
Published as a conference paper at AI4MAT-Vienna 2024

MMSCI : A MULTIMODAL MULTI-DISCIPLINE DATASET
FOR PHD-LEVEL SCIENTIFIC COMPREHENSION

Zekun Li
♠

Xianjun Yang
♠

Kyuri Choi
♡

Wanrong Zhu
♠

Ryan Hsieh
♠

HyeonJung Kim
♡

Jin Hyuk Lim
♡

Sungyoung Ji
♡

Byungju Lee
♡♦

Xifeng Yan
♠

Linda Ruth Petzold
♠

Stephen D. Wilson
♠

Woosang Lim
♡∗

William Yang Wang
♠∗

♠University of California, Santa Barbara ♡POSCO HOLDINGS ♢KIST
https://github.com/Leezekun/MMSci

Mat
er

ial
s s

cie
nc

e

Ch
em

ist
ry

Ph
ys

ics

Ce
ll b

iol
og

y

Bioc
he

mist
ry

Micr
ob

iol
og

y

Ca
nc

er

Neu
ro

sc
ien

ce

Mole
cu

lar
 bi

olo
gy

Gen
et

ics

Nan
os

cie
nc

e&
te

ch
no

log
y

Im
mun

olo
gy

Biol
og

ica
l t

ec
hn

iqu
es

Dise
as

es

St
ru

ctu
ra

l b
iol

og
y

Opt
ics

&ph
ot

on
ics

Co
mp. 

bio
log

y&
bio

inf
or

mat
ics

Biot
ec

hn
olo

gy

Biop
hy

sic
s

Ec
olo

gy

Dev
elo

pm
en

ta
l b

iol
og

y

Ec
olo

gy
 sc

ien
ce

s

Ev
olu

tio
n

Med
ica

l r
es

ea
rch

Ch
em

ica
l b

iol
og

y

Cli
mat

e s
cie

nc
es

En
gin

ee
rin

g

Pla
nt

 sc
ien

ce
s

Ph
ys

iol
og

y

En
er

gy
 sc

ien
ce

&te
ch

no
log

y
0

5000
10000

#
Ar

ti
cl

es 10
56

4(
54

21
8)

81
39

(4
39

55
)

72
39

(3
51

50
)

64
90

(4
41

11
)

61
45

(3
76

08
)

52
25

(2
94

87
)

52
15

(3
27

79
)

50
16

(3
21

62
)

48
43

(3
10

00
)

46
65

(2
50

37
)

44
83

(2
25

97
)

40
24

(2
61

03
)

35
40

(2
01

69
)

34
59

(2
02

56
)

34
32

(2
04

02
)

32
27

(1
58

98
)

29
14

(1
60

84
)

26
33

(1
46

89
)

24
40

(1
43

15
)

22
23

(1
00

52
)

22
05

(1
49

47
)

21
85

(9
86

2)

19
41

(9
49

3)

18
39

(1
01

71
)

18
12

(1
05

23
)

17
95

(8
81

0)

17
88

(9
80

1)

16
59

(9
52

8)

16
19

(1
06

49
)

15
19

(8
16

8)

Figure 1: The top 30 out of 72 science subjects1with the most articles in our dataset MMSci. The
corresponding numbers of figures are shown in brackets.

ABSTRACT

The rapid advancement of Large Language Models (LLMs) and Large Multimodal
Models (LMMs) has heightened the demand for AI-based scientific assistants capa-
ble of understanding scientific articles and figures. Despite progress, there remains
a significant gap in evaluating models’ comprehension of professional, graduate-
level, and even PhD-level scientific content. Current datasets and benchmarks
primarily focus on relatively simple scientific tasks and figures, lacking compre-
hensive assessments across diverse advanced scientific disciplines. To bridge this
gap, we collected a multimodal, multidisciplinary dataset from open-access scien-
tific articles published in Nature Communications journals. This dataset spans 72
scientific disciplines, ensuring both diversity and quality. We created benchmarks
with various tasks and settings to comprehensively evaluate LMMs’ capabilities
in understanding scientific figures and content. Our evaluation revealed that these
tasks are highly challenging: many open-source models struggled significantly, and
even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset
as training resources by constructing visual instruction-following data, enabling
the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our
benchmark. Additionally, we investigated the use of our interleaved article texts
and figure images for pre-training LMMs, resulting in improvements on the ma-
terial generation task. The source dataset, including articles, figures, constructed
benchmarks, and visual instruction-following data, is open-sourced.

1 INTRODUCTION

Recent advancements in generative artificial intelligence, including Large Language Models
(LLMs) (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023a;b) and Large Multimodal

∗Corresponding authors
1https://www.nature.com/nature/browse-subjects

1

https://github.com/Leezekun/MMSci
https://www.nature.com/nature/browse-subjects


Published as a conference paper at AI4MAT-Vienna 2024

Models (LMMs) (Li et al., 2023; Liu et al., 2024; Zhu et al., 2023; Achiam et al., 2023), have
demonstrated remarkable capabilities in solving problems requiring educated knowledge across
various domains, including mathematics (Cobbe et al., 2021; Chen et al., 2023; Hendrycks et al.,
2021; Lu et al., 2022b), history, computer science, law, and technology (Hendrycks et al., 2020).
While these models excel at tasks ranging from elementary to undergraduate-level knowledge, there is
an increasing demand for more professional AI scientific assistants that can comprehend and process
advanced, graduate-level, and even PhD-level scientific knowledge (noa, 2023; White, 2023; Vert,
2023).

In response, researchers have begun exploring the application of these generative models in fields
such as biomedicine (Thapa & Adhikari, 2023), health (Tian et al., 2024), chemistry (Zheng et al.,
2023; Bran et al., 2023), and material science (Xie et al., 2023; Miret & Krishnan, 2024) for purposes
including research automation, education, and assistance (Meyer et al., 2023). A critical aspect of
developing effective AI science assistants is their ability to understand academic scientific literature,
which often includes complex figures like data visualization plots and charts, schematic diagrams,
macroscopic and microscopic photographs, and other specialized content from various fields.

However, there is currently a lack of comprehensive evaluation of models’ understanding of profes-
sional PhD-level multimodal scientific knowledge, particularly with figures, across diverse scientific
disciplines. Existing evaluations of LMMs on scientific problems are typically limited to up to
college-level knowledge and a few science disciplines, such as computer science, mathematics,
physics, chemistry, and biology (Lu et al., 2022a; Wang et al., 2023; Yue et al., 2023), as shown in
Table 1. Furthermore, the evaluation of models’ abilities to understand scientific figures has been
restricted to simple charts and plots (Chen et al., 2020; Kahou et al., 2017; Siegel et al., 2016), and
suffer from relatively narrow scopes and lower quality (Li et al., 2024).

To bridge the gap, we collected a multimodal, multi-discipline dataset MMSci from high-quality,
open-access articles published in Nature Communications2, which are freely and permanently avail-
able upon publication under a Creative Commons Attribution 4.0 International (CC BY) license3. This
dataset spans 72 scientific disciplines, primarily within the natural sciences (the top 30 subjects with
most articles can be seen in Figure 1). We created a benchmark to evaluate models’ understanding
of PhD-level multimodal scientific knowledge across various disciplines. The benchmark includes
scientific figure captioning and visual question answering (VQA) tasks in various settings, thoroughly
assessing LMMs’ capabilities in understanding scientific figures and content. Our evaluation revealed
significant challenges and deficiencies in current LMMs in interpreting scientific figures and content.
Many open-source models struggled considerably with these tasks, demonstrating limited capability.
Even GPT-4V and GPT-4o encountered difficulties in producing accurate, relevant captions and
matching figures with their descriptions under challenging settings.

Furthermore, our dataset includes a vast collection of high-quality academic articles and figures,
which we explored as training resources to enhance models’ understanding of scientific content. To
achieve this, we constructed visual instruction-following data with discussions about figure content,
structured as single or multi-turn interactions. Additionally, we investigated pre-training LMMs using
our interleaved article text and figure images to improve their acquisition of scientific knowledge.
Experimental results show that our visual instruction-following data enhanced the 7B LLaVA model,
achieving performance comparable to GPT-4V/o on our benchmark. Moreover, experiments on
a materials science task demonstrated that pre-training on our interleaved multimodal data could
improve the performance on material generation. Overall, our contributions are threefold:

• Data scope and quality: Our dataset is unique as it consists of high-quality peer-reviewed
academic articles and figures across 72 diverse scientific disciplines.

• Challenging benchmark: Our benchmark includes tasks with varying settings for com-
prehensive assessment. Our evaluation reveals notable deficiencies in current LMMs in
effectively interpreting figures in scientific literature.

• Visual instruction-following and interleaved multimodal data: We developed visual
instruction-following data for visual instruction tuning and interleaved article and figure data
for pre-training LMMs. Experimental results demonstrate the effectiveness of this approach
in enhancing scientific knowledge comprehension.

2https://www.nature.com/ncomms/
3More details can be found at https://www.nature.com/ncomms/open-access
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Table 1: Comparison with prior figure understanding datasets and multimodal science bench-
marks. *We only count the number of science subjects categorized according to Nature journals.

