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Abstract001

Multimodal large language models (MLLMs)002
typically extract visual features from the fi-003
nal layers of a pretrained Vision Transformer004
(ViT). This widespread deep-layer bias, how-005
ever, is largely driven by empirical convention006
rather than principled analysis. While prior007
studies suggest that different ViT layers cap-008
ture different types of information—shallower009
layers focusing on fine visual details and010
deeper layers aligning more closely with tex-011
tual semantics, the impact of this variation on012
MLLM performance remains underexplored.013
We present the first comprehensive study of vi-014
sual layer selection for MLLMs, analyzing rep-015
resentation similarity across ViT layers to es-016
tablish shallow, middle, and deep layer group-017
ings. Through extensive evaluation of MLLMs018
(1.4B–7B parameters) across 10 benchmarks019
encompassing 60+ tasks, we find that while020
deep layers excel in semantic-rich tasks like021
OCR, shallow and middle layers significantly022
outperform them on fine-grained visual tasks in-023
cluding counting, positioning, and object local-024
ization. Building on these insights, we propose025
a lightweight feature fusion method that strate-026
gically incorporates shallower layers, achieving027
consistent improvements over both single-layer028
and specialized fusion baselines. Our work of-029
fers the first principled study of visual layer030
selection in MLLMs, showing that MLLMs can031
often see better when they look shallower.032

1 Introduction033

Multimodal Large Language Models (MLLMs) ex-034

tend the capabilities of traditional Large Language035

Models (LLMs) by enabling joint reasoning over036

both visual and textual inputs (Hong et al., 2024;037

Bai et al., 2023; Chen et al., 2024a). Typically,038

these models integrate a pretrained Vision Trans-039

former (ViT) to extract image features, which are040

then projected into the language embedding space041

of an LLM. This architecture enables unified multi-042

modal understanding and powers a wide range of043

applications, including robotic navigation, medical 044

diagnostics, and visual question answering (Hong 045

et al., 2024; Alayrac et al., 2022; Chen et al., 2024b; 046

Bai et al., 2023; Tong et al., 2024a). 047

While recent advancements have signif- 048

icantly improved the language reasoning 049

capabilities of MLLMs, the visual processing 050

pipeline—specifically the selection of ViT layers 051

used to construct visual representations—remains 052

insufficiently explored. In practice, MLLMs often 053

default to using features from the deepest layers 054

of ViT models. For instance, Qwen-VL (Bai et al., 055

2025) and InternVL-6B v1.2/1.5 use the final 056

layer of CLIP-ViT (Radford et al., 2021), while 057

other InternVL variants select the fourth-to-last 058

layer (Chen et al., 2024b). The LLaVA series (Liu 059

et al., 2023b, 2024a, 2023a) relies on the penul- 060

timate layer. However, these choices are largely 061

heuristics rather than systematic evaluation (Yao 062

et al., 2024; Jiang et al., 2023; Tong et al., 2024b). 063

Previous work has shown that ViT layers en- 064

code a hierarchy of semantic information—from 065

low-level edge detectors in shallow layers to ab- 066

stract object representations in deeper layers (Gan- 067

delsman et al., 2024; Yao et al., 2024; Tong et al., 068

2024b). Yet, how these layer-wise representations 069

affect MLLM performance remains poorly under- 070

stood. This paper addresses this gap by systemat- 071

ically investigating which ViT layers provide the 072

most effective visual features for MLLMs. 073

We begin by analyzing Layer-wise Representa- 074

tion Similarity (LRS) across CLIP-ViT’s hidden 075

states using cosine similarity, revealing three se- 076

mantically coherent layer groups: shallow (layers 077

1–12), middle (13–20), and deep (21–24) (Fig. 1). 078

This categorization provides a foundation for struc- 079

tured layer selection and fusion. 080

Building upon this foundation, we first systemati- 081

cally assess the efficacy of different deep vision lay- 082

ers. Our analysis reveals that while the penultimate 083

layer does not universally achieve peak perfor- 084
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mance in every scenario, it demonstrates consistent085

superiority across all evaluated model scales (1.4B,086

2.7B, and 7B parameters). This advantage stems087

from the penultimate layer’s unique balance of pre-088

serving fine-grained visual details while maintain-089

ing strong alignment with textual representations.090

Notably, the performance gap between the penulti-091

mate layer and other deep layers widens as model092

scale increases. This suggests that simply using093

larger LLMs cannot compensate for suboptimal094

visual feature selection, underscoring the critical095

importance of visual layer choice in MLLMs.096

Having established the penultimate layer’s097

strength among deep layers, we ask a more fun-098

damental question: Can shallower ViT layers offer099

complementary or even superior information? Our100

analysis shows that shallow and middle layers out-101

perform deep layers in approximately one-third of102

sub-tasks in the MME benchmark (Fu et al., 2024)103

(Fig. 3), particularly in tasks involving fine-grained104

localization and counting. For instance, layer 18105

outperform the penultimate layer by 20% on posi-106

tion tasks (Fig.10). Similar trends are observed in107

MMVet (Yu et al., 2023). Although shallow layers108

generally show lower average performance, they109

still excel on a significant subset of tasks (Fig.2).110

In contrast, deeper layers remain crucial for tasks111

with high-level semantic demands such as OCR. To112

assess robustness, we evaluate across three training113

data scales (665k, 737k, and 1M samples). De-114

spite some fluctuations, our findings consistently115

demonstrate that shallow and middle layers carry116

underutilized yet valuable information.117

Motivated by these insights, we propose a simple118

yet effective fusion strategy that combines visual119

features from shallow, middle, and deep layers. Our120

method uses a single linear projection layer, keep-121

ing computational overhead minimal while achiev-122

ing substantial performance gains. This minimalist123

approach offers a principled alternative to existing124

ad-hoc layer selection and fusion methods. Unlike125

prior works (Yao et al., 2024; Hong et al., 2024;126

Cao et al., 2024) that explore hierarchical feature127

fusion or LLM-aligned selection heuristically, our128

study provides the first systematic analysis of layer-129

wise information variation within ViTs, grounded130

in both intrinsic representation structure and down-131

stream performance. Our key contributions are132

summarized as follows:133

(1) We identify three semantically coherent134

groups of ViT layers (shallow, middle, deep)135
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Figure 1: (a) Average cosine similarity of visual representa-
tions across different layers in CLIP-ViT. (b) Layer-wise per-
formance on OCR tasks. The results highlight three distinct
representation regions and their influence on performance.

