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ABSTRACT

Federated Learning (FL) systems usually sample a fraction of clients to conduct a
training process. Notably, the variance of global estimates for updating the global
model built on information from sampled clients is highly related to federated
optimization quality. This paper explores a line of "free" adaptive client sampling
techniques in federated learning without requiring additional local communication
and computation. These methods could enhance federated optimization by provid-
ing global estimates for model updating with designed sampling probability. We
capture a minor variant in the sampling procedure and improve the global estima-
tion accordingly. Based on that, we propose a novel sampler called K-Vib, which
solves an online convex optimization problem respecting federated client sampling
tasks. It achieves improved a linear speed up on regret bound Õ

(
N

1
3T

2
3 /K

4
3

)
with

communication budget K. As a result, it significantly improves the performance of
federated optimization. Theoretical improvements and intensive experiments on
classic federated tasks demonstrate our findings.

1 INTRODUCTION

This paper studies the standard cross-device federated learning (FL) setting (Kairouz et al., 2021),
which optimizes x ∈ X ⊆ Rd to minimize a finite-sum objective:

min
x∈X

f(x) :=

N∑
i=1

λifi(x) :=

N∑
i=1

λiEξi∼Di [Fi(x, ξi)], (1)

where N is the total number of clients, λi ≥ 0,
∑N

i=1 λi = 1 is the weights of client objective.
The fi : Rd → R is a local loss function that depends on the local data distribution Di owned by
client i via fi(x) = Eξi∼Di

[Fi(x, ξi)] as its the stochastic results. Typically, federated optimization
algorithm, e.g., FEDAVG (McMahan et al., 2017) that minimizes objective 1 basically follows a
distributed learning protocol involving local and global update alternatively as shown in Algorithm 1.

In cross-device FL, communication and computation efficiency are the primary bottlenecks (Konečnỳ
et al., 2016; Yang et al., 2022), as the typical clients are mobile phones or IoT devices that have
limited bandwidth and computation resources. Client sampling techniques are a feasible way to
enhance federated learning efficiency (Wang et al., 2021), which are motivated by the fact that the
data quality and quantity are in large variance across clients (Khan et al., 2021). Consequently, some
clients can provide more informative updates than others in a communication round.

To fully utilize local information and enhance the training efficiency, a number of client sampling
approaches have been proposed in the literature (Chen et al., 2020; Cho et al., 2020b; Balakrishnan
et al., 2022; Wang et al., 2022; Malinovsky et al., 2023; Cho et al., 2023). Although they obtained
promising results, most of these methods usually require additional communication or computation
on the client side compared with vanilla FL protocol. However, some sampling techniques are not
applicable in a resource-constrained FL system (Imteaj et al., 2021), where the devices have no
additional computation and communication resources to conduct such a sampling task. Besides,
sampling techniques also involve biasedness (Cho et al., 2020b; Wang et al., 2022) and unbiased-
ness (Borsos et al., 2018; El Hanchi & Stephens, 2020) as we concretely discussed in Appendix E.2.

1



Under review as a conference paper at ICLR 2024

Compared with biased sampling methods, unbiased client sampling methods are orthogonal with
secure aggregation (Du & Atallah, 2001; Goryczka & Xiong, 2015; Bonawitz et al., 2017) and FL
re-weighting algorithms that adjust λ for fairness/robustness (Li et al.; 2021). Besides, unbiased
client sampling methods maintain the optimization objective unbiasedness, which has been proved
essential (Wang et al., 2020) to optimization quality.

Algorithm 1 FedAvg with Unbiased Client Sampler
Input: Client set S, where |S| = N , client weights λ, times T , local steps R

1 Initialize sample distribution p0 and model w0

2 for time t ∈ [T ] do
3 Server run sampling procedure to obtain sampled client set St ∼ pt

4 Server broadcast xt to sampled clients i ∈ St

5 for each client i ∈ St in parallel do
6 xt,0

i = xt

7 for local steps r ∈ [R] do
8 xt,r

i = xt,r−1
i − ηl∇Fi(x

t,r−1
i , ξi ∼ Di) // local SGD

9 Client upload local updates gti = xt,0
i − xt,R

i to the server

10 Server builds global estimates dt =
∑

i∈St λig
t
i/p

t
i and updates Model wt+1 ← wt − ηgd

t

11 Server updates pt+1 based on received information {∥gti∥}i∈St // adaptive

In this paper, we build upon existing unbiased sampling methods in stochastic optimization litera-
ture (Salehi et al., 2017; Borsos et al., 2018; El Hanchi & Stephens, 2020), and focus on federated
client sampling. Given the constraints of limited local communication and computation, our goal
is to explore "free" client sampling techniques that leverage only the uploaded local update. It is
expected to be powerful in improving federated optimization efficiency such as in edge-computing
systems (Khan et al., 2021). To achieve this, we propose a novel adaptive client sampling method
that aligns with the basic FL protocol outlined in Algorithm 1, with only modifications to the server
sampling procedure and sampling distribution. By analyzing the optimal unbiased client sampling
procedure and probability in Section 2, we extend adaptive unbiased sampling techniques using the
independent sampling procedure. This procedure involves rolling dice independently for each client
respecting a well-designed probability distribution. It also builds promising global estimates for
global updates in FL. It achieves significant improvement in both theory and empirical experiments.
Our contribution can be summarised as follows:

Proposed novel sampler K-Vib. To the best of our knowledge, we are the first work that extends the
independent sampling procedure on adaptive client sampling in federated optimization. To find the
best probability, we model the unbiased client sampling task in federated learning as an online convex
optimization problem for gradient variance reduction. In this context, we theoretically proved that
K-VIB achieves an expected regret bound Õ

(
N

1
3T

2
3 /K

4
3

)
with a near-linear speed up, comparing

with previous bound Õ
(
N

1
3T

2
3

)
(Borsos et al., 2018) andO

(
N

1
3T

2
3

)
(El Hanchi & Stephens, 2020),

where N is the number of clients, K is communication budget (i.e., the expected number of sampled
clients), T is the communication rounds and Õ hides logarithmic factor.

Enhancing federated optimization. We principled the non-convex convergence analysis of classic
federated optimization with arbitrary unbiased client sampling techniques in Theorem 3.9. The
unique perspective connects the regret bound in online convex optimization with the convergence
bound of federated optimization, which reveals the impacts of adaptive client sampling techniques in
federated optimization. The result indicates our methods inherit the benefits of the online convex
optimization task, and hence achieve faster convergence than baselines.

Experiments evaluation. We validate our theoretical findings using a Synthetic dataset and assess the
performance of K-Vib in classic federated learning tasks. The results unequivocally demonstrate that
the K-Vib sampler effectively constructs a robust sampling procedure and generates accurate global
estimates by solving online convex optimization problems. The reduced variance in these global
estimates accelerates the convergence of federated optimization, leading to faster model updates.
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2 PRELIMINARIES

In this section, we clarify the concepts of unbiased client sampling techniques in federated learning
and demonstrate the optimal solution with given local updates at any communication round t and
budget K (the number of clients expected to be sampled). Then, we formulate the online convex
optimization problem to obtain promising sampling probabilities and global estimates.

2.1 UNBIASED CLIENT SAMPLING AND ITS OPTIMALITY

Unbiased client sampling is defined with the global estimates dt and the global objective in 1. Letting
communication budget K as the expected number of sampled clients for each round, we give the
variance of estimates in Line 10, Algorithm 1, respecting sampling probability pt:

Definition 2.1 (The global estimator dt variance). The sampling quality of arbitrary client sampling
is related to the variance of its estimation, which can be formalized as:

V(St ∼ pt;λ, gt) := E

∥∥∥∥∥dt −
N∑
i=1

λig
t
i

∥∥∥∥∥
2
+ E

∥∥∥∥∥
N∑
i=1

λig
t
i −

N∑
i=1

λi∇fi(xt)

∥∥∥∥∥
2
 , (2)

where pti > 0,
∑N

i=1 p
t
i = K = E[|St|] for all i ∈ [N ], t ∈ [T ], and S ∼ pt denotes the sampling

procedure used to create the sampling St. To be consistent, the sampling probability p always satisfies
the constraint pti > 0,

∑N
i=1 p

t
i = K,∀t ∈ [T ] in this paper.