Dataset Data Source Peer-reviewed # Subjects Image Type Annotations

FigureQA (Kahou et al., 2017) Synthetic Data N/A N/A Charts/Plots Synthetic
DvQA (Kafle et al., 2018) Synthetic Data N/A N/A Bar Chart Synthetic
FigureSeer (Siegel et al., 2016) ML Conference Papers ✓ 1 (CS) Charts/Tables/Algo. Synthetic
SciCap (Yang et al., 2023) CS Arxiv Papers ✗ 1 (CS) Charts/Diagrams Authentic
ArxivCap/QA (Li et al., 2024) Arxiv Papers ✗ 32 Open Category Authentic/Synthetic
MMSci (Ours) Nature Communications ✓ 72 Open Category Authentic

Benchmark Data Source Science Topics # Subjects* Grades

ScienceQA (Lu et al., 2022a) Elementary to High School Curricula Natural/Social/Language 20 1-12
SciBench (Wang et al., 2023) College Textbooks Natural(Physics/Chem/Math) 3 College
MMMU (Yue et al., 2023) College Exams, Quizzes, Textbooks Natural/Social/Health/Tech 25 College
MMSci (Ours) Nature Communications Journal Papers Natural(Primary)/Health/Social 72 PhD

2 RELATED DATASET WORK

Scientific Figure Understanding Scientific figures in academic articles convey rich, valuable
information, and there has been extensive research on evaluating the understanding of these figures.
Early approaches typically focused on data visualization figures. For instance, Chen et al. (2020);
Kahou et al. (2017); Kafle et al. (2018) created synthetic datasets comprising various types of plots
and charts. To obtain more diverse and complex scientific figures, FigureSeer (Siegel et al., 2016) and
SciCap (Yang et al., 2023) gathered computer science (CS) papers from arXiv to extract article figures
from PDFs. More recently, ChartMimic (Shi et al., 2024) introduces the chart to code generation
task. ArxivQA/Cap (Li et al., 2024) collected papers from 32 subjects on arXiv. However, their
collection still primarily focuses on CS and math, with limited inclusion of rich and diverse natural
science subjects. Additionally, since these arXiv papers are not peer-reviewed, their quality is not
guaranteed. In contrast, our dataset emphasizes natural science disciplines and collects high-quality,
peer-reviewed articles and figures from the prestigious Nature Communications journals. Covering
72 diverse science disciplines, our dataset ensures both diversity and quality.

Multimodal Science Problems With the advancement of LMMs, many studies have focused
on evaluating their capabilities in solving scientific problems in a multimodal context. However,
ScienceQA (Lu et al., 2022a) primarily addresses problems ranging from elementary to high school
levels (K1-12). SciBench (Wang et al., 2023) focuses solely on three science disciplines: physics,
chemistry, and mathematics. MMMU (Yue et al., 2023) includes various subjects such as art,
business, history, health, humanities, and technology, but its coverage of science subjects is limited to
25 disciplines according to the categories of the Nature website. In contrast, our dataset evaluates
PhD-level scientific knowledge across 72 diverse scientific domains.

3 DATA CURATION

Table 2: The key statistics of MMSci, including the source data and the constructed benchmark
test/validation (dev) set and the data for visual instruction-tuning (IT) in the training set.

Source dataset Number Benchmark test/dev set Number Visual IT (training set) Number
Total subjects 72 Used articles 1,418/1,414 Used articles 128,561
Total articles 131,393 Figure captioning 1,218 /1,412 Figure captioning 725,646
Total figures 742,273 Multi-choice VQA (I) 1,188/1,297 Multi-choice VQA (I) 84,328
Avg. figures per article 5.65 Multi-choice VQA (II) 1,121/1,221 Multi-choice VQA (II) 107,098
Avg. caption length 153 Multi-choice VQA (III) 1,119/1,214 Multi-choice VQA (III) 53,882
Avg. abstract length 150 Multi-turn conversation 108,843
Avg. article length 7,457 Total samples 1,079,797

Source Data Collection Our dataset was collected from the Nature Communications website,
consisting of open-access, peer-reviewed papers across five major categories and 72 subjects. The
full list of subjects can be seen in Appendix A.1.3 . Various information regarding each article

3
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Quantitative Data Visualization Charts (53.5%): 
For charts and graphs displaying quantitative data, such as 
scatter plots, bar graphs, and line charts.

Schematic Diagrams (13.2%): 
Simplified and symbolic representations of systems, processes, 
or structures to explain how something works or is constructed.

Microscopic photographs(14.7%): 
Photographs or images captured using a microscope,
revealing details not visible to the naked eye.

Simulated Images (3.4%): 
Computer-generated images or visualizations 
created to model, predict, or illustrate theoretical 
scenarios, processes, or phenomena.

Geographical and Environmental Maps (1.2%):
Visual representations of geographical areas or 
environmental data, often used for navigation, analysis, or 
to illustrate spatial relationships and patterns in maps.

Macroscopic photographs (5.2%): 
Images or photographs of objects or scenes that are 
visible to the naked eye, often used for visual analysis.

Experimental Results Visualizations (8.8%): 
For images that display results from experimental procedures, 
such as Western blots, PCR results, and gel electrophoresis.

Figure 2: Examples of the seven major types of (sub-)figures in MMSci. Ratios are based on the
benchmark test set. Sources are discussed in the acknowledgements.

is easily accessible on this website, providing a user-friendly platform for obtaining all necessary
data. For each article, we collected information including the title, abstract, main body content,
and references, directly from their respective sections on the article’s webpage (e.g., https://
www.nature.com/articles/xxx, where “xxx” is the article’s unique ID). Figures and their
captions were obtained from a dedicated figures page under the article’s homepage (e.g., https:
//www.nature.com/articles/xxx/figures), eliminating the need to extract figures from
PDF files and thus ensuring image quality. We used pylatexenc to convert LaTeX expressions
of mathematical formulas in the article text and figure captions into plain text. Since these papers
are all peer-reviewed and the text, figure, and caption data are readily available from the website,
no additional quality filtering or content extraction was necessary. This ensures authentic and high-
quality data, unlike previous datasets (Yang et al., 2023; Li et al., 2024). We crawled articles up to
the date of 2024/04/15. The resulting source dataset comprises 131,393 articles and 742,273 figures.

Sub-caption Extraction Many figures in the dataset consist of multiple sub-figures in a single
image, with captions that include a main caption and descriptions of each sub-figure (sub-caption), as
illustrated in Figure 3. We developed a regular expression matching function to identify sub-figure
indices at the beginning of sentences in alphabetical order (a to z), extracting and identifying 514,054
sub-captions/figures, which aids in the consecutive construction of our benchmark.

Exploring Figures in MMSci We examined the types of (sub-)figures in MMSci by manually
summarizing and categorizing the potential figure types into seven major categories based on a subset
of the figures. The categorization is based on the smallest individual components, the sub-figures,
when present. Following this review, we used GPT-4o to classify the images within the benchmark
test set (see benchmark data splits in the next section). Examples of image types are shown in
Figure 2, and more statistics can be found in Appendix A.1.4.

4 BENCHMARKS

We developed two benchmark tasks with varying settings to comprehensively test models’ compre-
hension of scientific articles and figures from different aspects, as shown in Figure 3.

Scientific Figure Captioning Scientific figure captioning in our dataset MMSci presents unique
challenges compared to typical natural image captioning. Firstly, unlike natural image captions that
can be understood without background knowledge, interpreting figures in scientific articles usually

4

https://www.nature.com/articles/xxx
https://www.nature.com/articles/xxx
https://www.nature.com/articles/xxx/figures
https://www.nature.com/articles/xxx/figures


Published as a conference paper at AI4MAT-Vienna 2024

Source: https://www.nature.com/articles/s41467-024-47419-w/figures/1

Fabrication of freestanding single-crystalline PbZrO3 (PZO) membranes. a Schematics of the 
whole fabrication process as depositing PbZrO3/Sr3Al2O6 (SAO) heterostructure on SrTiO3 (STO) 
substrates, releasing PbZrO3 films from the substrates by water etching, and then transferring 
PbZrO3 membranes to other substrates. b Optical images of a 2.5 mm × 2.5 mm 
PbZrO3 membrane transferred to polydimethylsiloxane (PDMS) with good flexibility. c Surface 
morphology of transferred PbZrO3 on platinized silicon substrate scanned by AFM. d X-ray 
diffraction patterns of as-grown SrTiO3/Sr3Al2O6/PbZrO3 heterostructure and freestanding 
PbZrO3 membranes on the platinized silicon substrate. a.u., arbitrary units. e The RSM studies 
of as-grown SrTiO3/Sr3Al2O6/PbZrO3 heterostructure around (103) diffraction. f Top-view TEM 
image of a freestanding PbZrO3 membrane supported by Cu grid with lacey carbon film.

User: summarize the content in the figure based on the article. Article: {article}
Assistant:

User: which of the following options best describe sub-figure (d)?
A. sub-caption of sub-figure (e)           B. sub-caption of sub-figure (d)
C. sub-caption of sub-figure (b) D. sub-caption of sub-figure (f) 
Assistant: B.

User: What details are included in sub-figure (c)?
Assistant: sub-caption of sub-figure (c)
User: What about sub-figure (a)?
Assistant: sub-caption of sub-figure (a)
…

Figure 3: Illustration of the benchmark and visual instruction-following data construction in MMSci.
This example is taken from (Guo et al., 2024b). The left side shows the figure including multiple
sub-figures. The caption consists of a main caption (bolded) and a series of sub-captions (underlined),
each corresponding to a sub-figure. Due to space constraints, we only show sub-captions from (a) to
(f). These (sub-)figures and (sub-)captions are used to construct data for figure captioning (upper
right), VQA (setting III in this example) (center right), and multi-turn conversations (lower right).
Detailed examples of different types of constrcuted data are provided in Appendix A.1.5.

requires grounding in and understanding the article’s content. Secondly, scientific figure captions
are significantly more detailed, providing rich complementary information to the article. In MMSci,
these captions average 153 words, much longer than those for natural images. This complexity
and depth make scientific figure captioning a more demanding task. To comprehensively test the
model’s understanding of scientific figures, we designed three captioning settings: (1) Ungrounded
figure captioning: The model generates captions without any additional article content. (2) Abstract-
grounded figure captioning: The model is provided with the paper abstract to give an overview of
the paper content. (3) Full content-grounded figure captioning: The model is provided with the
entire article content to generate the figure caption. Given that the full article content averages around
14k tokens, this setting is primarily suitable for models with longer context windows.

Visual Question Answering Our multiple-choice VQA task is to select the (sub-)caption that best
describes a (sub-)figure across three different settings: (1) Setting I: The options include the correct
main caption of a figure and three main captions from other figures within the same article. (2) Setting
II: This setting tests the model’s performance in locating and understanding a specific sub-figure
within the given image. We randomly select a sub-figure and use its corresponding sub-caption as
the correct answer, with three sub-captions from other figures within the same article as alternative
choices. (3) Setting III: As a more challenging setting than setting II, all choices are sub-captions
from the same image. This setting rigorously tests the model’s ability to locate the sub-figure and
distinguish the correct corresponding content from all the content in the image. For all three settings,
we construct questions with four choices to ensure consistency.