based on representation similarity. We show 136

that shallow and middle layers, which are of- 137

ten overlooked, can outperform the commonly 138

used deep layers (Sec. 4). 139

(2) Through extensive experiments across differ- 140

ent data sizes and model scales, we confirm 141

the generalization of our findings. Even as 142

gains diminish with scaling, shallow and mid- 143

dle layers continue to exhibit unique strengths 144

over deep layers in certain sub-tasks (Sec. 5). 145

(3) We design a linear-layer-based fusion method 146

that integrates features from all three layer 147

groups. It outperforms both specialized fu- 148

sion designs (e.g., DenseConnector (Yao et al., 149

2024), MMFuser (Cao et al., 2024)) and stan- 150

dard practices in current MLLMs (e.g., using 151

only the penultimate layer) (Sec. 6). 152

2 Related Work 153

Visual Encoder in Multimodal LLMs Serving 154

as the “eyes” of MLLMs, the vision encoder sets 155

the upper bound of the model’s perceptual capabili- 156

ties. CLIP, through image-text contrastive learning 157

effectively aligns visual representation with text 158

space and is widely adopted as the visual encoder in 159

models such as LLaVA (Liu et al., 2023b,a), Qwen- 160

VL (Wang et al., 2024), Flamingo (Alayrac et al., 161

2022), and BLIP (Li et al., 2023b). Other foun- 162

dational vision models, such as DINOv2 (Oquab 163

et al., 2023), SigLIP (Zhai et al., 2023), ConvNeXT 164

(Liu et al., 2022), are also utilized to build MLLMs. 165

In this paper, we select the widely used CLIP-ViT 166

model as the focus of our layer-wise analysis. 167

Visual Layer Selection Recent studies have ex- 168

plored incorporating shallow visual features within 169

the ViT of multimodal language models, such 170

as DenseConnector (Yao et al., 2024) and MM- 171

Fuser (Cao et al., 2024). Lin et al. (2025) have 172
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further investigated internal fusion strategies by in-173

tegrating multiple visual layers with language rep-174

resentations, highlighting the critical role of visual175

layer selection in effective multimodal integration.176

Previous methods have largely relied on intuitive,177

heuristic-based strategies, such as evenly sampling178

layers. Although some approaches have explored179

the distinct characteristics of different ViT layers180

(Gandelsman et al., 2024), the specific roles of lay-181

ers at different depths in multimodal tasks remain182

unclear. This study conducts a comprehensive anal-183

ysis of layer-wise visual representations in MLLMs,184

aiming to inform the selection of visual layers and185

guide the design of future visual fusion strategies.186

3 Overall Setup187

Problem Formulation MLLMs typically com-188

prise three core components: a vision encoder, a189

connector that maps visual features to the language190

space, and a large language model (LLM). This191

architecture empowers MLLMs to handle a diverse192

array of perception and reasoning tasks across both193

visual and textual modalities.194

Most modern MLLMs adopt a pre-trained CLIP-195

ViT (Radford et al., 2021) as their image encoder.196

A ViT encodes an image into a sequence of token197

embeddings through a stack of transformer blocks.198

Each block (or layer) progressively refines the vi-199

sual representations, with earlier layers focusing on200

low-level spatial details and later layers capturing201

more abstract, semantic information.202

Formally, given an image I , the vision encoder203

produces a set of layer-wise outputs:204

H(1),H(2), . . . ,H(L) where H(l) ∈ RT×d205

H(l) denotes the embedding at the l-th layer, T is206

the number of tokens, and d is the dimension.207

Despite the availability of rich multi-level fea-208

tures, most MLLMs select a single layer—often209

the penultimate or final one—to represent the en-210

tire image. This practice may overlook comple-211

mentary signals from shallower layers that encode212

fine-grained visual details. In this work, we sys-213

tematically investigate the impact of using differ-214

ent ViT layers for visual input and explore how215

selecting appropriate layers can improve MLLM216

performance across diverse tasks.217

Partitioning of Visual Representations To ex-218

amine the behavioral patterns of different visual219

layers, we analyze the relationships between them220

based on cosine similarities. Inspired by prior find- 221

ings (Sun et al., 2024) that LLMs exhibit several 222

distinct representation spaces through such analy- 223

sis, we similarly identify three significantly differ- 224

ent representation spaces within CLIP-ViT. 225

As shown in Fig. 1a, three distinct representa- 226

tion spaces emerge among the visual layers. Ex- 227

periments on OCR and TextVQA (Fig. 1b) also 228

show that shallow layers contribute little to perfor- 229

mance, which improves substantially in the middle 230

layers and peaks in the deep layers. Visual layers 231

within the same representation space tend to exhibit 232

similar behaviors. 233

Based on behavioral similarity, we categorize 234

the 24 CLIP-ViT visual layers into three groups: 235

shallow layers (1 to 12), middle layers (13 to 20), 236

and deep layers (21 to 24). 237

Implementation Details We employ CLIP ViT- 238

L/14 (336px) (Radford et al., 2021) as the vi- 239

sual encoder and 1.4B MobileLLaMA (Chu et al., 240

2024) as the language model for efficiency analy- 241

sis, with a one-layer MLP serving as the connector. 242

Training follows a two-phase strategy aligned with 243

LLaVA (Liu et al., 2023b). AdamW optimizer 244

with a cosine annealing scheduler is used, with 245

learning rates of 1e-3 (phase one) and 2e-5 (phase 246

two), and batch sizes of 256 and 128. Training on 247

four NVIDIA A100 80GB GPUs takes 2 hours for 248

phase one and 8 hours for phase two. We adopt 249

the LLaVA 1.5 (Liu et al., 2023b) dataset, com- 250

prising 558K image-caption pairs for pre-training 251

and 665K conversational instances for instruction 252

tuning. Unless explicitly noted, the experimental 253

setup remains the same. 254

Evaluation Benchmarks To comprehensively 255

explore and evaluate various visual representations, 256

we classified the benchmarks into four categories 257

following previous work (Tong et al., 2024a): Gen- 258

eral tasks, OCR tasks, Vision-centric tasks, and 259

Hallucination tasks. 260

The General tasks category assess basic vision- 261

language reasoning abilities, including MME (Fu 262

et al., 2024) (yes/no questions on attributes like 263

existence and color), MMBench (Liu et al., 2024c) 264

(multiple-choice across diverse aspects), SEED- 265

Bench (Li et al., 2023a) (spatial and temporal rea- 266

soning), and GQA (Hudson and Manning, 2019a) 267

(complex real-world VQA). The OCR category 268

evaluate a model’s ability to recognize textual con- 269

tent from images, featuring TextVQA (Singh et al., 270

2019) and OCRBench (Liu et al., 2024d). The 271
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Layers
General OCR Vision-Centric Hallu

MMEP MMEC MMB SEEDB GQA TVQA OCRB CVB CVB2D CVB3D RWD MMVet RefCOCO POPE

1 750.1 211.4 0 25.30 40.55 7.99 24 40.14 34.87 45.42 38.17 9.9 5.73 70.21
2 790.2 212.5 0.34 25.76 41.24 7.96 23 40.21 34.34 46.08 37.12 10.1 5.36 71.01
3 742.7 219.2 0.17 25.00 41.76 8.10 28 42.69 37.89 47.50 36.08 10.4 6.87 72.33
4 788.4 239.6 0 25.53 42.26 8.50 23 42.69 36.71 48.67 37.25 10.2 7.61 72.34
5 813.2 220.7 0.17 25.26 42.74 8.22 21 41.30 33.69 48.92 36.86 10.9 8.25 72.91
6 838.8 227.8 0 25.23 43.16 8.26 24 41.69 35.97 47.42 36.86 11.5 9.31 75.18
7 815.6 235.7 0 25.74 44.90 8.75 25 43.02 37.12 48.92 37.39 10.6 11.10 75.44
8 857.7 237.5 0 25.48 46.14 8.77 25 41.43 36.85 46.00 36.99 11.2 10.79 76.20
9 889.7 232.8 0.17 27.72 47.02 9.05 28 40.53 36.23 44.83 37.12 13.0 10.06 77.84
10 903.4 228.2 0.17 26.61 48.39 9.03 30 41.8 36.19 47.42 37.39 11.4 13.50 77.46
11 935.3 224.3 0.52 26.58 49.85 10.65 32 42.51 37.27 47.75 36.86 14.2 12.14 79.24
12 980.1 232.1 0.09 26.85 50.39 16.58 70 41.81 36.7 46.92 38.56 12.6 11.20 80.63