We say a client sampling technique is unbiased if the sampling and estimates satisfy that E[dt] =∑N
i=1 λig

t
i , where the variance is given in the first term of 2. The second term represents the

local drift induced by the multiple local SGD steps in federated optimization to save communica-
tion (McMahan et al., 2017). We involved the bias in our convergence analysis in Section 3.3. The
optimality of the global estimator depends on the collaboration of sampling distribution pt and the
corresponding procedure that outputs St. In detail, different sampling procedures associated with
the sampling distribution p build a different probability matrix P ∈ RN×N , which is defined by
Pij := Prob({i, j} ⊆ S). Inspired by the arbitrary sampling (Horváth & Richtárik, 2019), we derive
the optimal sampling procedure for the FL server in Lemma 2.2.

Lemma 2.2 (Optimal sampling procedure). For any communication round t ∈ [T ] in FL, noting the
aforementioned notations including gradients gti , sampling distribution pt, weights λ, the variance of
estimates in Equation 2 are related to Pij , which varies in a sampling procedure that creates St.

For random sampling1 yielding the Pij = Prob(i, j ∈ S) = K(K − 1)/N(N − 1), it admits:

E

∥∥∥∥∥∑
i∈St

λi

pti
gti −

N∑
i=1

λig
t
i

∥∥∥∥∥
2
 ≤ N −K

N − 1

N∑
i=1

λ2
i ∥gti∥2

pti
. (3)

Analogously, for independent sampling2 with Pij = Prob(i, j ∈ S) = pipj , it admits:

E

∥∥∥∥∥∑
i∈St

λi

pti
gti −

N∑
i=1

λig
t
i

∥∥∥∥∥
2
 =

N∑
i=1

(1− pti)
λ2
i ∥gti∥2

pti︸ ︷︷ ︸
independent sampling

≤ N −K

N − 1

N∑
i=1

λ2
i ∥gti∥2

pti︸ ︷︷ ︸
random sampling

. (4)

In conclusion, the independent sampling procedure is the optimal sampling procedure that always
minimizes the upper bound of variance regardless of the sampling probability.

Directly utilizing the independent sampling procedure could obtain the variance reduction benefits,
as we evaluated in Figure 5. We can enlarge the benefits via minimizing the variance in Equation 4
respecting probability p, which is generally given in Lemma 2.3.

1Random sampling procedure means that the server samples clients from a black box without replacement.
2Independent sampling procedure means that the server rolls a dice for every client independently to decide

whether to include the client.
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Lemma 2.3 (Optimal sampling probability). Generally, we can let ai = λi∥gti∥,∀i ∈ [N ], t ∈ [T ]
for simplicty of notation. Assuming 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N , and l is the largest
integer for which 0 < K + l −N ≤

∑l
i=1 ai

al
, we have

p∗i =

{
(K + l −N) ai∑l

j=1 aj
, if i ≤ l,

1, if i > l,
(5)

to be a solution to the optimization problem minp
∑N

i=1
a2
i

pi
.

Remark. Lemma 2.2 reveals the optimality of the sampling procedure of designing St and Lemma 2.3
demonstrates the optimal probability distribution pt. Despite the differences in methodology, previous
importance sampling techniques in stochastic optimization (Salehi et al., 2017; Duchi et al., 2011;
Boyd et al., 2004) and federated client sampling (Zhao et al., 2021; Borsos et al., 2018; El Hanchi &
Stephens, 2020) designs sampling probability based on the sub-optimal gradient variance formulation
in Equation 3. In this paper, we capture the minor variant in the sampling procedure as demonstrated
in Lemma 2.2. And, we propose using the independent sampling procedure to enhance the power of
the unbiased sampling technique. Motivated by the observation in Lemma 2.3, we explore an efficient
adaptive sampling in the methodology section.

2.2 ADAPTIVE CLIENT SAMPLING AS ONLINE CONVEX OPTIMIZATION

Directly computing Equation 5 in FL consumes tremendous device computation power for backprop-
agation locally, as it requires the norm information of local update of ALL clients. However, it is
not necessary to achieve the optimal sampling for federated optimization because of the data quality
variance across clients. Instead, we can implement a sub-optimality sampling to obtain most of the
benefits without requiring additional local computation and communication in FL.

To this end, we model the adaptive client sampling as an online convex optimization problem
respecting sampling probability pt during federated optimization. Concretely, we denote the required
feedback from clients as a function πt(i) := ∥gti∥ and define the cost function ℓt(p) :=

∑N
i=1

πt(i)
2

pi

for online convex optimization3. Our target of building sampling probability is to minimize the
dynamic regret between applied sampling probability and the Oracle:

RegretD(T ) =
1

N2

(
T∑

t=1

ℓt(p
t)−

T∑
t=1

min
p

ℓt(p)

)
, (6)

where we set the client weight λi =
1
N ,∀i ∈ [N ] as static for simply notation. RegretD(T ) indicates

the cumulative discrepancy of applied sampling probability and the dynamic optimal probability.

In this paper, we are to build an efficient sampler that outputs an exemplary sequence of independent
sampling distributions {pt}Tt=1 such that limT→∞ RegretD(T )/T = 0. Meanwhile, it enhances the
quality of corresponding federated optimization algorithms.

3 METHODOLOGY OF K-VIB SAMPLER

In this section, we introduce the design of the K-Vib sampler. Firstly, we identify a sub-optimal
sampling probability and demonstrate, through theoretical analysis, that the deviation between this
probability and the optimal one diminishes over time. Next, we present our method from two
interconnected scenarios, offering a theoretical perspective. Lastly, we analyze the convergence of
FedAvg, emphasizing the effects of unbiased client sampling techniques.

3.1 SUB-OPTIMAL PROBABILITY AND ITS VANISHING GAP

Our methods rely on mild assumptions about local objective fi(·),∀i ∈ [N ], and the convergence
performance of applied optimization algorithms.

3Please distinguish the online cost function ℓt(·) from local empirical loss of client fi(·) and global loss
function f(·). While ℓt(·) is always convex, f(·) and fi(·) can be non-convex.
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Assumption 3.1 (Local Convergence). Let Πt :=
1
N

∑N
i=1 πt(i) denote the average of feedback.

Thus, we define π∗(i) := limt→∞ πt(i), Π∗ := 1
N

∑N
i=1 π∗(i), ∀i ∈ [N ]. Moreover, we could

denote that 1
T

∑T
t=1 Πt ≥ Π∗, VT (i) =

∑T
t=1

(
πt(i) − π∗(i)

)2
,∀T ≥ 1, and πt(i) ≤ G,∀t ∈

[T ], i ∈ [N ].

A faster FL solver implies a lower bound for |πt(i)− π∗(i)|, and hence VT (i). For instance, SGD
roughly implements |πt(i)− π∗(i)| ≤ O(1/

√
t), and hence implies VT (i) ≤ O(log(T )). Thus, the

above theorem would translate into regret guarantees with respect to the ideal baseline, with an
additional cost of Õ(

√
T ) in expectation.

Remark. The Assumption 3.1 guarantees the sampling technique is applied in a converging federated
optimization process. It indicates the sub-linear convergence speed of an optimization process, which
commonly holds in non-convex optimization with SGD (Salehi et al., 2017; Duchi et al., 2011;
Boyd et al., 2004) and federated optimization (Reddi et al., 2020; Wang et al., 2020; Li et al., 2019).
Importantly, the G denotes the largest feedback during the applied optimization process, instead of
assuming bounded gradients. It can be justified by using differential privacy (Kairouz et al., 2021).