Data Split We allocated 1% of articles from each subject to the test set and another 1% to the
validation (dev) set, with each subject containing 5 to 50 articles. This resulted in 1,418 articles for
the test set and 1,414 for the validation set, used for benchmark evaluation samples. Each test sample
is derived from a single article, ensuring no reuse of content. For the captioning data, captions were
ensured to contain more than 50 words. Ultimately, each task and setting consists of approximately
1,200 samples, balancing coverage, diversity, and cost for benchmarking.

5 TRAINING RESOURCES

Our dataset consists of rich articles and figure data, which we explore as training resources to enhance
models’ capabilities in comprehending scientific figures and content.

5
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Visual Instruction-Following Data We use the articles, excluding those in the benchmark, to create
a visual instruction-following dataset. As illustrated in Figure 3, our dataset consists of conversations
discussing figure content, including three types. The first two types are VQA and figure captioning
tasks, as in the benchmark, formatted as single-turn interactions. For figure caption tasks, we use
only abstract-grounded captioning data in the training set since the full article content is too lengthy
for most open-source LMMs. The third type involves multi-turn conversations, where the human asks
about content in a sub-figure and the assistant responds with the corresponding sub-caption in each
turn. We use diverse conversation templates generated by GPT-4 (Achiam et al., 2023) to vary human
instructions. All model responses are derived from original articles rather than model-generated,
ensuring data quality. This approach resulted in 108,843 multi-turn conversations, culminating in a
dataset with over 1 million visual instruction-following conversations, including the other two types.

Interleaved Text and Image Data for Pre-training MMSci includes full article content and
figures, naturally forming interleaved text and image data suitable for pre-training LMMs (Lin et al.,
2023). Since the text and figures are collected separately from different sections of the website, we
insert the figures into the article content at the location of their first mention (e.g., Figure/Fig. x).
Table 3: Performance on scientific figure captioning. B@k represents BLEU@k (k=1,2,3,4), R stands
for ROUGE-L, M stands for METEOR, BS indicates BERTScore, and CLIP and RCLIP represent
CLIPScore and RefCLIPScore, respectively. Best results are bolded and second best are underlined.

Grounded Model B@1 B@2 B@3 B@4 M R BS CLIP RCLIP
Kosmos2 23.05 2.59 0.39 0.09 14.53 11.69 77.51 41.44 46.01
BLIP2 37.73 4.91 0.25 0.04 3.18 6.56 79.28 55.93 56.90
LLaVA1.5-7B 29.34 3.16 0.16 0.03 11.80 12.55 79.93 64.79 64.22
LLaVA-Next 15.96 2.44 0.26 0.04 18.89 10.87 79.27 68.08 66.72
LLaVA-Next-Mistral 15.91 2.81 0.38 0.08 20.45 10.96 79.53 68.54 67.04
Qwen-VL-Chat 43.54 12.78 4.87 1.66 15.34 14.84 81.95 63.24 64.30

GPT-4V 21.94 4.95 1.31 0.41 26.62 14.87 81.76 71.81 71.27
GPT-4o 19.73 4.90 1.49 0.47 27.06 15.59 81.13 71.43 71.39

N/A

LLaVA-Next-MMSci 42.67 14.51 6.60 3.10 21.79 18.01 83.39 71.19 72.21

Abstract

Kosmos2 22.28 2.91 0.61 0.20 19.50 11.81 79.09 41.44 46.01
BLIP2 32.88 4.18 0.45 0.09 7.32 9.14 79.72 48.34 51.12
LLaVA1.5-7B 30.78 4.50 0.66 0.18 14.54 14.00 81.20 68.49 69.72
LLaVA-Next 19.79 3.70 0.68 0.18 20.86 12.88 80.86 69.63 70.06
LLaVA-Next-Mistral 19.50 3.95 0.76 0.20 21.49 12.75 80.84 69.80 69.93
Qwen-VL-Chat 38.27 8.75 2.22 0.70 16.02 15.38 81.87 69.16 70.12

GPT-4V 22.95 5.63 1.56 0.50 27.59 15.66 82.37 72.22 72.76
GPT-4o 21.06 5.58 1.76 0.58 28.41 16.32 81.82 72.15 72.92

LLaVA-Next-MMSci 45.89 16.96 8.12 4.08 24.77 20.69 84.46 71.33 74.22
GPT-4V 25.93 8.03 3.03 1.32 31.41 19.24 83.47 72.44 74.04Full

Content GPT-4o 25.11 11.11 5.99 3.51 37.55 24.94 83.65 71.94 74.08

6 BENCHMARK EVALUATION RESULTS

We benchmarked various prevalent open-source and proprietary LMMs on the market, including:
Kosmos-2 (Peng et al., 2023), BLIP-2 (Li et al., 2023), Qwen-VL-Chat (Bai et al., 2023), and the
LLaVA series models (Liu et al., 2024; 2023), including LLaVA1.5-7B, LLaVA-Next (LLaVA1.6-
Vicuna-7B), LLaVA-Next-Mistral (LLaVA1.6-Mistral-7B), and the proprietary GPT-4V (Achiam
et al., 2023) and GPT-4o. The exact model versions are provided in Appendix A.3.1. Additionally,
we fine-tuned a LLaVA-Next (LLaVA1.6-Vicuna-7B) model using our visual instruction-following
data, containing around 1,080k training samples, for one epoch. This resulted in our model called
LLaVA-Next-MMSci.

For scientific figure captioning, we ran the inference three times and reported the average scores
for BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee & Lavie, 2005), and
BERTScore (Zhang et al., 2019) by comparing the generated captions to the oracle captions. We
also reported reference-free image captioning metrics, CLIPScore and RefCLIPScore (Hessel et al.,
2021), which directly compare the generated captions with the images. However, note that these

6
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Table 4: Accuracies (%) on multi-choice VQA under various settings, with majority voting from
different inference runs (k). Best results are bolded and second best are underlined.

Model Setting I Setting II Setting III

k=1 k=3 k=5 k=1 k=3 k=5 k=1 k=3 k=5

Random Guess 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

Kosmos2 23.99 23.99 23.99 23.42 23.42 23.42 23.95 23.95 23.95
BLIP2 23.57 22.98 24.49 20.79 22.48 21.86 23.50 23.06 24.40
LLaVA1.5-7B 32.74 35.10 35.69 24.62 28.81 27.12 24.31 24.40 23.77
LLaVA-Next 34.43 34.18 36.03 26.05 24.98 25.60 19.84 20.82 20.64
LLaVA-Next-Mistral 34.76 34.26 36.20 28.64 31.13 31.58 20.38 22.52 22.97
Qwen-VL-Chat 39.56 39.65 39.56 22.21 22.02 22.21 19.93 21.18 21.27

GPT-4V 51.48 51.98 52.15 77.59 79.29 79.82 67.14 69.11 70.81
GPT-4V w/ CoT 60.42 62.87 64.14 83.91 84.99 85.43 75.11 75.92 77.27
GPT-4o 65.99 65.99 66.16 90.00 91.07 91.70 86.30 87.02 87.47
GPT-4o w/ CoT 67.34 69.28 70.13 91.61 92.23 92.32 87.38 89.17 89.53

LLaVA-Next-MMSci 66.67 69.78 70.62 83.76 84.03 85.10 75.96 76.94 77.21

metrics are primarily designed for natural images with relatively short captions and will truncate
captions longer than 77 tokens. We only evaluated content-grounded captioning with GPT-4V/o, as
they are the only models capable of processing the full article content. For VQA, we ran inferences
five times and used majority voting to determine the final answers. For GPT-4V/o, we also tried
Chain-of-Thought (CoT) (Wei et al., 2022), but the other models did not demonstrate the capability
to generate reasonable rationales for CoT. The temperature was set to 0.7 for all evaluations.

Figure Captioning Results Table 9 presents the results of figure captioning. As expected, ground-
ing the captions on article information improves generation quality. Specifically, when provided with
the full article content, GPT-4o achieves highest METEOR and ROUGE scores. This underscores the
necessity of understanding scientific figures based on article information. On the other two settings
with less or no article information, our fine-tuned model achieves the best results across most metrics.
GPT-4V and GPT-4o also perform well, particularly on the METEOR and CLIPScore metrics. In
contrast, the other open-source models show significantly poorer performance, demonstrating limited
capability to generate accurate and relevant captions. Among them, Qwen-VL-Chat is the only model
that achieves reasonable performance regarding BLEU scores and BERTScore. Overall, the models’
performances are relatively low, underscoring the unique challenges of this task.

VQA Results The results of VQA are shown in Table 4. Setting I is the only setting where some
open-source models showed accuracies slightly higher than random guessing. In the other settings,
all open-source models displayed little capability, with accuracies even lower than random guess. In
contrast, our fine-tuned model, GPT-4o, and GPT-4V demonstrated significantly better performance.
Our fine-tuned model excelled in Setting I, while GPT-4o performed best in Settings II and III. This
might suggest that GPT-4o is better at locating and distinguishing specific areas or sub-figures within
whole figures, whereas our model can better summarize entire figures. CoT consistently improved
accuracy for GPT-4V and GPT-4o, particularly for GPT-4V, highlighting the need for reasoning
ability in these tasks. Overall, our fine-tuned model achieved performance comparable to or better
than GPT-4V, demonstrating the effectiveness of our visual instruction-following data from MMSci.

7 A CASE STUDY IN MATERIAL SCIENCES

Material science is the subject with the most articles and figures in our dataset. It is an important and
highly interdisciplinary field, requiring knowledge from various subjects. Therefore, we conducted a
case study to enhance material science knowledge using our dataset.

There has been research on using language models for material science tasks (Walker et al., 2021;
Rubungo et al., 2023; Miret & Krishnan, 2024). A recent study (Gruver et al., 2024) achieved
promising results by utilizing LLaMA2 (Touvron et al., 2023b) for material generation. In this study,
material crystal structures were represented as text strings, and the LLaMA2 model was trained to
generate these structure strings. However, LLaMA2 may lack sufficient scientific knowledge to fully

7
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Table 5: Evaluation of unconditional material generation covering validity, coverage and property
distribution, and stability checks. Performance reported over 10,000 samples.