13 964.0 252.5 0.09 26.33 51.14 18.12 91 41.71 35.75 47.67 37.25 11.6 12.50 81.39
14 984.2 265.4 0.69 34.07 51.83 22.86 130 42.69 36.12 49.25 39.08 13.8 14.37 81.97
15 1042.8 227.5 0.17 28.98 52.89 25.79 155 43.85 36.37 51.33 37.12 13.6 13.77 83.11
16 1069.5 225.4 0 27.95 52.81 28.08 166 43.26 36.61 49.92 38.04 13.7 15.41 84.32
17 1074.8 230.4 0.26 32.81 53.86 28.25 200 47.26 39.43 55.08 39.22 15.4 18.49 84.46
18 1088.7 237.1 29.38 52.06 54.37 31.44 200 47.29 41.17 53.42 39.48 14.3 17.04 84.26
19 945.1 236.8 20.02 44.64 48.32 18.27 121 45.69 37.21 54.17 35.95 13.2 18.22 81.47
20 1118.2 232.1 26.03 51.72 54.83 32.05 211 47.29 40.32 54.25 38.82 16.3 18.49 84.76

21 1041.4 212.5 0.95 35.42 49.47 28.10 190 44.37 39.32 49.42 39.87 14.5 17.09 81.91
22 1123.6 238.9 23.28 49.60 54.52 30.84 211 44.37 36.73 52.00 39.87 17.3 16.32 84.79
23 1142.7 245.0 35.31 52.84 54.61 33.73 233 44.26 38.02 50.50 45.36 18.0 17.08 84.00
24 1114.1 243.5 32.65 51.09 53.61 30.63 197 46.68 39.78 53.58 43.92 16.1 17.08 83.65

Table 1: Performance across layers 1–24. MMEP and MMEC represent the MME perception and cognition tasks respectively.
SEEDB, GQA, OCRB and CVB refer to SEEDBench, General QA tasks, OCRBench and CVBench, with CVB2D and CVB3D

indicating the 2D/3D subtasks of CVBench, respectively. RWD stands for RealWorldQA. This table provides a detailed analysis
of all 24 layers, highlighting that many optimal performances are found in the middle layers, which are marked in bold.
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Figure 2: Averaged performance of layers 1 to 24 across vari-
ous tasks. General represents tasks from MME, MMBench,
GQA, and SEEDBench. OCR includes includes TextVQA
and OCRBench. CVB corresponds to CVBench, whereas
VC∗ includes RefCOCO, RealWorldQA, and MMVet. Re-
sults show that the final layer underperforms the penultimate
layer, and middle layers sometimes surpass deeper ones.

Vision-centric category emphasize fine-grained272

perception and localization, including CVBench273

(Tong et al., 2024a) (evaluating spatial relations and274

depth), RealWorldQA (real-world QA), MMVet275

(Yu et al., 2023) (general multimodal assessment),276

and RefCOCO (Yu et al., 2016) (visual ground-277

ing). Finally, the Hallucination category includes278

POPE (Li et al., 2023c), which evaluates whether279

MLLMs generate false or invented content not280

grounded in the image.281

4 Experiment: Layer-wise Exploration282

Previous studies have primarily used techniques283

such as linear probing and attention head decompo-284

sition to analyze CLIP-ViT representations (Gan- 285

delsman et al., 2024). While these methods reveal 286

what types of information are present in different 287

ViT layers, they do not assess whether such in- 288

formation can be effectively utilized by MLLMs. 289

The mere presence of information in a particular 290

layer does not guarantee its usefulness when inte- 291

grated into an MLLM. In contrast, our work goes 292

beyond probing for representational content—we 293

systematically evaluate how each ViT layer con- 294

tributes to downstream MLLM performance. To 295

this end, we conduct a layerwise exploration by 296

individually connecting each visual layer to the lan- 297

guage model, training the corresponding MLLM, 298

and benchmarking its task performance. The layer- 299

wise performance is shown in Tab. 1 and Fig. 2. 300

4.1 Deep-to-Deep Layer Comparison 301

A common practice is to use deep layers from ViT 302

as input to the MLLM. In this section, we investi- 303

gate the effectiveness of this approach. 304

The final layer is not the optimal choice: As 305

shown in Tab. 1 and Fig. 2, the final layer does not 306

perform the best on any benchmark. For general 307

tasks, a noticeable performance drop is observed at 308

the final layer, with OCR tasks exhibiting particu- 309
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(c) MMBench
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(d) SEEDBench

Figure 3: Layer-wise performance distribution across four benchmarks: (a) MME, (b) MMVet, (c) MMBench, and (d)
SEEDBench. The x-axis corresponds to layer indices and the y-axis indicates the sub-tasks. Top-performing layers for each
sub-task are highlighted with color-coded markers: • (1st place), • (2nd place), and • (3rd place). Zoom in to view clearly.

