. (aab)∗ is not definable by any formula of TL[P,Y] with Y-depth 1.

In order to prove this, we will use some results in algebraic formal language theory. The proof relies
on the definition of varieties of semigroups (V) and substitutions of formulas (Φ◦Ψ), which we will
not define here (they can be found in the citations). The following is rephrasing of Proposition 5.1
shown by Straubing (1985) but specifically for V ∗ LI2.
Proposition D.1. Let V be a variety of finite monoids. M ∈ V ∗ LI2 iff there exists a surjective
morphism φ : Σ∗ → M and a morphism ψ : (Σ2 × Σ × Σ2)∗ → N where N ∈ V, such that the
following conditions hold

• Whenever π1, π2 are paths in (Σ2×Σ×Σ2)∗ such that L(π1) = L(π2),R(π1) = R(π2),
and ψ(π1) = ψ(π2), then V(π1) = V(π2)

• Whenever π is a path in (Σ2 × Σ× Σ2)∗ such that L(π) = R(π) = w and ψ(π) = ψ(ϵ),
then V(π) = φ(w).

Where a path π ∈ (Σ2 × Σ × Σ2)∗ is of the form (w0, σ1,w1)(w1, σ2,w2) · · · (wk−2, σk,wk)
such that wiσ1 ∈ Σwi+1 for all i. Furthermore we use the notation L(w) = w0,R(w) = wk, and
V(w) = w0σ1σ2 · · ·σk−1σk.

Now, we prove Prop. 6.4.

Proof of Prop. 6.4. By substitution rules, each of these formulas is definable in TL[H] ◦ TL[Y]1.
Then, the languages definable in TL[Y]1 are those that are boolean combinations of languages of
the form Σ∗σ1σ2, which are exactly the languages whose syntactic monoids are in the variety D2.
Furthermore, the languages definable in TL[H] are exactly the languages whose syntactic monoids
are in the variety R (Brzozowski and Fich, 1980). Then, by the semidirect product substitution
principle of Thérien and Wilke (2001, Proposition 3.8), all languages definable in TL[H] ◦ TL[Y]1
have syntactic monoids in R ∗D2.

Let M be the syntactic monoid of (aab)∗. It suffices to show M ̸∈ R ∗ LI2, because R ∗ LI2 =
R ∗ D2 (Straubing, 1985). We will use Prop. D.1. First, we note that the only surjective mor-
phism φ : {a, b}+ → M is the one mapping elements of (aab)∗ to M (up to switching a and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

b, but the argument is identical in that case). Secondly, for any N ∈ R and any morphism
ψ : (Σ2 × Σ × Σ2) → N , we know that for any x, y in the domain it must be the case that
ψ((xy)ω) = ψ((xy)ωx), where ω is the idempotent power of ψ(xy) (Brzozowski and Fich, 1980).
Let x = (aa, b, ab) and y = (ab, a, ba)(ba, a, aa). Let π1 = ((aa, b, ab)(ab, a, ba)(ba, a, aa))ω and
π2 = ((aa, b, ab)(ab, a, ba)(ba, a, aa))ω(aa, b, ab). Here, L(π1) = L(π2) andR(π1) = R(π2) and
ψ(π1) = ψ(π2). However V(π1) = φ(aa(baa)ω) while V(π2) = φ(aa(baa)ωa), which are not
equivalent under the syntactic morphism φ. Therefore, by contradiction, M ̸∈ R ∗ LI2.

18

	Introduction
	Related Work
	Preliminaries
	Transformer Language Models
	Unique Hard Attention Transformers
	Classifiers
	Autoregressive Models

	Other Formalisms
	Finite Automata
	Linear Temporal Logic

	Expressivity Results
	State Encoders
	Classifier models
	Autoregressive models
	Nondeterministic finite automata
	Fragments of LTL
	Temporal Logic with Counting

	Conclusion
	Equivalence of State Encoders
	Autoregressive Model Proofs
	Proof of thm:ltlnext
	Proof of thm:ltlprefix
	Relationship Between Classifiers and Autoregressors
	Proof of cor:ltltails

	Nondeterministic Finite Automata
	Inexpressivity of (aab)*