Vanishing Hindsight Gap. We decompose the original regret in Equation 6 as follows:

N2 · RegretD(T ) =

T∑
t=1

ℓt(p
t)−min

p

T∑
t=1

ℓt(p)︸ ︷︷ ︸
RegretS(T )

+min
p

T∑
t=1

ℓt(p)−
T∑

t=1

min
p

ℓt(p)︸ ︷︷ ︸
Hindsight Gap

,
(7)

where the static regret RegretS(T ) indicates the distance between a given sequence of probabilities
and the best-static probability in hindsight; the second term indicates the gap between the best-static
probability in hindsight and the ideal probabilities from the Oracle. Rely on the mild assumptions,
we bound the second term of Equation 7 below:
Theorem 3.2 (Vanishing Hindsight Gap). Under Assumptions 3.1, sampling a batch of clients with
an expected size of K, and for any i ∈ [N ] denote VT (i) =

∑T
t=1

(
πt(i) − π∗(i)

)2 ≤ O(log(T )).
For any T ≥ 1, the averaged hindsight gap admits,

1

N2

[
min
p

T∑
t=1

ℓt(p)−
T∑

t=1

min
p

ℓt(p)

]
≤ 2

√
TΠ∗

NK

N∑
i=1

√
VT (i) +

( 1

NK

N∑
i=1

√
VT (i)

)2
.

Remark. Lemma 3.2 demonstrates the connection between the FL optimizer and the minimization
of regret. That is, a fast convergence induces a lower bound of Vt(i), yielding faster vanishing. As
the hindsight gap vanishes with an appropriate FL solver, our primary objective turns to devise a
{p1, . . . , pT } that bounds the static regret RegretS(T ) in Equation 7.

3.2 APPROACHING SUB-OPTIMAL PROBABILITY WITH FULL/PARTIAL FEEDBACK

Full Feedback. We first investigate the upper bound of RegretS(T ) in an ideal scenario called
full feedback, where the server preserves feedback information of all clients, i.e., {πτ (i)}t−1

τ=1,∀i ∈
[N ], t ∈ [T ]. In practice, the information cannot be obtained exactly, because it requires all clients to
compute local updates. Despite that, we can acquire a preliminary solution and extend it into practical
settings.

We utilize the classic follow-the-regularized-leader (FTRL) (Shalev-Shwartz et al., 2012; Kalai &
Vempala, 2005; Hazan, 2012) framework to design sampling distribution, which is formed at time t:

pt := argmin
p

{
t−1∑
τ=1

ℓτ (p) +

N∑
i=1

γ

pi

}
, (8)

where the regularizer γ ensures that the distribution does not change too much and prevents assigning
a vanishing probability to any clients. We have the closed-form solution as shown below:
Lemma 3.3 (Full feedback solution). Denoting π2

1:t(i) :=
∑t

τ=1 π
2
τ (i) as the cumulative feedback,

sorting the regularized feedback denoted by ai =
√

π2
1:t−1(i) + γ in ascending order (i.e., 0 ≤ a1 ≤

· · · ≤ aN ), we utilize Lemma 2.3 to get the solution pti ∝
√

π2
1:t−1(i) + γ to Equation 8.
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For t = 1, . . . , T , if applied sampling probability follows Lemma 3.3, we can obtain that
RegretS(T )/T ≤ O(1/

√
T ) as we shown in Theorem C.1. Applying Equation 8 in FedAvg yields

a sampling probability sequence that implements sub-optimal profits over time T . However, the
sub-optimality requiring full feedback is not practical as we only have access to sampled clients in
each round. Hence, the partial feedback solution is what we really pursued.

Partial Feedback. We extend the full feedback solution to the partial feedback scenario, where the
server only has access to the feedback information from the sampled clients. Denoting {πt(i)}i∈St

as partial feedback from sampled points, we construct an additional estimate of the true feedback for
all clients denoted by p̃ and let St ∼ p̃t, which incurs

π̃2
t (i) :=

π2
t (i)

p̃ti
· Ii∈St , and E[π̃2

t (i)|p̃ti] = π2
t (i),∀i ∈ [N ].

Analogously, we define modified cost functions and their unbiased estimates:

ℓ̃t(p) :=

N∑
i=1

π̃2
t (i)

pi
, and E[ℓ̃t(p)|p̃t, ℓt] = ℓt(p).

Relying on the additional estimates, the sampling probability p̃t can be applied as a partial feedback
solution. But, it still depends on pt, which is the distribution from the full feedback scenario in theory.
This difference poses a difficulty, where the modified cost functions can be unbounded. To better
bound the regrets of estimator p̃t in the partial feedback scenario, we mix the original estimator pt
with a static distribution. Let θ ∈ [0, 1], we have,

Mixing strategy: p̃t = (1− θ)pt + θ
K

N
, (9)

where p̃t ≥ θK
N , and hence π̃2

t (i) ≤ π2
t (i) · N

θK ≤ G2 · N
θK . The mixing strategy guarantees the least

probability that any clients be sampled, thereby encouraging exploration. Besides, the additional
estimates transfer our target to bound an expected regret as minp E[

∑T
t=1 ℓt(p̃

t) −
∑T

t=1 ℓt(p
t)],

which denotes the expectation discrepancy between the partial feedback and the full feedback
solutions. After analysis detailed in Appendix C.3, we present the expected regret bound of the
sampling with mixed probability and the K-Vib sampler outlined in Algorithm 2.
Theorem 3.4 (Static expected regret with partial feedback). Under Assumptions 3.1, sampling
St ∼ p̃t with E[|St|] = K for all t = 1, . . . , T , and letting θ = ( N

TK )1/3, γ = G2 N
Kθ with

T ·K ≥ N , we obtain the expected regret,

1

N2
E

[
T∑

t=1

ℓt(p̃
t)−min

p

T∑
t=1

ℓt(p)

]
≤ Õ

(
N

1
3T

2
3 /K

4
3

)
, (10)

where Õ hides the logarithmic factors.

Algorithm 2 K-Vib Sampler
Input: Num clients N , sampling expectation K, time T , regular factor γ, and mixing factor θ.

12 Initialize weights ω(i) = 0 for all i ∈ [N ].
13 for time t ∈ [T ] do
14 pti ∝

√
ω(i) + γ // by Lemma 3.3

15 p̃ti ← (1− θ) · pti + θK
N , for all i ∈ [N ] // mixing

16 Draw St ∼ p̃t and play St // independent sampling procedure
17 Receive feedbacks πt(i), and update ω(i)← ω(i) + π2

t (i)/p̃
t
i for i ∈ St

Summary. The K-Vib sampler facilitates exploration in the early stages during the federated
optimization process while creating a promising sampling distribution with cumulative feedback.
Its advantages rely on a tighter formulation of variance obtained via the independent sampling
procedure in Equation 4. Utilizing a mixing strategy 9, the K-Vib sampler extends the FTRL to
practical partial sampling and feedback scenarios. Finally, it implements a linear speedup K as
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shown in Theorem 3.4 comparing with random sampling procedure in a similar manner (Borsos
et al., 2018). For computational complexity, the main cost involves sorting the cumulative feedback
sequence {ω(i)}Ni=1 in Algorithm 2, which will not exceed O(N logN) with an adaptive sorting
algorithm (Estivill-Castro & Wood, 1992).

3.3 CONVERGENCE ANALYSIS OF UNBIASED SAMPLER IN FEDAVG

Our ultimate goal is to optimize the benefits of applying the sampling technique in federated opti-
mization. We demonstrate the point by providing unique convergence analyses for Algorithm 1 for
arbitrary unbiased client sampling techniques. To be general, we use standard assumptions on the
local empirical function fi, i ∈ [N ] in non-convex federated optimization literature (Reddi et al.,
2020; Li et al., 2020; Wang et al., 2020).
Assumption 3.5 (Smothness). Each objective fi(x) for all i ∈ [N ] is L-smooth, inducing that for all
∀x, y ∈ Rd, it holds ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.
Assumption 3.6 (Unbiasedness and Bounded Local Variance). For each i ∈ [N ] and x ∈
Rd, we assume the access to an unbiased stochastic gradient gi(x) of client’s true gradient
∇Fi (x), i.e.,Eξt∼Di

[∇Fi (x, ξ
t)] = ∇fi(x). The function fi have σl-bounded (local) variance

i.e.,Eξi∼Di

[
∥∇Fi(x, ξ

t)−∇fi(x)∥
2
]
≤ σ2

l .