Method Validity Check Coverage Property Distribution Metastable Stable
Structural↑ Composition↑ Recall↑ Precision↑ wdist (ρ)↓ wdist (Nel)↓ M3GNet ↑ DFT† ↑

Previous non-language baselines
CDVAE 1.000 0.867 0.992 0.995 0.688 1.432 22.1% 1.2%
LM-CH 0.848 0.836 0.993 0.979 0.864 0.132 N/A N/A
LM-AC 0.958 0.889 0.996 0.986 0.696 0.092 N/A N/A

Gruver et al. (2024)
LLaMA2-7B 0.967 0.933 0.923 0.950 3.609 1.044 33.6% 2.1%
LLaMA2-13B 0.958 0.923 0.884 0.983 2.086 0.092 34.3% 4.9%
LLaMA2-70B 0.997 0.949 0.860 0.988 0.842 0.433 50.1% 5.3%

Ours
LLaMA2-7B-MMSci 0.993 0.979 0.916 0.996 1.675 0.353 64.5% 8.2%
† Fraction of structures that are first predicted by M3GNet to have EM3GNet

hull < 0.1 eV/atom, and then verified with DFT to have EDFT
hull < 0.0 eV/atom.

comprehend the principles of material generation. Therefore, we explored the continuous pre-training
of LLaMA2 using our interleaved scientific article and figure data, aiming to enhance the model’s
performance on the stable material generation task.

Pre-training on MMSci We continuously pre-trained the LLaMA2-7B model on our collected
interleaved article text and figure images, using data within the Physical Science major category,
which includes materials science as well as other eight related subjects such as physics, chemistry,
and engineering. To inject the multimodal knowledge from our dataset into LLaMA2, we leverage
LLaVA’s architecture (Liu et al., 2024), equipping LLaMA2 with a pre-trained CLIP ViT-L/14-
336 (Radford et al., 2021) as the visual encoder and a 2-layer MLP as the projector. During training,
we initially kept the LLM frozen and used data from general domains provided by (Liu et al., 2024) to
initialize the projector. We then trained the model on the interleaved text and image data from general
domains in MMC4 (Zhu et al., 2024) to further develop its image perception abilities, followed by our
collected interleaved articles and figures in MMSci to infuse scientific knowledge. In this stage, we
tuned both the LLM and the projector, for one epoch. For the resulting multimodal model, we only
use its LLM part, named LLaMA2-7B-MMSci, for the subsequent text-only material generation.

Material Generation Prompt

Below is a description of a bulk material. 
The chemical formula is Li2MnO2. The 
formation energy per atom is -2.0221. 
Generate a description of the lengths 
and angles of the lattice vectors and 
then the element type and coordinates 
for each atom within the lattice:
3.2 3.2 5.3
90 90 120
Li
0.05 0.08 0.30
Li
0.72 0.41 0.57
Mn
0.39 0.75 0.94
O
0.72 0.41 0.18
O
0.05 0.08 0.69

formation_energy_per_atom -0.4362233812500005
band_gap 0.0
e_above_hull 0.0
spacegroup.number 187
Below is a description of a bulk material. The chemical formula is TbGdAl6. The band gap is 0.0. The spacegroup number is 187. Generate a description of the lengths and angles of the lattice vectors and then the element type and coordina

6.3 6.3 4.6
90 90 120
Tb
0.65 0.43 0.78
Gd
0.98 0.10 0.28
Al
0.02 0.62 0.28
Al
0.46 0.62 0.28
Al
0.46 0.06 0.28
Al
0.61 0.91 0.78
Al
0.17 0.91 0.78
Al

Figure 4: The prompt for gen-
erating crystal structure.

Fine-tuning for Materials Generation Given the LLM, we fur-
ther fine-tune it for the material generation task as in (Gruver et al.,
2024). Specifically, periodic materials are characterized by a unit
cell that repeats infinitely in all three dimensions. Each unit cell
is specified by its side lengths (l1, l2, l3) and angles (θ1, θ2, θ3).
Within this lattice structure, there are N atoms, each identified by
an element symbol, ei, and a set of 3D coordinates (xi, yi, zi).
Therefore, the structure of a bulk material C can be represented by:

C = (l1, l2, l3, θ1, θ2, θ3, e1, x1, y1, z1, ..., eN , xN , yN , zN ). (1)

The prompt for generating these structures is shown in Figure 4.
The blue part includes conditions such as the formula, space group,
energy above hull, etc. The red part is the generated representation
of the crystal structure, and the text above is the prompt.

Consistent with prior work (Xie et al., 2021; Gruver et al., 2024),
we experiment on the MP-20 dataset (Jain et al., 2013), which
contains 45,231 stable materials. Therefore, an effective generative
model trained on MP-20 is expected to generate new crystals that
are at lease metastable. We construct the training data from these
materials with two types of prompts: conditional generation (with one or multiple conditions) and
infilling prompts, where partial crystal structure strings are masked and the model generates the
masked parts. We train the model for one epoch, as training for more epochs reduces the diversity
and coverage of generated materials.

Results We evaluate the unconditional generation where no conditions are provided, allowing the
model to generate potential stable materials for discovery. Consistent with (Xie et al., 2021; Gruver
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et al., 2024), we sample 10,000 generations with a temperature of 0.7. The evaluation focuses on
four key aspects: validity, which ensures adherence to physical constraints; coverage and property
metrics, which measure the alignment between the ground truth and the sampling distribution; and
stability checks, which determine the percentage of samples deemed metastable by M3GNet (Chen
& Ong, 2022) and stable by DFT (Hafner, 2008). As observed in Table 5, the LLaMA2-7B model,
after being continuously pre-trained on our interleaved articles and figures and multi-task fine-tuning,
consistently yields good results and achieves the best compositional validity, coverage precision,
metastability, and stability. This underscores the benefit of our data in enhancing the generative
model’s acquisition of scientific knowledge.

Structure Composition
Validity

0.92

0.96

1.00
0.993

0.979

0.985

0.974
0.971

0.935

0.993

0.932

0.979

0.935

MMSci+MMC4 (Vis+Text)
MMC4+MMSci (Text)
MMC4 (Vis+Text)

MMSci (Vis+Text)
No Additional Data

Figure 5: Ablation studies on the influence of
different pre-training data over LLaMA2-7B.

Ablation Studies To understand the sources of
LLaMA2-7B-MMSci’s performance, we explored
other different pre-training data configurations: us-
ing only the interleaved data from either MMC4 or
MMSci, using interleaved data from MMC4 combined
with text-only data from MMSci, and no additional
pre-training data, followed by the same fine-tuning
setup. From Figure 5, we observe that combining in-
terleaved text and images from both datasets achieves
best results in both structure and composition validity.
This combination equips the model with the capa-
bility to effectively read text and interpret images in
the articles. In contrast, using only data from gen-
eral domains in MMC4 did not lead to improvements.
Additionally, directly training on MMSci slightly de-
creases performance in structure validity, likely be-
cause the inclusion of visual information can confuse
the model if it is not adequately pre-trained with gen-
eral interleaved data. Using both articles and figures
leads to better performance than using only text from MMSci, highlighting the benefit of under-
standing both figures and content in scientific literature. Overall, the inclusion of our multimodal
interleaved data improves performance over not using additional pre-training, indicating the effective-
ness of our data.

8 CONCLUSION

In this work, we present MMSci, a multi-discipline multimodal dataset that includes high-quality
peer-reviewed articles and figures across 72 science disciplines. Using this dataset, we construct
a challenging benchmark to evaluate the capabilities of LMMs in understanding scientific figures
and content, revealing significant deficiencies. Additionally, we explore the use of our dataset as
training resources to enhance models’ scientific comprehension. By constructing visual instruction-
following data and interleaved text and image data for pre-training, we achieve improvements on
both our benchmark and the material generation task. We anticipate that our dataset will serve as a
valuable resource for evaluating and enhancing the scientific comprehension of generative models,
thus advancing the development of AI-based scientific assistants.

8.0.1 LIMITATIONS

Currently, our evaluation benchmark primarily focuses on understanding figures in scientific articles
based on the article content or not. We encourage further research to expand these evaluations to
encompass a broader range of scientific knowledge present within the articles using our dataset.
Additionally, our dataset primarily consists of textual and figure data but lacks tabular data, which
can often be expressed as text for model understanding.
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A APPENDIX

A.1 DATASET DESCRIPTION

A.1.1 DATASET SUMMARY

Our dataset MMSci is a multimodal, multi-discipline dataset containing high-quality, open-access
articles published in Nature Communications journals.4 This dataset encompasses five major subjects
and spans 72 diverse science disciplines, primarily within the natural sciences. We have developed a
benchmark to evaluate models’ comprehension of graduate-level multimodal scientific knowledge
across various advanced disciplines. Additionally, we constructed visual instruction-following data
for visual instruction tuning and interleaved text and image data for visual pre-training.

A.1.2 DATA AND CODE ACCESS

We provide access to our data, model checkpoints, and code through the following links:

• Source dataset, including the collected articles and figures:
https://mmsci.s3.amazonaws.com/rawdata.zip.

• Benchmark sets, including the dev and test sets for evaluation and the train set consisting
of visual instruction following data:
https://mmsci.s3.amazonaws.com/benchmark.zip.

• Pre-training data, including the interleaved article and figure data for pre-training:
https://mmsci.s3.amazonaws.com/pretraindata.zip.

• Checkpoints, including the LLaVA-Next (LLaVA1.6-Vicuna-7B) model fine-tuned on our
visual instruction-following data:
https://mmsci.s3.amazonaws.com/checkpoints.zip

• Code: All the code used in our experiments is available at:
https://github.com/Leezekun/MMSci

A.1.3 SUBJECTS

Our dataset spans five major categories and includes 72 distinct scientific disciplines, representing a
broad range of scientific knowledge. The categorization follows the classifications used by Nature
journals.5. The visualizations are shown in Figure 6, and detailed statistics of these subjects are
provided in Table 6. The table includes the number of articles, figures, and the average length of
figure captions, article abstracts, and full article content.

A.1.4 IMAGE TYPES

Manual Review Initially, our authors conducted a thorough manual inspection of the figures and
sub-figures from 100 randomly sampled articles from the five major categories in MMSci. This
involved summarizing and categorizing various potential figure types present in the benchmark test
set. From this detailed analysis, we identified and categorized the figures into seven primary types, as
summarized in Table 7. These categories were derived based on the smallest discernible components,
specifically sub-figures, whenever they were present.