larly severe degradation. A similar trend is evident310

in POPE. However, vision-centric tasks partially311

show this decline. Overall, these results indicate312

that the final layer is not the optimal choice for313

representation across tasks.314

The underlying reason lies in the CLIP model’s315

training mechanism, where supervision primarily316

focuses on aligning the final layer [CLS] token with317

text embeddings. The [CLS] token in the final layer318

is optimized by CLIP’s contrastive loss, making it319

highly specialized for the image-text matching task.320

However, this optimization process, driven by the321

attention mechanism, most significantly suppresses322

local details in the final layer.323

Penultimate layer as the optimal choice. As324

shown in Fig. 2, the penultimate layer consistently325

achieves the best performance across tasks. No-326

tably, it outperforms other deep layers on General,327

OCR, and vision-centric tasks. This superiority328

stems from its ability to retain rich visual infor-329

mation while maintaining strong text alignment,330

which is second only to the final layer. Such a331

balance offers an optimal trade-off between visual332

expressiveness and semantic alignment, making it333

particularly well-suited for multimodal tasks.334

Deep layers are essential for OCR. As shown335

in Fig. 1, shallow layers provide negligible text336

information for the LLM. A clear boundary exists337

between the shallow and middle layers, with layer338

12 marking the transition point. Layers before this339

point fail to contribute meaningfully to text pro-340

cessing, while a sharp performance gain occurs341

immediately afterward. This might be attributed to342

two essential requirements for OCR tasks:343

1. Rich fine-grained visual features in visual rep-344

resentation: In OCR tasks, a strong perception345

of details is often required. Therefore, these346

fine-grained details must be embedded in the347

representation with sufficiently strong signals348

to be effectively utilized by the LLM.349

2. Well textually aligned visual features: Despite 350

containing rich visual details, shallow layers 351

lack intrinsic alignment with textual repre- 352

sentations, limiting their usefulness for OCR 353

tasks. Fig. 1a confirms this with notably low 354

cosine similarity between shallow and deep 355

layers. This discrepancy poses a challenge 356

for the connector, which can only align fea- 357

tures originating from the deep (text) space or 358

adjacent middle layers. 359

4.2 Deep-to-Shallower Layer Comparison 360

Afterwards, we investigate the effects of using shal- 361

low and middle layers in MLLMs. We highlight 362

the following key observations. 363

Limited impact of representation quality on cog- 364

nitive tasks. Cognitive tasks, such as “Code Rea- 365

soning” and “Numerical Calculation”, require both 366

perception and high-level reasoning capabilities. 367

Interestingly, we observe that even the shallow lay- 368

ers, which generally yield lower quality visual rep- 369

resentations can rival or even outperform deeper 370

layers in tasks under the MME-Cognitive. layer 3 371

achieves superior performance on “Code Reason- 372

ing”, “Numerical Calculation’, and “Text Recog- 373

nition” compared to both middle and deep layers. 374

(see Tab.8 and Tab.9 in Appendix) These findings 375

suggest that, for cognitive tasks, visual feature qual- 376

ity is not the primary limiting factor. 377

Potential of middle layers We first conduct an 378

investigation into the middle representation spaces. 379

The performance of these two spaces as shown in 380

Tab. 1, several key insights emerge from the results: 381

(1) The middle layer has the potential to per- 382

form best: Although the middle layer’s informa- 383

tion has not been fully processed, it still achieves 384

the best performance on one-third of the bench- 385

marks. Specifically, compared to the penultimate 386

layer, layer 14 achieves a 20-point higher score 387

on MME-Cognitive, layer 18 outperforms by 3% 388

on CVBench, layer 17 surpasses by 1.4% on Ref- 389

COCO, and layer 20 exceeds by 0.2% on GQA. 390
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Figure 4: Radar charts comparing the performance of Layers
23 and 24 across four different tasks under three LLM scales:
1.4B, 2.7B, and 7B. The results consistently show that the
penultimate layer outperforms the final layer in all tasks. This
trend remains stable across different model scales.

(2) The middle layers generally perform better391

on vision-centric tasks: Fig. 3a illustrates the per-392

formance of different layers across subtasks in the393

MME dataset, showing that position and existence394

tasks benefit more from middle layer representa-395

tions. As depicted in Fig. 3b, the penultimate396

layer achieves top performance in only three out of397

eleven subtasks, whereas the shallow and middle398

layers yield optimal results in seven. Similarly, in399

Fig. 3c, one-third of the best performing results,400

such as those in spatial relations, physical relations,401

and cross fine-grained perception originate from402

the shallow and middle layers. A comparable trend403

is observed in SEEDBench (Fig. 3d), where middle404

layers produce optimal results in nearly half of the405

subtasks, including Instance Attribute, Instance Lo-406

cation, Instance Interaction, and Text Recognition.407

The hallucination problem is more pronounced408

in shallow layers but is effectively mitigated in409

the middle layers. As shown in Tab. 1, POPE410

results indicate that hallucination issues are most411

prominent in the shallow representation space, with412

minimal variation between the middle and deep lay-413

ers. Notably, in the middle representation space,414

half of the layers outperform the penultimate layer415

on the POPE. This phenomenon likely stems from416

the fact that the challenge of this task lies more417

in visual perception than in semantic comprehen-418

sion. In Sec.5.3, we provide a detailed analysis419

showing that further experiments with larger LLMs420

consistently support this finding.421

5 Effect of Data and Model Scale422

To further assess the generality of our findings, we423

extend our experiments to larger model scales and424

training datasets in this section and analyze the425

resulting performance trends.426

5.1 Settings427

More training Data Following recent428

work (Zhang et al., 2024), we investigate429

665k/1.4b 737k/2.7b 1M/7b
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Figure 5: Proportion of subtasks achieving their best perfor-
mance at the penultimate layer on MME and SEEDBench,
demonstrating a clear upward trend.

the impact of training data scales using the same 430

training procedure detailed in Sec. 3. In the 431

first stage, we use the LLaVA 558k dataset (Liu 432

et al., 2023b). For the second stage, we evaluate 433

three dataset configurations: (1) LLaVA 665K, 434

(2) Cambrian-1 737K (Tong et al., 2024a), an 435

expansion of the 665K dataset with additional 436

OCR data, and (3) a custom 1M dataset that 437

builds on the 737K dataset by incorporating data 438

specifically curated for vision-centric tasks. The 439

dataset composition can be found in Appendix B. 440

Scaling LLM sizes. Building on the original 441

1.4B experiments, we extend our study to include 442

MobileLLaMA (Chu et al., 2024) 2.7B and Vicuna 443

v1.5 7B. These LLMs are selected due to their 444

similar architectures, making them well-suited for 445

investigating the impact of different LLM sizes. 446

Due to computational constraints, we do not con- 447

duct a full layer-wise analysis across different data 448

scales. Instead, leveraging insights from Sec 4.2, 449

we select representative layers from the shallow 450

(layer 3), middle (layer 18), and deep (layers 23 451

and 24) representation spaces to examine how vari- 452

ations in data scale affect model performance. 453

5.2 Deep-to-Deep Layer Comparison 454

As shown in Tab. 2, our findings indicate that the 455

key conclusions in Sec. 4.2 remain valid across 456

different training data scales. As data scales up, we 457

uncover the following key insights: 458

The penultimate layer remains the optimal 459

choice in deep space regardless of LLM size 460

As shown in Fig. 4, the penultimate layer consis- 461

tently outperforms the final layer across LLMs of 462

1.4B, 2.7B, and 7B, reinforcing our findings. This 463

indicates that CLIP-ViT’s final-layer visual degra- 464

dation, driven by its training paradigm, cannot be 465

offset by a stronger LLM. 466
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Data Scale Layers
General OCR Vision-Centric Hallu

MMEP MMEC MMB SEEDB GQA TVQA OCRB CVB CVB2D CVB3D RWQA POPE

665k

3 742.7 219.3 0.17 25.00 41.76 8.10 28 42.69 37.89 47.50 36.08 72.33
18 1088.8 237.1 29.38 52.06 54.37 31.44 200 47.29 41.17 53.42 39.48 84.26
23 1142.8 245.0 35.31 52.84 54.61 33.73 233 44.26 38.02 50.50 45.36 84.00
24 1114.1 243.6 32.65 51.09 53.61 30.63 197 46.68 39.78 53.58 43.92 83.65

737k

3 845.9 225.4 0.26 26.33 44.12 8.34 27 42.36 35.81 48.92 37.52 74.98
18 1093.1 226.4 43.04 56.33 56.98 35.98 270 48.87 46.57 51.17 43.40 86.18
23 1163.7 230.0 48.37 55.55 56.77 36.41 265 48.09 47.59 48.58 41.83 86.22
24 1121.7 258.6 46.05 55.43 56.34 36.09 255 43.63 38.01 49.25 44.44 85.09

1M

3 871.8 215.4 13.40 40.21 45.67 8.03 26 43.04 37.74 48.33 39.08 74.08
18 1145.9 213.2 42.44 56.72 57.74 35.68 267 54.08 56.33 51.83 43.14 84.06
23 1214.4 249.3 52.92 58.58 57.91 37.24 263 53.48 53.96 53.00 43.27 84.03
24 1192.0 245.0 47.34 57.62 57.21 36.45 264 47.88 42.84 52.92 44.97 84.58

Table 2: Performance comparison of visual representations across different data scales, demonstrating the consistency of our key
findings. Even as gains diminish with scaling, middle layers continue to exhibit unique strengths over deep layers in OCRBench,
SEEDBench, GQA and CVBench.