Assumption 3.7 (Bounded Global Variance). We assume the weight-averaged global variance is
bounded, i.e.,

∑N
i=1 λi ∥∇fi(x)−∇f(x)∥2 ≤ σ2

g for all x ∈ Rd.

Moreover, we define important quantities below to clarify the unbiased sampling in our analyses.
Definition 3.8 (The improvement factor and sampling quality.). For t = 1, . . . , T , under the con-
straints of communication budget K and local updates statues {gti}i∈[N ], we define the optimal
improvement factor of optimal client sampling St

∗ over uniform sampling U t ∼ U is defined as:

αt
∗ =

E
[∥∥∥∑i∈St

∗

λi

p∗
i
gti −

∑N
i=1 λig

t
i

∥∥∥2]
E
[∥∥∥∑i∈Ut

λi

pi
gti −

∑N
i=1 λigti

∥∥∥] ,with independent sampling St
∗ ∼ pt∗,

and optimal pt∗ is computed following Lemma 2.3. Then, given arbitrary client sampling probability
pt, we can define the quality of once sampling St according to the discrepancy to the optimal:

Q(St) = E


∥∥∥∥∥∥
∑
i∈St

λig
t
i

pti
−
∑
i∈St

∗

λig
t
i

p∗i

∥∥∥∥∥∥
2
 . (11)

The factor αt
∗ ∈ [0, 1] denotes the best efficiency that one sampling technique can potentially

achieve under the current constraints K, {gti}i∈[N ], λ in theory. In our analysis, αt
∗ denotes the best

improvement by applying optimal sampling. Furthermore, we define Q(St) to denote the discrepancy
between a given sampling and the optimal sampling. We use the term to estimate the quality of one
sampling. Thereby, it also connects the regret of the adaptive sampling task. Besides, Q(St) = 0
indicates the current sampling has achieved the optimal sampling. Now, We are ready to provide the
non-convex convergence of Algorithm 1 with a focus on the impacts of unbiased sampling techniques.
Theorem 3.9 (Non-convex convergence of FedAvg with unbiased sampling). Under Assump-
tions 3.5 3.6 3.7, for arbitrary sampling St ∼ pt and its unbiased estimates follows Equation 2, and
taking upper bound E

[
f(x1)− f(x+∞)

]
≤M , ηg =

√
2M
Tβ̄

, and ηl ≤ min( 1
R , 1√

5R
), we have the

convergence of Algorithm 1,

min
t∈[T ]

E∥∇f(xt)∥2 ≤

√
8Mβ̄

T ρ̂2
+

1
T

∑T
t=1 Q(St) + ϵ

ρ̂
, (12)

where we define

ρt :=
(
1− 4(1− ηlR)2 − 12η2l L

2 − 6η2l γ
t
∗W
)
, βt := 2Lγt

∗W (σ2
l + 3σ2

g),

ϵ := 4
(
(1− ηlR)2 + 3η2l L

2
)
σ2
g + 2η2l

(
2L2 + 1

)
σ2
l ,
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γt
∗ :=

αt
∗(N−K)+K

K ∈ [1, N
K ], ρ̂ := min{ρt}Tt=1, and β̄ := 1

T

∑T
t=1 β

t. Notably, the γt
∗ denotes the

benefits of utilizing optimal sampling respecting the communication budget K. And, ρt, βt and ϵ
absorb the learning rate techniques. It allows us to decouple the impacts of sampling quality Q(St).

Remark. The Equation 12 connects the expected regret in adaptive sampling with the conver-
gence rate of federated optimization to show the impacts of adaptive sampling techniques. For
example, we can combine 1

T

∑T
t=1 Q(St) with Definition 11 and Theorem 3.4 to know that

1
T

∑T
t=1 Q(St) ≤ Õ

(
N

1
3 /T

1
3K

4
3

)
. Comparing with previous bound Õ

(
N

1
3T

2
3

)
(Borsos et al.,

2018) and O
(
N

1
3T

2
3

)
(El Hanchi & Stephens, 2020), applying K-Vib sampler in FL achieves faster

convergence accordingly. Technically, the theory also provides a fair comparison for unbiased
samplers within the framework of Algorithm 1. Moreover, the Equation 12 matches the best-known
sub-linear convergence rate O(1/

√
T ) in the non-convex federated optimization (Li et al., 2019;

Reddi et al., 2020; Li et al., 2020), and hence verifies the rationality of our Assumption 3.1.

4 EXPERIMENTS

We evaluate the theoretical results via experiments on Synthetic datasets, where the data are generated
from Gaussian distributions (Li et al., 2020) and the model is logistic regression y = argmax(WTX+
b). We generate N = 100 clients of each has a synthetic dataset, where the size of each dataset
follows the power law. We also evaluate the proposed sampler on the standard federated learning tasks
Federated EMNIST (FEMNIST) from LEAF (Caldas et al., 2018). To better illustrate our theoretical
improvement, we use the FEMNIST tasks involving three degrees of unbalanced level (Chen et al.,
2020), including FEMNIST v1 (10% clients hold 82% training images), FEMNIST v2 (20% client
hold 90% training images) and FEMNIST v3 (50% client hold 98% training images). We use the
same CNN model as the one used in (McMahan et al., 2017). The data distributions across clients
are shown in Appendix, Figure 6.

Baselines. We demonstrate our improvement by comparison with the uniform sampling and other
"free" adaptive samplers including Multi-armed Bandit Sampler (Mabs) (Salehi et al., 2017), Variance
Reducer Bandit (Vrb) (Borsos et al., 2018) and Avare (El Hanchi & Stephens, 2020). As our focus
falls on sampling, we run T = 500 round for all tasks and use vanilla SGD optimizers with constant
step size for both clients and the server, with ηg = 1. To ensure a fair comparison, we set the
hyperparameters of all samplers to the optimal values prescribed in their respective original papers,
and the choice of hyperparameters is detailed in the Appendix. We run experiments with the same
random seed and vary the seeds across different runs. We present the mean performance with
the standard deviation calculated over five independent runs. The experiment implementations are
supported by FedLab framework (Zeng et al., 2023).

Theory Evaluation. We evaluate our theory on the Synthetic dataset task by setting local learning
rate ηl = 0.02, local epoch 1, and batch size 64. We utilize three metrics: (a) dynamic regret as
defined in Equation 6, (b) gradient variance in Equation 2, and (c) loss value on the test dataset. Our
theoretical evaluation is to demonstrate the following three points in our theory.

1) Approaching sub-optimal estimation. We use gradient variance as a metric to demonstrate
our theory of implementing a sub-optimal estimation. The results are presented in Figure 1. The
discrepancies between the optimal curve and the full-feedback curve demonstrate the vanishing
gaps given in Theorem 3.2. Besides, the vanishing differences between the full-feedback curve and
the partial-feedback curve prove that the K-Vib sampler implements a promising performance by
approaching the full-feedback results, as we proved in Theorem 3.4.
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Figure 4: Evaluation of samplers with dynamic regret (left), variance (middle), and test loss (right).
K-Vib outperforms baselines by establishing a lower dynamic regret. This process minimizes the
gradient variance and hence enables a faster convergence.
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Figure 5: Training loss and test accuracy of FedAvg with different unbiased samplers. We observe that
the K-Vib converges faster at early rounds. This is because the lower variance in estimates induces
faster convergence in Theorem 3.9 and the variance of K-Vib is lower compared with baselines at the
beginning as shown in Lemma 2.2. Meanwhile, the K-Vib sampler further enlarges the convergence
benefits during the training process and hence maintains the fast convergence speed. Horizontally
comparing the results, we observe that the discrepancies between K-Vib and baselines match the
degrees of variance across datasets. The variance slows the convergence of vanilla FedAvg but is
mitigated by the K-Vib sampler.