Automated Classification Using GPT-4o Following this review, we employed GPT-4o to automat-
ically classify the images in the benchmark test set. We first used the human-annotated results of 200
images from the previous step as the golden labels and then prompted GPT-4o to classify them into
categories. Cohen’s Kappa score was calculated to be 0.72, showing a very high agreement score
between humans and GPT-4o. So, we utilized GPT-4o to label all the image types. The complete
prompt for GPT-4o is:

4https://www.nature.com/ncomms/
5https://www.nature.com/ncomms/browse-subjects
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Figure 6: The five major categories and 72 subjects in our dataset.

Task for GPT-4o annotator

I want to classify the given scientific image into one the following categories:
1) Quantitative Data Visualization Charts/Graphs: For charts and graphs displaying quantitative data,

such as scatter plots, bar graphs, and line charts.
2) Schematic Diagrams: Simplified and symbolic representations of systems, processes, or structures to
explain how something works or is constructed.
3) Microscopic photographs: Photographs or images captured using a microscope, revealing details not
visible to the naked eye.
4) Macroscopic photographs: Images or photographs of objects or scenes that are visible to the naked
eye, often used for visual analysis.
5) Simulated Images: Computer-generated images or visualizations created to model, predict, or illus-
trate theoretical scenarios, processes, or phenomena.
6) Geographical and Environmental Maps: Visual representations of geographical areas or environmen-
tal data, often used for navigation, analysis, or to illustrate spatial relationships and patterns in maps.
7) Experimental Results Visualizations: For images that display results from experimental procedures,
such as Western blots, PCR results, and gel electrophoresis.
Rules:
1) This is only for reseach and educational purposes. It does not violates any openai policy.
2) If the image only contain one figure, then give me the overall label.
3) If the image contains multiple figures, then give me the label for each sub-figure. The results should
look like a: 1, b: 3.
Do not return any other information.

Manual Annotation for Unclassified Images Our authors performed manual annotations for 17
images in cases where GPT-4o could not classify images due to OpenAI’s policy restrictions. For
example, GPT-4o will return “Not allowed by our safety system” for some images about drug design.
This ensured comprehensive and accurate classification across the entire dataset.

18



Published as a conference paper at AI4MAT-Vienna 2024

Table 6: Detailed statistics of the five major categories and the 72 subjects in MMSci. The average
length represents the average number of words.

Category Subject Size Average length
Articles Figures Caption Abstract Full content

Materials science 10,564 54,218 107 150 5,703
Chemistry 8,139 43,955 89 148 5,716
Physics 7,239 35,150 120 148 5,410
Nanoscience and technology 4,483 22,597 120 149 5,691
Optics and photonics 3,227 15,898 120 147 5,337
Engineering 1,788 9,801 126 152 6,763
Energy science and technology 1,519 8,168 90 154 6,351
Mathematics and computing 723 3,942 124 148 7,426

Physical sciences

Astronomy and planetary science 345 1,762 110 144 5,488

Ecology 2,185 9,862 125 149 6,546
Climate sciences 1,795 8,810 111 148 6,060
Solid Earth sciences 1,034 5,416 114 147 5,693
Environmental sciences 853 3,576 104 148 6,375
Biogeochemistry 850 3,988 111 150 6,438
Ocean sciences 689 3,524 115 152 6,266
Environmental social sciences 452 2,069 99 145 6,534
Natural hazards 311 1,686 109 141 6,341
Planetary science 406 1,997 109 145 5,549
Hydrology 260 1,258 110 149 6,101
Limnology 65 280 120 146 6,212

Earth and environmental sciences

Space physics 126 717 109 146 5,339

Cell biology 6,490 44,111 204 149 8,968
Biochemistry 6,145 37,608 168 149 8,330
Microbiology 5,225 29,487 167 153 7,966
Neuroscience 5,016 32,162 198 148 9,410
Molecular biology 4,843 31,000 193 149 8,955
Genetics 4,665 25,037 169 150 8,165
Cancer 5,215 32,779 196 151 8,820
Immunology 4,024 26,103 195 152 8,781
Biological techniques 3,540 20,169 176 147 8,297
Computational biology and bioinformatics 2,914 16,084 162 150 8,523
Biotechnology 2,633 14,689 170 147 8,118
Biophysics 2,440 14,315 166 150 7,923
Structural biology 3,432 20,402 155 150 8,024
Ecology 2,223 10,052 126 149 6,561
Developmental biology 2,205 14,947 199 151 9,018
Evolution 1,941 9,493 144 150 7,202
Plant sciences 1,659 9,528 163 151 7,846
Physiology 1,619 10,649 190 150 8,892
Chemical biology 1,812 10,523 150 147 7,885
Systems biology 993 5,594 184 149 8,674
Drug discovery 964 5,877 174 150 8,675
Stem cells 1,191 7,870 205 152 9,277
Zoology 502 2,347 144 150 6,613

Biological sciences

Psychology 410 2,066 154 148 8,744

Diseases 3,459 20,256 177 152 8,060
Medical research 1,839 10,171 167 154 7,572
Oncology 1,161 7,140 196 156 8,897
Health care 880 4,357 137 150 6,701
Pathogenesis 505 3,223 190 151 8,157
Biomarkers 558 2,959 168 152 7,905
Cardiology 400 2,580 188 152 8,927
Gastroenterology 406 2,670 188 154 8,792
Endocrinology 393 2,590 192 156 9,104
Anatomy 378 2,431 187 147 8,098
Neurology 355 2,164 179 153 8,741
Molecular medicine 342 2,100 187 150 8,697
Risk factors 246 1,058 135 154 6,870
Rheumatology 153 999 191 151 8,969
Nephrology 137 943 193 153 9,194
Signs and symptoms 50 262 169 148 7,270
Urology 38 232 198 155 8,681

Health sciences

Health occupations 2 12 84 162 5,666

Social sciences 393 1,713 114 143 6,848
Scientific community 127 363 123 90 4,576
Energy and society 158 827 95 149 6,991
Agriculture 85 396 107 147 6,581
Developing world 75 330 111 128 5,986
Water resources 61 289 100 150 6,531
Geography 49 228 101 144 6,444
Business and industry 46 233 94 143 6,441

Scientific community and society

Forestry 43 185 107 148 6,618

Total 72 131,393 742,273 153 150 7,457

Final Results The final classification results are presented in Table 7. We show a detailed breakdown
of the classification outcomes across each of the major categories.
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Table 7: The figure types in the benchmark test set of MMSci regarding the five major categories,
where C1-C5 represents Physical sciences, Earth and environmental sciences, Biological sciences,
Health sciences, and Scientific community and society, respectively.

Type Definition C1 C2 C3 C4 C5
Quantitative Data Visual-
ization Charts/Graphs

For charts and graphs displaying quantitative data,
such as scatter plots, bar graphs, and line charts.

1,761 643 5,046 1,062 200

Schematic Diagrams Simplified and symbolic representations of sys-
tems, processes, or structures to explain how
something works or is constructed.

633 63 1,291 129 30

Microscopic Photographs Photographs or images captured using a micro-
scope, revealing details not visible to the naked
eye.

615 36 1,438 287 12

Macroscopic Photographs Images or photographs of objects or scenes that
are visible to the naked eye, often used for visual
analysis.

149 48 493 133 17

Simulated Images Computer-generated images or visualizations cre-
ated to model, predict, or illustrate theoretical
scenarios, processes, or phenomena.

251 15 250 23 13

Geographical and Envi-
ronmental Maps

Visual representations of geographical areas or
environmental data, often used for navigation,
analysis, or to illustrate spatial relationships and
patterns in maps.

13 125 28 3 26

Experimental Results Vi-
sualizations

For images that display results from experimental
procedures, such as Western blots, PCR results,
and gel electrophoresis.

47 3 1,120 290 1

Total - 3,469 933 9,666 1,927 299

A.1.5 CASE STUDY

We present several figures as our case study to illustrate specific examples in various tasks, including
multiple-choice visual question answering in Figure 7, 8, 9, abstract-grounded figure captioning in
Figure 10, and the multi-turn visual instruction following data in Figure 11.
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Materials science

Question: Which of the following captions best describes the whole figure?
Options:
(A) Molecular dynamics simulation of pentacene diffusion.
(B) OFET-based chemical sensor utilizing the vertical macropores.
(C) Proposed mechanism for the growth of pentacene on TSB3.
(D) Device structure and morphology of organic layers.

GPT-4V: (C)
Explanation: From analyzing the provided image, it appears to depict a molecular 
dynamics simulation showing the movement or diffusion of molecules over a given time 
interval (50 picoseconds). The image panels display different views (top view and cross-
section) of molecular structures interacting or moving within a specified region marked as 
TSB3 and OTs.

Given the options you provided, the most suitable answer appears to be: C: Proposed 
mechanism for the growth of pentacene on TSB3.

This choice is supported by the presence of a specific molecular structure labeled as TSB3 
and the visual representation of molecular interactions or changes occurring around this 
label, which suggests a focus on the growth mechanism involving pentacene on TSB3.

source: https://www.nature.com/articles/ncomms5752/figures/6

Ground-truth: (A)
Caption: (a) Top view and (b) cross-sectional snapshots of the molecular dynamics system 
of pentacene on the interfacial region between TSB3 and OTS. The upper images show the 
beginning of the simulation. After 50 ps, the pentacene molecules gradually diffuse 
towards TSB3, which confirms that pentacene has higher attractive interaction with TSB3 
than OTS. Yellow dashed lines indicate the boundary between OTS and TSB3.

GPT-4o: (A)
Explanation: The figure consists of two parts: (a) shows the top view and (b) shows the 
cross-section of a simulation where molecules are diffusing from one side (OTS) to another 
side (TSB3), with a time step of 50 ps. The red molecules appear to be the ones diffusing 
across the boundary, which is marked by a yellow dashed line.

Given the context and details in the images, the correct caption should relate to the 
dynamics and mechanism of molecular diffusion between the two materials, OTS and 
TSB3. The best matching caption is: A: Molecular dynamics simulation of pentacene 
diffusion.