Furthermore, increasing LLM size does not yield467

significant improvements in POPE performance, in-468

dicating that hallucination bottlenecks in MLLMs469

stem primarily from the quality of the visual repre-470

sentation. In contrast, vision-centric tasks benefit471

more from scaling LLM size, indicating that even472

for tasks grounded in visual understanding, strong473

perception alone does not suffice, as robust reason-474

ing capabilities remain essential.475

The more data and the larger the model, the476

more the deep layers benefit. As both the train-477

ing data scale and LLM size increase, a clear trend478

emerges in Fig. 5: the proportion of subtasks where479

the penultimate layer achieves the best performance480

consistently grows.481

Since the visual encoder remains frozen during482

training, this suggests that compared to the middle483

layers, fine-grained information is less explicitly484

preserved in the deep layers. In other words, fine-485

grained details in the middle layers are more readily486

utilized by the LLM, whereas those in the deep lay-487

ers are harder to extract, requiring larger amounts488

of data to activate the LLM to effectively capture489

these fine-grained features.490

5.3 Deep-to-Shallower Layer Comparison491

We observe that while conclusions from small mod-492

els may not fully generalize to larger ones, the main493

findings still hold, as detailed below:494

The potential of shallower layers persists across495

model and data scales The consistency of the496

previous conclusion is validated under larger train-497

ing data and increased LLM size. As detailed in498

Appendix 9 and 10, under the 2.7B model, the499

penultimate layer fails to outperform shallower lay-500

ers on several MME subtasks, such as Count, Po-501

sition, and Existence. Similar patterns emerge in502

SEEDBench and persist with the 7B model, where 503

shallower layers (e.g., Layer 18) achieve better re- 504

sults on tasks like Spatial Relation. On the 665K 505

dataset, layer 18 outperforms the penultimate layer 506

by up to 3% on CVBench and maintains a slight 507

advantage on OCR and vision-centric tasks. This 508

trend persists on the 737K dataset, where layer 18 509

continues to lead on SEEDBench and GQA. Al- 510

though the performance gap narrows on the 1M 511

dataset, the middle layer still surpasses the deep 512

layer on both OCRBench and CVBench. 513

Limited gains on OCR tasks despite data and 514

LLM scaling. Layer 3 exhibits comparable per- 515

formance on OCR tasks both before and after in- 516

corporating OCR-specific training data, and across 517

models of different scales (2.7B vs. 7B). This sug- 518

gests that increasing task-specific data alone can- 519

not overcome the inherent limitations of shallow 520

representations. The lack of improvement can be 521

attributed to their poor alignment with the textural 522

feature space required for OCR understanding. In 523

contrast, the middle layers—though only partially 524

aligned—still exhibit performance gains under ad- 525

ditional supervision. 526

6 Visual Feature Fusion 527

Building on above-mentioned findings that deeper 528

layers are not universally optimal and that shal- 529

lower layers offer valuable complementary infor- 530

mation, we explore the most effective way to en- 531

hance visual representation by combining visual 532

features from multiple layers. To be specific, we 533

employ a simple fusion strategy to merge features 534

from different layers and conduct a preliminary 535

study on various layer combinations, aiming to 536

highlight the potential benefits of layer fusion. 537

7



Models General OCR Vision-Centric Hallu

MMEP MMEC MMB SEEDB GQA TextVQA OCRB CVB CVB2D CVB3D RWQA POPE Win

Baseline(23) 1142.8 245.0 35.31 52.84 52.84 33.73 233 44.26 38.02 50.50 45.36 84.00 9/10

DenseConnector 1145.0 253.2 47.85 57.16 56.92 37.54 257 45.60 35.83 54.92 45.10 84.95 7/10
MMFuser 1149.5 238.9 49.65 56.21 56.59 35.43 245 45.70 36.89 54.50 44.83 84.53 8/10
Ours∗ 1157.2 236.1 49.22 57.23 57.35 37.70 265 44.56 36.53 52.58 45.75 84.82 -

Table 3: Study on different layer fusion strategies. ’Ours’ represents L5 = 23, 18, 3. ’Win’ denotes the proportion of datasets
where our method achieves superior performance. Our method outperforms DC and MMFuser on 7 and 8 benchmarks.

6.1 Method538

The equation below shows the simplest visual fea-539

ture fusion mechanism,540

f = Concat
(
H(i) | i ∈ L

)
(1)541

where L denotes the set of selected layers, and each542

H(i) represents the feature representation extracted543

from layer l with a dimension of N ×D. Here, N544

is the number of visual tokens, and D is the feature545

dimensionality of each token. The concatenation546

function Concat(·) merges these representations547

along the feature dimension, producing an output548

f of size N × (D × |L|), where |L| denotes the549

number of concatenated layers. The resulting f550

is then fed into the Connector. Subsequently, we551

explore various layer combinations.552

6.2 Exp-I: Ablation of Fusion Layer Selection553

We select representative layers from shallow, mid-554

dle, and deep layers for the fusion ablation study to555

preliminarily explore the effect of different repre-556

sentation spaces in fusion methods. We systemat-557

ically construct different layer combinations L to558

analyze their impact on fusion performance.559

Multiple stages bring generalization: Fig. 6 il-560

lustrates six different configurations, ranging from561

using only the end stage to incorporating all stages.562

Compared to two-layer fusion (L1) and three-layer563

fusion covering two stages (L3), three-layer fusion564

(L2,3) that spans all stages (L2 and Ours {23, 3,565

18}) leads to more consistent performance improve-566

ments. Notably, L2 performs worse than Ours {23,567

3, 18} on OCR tasks. This is likely because the first568

layer feature is too raw, making them less suitable569

for extracting the low-level visual cues required in570

OCR. By incorporating more stable representations571

from multiple stages, models can achieve the most572

robust performance across tasks.573

6.3 Exp-II: Fusion Method Comparison574

To investigate the impact of different layer fusion575

strategies, we conduct comparisons based on our576

MME-P
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MMB

SEEDB

GQA

TVQA

OCRB

CVB

RWQA

POPE

20%

40%
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100%1182.5
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246.8

220.7
49.22

35.31

57.26

52.84

57.35

52.84

38.29

33.73

273

233
45.65

43.19

46.93

44.44

85.50

84.00

Baseline
1 = {23, 18}
2 = {23, 1, 18}
3 = {23, 17, 18}
4 = {23, 8, 16}

Ours

Figure 6: Performance comparison of different layer fusion
combinations on four tasks. L1–L4 denote representative
strategies for layer selection. “Ours” is L ={23, 3, 18}.