2) Speed up K and regularization γ. We present Figure 2 to prove the linear speed up in Theorem 3.4.
In detail, with the increase of budget K, the performance of the K-Vib sampler with regret metric
is reduced significantly. Due to page limitation, we provide further illustration examples of other
baselines in the same metric in the Appendix F. The results demonstrate our unique improvements
in theory. Besides, Figure 3 reveals the effects of regularization γ in Algorithm 2. The variance
reduction curve indicates that the K-Vib sampler is not sensitive to γ in the task.

3) Variance reduction comparison. We present the results with K = 10 in Figure 4 to showcase our
improvement with baseline samplers. The K-Vib outperforming baselines on online metrics prove our
theoretical improvement. Moreover, the variance of global estimates is significantly reduced. Hence,
the K-Vib achieves faster convergence shown in the test loss curve. We present additional results
respecting different K values in Appendix F, where we observe the same phenomenon in Figure 4.

Federated Optimization Evaluation. We present the evaluation results of the FEMNIST tasks with
communication round T = 500, batch size 20, local epochs 3, ηl = 0.01, and K = 111, 62, 23 as
5% of total clients. We report the convergence performance on FEMNIST tasks in Figure 5.

5 CONCLUSION AND FUTURE WORK

In this paper, we extended the line of unbiased sampling techniques in stochastic optimization
and explored its application on unbiased client sampling in federated optimization. Based on the
observation of the sampling procedure, we present an efficient K-Vib sampler that achieves a linear
speed up in online convex optimization metric and the best performance in classic FL tasks comparing
baselines. The mixing strategy can be improved by designing an optimization task on the server to
find the best additional estimation, which we will explore in future work. Besides, we will further
study the ability of the proposed sampler in cooperation with advanced federated learning algorithms,
such as adaptive optimization and learning rate techniques.
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han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Antonin Chambolle, Matthias J Ehrhardt, Peter Richtárik, and Carola-Bibiane Schonlieb. Stochastic
primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM
Journal on Optimization, 28(4):2783–2808, 2018.

Wenlin Chen, Samuel Horvath, and Peter Richtarik. Optimal client sampling for federated learning.
arXiv preprint arXiv:2010.13723, 2020.

Yae Jee Cho, Samarth Gupta, Gauri Joshi, and Osman Yağan. Bandit-based communication-efficient
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A RELATED WORK

Our paper contributes to the literature on the importance sampling in stochastic optimization, online
convex optimization, and client sampling in FL.

Importance Sampling. Importance sampling is a non-uniform sampling technique widely used
in stochastic optimization (Katharopoulos & Fleuret, 2018) and coordinate descent (Richtárik &
Takáč, 2016a). Zhao & Zhang (2015); Needell et al. (2014) connects the variance of the gradient
estimates and the optimal sampling distribution is proportional to the per-sample gradient norm. The
insights of sampling and optimization quality can be transferred into federated client sampling, as we
summarised below.

Online Variance Reduction. Our paper addresses the topic of online convex optimization for
reducing variance. Variance reduction techniques are frequently used in conjunction with stochastic
optimization algorithms (Defazio et al., 2014; Johnson & Zhang, 2013) to enhance optimization
performance. These same variance reduction techniques have also been proposed to quicken federated
optimization (Dinh et al., 2020; Malinovsky et al., 2022). On the other hand, online learning (Shalev-
Shwartz et al., 2012) typically employs an exploration-exploitation paradigm to develop decision-
making strategies that maximize profits. Although some studies have considered client sampling as a
multi-armed bandit problem, they have only provided limited theoretical results (Kim et al., 2020;
Cho et al., 2020a; Yang et al., 2021). In an intriguing combination, certain studies (Salehi et al., 2017;
Borsos et al., 2018; 2019) have formulated data sampling in stochastic optimization as an online
learning problem. These methods were also applied to client sampling in FL by treating each client
as a data sample in their original problem (Zhao et al., 2021; El Hanchi & Stephens, 2020).

Client Sampling in FL. Client sampling methods in FL fall under two categories: biased and
unbiased methods. Unbiased sampling methods ensure objective consistency in FL by yielding
the same expected value of results as global aggregation with the participation of all clients. In
contrast, biased sampling methods converge to arbitrary sub-optimal outcomes based on the specific
sampling strategies utilized. Additional discussion about biased and unbiased sampling methods
is provided in Appendix E.2. Recent research has focused on exploring various client sampling
strategies for both biased and unbiased methods. For instance, biased sampling methods involve
sampling clients with probabilities proportional to their local dataset size (McMahan et al., 2017),
selecting clients with a large update norm with higher probability (Chen et al., 2020), choosing clients
with higher losses (Cho et al., 2020b), and building a submodular maximization to approximate the
full gradients (Balakrishnan et al., 2022). Meanwhile, several studies (Chen et al., 2020; Cho et al.,
2020b) have proposed theoretically optimal sampling methods for FL utilizing the unbiased sampling
framework, which requires all clients to upload local information before conducting sampling action.
Moreover, cluster-based sampling (Fraboni et al., 2021; Xu et al., 2021; Shen et al., 2022) relies on
additional clustering operations where the knowledge of utilizing client clustering can be transferred
into other client sampling techniques.

B IMPORTANT CONCEPTS AND LEMMAS

B.1 ARBITRARY SAMPLING

In this section, we summarize the arbitrary sampling techniques and present key lemmas used in
this paper. Arbitrary sampling paradigm (Chambolle et al., 2018; Richtárik & Takáč, 2016a; Qu &
Richtárik, 2016) is used either for generating mini-batches of samples in stochastic algorithms or for
coordinate descent optimization.

In detail, let S denote a sampling, which is a random set-valued mapping with values in 2[N ], where
[N ] := {1, 2, . . . , N}. An arbitrary sampling S is generated by assigning probabilities to all 2N
subsets of [N ], which associates a probability matrix P ∈ RN×N defined by

Pij := Prob({i, j} ⊆ S).

Thus, the probability vector p = (p1, . . . , pN ) ∈ RN is composed of the diagonal entries of P, and
pi := Prob(i ∈ S). Furthermore, we say that S is proper if pi > 0 for all i. Thus, it incurs that

K := E[|S|] = Trace(P) =

N∑
i=1

pi.

14
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The definition of sampling can be naively transferred to the context of federated client sampling. We
refer to K as the expected number of sampled clients per round in FL. The following lemma plays a
key role in our problem formulation and analysis.
Lemma B.1 (Generalization of Lemma 1 Horváth & Richtárik (2019)). Let a1, a2, . . . , aN be vectors
in Rd and let ā =

∑N
i=1 λiai be their weighted average. Let S be a proper sampling. Assume that

there is v ∈ RN such that

P− ppT ⪯ Diag(p1v1, p2v2, . . . , pNvN ). (13)

Then, we have

ES∼p

[∥∥∥∥∑
i∈S

λiai
pi
− ā

∥∥∥∥2
]
≤

N∑
i=1

λ2
i

vi
pi
∥ai∥2, (14)

where the expectation is taken over sampling S. Whenever Equation equation 13 holds, is must be
the case that

vi ≥ 1− pi.

Moreover, The random sampling admits vi = N−K
N−1 .The independent sampling admits vi = 1− pi

and makes Equation equation 14 hold as equality.

Proof. Let Ii∈S = 1 if i ∈ S and Ii∈S = 0 otherwise. Similarly, let Ii,j∈S = 1 if i ∈ S and
Ii,j∈S = 0 otherwise. Note that E[Ii∈S ] = pi and E[Ii,j∈S ] = Pij . Then, we compute the mean of
estimates ã :=

∑
i∈S

λiai

pi
:

E[ã] = E[
∑
i∈S

λiai
pi

] = E[
N∑
i=1

λiai
pi

Ii∈S ] =

N∑
i=1

λiai
pi

E[Ii∈S ] =

N∑
i=1

λiai = ā.