Figure 7: An example of the Multiple-choice VQA (setting I). The example is within the material
sciences subject, sourced from (Kang et al., 2014). The options include the correct main caption of
the given figure and three main captions from other figures within the same article.
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Molecular biology

Question: Which of the following options best describes the content in sub-figure (c)?
Options:
(A) The top differentially methylated position (RPS6KA2) was hypomethylated in whole blood and also monocytes. 
There was a larger difference between cases and controls in the separated cells compared with whole tissue 
(blood).
(B) demonstrates monocyte specific DNA methylation at the histone deacetylase 4 (HDAC4) locus. Beta 
differences and uncorrected P values derived from linear models (IBD cases versus controls, including age and 
sex as covariates).
(C) The genotype of rs8078424 strongly associates with VMP1 DNA methylation (cg16936953) (FDR corrected 
P=8.8 × 10−5, linear model).
(D) Correlation between 450k microarray probes and WGBS data at same site. Correlation using Pearson’s test. X 
axis denotes Chr 17 (h19) coordinates. DMR, differentially methylated region in IBD versus control case control 
450k analysis

source: https://www.nature.com/articles/ncomms13507/figures/3

Ground-truth: (A)

GPT-4o: (A)
Explanation: Let's carefully analyze sub-figure (c) to determine which option best describes its content. Sub-
figure (c) appears to show box plots comparing DNA methylation levels (y-axis) between IBD cases and controls (x-
axis) across different cell types (WBC, CD4T, CD8T, Mono). Specifically, this sub-figure highlights the RPS6KA2 
locus.

Here's the detailed breakdown:
• The y-axis represents methylation levels.
• The x-axis compares IBD cases and controls.
• The top label indicates the specific gene, RPS6KA2.
• P-values and beta differences are provided for comparisons in different cell types (WBC, CD4T, CD8T, 

Mono).

Given the content of sub-figure (c), Option A best matches the description based on the gene RPS6KA2 and the 
methylation differences observed between IBD cases and controls in whole blood and monocytes. 

GPT-4V: (A)
Explanation: Sub-figure (c) in the provided image contains four panels of box plots. Each panel compares the 
methylation levels of the RPS6KA2 gene between IBD (Inflammatory Bowel Disease) cases and controls across 
different cell types: Whole Blood (WBC), CD4T cells, CD8T cells, and Monocytes (Mono). The plots show the 
median methylation levels, and the statistical significance and beta differences are indicated for each 
comparison.
Based on the description of the options you provided and the contents of sub-figure (c), the correct answer is: A. 
This answer is the best match because it specifically mentions the RPS6KA2 gene, its hypomethylation in specific 
cell types, and the comparison of methylation differences between cases and controls, all of which are directly 
reflected in the box plots of sub-figure (c).

Figure 8: An example of the Multiple-choice VQA (setting II). The example is within the molecular
biology subject, sourced from (Ventham et al., 2016). The data is created by randomly selecting a
sub-figure within the given figure and using its corresponding sub-caption as the correct answer, with
three sub-captions from other figures within the same article as alternative options.
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Biochemistry

Question: Which of the following options best describes the content in sub-figure (a)?
Options:
(A) Single amino acid change of Leu10 or Leu39 to Ala causes considerable reduction of c-di-GMP-binding affinity 
as measured by ITC.
(B) Single amino acid change of the conserved middle Gly residue in the loops connecting helices α1−α2 and 
α3−α4 to Leu or Ile also causes considerable reduction of c-di-GMP binding.
(C) Positions of the residues in the 9RLGD12 sequence relative to the c-di-GMP molecule. Specific binding of c-di-
GMP is due to the pairing of its O6 atom (indicated by a magenta arrow) with the Asp12 amide proton. 
Replacement of the O6 atom with NH22 of c-di-AMP would cause a significant steric clash.
(D)  A unique hydrophobic triangular stacking of three conserved Leu residues with the guanine base (drawn as 
spheres). Leu10-Leu54-Leu58 residues form a triangular stack with Gua2 base. Similarly, Leu25-Leu29-Leu39 
residues form another triangular stack with Gua1 base.

source: https://www.nature.com/articles/ncomms12481/figures/3

Ground-truth: (C)

GPT-4o: (D) 
Explanation: Based on the provided image and its detailed analysis, the sub-figure (a) best describes the 
arrangement and interactions of specific amino acid residues with the c-di-GMP molecule. The labeled residues 
and the specific interactions shown include Leu10, Leu25, Leu29, Leu39, Leu54, and Leu58, which form 
triangular stacks with the guanine bases of c-di-GMP. Additionally, Asp12 is indicated to interact with the O6 atom 
of the guanine base.

Given these details, the description that best matches sub-figure (a) is: D: A unique hydrophobic triangular 
stacking of three conserved Leu residues with the guanine base (drawn as spheres). Leu10-Leu54-Leu58 residues 
form a triangular stack with Gua2 base. Similarly, Leu25-Leu29-Leu39 residues form another triangular stack with 
Gua1 base. Thus, the correct answer is D.

GPT-4V: (D)
Explanation: Analyzing sub-figure (a) from the image provided, it is clear that the diagram shows a protein-ligand 
interaction involving specific amino acid residues and the c-di-GMP molecule. The residues highlighted (Leu10, 
Leu25, Leu29, Leu39, Leu54, Leu58) and their interactions with the guanine bases of the c-di-GMP (Gua1 and 
Gua2) are depicted. The image uses a combination of colors and styles to emphasize specific interactions such as 
hydrogen bonding and hydrophobic stacking.

Option D describes "A unique hydrophobic triangular stacking of three conserved Leu residues with the guanine 
base." The image in sub-figure (a) indeed shows such triangular stacking arrangements where residues Leu10, 
Leu54, and Leu58 form a triangular stack with Gua2, and residues Leu25, Leu29, and Leu39 form another 
triangular stack with Gua1. These details coincide with the description given in Option D, including the specific 
residue numbers and their interactions with the guanine bases.

Therefore, Option D is the best description of the content in sub-figure (a).

Figure 9: An example of the Multiple-choice VQA (setting III). The example is within the biochem-
istry subject, sourced from (Wang et al., 2016). The data is created by randomly selecting a sub-figure
within the given figure and using its corresponding sub-caption as the correct option, with three other
sub-captions within this given figure as alternative options.
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Ecology

Please write a detailed description of the whole figure and all sub-figures based on the article.
Abstract: Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures 
during long dark winter and fully recover during summer. A phenomenon called “sustained 
quenching” putatively provides photoprotection and enables their survival, but its precise 
molecular and physiological mechanisms are not understood. To unveil them, here we have 
analyzed seasonal adjustment of the photosynthetic machinery of Scots pine ( Pinus sylvestris ) 
trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast 
ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and 
Photosystem I performance parameters indicate that highly dynamic structural and functional 
seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms 
might contribute to ‘sustained quenching’ of winter/early spring pine needles, time-resolved 
fluorescence analysis shows that extreme down-regulation of photosystem II activity along with 
direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is 
enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These 
two linked phenomena play crucial roles in winter acclimation and protection.

source: https://www.nature.com/articles/s41467-020-20137-9/figures/5

Ground-truth Caption: Artificial induction of changes in chloroplast ultrastructure of pine needles. 
a Changes in chloroplast ultrastructure in E. spring (ES), E. spring samples recovered (ER) at 18oC 
for 48 h with a photoperiod of 18 h at 80 µmol m−2s−1, ER samples treated with 800 µmol 
m−2s−1high light for 30 min (ERQ1), for 60 min (ERQ2). Summer (S), Summer samples treated with 

1200 µmol m−2s−1high light for 30 min (SQ1), for 60 min (SQ2). b The number of grana per 
chloroplasts (Error bars indicate mean ± SD (n= 75); c Histograms of frequency distributions of 
numbers of thylakoids per granum in different E. spring treated [n= 220 (ES), 250 (ER), 272 (ERQ1), 
246 (ERQ2)].d Summer treated [n= 576 (S), 498 (SQ1), 415 (SQ2)] samples. Error bars indicate the 
mean ± SD obtained from the analysis of grana stacks.

Figure 10: An example of the abstract-ground figure captioning. The example is within the ecology
subject, sourced from (Bag et al., 2020).
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Health care

Human: Can you describe the content in sub-figure (a) ?
Assistant: The downregulation of genes, including katG, which were identified by microarray in the 
ΔsigI mutant, was confirmed by qRT–PCR. Data represent gene expression (based on copy number) of 
the mutant compared with wild-type. Black bars represent bacteria at OD1, and dark grey bars 
represent bacteria at OD2.

Human: What about sub-figure (e) ?
Assistant: INH MIC assay results for wild-type, Δsig, and complemented (Ico) M.tb. strains, as well as 
the sigI overexpressing strain (pSCW-sigI) and its empty vector control strain (pSCW).

Human: What details are included in sub-figure (f) ?
Assistant: Wild-type (black bars), ΔsigI mutant (light grey bars) and complement (dark grey bars) strains 
were exposed to INH, ETH, H2O2 and INH+H2O2 for 1 or 2 days, and then plated on 7H10 agar for CFU 
enumeration. The combined INH and H2O2 exposure was for 1 day. The ETH and INH concentrations 
are in μg ml−1, and the H2O2 concentration is in mM.

Human: How would you summarize sub-figure (c)?
Assistant: Catalase activity from bacteria growing on a 7H10 agar plate was detected with 10% H2O2. 

Human: And sub-figure (b)?
Assistant: Catalase activity within total cell lysates from wild-type M.tb., the ΔsigI mutant and the 
complemented strain (Icomp).

Human: What  does sub-figure (g) show?
Assistant: Expression levels of M.tb. sigB-sigM following 4 h of acetamide-induced overexpression 
of sigI (relative to expression before acetamide exposure).

Human: Give me a detailed description of sub-figure (d) 
Assistant: Bacterial lysates were resolved by native PAGE. Catalase activity was visualized using 1% 
ferric chloride and 1% potassium ferricyanide. Peroxidase activity was visualized using a solution of 0.5 
mg ml−1p-diaminobenzidine and 3 mM H2O2. 