selected layers {23, 3, 18} and a simple concate- 577

nation strategy, against other carefully designed 578

fusion methods. 579

Less is more: We compare two state-of-the-art 580

ad-hoc methods, DenseConnector (DC) and MM- 581

Fuser with our method. As shown in Tab. 3, across 582

10 widely used benchmarks, our method outper- 583

forms DC and MMFuser on 7 and 8 benchmarks, 584

respectively. These results suggest that complex 585

fusion strategies may be unnecessary, as the sim- 586

plest concatenation already meets the performance 587

requirements. 588

7 Conclusion 589

This study presents a comprehensive layer-wise 590

analysis, revealing that shallow and middle repre- 591

sentation spaces can surpass the performance of 592

deep layers. Evaluations across diverse data and 593

model scales further substantiate this finding. Fur- 594

thermore, we introduce a straightforward yet highly 595

effective fusion strategy for visual feature integra- 596

tion, delivering substantial improvements over the 597

baseline. Our findings offer a foundation for ad- 598

vancing future research in fusion methodologies. 599
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Limitations600

Due to the high computational cost of layer-wise601

analysis, we adopt a linear probing-inspired strat-602

egy: most experiments are conducted on the 1.4B603

model, with selective validation on the 2.7B and604

7B variants. However, our study does not extend605

to larger-scale LLMs. In terms of visual encoders,606

we focus exclusively on CLIP-ViT-L/14, given its607

widespread adoption, and leave the exploration of608

alternative backbones to future work.609

Moreover, while vision-language fusion strate-610

gies can be broadly classified into internal and611

external methods, our analysis is limited to ex-612

ternal fusion approaches, without a direct com-613

parison to internal alternatives. Despite ensuring614

consistent experimental conditions across all set-615

tings—thereby enabling a fair assessment of visual616

representation quality—our current design does not617

examine how different connector architectures may618

affect performance, which we identify as a valuable619

direction for future research.620
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Appendix 869

We provide some additional information as sup- 870

plementary material. This material is divided into 871

three sections: 872

• Detailed analysis of visual representations 873

• Experiment Details 874

• Guidelines on Alignment 875

A Visual Representations 876

In this section, we explore the variations in visual 877

representation spaces across four tasks. As illus- 878

trated in Figure 7, the partitioning of visual repre- 879

sentations is minimally influenced by the nature 880

of the tasks. In other words, the shallow, middle, 881

and deep representation spaces exhibit remarkable 882

stability, maintaining consistent structures across 883

various tasks. 884

Figure 8 further highlights the distinct charac- 885

teristics of different representation spaces through 886

the results on TextVQA and OCRBench. These 887

results clearly demonstrate that shallow layers are 888

ineffective for OCR tasks, with performance pro- 889

gressively improving in the middle space and being 890

adequately addressed only in the deep space. 891

Another example, as shown in Table 4, when 892

the penultimate layer visual representations are re- 893

placed with those from other layers of the visual 894

encoder, layers 20 to 24, belonging to the deep 895

visual representation space, show no signs of catas- 896

trophic performance degradation. 897

Layer MME-P MME-C OCRB TextVQA RefCOCO

24 1153.5 306.0 266 41.16 47.56
23 1509.9 365.3 314 46.10 49.04
22 1451.1 366.7 304 44.76 47.46
21 1368.8 293.2 287 41.59 40.47
20 1259.2 265.7 271 39.11 44.31
19 1183.3 267.1 240 36.76 42.83
18 1083.7 237.8 205 32.18 36.04
17 993.6 255.7 156 27.92 31.07
16 901.0 256.7 116 23.37 19.96
15 790.0 253.9 94 17.96 14.85

Table 4: Performance metrics across different layers on
various benchmarks for non-training methods are presented.
Specifically, MME-P denotes MME Perception, MME-C cor-
responds to MME Cognition, and OCRB represents OCR-
Bench. The performance on RefCOCO is evaluated using
Intersection over Union (IOU) as the metric.

B Experiment Details 898

B.1 Visualization of Fusion Performance 899

As shown in Tab. 6, our fusion strategy achieves 900

highly competitive performance. 901
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Figure 7: A visualization of the average cosine similarity of visual representations across different layers in
CLIP-ViT for four tasks, namely General, OCR, CV-Centric, and Hallucination. Values closer to 1 indicate greater
similarity.

Data Size

LLaVA (Liu et al., 2024b) 158K

+ ShareGPT (ShareGPT, 2023) 40K
+ VQAv2 (Goyal et al., 2017) 83K
+ GQA (Hudson and Manning, 2019b) 72K
+ OKVQA (Marino et al., 2019) 9K
+ OCRVQA (Mishra et al., 2019) 80K
+ A-OKVQA (Schwenk et al., 2022) 66K
+ TextCaps (Sidorov et al., 2020) 22K
+ RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016) 48K
+ VG (Krishna et al., 2017) 86K

LLaVA-1.5 (Liu et al., 2023a) 665K

+ AI2D (Kembhavi et al., 2016) 16K
+ DocVQA (Mathew et al., 2021) 15K
+ DVQA (Kafle et al., 2018) 13K

Cambrian-737k (Tong et al., 2024a) 737K

+ CLEVR (Johnson et al., 2017) 215k
+ TallyQA (Acharya et al., 2019) 77K
Customized-1M 1M

Table 5: The mixture detail of fine-tuning dataset for LLaVA-1.5 665K, Cambrian-1 737K and customized 1M.
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Figure 8: Results from the OCR task, with the horizontal
axis representing the layer index and the vertical axis
indicating accuracy and OCRBench scores respectively.

B.2 Composition of Three Scale Datasets 902

The following datasets are incorporated to enhance 903

the model’s capabilities across multiple multimodal 904

tasks: 905

• AI2D (Allen Institute for AI Diagram 906

Dataset) (Kembhavi et al., 2016) AI2D is 907

designed for visual reasoning and diagram 908

understanding, featuring annotated diagrams 909

with textual descriptions and Q&A pairs. It is 910

particularly useful for multimodal reasoning 911

and visual question answering (VQA) tasks. 912

• DocVQA (Document Visual Question An- 913

swering) (Mathew et al., 2021) DocVQA 914

focuses on visual question answering over 915

document images, where questions pertain 916

to scanned documents, OCR-recognized text, 917
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Models General OCR Vision-Centric Hallu

MMEP MMEC MMB SEEDB GQA TextVQA OCRB CVB CVB2D CVB3D RWQA POPE Win

Baseline(23) 1142.8 245.0 35.31 52.84 52.84 33.73 233 44.26 38.02 50.50 45.36 84.00 9/10
+ 18 1148.55.7↑ 228.916.1↓ 46.9111.6↑ 57.014.2↑ 56.804↑ 37.663.9↑ 27340↑ 44.730.5↑ 35.792.2↓ 53.673.2↑ 45.490.1↑ 84.510.5↑ 8/10
+ 1+18 1155.412.6↑ 246.81.8↑ 48.5413.2↑ 56.753.9↑ 56.683.8↑ 36.532.8↑ 2363↑ 45.651.4↑ 36.211.8↓ 55.084.6↑ 46.931.6↑ 84.560.6↑ 7/10
+ 17+18 1182.539.7↑ 220.724.3↓ 48.8013.5↑ 56.683.8↑ 56.483.6↑ 38.294.6↑ 26330↑ 45.381.1↑ 36.251.8↓ 54.504↑ 44.710.7↓ 85.501.5↑ 6/10