Let A = [ζ1, . . . , ζN ] ∈ Rd×N , where ζi =
λiai

pi
, and let e be the vector of all ones in RN . We now

write the variance of ã in a form that will be convenient to establish a bound:

E[∥ã− E[ã]∥2] = E[∥ã∥2]− ∥E[ã]∥2

= E[∥
∑
i∈S

λai
pi
∥2]− ∥ā∥2

= E

∑
i,j

λia
⊤
i

pi

λjaj
pj

Ii,j∈S

− ∥ā∥2
=
∑
i,j

pij
λia

⊤
i

pi

λjaj
pj
−
∑
i,j

λiλja
⊤
i aj

=
∑
i,j

(pij − pipj) ζ
⊤
i ζj

= e⊤
((
P− pp⊤

)
◦A⊤A

)
e.

(15)

Since by assumption we have P− pp⊤ ⪯ Diag(p ◦ v), we can further bound

e⊤
((
P− pp⊤

)
◦A⊤A

)
e ≤ e⊤

(
Diag(p ◦ v) ◦A⊤A

)
e =

n∑
i=1

pivi ∥ζi∥2 . (16)

To obtain equation 14, it remains to combine equation 16 with equation 15. Since P − pp⊤ is
positive semi-definite (Richtárik & Takáč, 2016b), we can bound P− pp⊤ ⪯ NDiag(P− pp⊤) =
Diag(p ◦ v), where vi = N(1− pi).

Overall, arbitrary sampling that associates with a probability matrix P will determine the value of v.
As a result, we summarize independent sampling and random sampling as follows,

15
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• Consider now the independent sampling,

P−pp⊤ =


p1 (1− p1) 0 · · · 0

0 p2 (1− p2) · · · 0
...

...
. . .

...
0 0 · · · pn (1− pn)

 = Diag (p1v1, . . . , pnvn) ,

where vi = 1− pi. Therefore, independent sampling always minimizes equation 14, making
it hold as equality.

• Consider the random sampling,

P− pp⊤ =


K
N −

K2

N2

K(K−1)
N(N−1) · · · K(K−1)

N(N−1)
K(K−1)
N(N−1)

K
N · · · K(K−1)

N(N−1)

...
...

. . .
...

K(K−1)
N(N−1)

K(K−1)
N(N−1) · · · K

N

 .

As shown in (Horváth & Richtárik, 2019), the standard random sampling admits vi = N−K
N−1

for equation 14.

Conclusion. Given probabilities p that defines all samplings S satisfying pi = Prob(i ∈ S), it
turns out that the independent sampling (i.e., Pij = Prob(i, j ∈ S) = Prob(i ∈ S)Prob(j ∈ S) =
pipj) minimizes the upper bound in Equation equation 14. Therefore, depending on the sampling
distribution and method, we can rewrite the Equation equation 14 as follow:

V(a, p, λ) = ES∼p[∥
∑
i∈S

λiai
ai
− ā∥2] =

N∑
i=1

(1− pi)
λ2
i ∥ai∥2

pi︸ ︷︷ ︸
Independent Sampling

≤ N −K

N − 1

N∑
i=1

λ2
i ∥ai∥2

pi︸ ︷︷ ︸
Random Sampling

. (17)

B.2 AUXILIARY LEMMAS

Here are some common inequalities used in our analysis.

Lemma B.2. For an arbitrary set of n vectors {ai}ni=1, ai ∈ Rd,∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2 . (18)

Lemma B.3. For random variables z1, . . . , zr, we have

E
[
∥z1 + . . .+ zr∥2

]
≤ rE

[
∥z1∥2 + . . .+ ∥zr∥2

]
. (19)

Lemma B.4. For independent, mean 0 random variables z1, . . . , zr, we have

E
[
∥z1 + . . .+ zr∥2

]
= E

[
∥z1∥2 + . . .+ ∥zr∥2

]
. (20)

B.3 USEFUL LEMMAS AND COROLLARIES

In this section, we present some useful lemmas and their proofs for our theoretical analysis. We
first offer proof details for Lemma 2.3 with a general constraint. Then, we provide several Corollar-
ies B.7 B.8 B.9 for our analysis in the next section.

16
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Lemma B.5. Let 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N . We consider the following optimization
objective with a restricted probability space ∆ = {p ∈ RN |pmin ≤ pi ≤ 1,

∑N
i=1 pi = K,∀i ∈ [N ]}

where pmin ≤ K/N ,

minimizep∈∆ Ω(p) =

N∑
i=1

a2i
pi

subject to
N∑
i=1

pi = K,

pmin ≤ pi ≤ 1, i = 1, 2, . . . , N.

(21)

Proof. We formulate the Lagrangian:

L(p, y, α1, . . . , αN , β1, . . . , βN ) =

N∑
i=1

a2i
pi

+y ·
( N∑

i=1

pi−K
)
+

N∑
i=1

αi(pmin−pi)+

N∑
i=1

βi(pi−1).

(22)

The constraints are linear and KKT conditions hold. Hence, we have,

pi =

√
a2i

y − αi + βi
=


1, if

√
y ≤ ai.√

a2
i

y , if
√
y · pmin < ai <

√
y,

pmin, if ai ≤
√
y · pmin.

(23)

Then, we analyze the value of y. Letting l1 =
∣∣{i|ai ≤ √y·pmin}

∣∣, l2 = l1+|{√y·pmin < ai <
√
y}|,

N − l2 =
∣∣{i|√y ≤ ai}

∣∣, and using
∑N

i=1 pi = K implies,

N∑
i=1

pi =
∑
i≤l1

pi +
∑

l1<i<l2

pi +
∑
i≥l2

pi = l1 · pmin +
∑

l1<i<l2

√
a2i
y

+N − l2 = K.

Arrange the formula, we get
√
y =

∑
l1<i<l2

ai

K −N + l2 − l1 · pmin
. (24)

Moreover, we can plug the results into the objective to get the optimal result:

N∑
i=1

a2i
pi

=
∑
i≤l1

a2i
pi

+
∑

l1<i<l2

a2i
pi

+
∑

i≥N−l2

a2i
pi

=

∑
i≤l1

a2i
pmin

+
√
y(

∑
l1<i<l2

ai) +
∑

i≥N−l2

a2i

=

∑
i≤l1

a2i
pmin

+
(
∑

l1<i<l2
ai)

2

K −N + (l2 − l1 · pmin)
+

∑
i≥N−l2

a2i ,

(25)

where the 1 ≤ l1 ≤ l2 ≤ N satisfies that ∀i ∈ (l1, l2),

pmin ·
∑

l1<i<l2
ai

K −N + l2 − l1 · pmin
< ai <

∑
l1<i<l2

ai

K −N + l2 − l1 · pmin
.

In short, we note that if let pmin = 0, l1 = 0, the Lemma B.6/Lemma 2.3 is proved as a special case of
Equation 25. Besides, we provide further Corollary B.8 and B.9 as preliminaries for further analysis.
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Lemma B.6. Let 0 < a1 ≤ a2 ≤ · · · ≤ aN and 0 < K ≤ N . We consider the following optimization
objective,

minimizep∈RN Ω(p) =

N∑
i=1

a2i
pi

subject to
N∑
i=1

pi = K,

0 ≤ pi ≤ 1, i = 1, 2, . . . , N.

(26)

Then, we have

p∗i =

{
(K + l −N) ai∑l

j=1 aj
, if i ≤ l,

1, if i > l,
(27)

where l is the largest integer for which 0 < K + l −N ≤
∑l

i=1 ai

al
.

Connecting with the aforementioned assumptions, we provide an additional corollary below for
further analysis.

Corollary B.7. We note that K · aN ≤
∑N

i=1 ai can be always satisfied, if functions ai, i ∈ [N ] is
L-smooth. Thus, letting l = N , we have

argminΩ(p∗) =
(
∑N

i=1 ai)
2

K
.

Corollary B.8. Following Corollary B.7 and the assumption that functions ai, i ∈ [N ] is L-smooth,
thus l2 = N , and we can know that l1 is the largest integer that satisfies 0 < (K−l1 ·pmin)

al1∑N
i=l1

ai
<

pmin. The optimal value of the objective is,

argminΩ(p∗) =

∑
i≤l1

a2i
pmin

+
(
∑N

i=l1+1 ai)
2

K − l1 · pmin
.