Human: Explain the data in sub-figure (h)
Assistant: M.tb. sigI expression after 4 and 8 h of acetamide-induced expression. Three biological 
replicates of all experiments were performed, and error bars represent s.d.

source: https://www.nature.com/articles/ncomms1724/figures/2

Figure 11: An example of multi-turn visual instruction following data in the training set. The example
is within the health care subject, sourced from (Lee et al., 2012). The data is created by converting
the whole captions including the descriptions of different sub-figures with this given figures into
multi-turn interactions where each turn discuss the cotent of a sub-figure.
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A.2 DATASHEET

A.2.1 MOTIVATION

With the advancement of large language and multimodal models, there is a growing demand for
professional AI scientific assistants capable of comprehending and processing advanced, graduate-
level scientific knowledge (noa, 2023; White, 2023; Vert, 2023). A crucial aspect of developing
effective AI scientific assistants is their ability to understand academic scientific literature, which often
includes complex figures such as data visualization plots, charts, schematic diagrams, macroscopic
and microscopic photograph, and other specialized content from a variety of scientific fields. However,
there is currently a lack of comprehensive evaluation for models’ understanding of advanced graduate-
level multimodal scientific knowledge, especially in the context of complex figures across diverse
scientific disciplines. Existing evaluations tend to focus on simpler charts and plots (Chen et al.,
2020; Kahou et al., 2017; Siegel et al., 2016) and suffer from narrow scopes and lower quality (Li
et al., 2024).

Our dataset, MMSci, is designed to address this gap. MMSci is a multimodal, multi-discipline dataset
comprising high-quality, peer-reviewed articles and figures from 72 scientific disciplines, predomi-
nantly within the natural sciences. We created a benchmark to evaluate models’ understanding of
graduate-level multimodal scientific knowledge across these disciplines. Additionally, this dataset can
serve as a training resource to enhance models’ comprehension of multimodal scientific knowledge.

A.2.2 INTENDED USE

This dataset is used to evaluate and enhance the large multimodal models (LMMs)’ understanding of
advanced multimodal scientific knowledge.

A.2.3 DATA COLLECTION

Data Source The dataset comprises open-access articles published in Nature Communications6.
These articles are freely and permanently accessible upon publication under the Creative Commons
Attribution 4.0 International (CC BY) License. Detailed information on the open-access policy of Na-
ture Communications is available at https://www.nature.com/ncomms/open-access.

Data Collection Process We collected various types of information for each article from the Nature
Communications website. The articles’ information includes titles, abstracts, main body content,
references, and PDF versions of the articles, all directly accessible from their respective sections on
the article’s webpage (e.g., https://www.nature.com/articles/xxx, where “xxx” is the
article’s unique ID). Additionally, figures and their captions were sourced from a dedicated figures
section linked from each article’s main page (e.g., https://www.nature.com/articles/
xxx/figures). This user-friendly platform facilitates easy acquisition of all necessary data,
eliminating the needs for quality control and data filtering.

Annotations The dataset does not include explicit annotations. Instead, the authors themselves
carried out a small-scale manual review and classification of the image types specifically for analysis.
No external annotators or crowdworkers were involved in this process.

Personal and Sensitive Information The dataset does not include any personal or sensitive
information. All article content is publicly accessible. All author information are also publicly
available, and no personal information was explicitly extracted, stored, or used from the authors.

A.2.4 SOCIAL IMPACT AND ETHICAL CONSIDERATIONS

Benefits The benefits of our dataset are two-fold: (1) Evaluation Benchmark: This dataset serves
as a valuable evaluation benchmark for assessing the understanding of large multimodal models
(LMMs) regarding scientific articles and figures. (2) Training Resources: It can be used as a
training resource to enhance LMMs’ comprehension of scientific articles and figures, improving their
performance in various scientific and research-related tasks.

6https://www.nature.com/ncomms/
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Model Model versioning/path
GPT-4V gpt-4-turbo-2024-04-09
GPT-4o gpt-4o-2024-05-13
Kosmos2 https://huggingface.co/microsoft/kosmos-2-patch14-224
BLIP2 https://huggingface.co/Salesforce/blip2-opt-2.7b
LLaVA1.5-7B https://huggingface.co/llava-hf/llava-1.5-7b-hf
LLaVA-Next https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
LLaVA-Next-Mistral https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf
Qwen-VL-Chat https://huggingface.co/Qwen/Qwen-VL-Chat

Table 8: Evaluated LMMs in our experiments with their versions or Huggingface model paths.

Risks and Ethical Considerations However, there are potential risks and ethical considerations to
address: (1) Misuse in Academic Integrity: The advancement of AI research assistants facilitated
by this dataset could potentially lead to misuse, such as academic fraud, fabrication, or improper
assistance in academic work. We strongly encourage users to exercise caution and responsibility when
using AI assistants, ensuring they are employed ethically and correctly. (2) Data Misinterpretation
and Hallucination: There is a risk of misinterpreting the dataset’s content, leading to inaccurate
conclusions or misuse of scientific information. Users should critically assess and validate the
AI-generated outputs against established scientific knowledge and principles.

A.2.5 LIMITATIONS

Currently, our evaluation benchmark primarily focuses on understanding figures in scientific articles
based on the article content or not. We encourage further efforts to expand these evaluations to
include a broader range of scientific knowledge using our dataset.

A.2.6 AUTHOR STATEMENT

The authors declare full responsibility for any rights violations, including but not limited to intellectual
property rights and privacy rights, that may arise from the publication and use of this dataset. We
confirm that all data provided is licensed under appropriate licenses, ensuring legal compliance and
transparency.

A.2.7 HOSTING, LICENSING, AND MAINTENANCE PLAN

The dataset will be hosted on GitHub, offering reliable and secure access. We commit to maintaining
the repository with regular updates, security patches, and user support to ensure the data’s integrity
and usability over time. Licensing terms will be clearly communicated to users, adhering to the
appropriate data licenses to promote proper usage and distribution. The data is licensed under the CC
BY 4.0 License, which permits sharing and adaptation with proper attribution. The primary codebase
for our project is licensed under the Apache 2.0 License.

A.3 EXPERIMENTAL SETUP

A.3.1 EVALUATED MODEL

We evaluated two proprietary models GPT-4V and GPT-4o and six open-source LMMs. Addi-
tionally, we tested our fine-tuned model, which is based on LLaVA-Next (LLaVA1.6-Vicuna-7B).
For evaluations of open-source models, we utilized checkpoints available on Hugging Face7. The
specific versions of proprietary models and paths for open-source models are detailed in Table 8. All
inferences for the open-source models were executed on a computing cluster equipped with eight
NVIDIA A100 GPUs, each with 40GB of memory.

A.3.2 EVALUATION SETUP AND RESULTS

As described in the main paper, we set the temperature to 0.7 for inferences on both the scientific
figure captioning and multiple-choice Visual Question Answering (VQA) tasks. For the figure
captioning task, we conducted the inference three times, and the averaged results along with their

7https://huggingface.co/models
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Table 9: Performance on scientific figure captioning with standard deviation. B@k represents
BLEU@k (k=1,2,3,4), R stands for ROUGE-L, M stands for METEOR, BS indicates BERTScore,
and CLIP and RCLIP represent CLIPScore and RefCLIPScore, respectively. Best results are bolded
and second best are underlined.

Grounded Model B@1 B@2 B@3 B@4 M R BS CLIP RCLIP
Kosmos2 23.05± 0.01 2.59± 0.02 0.39± 0.02 0.09± 0.01 14.53± 0.14 11.69± 0.00 77.51± 0.01 41.44± 0.00 46.01± 0.11

BLIP2 37.73± 0.30 4.91± 0.03 0.25± 0.05 0.04± 0.02 3.18± 0.13 6.56± 0.17 79.28± 0.09 55.93± 0.18 56.90± 0.15

LLaVA1.5-7B 29.34± 0.06 3.16± 0.03 0.16± 0.02 0.03± 0.01 11.80± 0.06 12.55± 0.00 79.93± 0.00 64.79± 0.05 64.22± 0.02

LLaVA-Next 15.96± 0.12 2.44± 0.02 0.26± 0.00 0.04± 0.00 18.89± 0.08 10.87± 0.05 79.27± 0.03 68.08± 0.15 66.72± 0.15

LLaVA-Next-Mistral 15.91± 0.04 2.81± 0.01 0.38± 0.01 0.08± 0.00 20.45± 0.11 10.96± 0.01 79.53± 0.00 68.54± 0.13 67.04± 0.11

Qwen-VL-Chat 43.54± 0.46 12.78± 0.24 4.87± 0.13 1.66± 0.05 15.34± 0.12 14.84± 0.14 81.95± 0.06 63.24± 0.21 64.30± 0.12

GPT-4V 21.94± 0.02 4.95± 0.03 1.31± 0.02 0.41± 0.00 26.62± 0.01 14.87±0.01 81.76± 0.00 71.81± 0.06 71.27± 0.07

GPT-4o 19.73± 0.04 4.90± 0.03 1.49± 0.02 0.47± 0.02 27.06± 0.04 15.59± 0.01 81.13± 0.01 71.43± 0.07 71.39± 0.02

N/A

LLaVA-Next-MMSci 42.67± 0.23 14.51± 0.14 6.60± 0.12 3.10± 0.08 21.79± 0.08 18.01± 0.07 83.39± 0.04 71.19± 0.05 72.21± 0.08

Abstract

Kosmos2 22.28± 0.04 2.91± 0.01 0.61± 0.01 0.20± 0.01 19.50± 0.06 11.81± 0.02 79.09± 0.01 41.44± 0.00 46.01± 0.00

BLIP2 32.88± 0.76 4.18± 0.41 0.45± 0.10 0.09± 0.05 7.32± 0.37 9.14± 0.48 79.72± 0.10 48.34± 0.21 51.12± 0.16

LLaVA1.5-7B 30.78± 0.03 4.50± 0.02 0.66± 0.01 0.18± 0.01 14.54± 0.02 14.00± 0.04 81.20± 0.00 68.49± 0.07 69.72± 0.03

LLaVA-Next 19.79± 0.03 3.70± 0.02 0.68± 0.01 0.18± 0.00 20.86± 0.04 12.88± 0.03 80.86± 0.01 69.63± 0.05 70.06± 0.05

LLaVA-Next-Mistral 19.50± 0.06 3.95± 0.04 0.76± 0.02 0.20± 0.01 21.49± 0.04 12.75± 0.03 80.84± 0.01 69.80± 0.05 69.93± 0.06

Qwen-VL-Chat 38.27± 0.16 8.75± 0.10 2.22± 0.09 0.70± 0.03 16.02± 0.11 15.38± 0.12 81.87± 0.06 69.16± 0.19 70.12± 0.11

GPT-4V 22.95± 0.04 5.63± 0.03 1.56± 0.03 0.50± 0.02 27.59± 0.03 15.66± 0.01 82.37± 0.00 72.22± 0.05 72.76± 0.03

GPT-4o 21.06± 0.05 5.58± 0.01 1.76± 0.01 0.58± 0.00 28.41± 0.03 16.32± 0.02 81.82± 0.02 72.15± 0.05 72.92± 0.08

LLaVA-Next-MMSci 45.89± 0.30 16.96± 0.09 8.12± 0.08 4.08± 0.10 24.77± 0.10 20.69± 0.03 84.46± 0.04 71.33± 0.05 74.22± 0.06

GPT-4V 25.93± 0.03 8.03± 0.00 3.03± 0.02 1.32± 0.02 31.41± 0.04 19.24± 0.04 83.47± 0.02 72.44± 0.09 74.04± 0.04Full
Content GPT-4o 25.11± 0.10 11.11± 0.05 5.99± 0.04 3.51± 0.04 37.55± 0.18 24.94± 0.14 83.65± 0.00 71.94± 0.07 74.08± 0.02

standard deviations are reported in Table 9. For the multiple-choice VQA task, we performed up to
five inference runs and reported the accuracy based on majority voting in the main paper (Table 4).