DC-STI 1142.40.4↓ 218.926.1↓ 48.0212.7↑ 57.234.4↑ 56.864.0↑ 36.422.7↑ 2267↓ 43.830.4↓ 35.102.9↓ 52.582.1↑ 44.440.9↓ 86.382.4↑ 8/10
DC-SCI∗ 1166.523.7↑ 241.83.2↓ 48.7113.4↑ 57.264.4↑ 56.613.8↑ 36.703.0↑ 2418↑ 43.191.1↓ 34.963.1↓ 51.420.9↑ 44.440.9↓ 84.450.5↑ 7/10
DC-DCI 1145.02.2↑ 253.28.2↑ 47.8512.5↑ 57.164.3↑ 56.924.1↑ 37.543.8↑ 25724↑ 45.601.3↑ 35.832.2↓ 54.924.4↑ 45.100.3↓ 84.951.0↑ 7/10
MMFuser 1149.56.7↑ 238.96.1↓ 49.6514.3↑ 56.213.4↑ 56.593.8↑ 35.431.7↑ 24512↑ 45.701.4↑ 36.891.1↓ 54.504.0↑ 44.830.5↓ 84.530.5↑ 8/10
Ours∗ 1157.214.4↑ 236.18.9↓ 49.2213.9↑ 57.234.4↑ 57.354.5↑ 37.704.0↑ 26532↑ 44.560.3↑ 36.531.5↓ 52.582.1↑ 45.750.4↑ 84.820.8↑ -

Table 6: Study on different layer fusion strategies. The results reveal that nearly all fusion methods significantly outperform the
baseline, with performance variations depending on the combination of different layers. (*) ’DC-SCI’ is the same as L4 and
’Ours’ represents L5. ’Win’ denotes the proportion of datasets where our method achieves superior performance.

and textual reasoning. This dataset is valuable918

for document comprehension, text recogni-919

tion, and multimodal reasoning.920

• DVQA (Diagrammatic Visual Question An-921

swering) (Kafle et al., 2018) DVQA is de-922

signed for visual question answering over dia-923

grams and charts, covering questions related924

to bar charts, pie charts, and scientific illustra-925

tions. It evaluates the model’s ability to read926

structured visual information and perform rea-927

soning based on graphical representations.928

• CLEVR (Compositional Language and Ele-929

mentary Visual Reasoning) (Johnson et al.,930

2017) CLEVR is a synthetic dataset for visual931

reasoning, containing 3D-rendered scenes932

with structured questions that require reason-933

ing based on attributes, object relationships,934

and compositional logic. It is widely used to935

assess a model’s capability in compositional936

and multi-step reasoning.937

• TallyQA (Acharya et al., 2019) TallyQA938

is a dataset specifically designed for object939

counting tasks, where questions require the940

model to accurately count objects in an image.941

It evaluates the model’s ability to attend to942

relevant objects, integrate global and local in-943

formation, and perform numerical reasoning.944

B.3 Evaluation Metrics945

We provide a comprehensive explanation of the946

evaluation methods, categorizing them into three947

distinct types based on the evaluation metrics:948

• For benchmarks such as MME-Perception,949

MME-Cognition, OCRBench, and MMVet,950

we adopt the common approach of directly us-951

ing the dataset-defined scores. We follow this952

established approach to maintain consistency 953

and comparability in evaluations. 954

• Using Accuracy directly as the evaluation 955

metric. This applies to benchmarks such as 956

MMBench, SEEDBench, GQA, TextVQA, 957

CVBench, RealworldQA, and POPE. 958

• In evaluating the RefCOCO dataset, we use 959

CIDEr (Consensus-based Image Description 960

Evaluation) as the primary evaluation metric. 961

To facilitate evaluation, we use lmms-eval as our 962

primary evaluation tool. For the MMVet dataset, 963

evaluations must be conducted on the official plat- 964

form by uploading the necessary data. Regarding 965

the CVBench 3D tasks, where models generally 966

exhibit weaker instruction-following performance, 967

we employ the DeepSeek API as the judge. This 968

tool provides results consistent with GPT-4o but is 969

significantly more cost-effective. 970

B.4 The impact of LLMs 971

Additional experiments are conducted on differ- 972

ent sizes of large language models to investigate 973

their impact on visual information processing. We 974

validate our conclusions on LLMs of 2.7b and 7b 975

sizes. Due to computational resource constraints, 976

we selected representative layers from the three 977

representation spaces to conduct experiments on 978

subtasks of MME and SEEDBench. As shown 979

in Table 7, the penultimate layer does not consis- 980

tently achieve the best performance on MME. The 981

commonly used penultimate layer achieves optimal 982

performance on 6 out of 14 subtasks, while other 983

layers, such as Layers 3, 18, and 24, demonstrate 984

superior performance on the remaining subtasks. 985

This observation aligns with prior findings, sug- 986

gesting that middle layers can exhibit superior per- 987
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formance over deeper layers on certain CV-centric988

tasks. Notably, layer 18 outperforms the penulti-989

mate layer in tasks such as Count, Position, and990

Existence.991

As illustrated in Table 8, while performance992

varies slightly across the subtasks of SEEDBench,993

the penultimate layer achieves the best performance994

on only 3 out of 9 subtasks. These results provide995

strong empirical evidence that shallow and mid-996

dle layers can outperform deeper layers on specific997

subtasks.998

B.5 The impact of Data Scale999

The conclusion remains valid across different data1000

scales. Under the 737k data scale, half of the sub-1001

tasks in the MME dataset achieve optimal perfor-1002

mance using the penultimate layer. However, for1003

tasks like Count, Position, and Existence, the mid-1004

dle visual representation layer (Layer 18) demon-1005

strates either superior or comparable performance.1006

Similarly, results under the 1M data scale also show1007

that half of the optimal performances are achieved1008

on layers other than the penultimate one. The re-1009

sults for SEEDBench subtasks, as presented in Ta-1010

ble 10, further support this observation. At the 737k1011

data scale, Layer 18 from the middle representa-1012

tion space achieves the best performance on 5 out1013

of 9 subtasks, while the penultimate layer excels1014

in only 3 subtasks. Likewise, under the 1M data1015

scale, half of the subtasks continue to achieve their1016

best performance on layers other than the penulti-1017

mate one. These findings consistently demonstrate1018

across varying data scales that shallow and middle1019

layers have the potential to outperform deep layers1020

in certain scenarios.1021

B.6 Layer Selections and Feature Fusion1022

In the shallow layer, we select layers 1 and 3 as rep-1023

resentatives. Layer 1, being the most chaotic, pri-1024

marily captures early-stage visual features, while1025

layer 3 is still in a chaotic state but performs rela-1026

tively well. In the middle layer, we choose layers1027

18 and 17, as they achieve the first and second-best1028

performance within this representation space. For1029

the deep layer, we select layer 23, as it demon-1030

strates the highest overall performance. The base-1031

line configuration considers only layer 23 as the1032

visual representation.1033

Full version of comparison study as shown in1034

Fig. 6. We evaluate four state-of-the-art fusion1035

methods, including three from DenseConnector1036

(DC) (Yao et al., 2024) and one from MMFuser1037

(Cao et al., 2024). As shown in Tab. 3, our method 1038

outperforms STI, SCI, and DCI on 8, 7, and 7 1039

benchmarks, respectively. Compared to MMFuser 1040

(Cao et al., 2024), our approach demonstrates supe- 1041

rior performance on 8 benchmarks. These results 1042

highlight the significant potential of visual feature 1043

fusion strategies in enhancing MLLMs and offering 1044

guidance for developing future fusion strategies. 1045

C Guidelines on Alignment 1046

What defines a good visual representation in multi- 1047

modal models? Firstly, an ideal visual representa- 1048

tion must simultaneously provide rich visual infor- 1049

mation and effectively align with textual modal. An 1050

MLLM can only correctly answer queries when the 1051

information corresponding to the given instruction 1052

is explicitly embedded within the visual representa- 1053

tion. However, when the visual representation fails 1054

to deliver the necessary information, the model be- 1055

comes prone to hallucination problems. Secondly, 1056

alignment with the textual modality is essential 1057

for a large language model to understand and pro- 1058

cess information from a different modality. This 1059

alignment ensures that the rich visual content is 1060

effectively leveraged. In a word, the CLIP series 1061

models currently offer the best trade-off between 1062

these two dimensions. 1063
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Model Size 2.7b 7b