We note that pmin = 0 incurs l1 = 1 will make this corollary return to Corollary B.7.

Corollary B.9. Letting l2 = N and following the assumption in Corollary B.8, we further bound the
value of the objective in Equation equation 21,

N∑
i=1

a2i
pi

=

∑
i≤l1

a2i
pmin

+
√
y(

∑
l1<i≤N

ai) ▷ Eq. equation 25, def. in line 2

=

∑
i≤l1

a2i
pmin

+ y(K − l1pmin) ▷ Eq. 24, replacing
∑

l1<i≤N

ai

≤ l1ypmin + y(K − l1pmin) ▷ Eq. 23, ai ≤
√
y · pmin

=
(
∑N

i=l1
ai)

2

(K − l1pmin)2
·K ≤

K(
∑N

i=l1
ai)

2

(K −Npmin)2

≤
K(
∑N

i=1 ai)
2

(K −Npmin)2
.

18
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C DETAIL PROOFS OF ONLINE CONVEX OPTIMIZATION FOR GRADIENT
VARIANCE REDUCTION

C.1 VANISING HINDSIGHT GAP: PROOF OF LEMMA 3.2

Proof. We first arrange the term (B) in Equation equation 7 as follows,

1

N2

(
min
p

T∑
t=1

ℓt(p)−
T∑

t=1

min
p

ℓt(p)

)
= min

p

1

N2

T∑
t=1

N∑
i=1

π2
t (i)

pi
−

T∑
t=1

min
p

1

N2

N∑
i=1

π2
t (i)

pi
. (28)

Here, we recall our mild Assumption 3.1,

π∗(i) := lim
t→∞

πt(i), Π∗ :=
1

N

N∑
i=1

π∗(i), ∀i ∈ [N ].

Then, denoting VT (i) :=
∑T

t=1(πt(i)− π∗(i))
2, we bound the cumulative variance over time T per

client i ∈ [N ],

π2
1:T (i) =

T∑
t=1

(π∗(i) + (πt(i)− π∗(i)))
2

≤T · π2
∗(i) + 2π∗(i)

T∑
t=1

|πt(i)− π∗(i)|+
T∑

t=1

(πt(i)− π∗(i))
2

≤T · π2
∗(i) + 2π∗(i)

√
T · VT (i) + VT (i)

=T
(
π∗(i) +

√
VT (i)/T

)2
.

(29)

Using the Lemma B.6 and non-negativity of feedback we have,

min
p

N∑
i=1

π2
t (i)

pi
=

(
∑N

i=1 πt(i))
2

K
. (30)

We obtain the upper bound of the first term in Equation equation 28,

min
p

1

N2

T∑
t=1

N∑
i=1

π2
t (i)

pi
=min

p

1

N2

N∑
i=1

π2
1:T (i)

pi
=

(∑N
i=1

√
π2
1:T (i)

)2
N2K

≤ T

K

(
1

N

N∑
i=1

π∗(i) +
1

N

N∑
i=1

√
VT (i)

T

)2

=

(
TΠ2

∗ + 2
√
TΠ∗

1

N

N∑
i=1

√
VT (i) +

( 1

N

N∑
i=1

√
Vt(i)

)2)
/K,

(31)

where we use Lemma B.6 in the second line, and Equation equation 29 in the third line.

Then, we bound the second term in Equation equation 28:

N2 ·Π2
∗ =

N∑
i=1

π2
∗(i) ≤

(
1

T

T∑
t=1

N∑
i=1

πt(i)

)2

≤ 1

T

T∑
t=1

(

N∑
i=1

πt(i))
2

=
K

T

T∑
t=1

min
p

N∑
i=1

π2
t (i)

pi
,

(32)

where the first line uses the average assumption, the third line uses Jensen’s inequality, and the last
line uses Equation equation 30.
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Overall, we combine the results in Equation equation 31 and equation 32, and conclude the proof:

1

N2

[
min
p

T∑
t=1

ℓt(p)−
T∑

t=1

min
p

ℓt(p)

]
≤ 2
√
TΠ∗

1

NK

N∑
i=1

√
VT (i) +

( 1

NK

N∑
i=1

√
VT (i)

)2
. (33)

C.2 REGRET OF FULL FEEDBACK

Theorem C.1 (Static regret with full feedback). Under Assumptions 3.1, sampling a batch of clients
with an expected size of K, and setting γ = G2, the FTRL scheme in Equation 8 yields the following
regret,

1

N2

(
T∑

t=1

ℓt(p
t)−min

p

T∑
t=1

ℓt(p)

)
≤ 27G

NK

N∑
i=1

√
π2
1:T (i) +

22G2

K
, (34)

where we note the cumulative feedback
√

π2
1:T (i) ≤ O(

√
T ) following Assumption 3.1.

Proof. We considering a restricted probability space ∆ = {p ∈ RN |pi ≥ pmin,
∑N

i=1 pi = K,∀i ∈
[N ]} where pmin ≤ K/N . Then, we decompose the regret,

N2 · RegretFTRL(T ) =

T∑
t=1

ℓt(p
t)−min

p∈∆

T∑
t=1

ℓt(p)︸ ︷︷ ︸
(A)

+min
p∈∆

T∑
t=1

ℓt(p)−min
p

T∑
t=1

ℓt(p)︸ ︷︷ ︸
(B)

. (35)

We separately bound the above terms in this section. The bound of (A) is related to the stability of
the online decision sequence by playing FTRL, which is given in Lemma C.2. Term (B) is bounded
by the minimal results of directing calculation.

Bounding (A). Without loss of generality, we introduce the stability of the online decision sequence
from FTRL to variance function ℓ as shown in the following lemma(Kalai & Vempala, 2005) (proof
can also be found in (Hazan, 2012; Shalev-Shwartz et al., 2012)).

Lemma C.2. Let K be a convex set andR : K 7→ R be a regularizer. Given a sequance of functions
{ℓt}t∈[T ] defined over K, then setting pt = argminp∈RN

∑t−1
τ=1 ℓτ (p) +R(p) ensures,

T∑
t=1

ℓt(p
t)−

T∑
t=1

ℓt(p) ≤
T∑

t=1

(ℓt(p
t)− ℓt(p

t+1)) + (R(p)−R(p1)),∀p ∈ K.

We note thatR(p) =
∑N

i=1 γ/pi in our work. Furthermore,R(p) is non-negative and bounded by
Nγ/pmin with p ∈ ∆. Thus, the above lemma incurs,

T∑
t=1

ℓt(p
t)−

T∑
t=1

ℓt(p) ≤
T∑

t=1

(ℓt(p
t)− ℓt(p

t+1))︸ ︷︷ ︸
Bounded Below

+
Nγ

pmin
. (36)

To simply the following proof, we assume that 0 < f1(t) ≤ f2(t) ≤ · · · ≤ fN (t), t ∈ [T ] to satisfies
Lemma B.6 without the loss of generality.