Table 10: Hyperparameters for visual instruction tuning.

Hyperparameter Values
base model https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
vision encoder https://huggingface.co/openai/clip-vit-large-patch14-336
projector 2-layer MLP
epochs 1
global batch size 128
learning rate 0.00002
learning rate scheduler cosine
weight decay 0.0
warmup ratio 0.03
max length 2048

A.3.3 VISUAL INSTRUCTION TUNING

Following the visual instruction tuning approach described in (Liu et al., 2024), we continu-
ously fine-tuned the LLaVA-Next model (LLaVA1.6-Vicuna-7B). The original vision encoder,
openai/clip-vit-large-patch14-336, was kept unchanged, while the projector and lan-
guage model components were updated. The hyperparameters used in this process are detailed in
Table 10. The fine-tuning was performed on a computing cluster equipped with eight NVIDIA A100
GPUs, each with 40GB of memory. This training process took approximately 24 hours to complete.

A.3.4 VISUAL LANGUAGE PRE-TRAINING

In our case study experiments on the material generation task, we continuously pre-train a LLaMA2-
7B model using our interleaved article and figure data to infuse more material science-relevant
knowledge. Specifically, for pre-training on the interleaved text and image data, we follow the
methodology outlined in (Lin et al., 2023).

Model Architecture Following the approach outlined in (Liu et al., 2024; Lin et al., 2023), we
extend the LLaMA2-7B model from a text-only model to a multimodal model by augmenting the
LLM with a visual encoder to learn visual embeddings and a projector to bridge the embeddings
between the text and visual modalities. Specifically, the visual encoder processes the image and
outputs visual features. These features are then mapped into the word embedding space by the
projector, creating visual tokens. These visual tokens are concatenated with the word tokens and fed
into the LLM, allowing the model to integrate both text and visual information for generation. The
specific LLM, visual encoder, and projectors used in our experiments are presented in Table 11.
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Table 11: Hyperparameters for visual language pre-training on interleaved text and image data.

Hyperparameter Values
base model https://huggingface.co/meta-llama/Llama-2-7b-hfb
vision encoder https://huggingface.co/openai/clip-vit-large-patch14-336
projector 2-layer MLP

Stage 1: Projector Initialization
epochs 1
global batch size 256
learning rate 0.001
learning rate scheduler cosine
weight decay 0.0
warmup ratio 0.03
max length 4096
tune LLM ✗
tune vision encoder ✗
tune projector ✓

Stage 2: Visual Language Pre-training
epochs 1
global batch size 128
learning rate 0.00005
learning rate scheduler cosine
weight decay 0.0
warmup ratio 0.03
max length 4096
tune LLM ✓
tune vision encoder ✗
tune projector ✓

Training Stages The visual pre-training process (Lin et al., 2023) involves two stages:

1. Projection initialization: In this stage, the LLM and the visual encoder are both pre-trained
and remain fixed. The projector, however, is randomly initialized. Only the projector is
fine-tuned during this stage, using image-caption pairs from (Liu et al., 2024).

2. Visual language pre-training: During this stage, both the LLM and the projector are
fine-tuned on the interleaved image and text data. This includes data from general domains
provided by MMC4 (Zhu et al., 2024), as well as scientific articles and figures from our
dataset MMSci. Previous research (Lin et al., 2023) has shown that tuning both the LLM
and the projector yields better results than tuning only one of them. Throughout this stage,
the visual encoder remains fixed.

We did not conduct the further visual instruction-tuning for this model, as our primary objective was
to infuse scientific knowledge into the LLM for the consecutive text-only material generation task.
The two stages were conducted on a computing cluster equipped with eight NVIDIA A100 GPUs,
each with 40GB of memory. The first stage took approximately 4 hours, and the second stage took
around 36 hours.

A.3.5 MATERIALS GENERATION

As a case study to investigate whether scientific knowledge has been effectively infused into the
LLM (LLaMA2-7B in our experiments) and whether it can enhance performance on material science-
related tasks, we follow the methodology from Gruver et al. (2024) to explore the material generation
task. The primary objective is to format material crystal structures into text strings and fine-tuning
the LLM to generate stable materials.

Prompt design We adhere to the prompt design described in (Gruver et al., 2024). There are two
types of prompts in the training data: the generation prompt with one or multiple conditions and
infilling prompts, where partial crystal structure strings are masked and the model generates the
masked parts. The specific prompt templates are shown below, adapted from (Gruver et al., 2024).
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Generation Prompt Infilling Prompt
<s>Below is a description of a bulk
material. [The chemical formula is
Pm2ZnRh]. Generate a description of
the lengths and angles of the lattice
vectors and then the element type and
coordinates for each atom within the
lattice:

[ Crystal string ]</s>

<s>Below is a partial description of a bulk material where
one element has been replaced with the string “[MASK]”:

[ Crystal string with [MASK]s ]

Generate an element that could replace [MASK] in the bulk
material:

[ Masked element ]</s>

Blue text is the condition for generation. Purple text stands in for string encodings of atoms.

The formula condition as shown above is always included, while other conditions are sampled from
the following: formation energy per atom, band gap, energy above hull, and space group number.

Evaluation Our evaluations follows (Xie et al., 2021; Gruver et al., 2024), including four key
aspects. We reiterate some details here. Structural validity is assessed by ensuring that the shortest
distance between any pair of atoms exceeds 0.5Å. Compositional validity is evaluated by verifying
that the overall charge is neutral, as calculated using SMACT (Davies et al., 2019). Coverage metrics,
COV-R (Recall) and COV-P (Precision), measure the similarity between ensembles of generated
materials and ground truth materials in the test set. The property distribution metrics quantify the
earth mover’s distance (EMD) between the property distributions of generated materials and those in
the test set, specifically for density (ρ, in g/cm3) and the number of unique elements (Nel).

Metastability and stability are assessed based on the energy above the convex hull, denoted as
Êhull. Two approaches are employed to estimate Êhull: M3GNet (Chen & Ong, 2022) and Density
Functional Theory (DFT) using the VASP code (Hafner, 2008). For M3GNet, each sample undergoes
relaxation using force and stress calculations before evaluating the energy of the final structure. For
DFT, relaxation is performed using the VASP code, which provides more accurate results but requires
significantly more computational resources. A material is considered metastable by M3GNet if the
predicted energy above the hull, EM3GNet

hull , is less than 0.1 eV/atom. Furthermore, if validated by
DFT, the material must have EDFT

hull < 0.0 eV/atom to be considered stable. The percentages of such
materials are reported over the total 10,000 inferences. We use the Materials Project (Jain et al., 2013)
dated 2023-02-07.

Training Details Following the approach in (Gruver et al., 2024), we utilize 4-bit quantization
(Dettmers et al., 2021) and Low-Rank Adapters (LoRA) (Hu et al., 2021) for efficient fine-tuning.
The model is trained with a batch size of 1 for 1 epoch. We set the LoRA rank to 8 and the LoRA
alpha to 32. The learning rate is 0.0001, annealed by a cosine scheduler. The training was conducted
on a single NVIDIA A100 GPU, took approximately 4 hours to complete.

Conditional Generation and Infilling Results Due to space constraints, we did not include the
results for the conditional materials generation and infilling tasks in the main paper. Here, we present
these additional findings. The performance metrics reported are based on the same model used in the
main paper. Our training data included two types of prompts: conditional generation prompts and
infilling prompts. We compare our model LLaMA2-7B-MMSci, which has undergone continuous
pre-training, with the original LLaMA2-7B that was trained without additional pre-training data.
Both models were trained on datasets that included prompts for both conditional generation and
infilling tasks under the same setup.

Following (Gruver et al., 2024), we performed 1,000 inferences for each condition in the conditional
generation evaluation and 1,000 inferences for the infilling evaluation. For conditional generation
evaluation, we assessed the percentage of generated materials that adhered to specified conditions,
including formula, space group, and energy above the hull (Ehull). In the infilling evaluation, we
measured diversity by computing the pairwise distance between generated samples and those from
Matminer (Ward et al., 2018; Xie et al., 2021), focusing on composition and structure. Additionally,
we evaluated metastability estimated by M3GNet. As seen in Table 12, LLaMA2-7B-MMSci, after
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Table 12: Evaluation of conditional materials generation and infilling tasks. Comp. Div. and Struct.
Div. represent the composition and structure diversity, respectively. The two models are fine-tuned
with the same training data and setup in our implementation.

Method Conditional Generation Infilling
Formula↑ Space Group↑ Ehull ↑ Comp. Div.↑ Struct. Div. ↑ Metastability ↑

LLaMA2-7B 0.85 0.14 0.58 10.60 0.16 64.20%
LLaMA2-7B-MMSci 0.87 0.22 0.59 8.31 0.52 77.74%

continuous pre-training on our dataset MMSci, outperforms the original LLaMA2-7B across most
metrics. This demonstrates its enhanced effectiveness in handling materials generation tasks.
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