Layers 3 18 23 24 3 18 23 24

Code Reasoning 52.50 47.50 47.50 40.00 50.00 40.00 42.50 45.00
Artwork 53.00 65.00 65.75 64.50 50.00 69.25 71.00 70.75
Celebrity 46.76 49.12 64.12 58.82 51.76 59.41 74.71 74.41
Numerical Calculation 50.00 50.00 42.50 25.00 47.50 45.00 37.50 37.50
Text Translation 50.00 50.00 50.00 50.00 65.00 65.00 47.50 67.50
Count 50.00 65.00 61.67 58.33 56.67 85.00 85.00 80.00
Color 53.33 83.33 86.67 88.33 78.33 91.67 91.67 91.67
Commonsense Reasoning 52.86 60.71 64.29 62.14 57.86 69.29 73.57 72.86
Position 48.33 71.67 71.67 71.67 61.67 71.67 75.00 80.00
OCR 50.00 67.50 72.50 65.00 55.00 77.50 75.00 70.00
Landmark 59.50 75.25 80.25 76.75 66.25 78.00 86.00 84.50
Scene 73.75 87.75 87.75 89.00 80.00 85.50 85.50 87.50
Existence 83.33 98.33 96.67 95.00 81.67 96.67 96.67 95.00
Posters 37.41 59.18 65.65 64.29 51.02 74.83 81.63 83.33

Table 7: Performance of LLaVA architectures with 2.7B and 7B LLMs on MME subtasks, evaluated across four
layers from three representative spaces.

Model Size 2.7b 7b

Layers 3 18 23 24 3 18 23 24

Scene Understanding 36.04 68.84 68.87 69.79 50.70 73.50 73.91 73.59

Instance Identity 32.33 62.26 62.92 62.59 41.40 67.78 70.29 70.56
Instance Attribute 40.35 62.19 59.07 60.46 50.48 69.09 68.70 68.21

Instance Location 37.53 52.25 49.69 53.78 43.46 61.04 61.45 59.71

Instance Counting 25.70 43.07 47.57 45.20 33.02 56.89 57.13 57.29
Spatial Relation 33.03 42.47 40.64 43.99 41.55 52.05 49.62 51.45

Instance Interaction 34.02 64.95 54.64 64.95 48.45 63.92 67.01 71.13
Visual Reasoning 35.05 67.07 72.51 72.21 53.47 75.23 78.85 77.04

Text Recognition 44.71 21.18 21.18 24.71 38.82 34.12 47.06 43.53

Table 8: Performance of LLaVA architectures with 2.7B and 7B LLMs on SEEDBench subtasks, evaluated across
four layers from three representative spaces.

Data Scale 737k 1M

Layers 3 18 23 24 3 18 23 24

Code Reasoning 50.00 47.50 45.00 42.50 47.50 47.50 45.00 47.50
Artwork 51.00 59.25 64.50 61.75 53.75 65.00 68.00 66.50
Celebrity 48.82 55.88 64.12 62.65 52.35 62.06 68.53 65.59
Numerical Calculation 47.50 37.50 35.00 47.50 50.00 30.00 45.00 47.50
Text Translation 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
Count 55.00 55.00 55.00 50.00 58.33 58.33 60.00 60.00
Color 60.00 75.00 76.67 75.00 61.67 78.33 80.00 80.00
Commonsense Reasoning 54.29 56.43 60.71 61.43 52.14 57.14 62.14 58.57
Position 51.67 70.00 63.33 70.00 50.00 70.00 73.33 70.00
OCR 50.00 55.00 57.50 52.50 55.00 52.50 55.00 55.00
Landmark 63.25 71.00 77.50 74.25 61.75 72.50 77.50 76.00
Scene 69.25 83.50 85.00 84.25 74.00 84.50 84.00 85.75
Existence 85.00 96.67 96.67 96.67 80.00 96.67 96.67 95.00
Posters 38.44 50.34 55.44 56.80 37.41 52.72 55.44 54.76

Table 9: Experimental results on MME subtasks under data scales of 737k and 1M, with the model settings consistent
with those described in the main text.
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Data Scale 737k 1M

Layers 3 18 23 24 3 18 23 24

Scene Understanding 26.85 67.35 68.24 67.57 44.02 65.71 68.97 67.57
Instance Identity 23.65 56.36 55.60 55.87 35.06 57.89 61.82 58.77
Instance Attribute 26.03 59.93 58.36 57.69 44.27 61.93 61.45 60.59
Instance Location 26.69 50.20 47.75 48.26 39.37 48.67 49.69 49.08
Instance Counting 27.34 41.93 40.13 41.19 32.04 42.38 44.91 45.97
Spatial Relation 29.68 41.86 38.81 38.96 37.90 42.92 39.57 39.57
Instance Interaction 21.65 46.39 51.55 49.48 38.14 50.52 51.55 52.58
Visual Reasoning 27.79 62.54 67.98 69.18 43.20 60.42 68.88 67.07
Text Recognition 21.18 34.12 48.24 43.53 41.18 17.65 55.29 42.35

Table 10: Experimental results on SEEDBench subtasks under data scales of 737k and 1M, with the model settings
consistent with those described in the main text.

(a)OCR

Users:
In the picture, which 
direction is the cat 
facing? 

(b)object_localization

User: 
What color does 
Moldova show in 
the graph?

User: 
How many apples 
are there in the 
image? And how 
many bananas are 
there?

Penultimate: 2 apples and 1 bananas
Others: 1 apples and 1 bananas

Penultimate: moldova shows up as a 
green line in the graph.
Others: moldova shows up in the graph as 
purple.

Penultimate: upward
Others: facing the camera

Penultimate: the image reads "ula" on a 
white background.
Others: the image is written in the form 
of a street sign, which reads "zula."

User: 
what is written 
in the image?

Figure 9: Case study illustrating four examples where the penultimate layer provides incorrect answers, but these
errors can be resolved by using shallow and middle layers. In all four cases, Layer 18 of CLIP-ViT as the visual
representation could successfully provide the correct answers
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Figure 10: Heatmap showing the relative performance of CLIP-ViT layers 1-24 on MME subtasks. Consistent with
the experimental settings in the main text, the results demonstrate that while deep layers generally achieve the best
performance, shallow and middle layers can surpass deep layers on specific tasks, providing further support for our
findings.
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