We recall that the closed form solution for the probability pti of the i-th client at the time t in
Lemma B.6,

pti =
K
√

f2
1:t−1(i) + γ

ct
,
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where ct =
∑N

i=1

√
f2
1:t−1(i) + γ is the normalization factor. Noting that {ct}t∈[T ] is a non-

decreasing sequence. Then, we further bound the first term in the above inequality,

T∑
t=1

(ℓt(p
t)− ℓt(p

t+1)) =

T∑
t=1

N∑
i=1

π2
t (i) ·

(
1

pti
− 1

pt+1
i

)

=

T∑
t=1

N∑
i=1

π2
t (i)

K
·

(
ct√

f2
1:t−1(i) + γ

− ct+1√
π2
1:t(i) + γ

)

≤
T∑

t=1

N∑
i=1

π2
t (i)

K
·

(
ct√

f2
1:t−1(i) + γ

− ct√
π2
1:t(i) + γ

)
▷ct ≤ ct+1

=

T∑
t=1

N∑
i=1

π2
t (i) · ct

K
√

π2
1:t(i) + γ

·

(√
1 +

π2
t (i)

f2
1:t−1(i) + γ

− 1

)

≤ cT
2K

T∑
t=1

N∑
i=1

πt(i)
4√

π2
1:t(i) + γ · (f2

1:t−1(i) + γ)
▷
√
1 + x− 1 ≤ x

2

Moreover, we observe that π2
1:t(i) ≤ f2

1:t−1(i) + γ and
√

π2
1:t(i) ≤

√
π2
1:t(i) + γ. Letting γ = G2,

and following Lemma 13 in (Borsos et al., 2018), we conclude this bound,

T∑
t=1

(ℓt(p
t)− ℓt(p

t+1)) ≤ cT
2K

T∑
t=1

N∑
i=1

πt(i)
4

(f2
1:t(1))

3
2

=
√
L · cT

2K

T∑
t=1

N∑
i=1

πt(i)
4/L4

(f2
1:t(1)/G

2)
3
2

≤

(
22N
√
L ·

N∑
i=1

√
f2
1:T−1(i) +G2

)
/K

≤

(
22N
√
L ·

N∑
i=1

√
π2
1:T (i) + 22N2G2

)
/K

(37)

Then, we can get the final bound of (A) by plugging Equation equation 37 into Equation equation 36
and summarizing as follows,

T∑
t=1

ℓt(p
t)−

T∑
t=1

ℓt(p) ≤
22NG

K
·

N∑
i=1

√
π2
1:T (i) +

22N2G2

K
+

NG2

pmin
.

Bounding (B). Letting ai =
√
π2
1:T (i) and combining Corollaries B.7, B.8 and B.9, we bound the

term (B) as follows,

min
p∈∆

T∑
t=1

ℓt(p)−min
p

T∑
t=1

ℓt(p)

≤
K(
∑N

i=1 ai)
2

(K −Npmin)2
−

(
∑N

i=1 ai)
2

K

≤
( K

(K −Npmin)2
− 1

K

)
·

(
N∑
i=1

√
π2
1:T (i)

)2

≤6Npmin

K2
·

(
N∑
i=1

√
π2
1:T (i)

)2

(38)
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In the last line, we use the fact that 1
(1−x)2 − 1 ≤ 6x for x ∈ [0, 1/2]. Hence, we scale the coefficient

K

(K −Npmin)2
− 1

K
=

1

K

[ 1

(1−Npmin/K)2
− 1
]
≤ 6Npmin

K2
,

where we let pmin ≤ K/(2N).

Summary. Setting γ = G2, and combining the bound in Equation equation 36 and Equation equa-
tion 38, we have,

N2 · RegretFTRL(T ) =

T∑
t=1

ℓt(p
t)−min

p

T∑
t=1

ℓt(p)

≤22NG

K
·

N∑
i=1

√
π2
1:T (i) +

22N2G2

K
+

NG2

pmin
+

6Npmin

K2
·

(
N∑
i=1

√
π2
1:T (i)

)2

.

(39)

The pmin is only relevant for the theoretical analysis. Hence, the choice of it is arbitrary, and we
can set it to pmin = min

{
K/(2N), GK/(

√
6
∑N

i=1

√
π2
1:T (i))

}
which turns the upper bound to the

minimal value. Hence, we yield the final bound of FTRL in the end,

RegretS(T ) ≤
27G

NK

N∑
i=1

√
π2
1:T (i) +

22G2

K
(40)

C.3 EXPECTED REGRET OF PARTIAL FEEDBACK: PROOF OF THEOREM 3.4

Proof. Using the property of unbiasedness, we have

1

N2
min
p

E[
T∑

t=1

ℓt(p̃
t)−

T∑
t=1

ℓt(p)]

=
1

N2
min
p

E[
T∑

t=1

ℓ̃t(p̃
t)−

T∑
t=1

ℓ̃t(p)]

=
1

N2
E
[ T∑

t=1

ℓ̃t(p̃
t)−

T∑
t=1

ℓ̃t(p
t)
]

︸ ︷︷ ︸
(A)

+
1

N2
min
p

E
[ T∑

t=1

ℓ̃t(p
t)−

T∑
t=1

ℓt(p)
]

︸ ︷︷ ︸
(B)

.

(41)

Bounding (A). We recall that p̃ti ≥ θK
N for all t ∈ [T ], i ∈ [N ] due to the mixing. Meanwhile,

pti ≥ K/N implies p̃ti ≥ K/N . Thus, we have

1

p̃ti
− 1

pti
= θ ·

pti − K
N

p̃tip
t
i

≤ θ · pti
p̃tip

t
i

=
θ

p̃ti
≤ θ · N

K
.

Moreover, if pti ≤ K/N , the above inequality still holds. We extend the (A) as follows,

N2 · (A) := E
[ T∑

t=1

ℓ̃t(p̃
t)−

T∑
t=1

ℓ̃t(p
t)
]

= E
[ T∑

t=1

N∑
i=1

π̃2
t (i)

( 1

p̃ti
− 1

pti

)]
≤ θ · N

K
· E
[ T∑

t=1

N∑
i=1

π̃2
t (i)

]
≤ θG2TN2

K
,
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where we use E[π̃2
t (i)] = π2

t (i) ≤ G2.

Bounding (B). We note that pt is the decision sequence playing FTRL with the mixed cost functions.
Thus, we combine the mixing bound of feedback (i.e., π̃2

t (i) ≤ G2N
θK ) and Theorem C.1. Replacing

G2 with G2N
θK , we get

1

N2

(
T∑

t=1

ℓ̃t(p
t)−min

p

T∑
t=1

ℓ̃t(p)

)
≤ 27G√

θNK3
· E

[
N∑
i=1

√
π̃2
1:T (i)

]
+

22G2N

θK2
.

Summary. Using Jensen’s inequality, we have E
[∑N

i=1

√
π̃2
1:T (i)

]
≤
∑N

i=1

√
E[π̃2

1:T (i)] =∑N
i=1

√
π2
1:T (i). Finally, we can get the upper bound of the regret in partial-bandit feedback,

1

N2
min
p

E[
T∑

t=1

ℓt(p̃
t)−

T∑
t=1

ℓt(p)] ≤
θG2T

K
+

27G√
θK3N

·
N∑
i=1

√
π2
1:T (i) +

22NG2

θK2
. (42)

Note that we can optimize the upper bound of regret in terms of θ. Besides, θ is independent on
T . Using the bound

∑N
i=1

√
π2
1:T (i) ≤ NG

√
T , we set θ = ( N

TK )
1
3 to get the minimized bound.

Additionally, we are pursuing an expected regret, which is Regret(S)(T ) in the original definition in
Equation equation 7. Using the unbiasedness of the mixed estimation and modified costs, we can
obtain the final bound:

E[Regret(S)(T )] = E[
T∑

t=1

ℓt(p̃
t)−min

p

T∑
t=1

ℓt(p)]

= E[
T∑

t=1

ℓt(p̃
t)−min

p

T∑
t=1

ℓ̃t(p)] + E[min
p

T∑
t=1

ℓ̃t(p)−min
p

T∑
t=1

ℓt(p)]

≤ O
(
N

1
3T

2
3 /K

4
3

)
+ E[min

p

T∑
t=1

ℓ̃t(p)−min
p

T∑
t=1

ℓt(p)]

≤ Õ
(
N

1
3T

2
3 /K

4
3

)
,

where the last inequality uses the conclusion in Theorem 8 (Borsos et al., 2018), which induces an
additional log term.

D DETAILS PROOFS OF CONVERGENCE GUARANTEES

We start our convergence analysis with a clarification of the concepts of optimal independent sampling.
Considering an Oracle always outputs the optimal probabilities p∗, we have,

δt∗ = E

∥∥∥∥∥∑
i∈S∗

λig
t
i

p∗i
−

N∑
i=1

λig
t
i

∥∥∥∥∥
2
 = E

[
N∑
i=1

1− p∗i
p∗i
∥g̃ti∥2

]
,

where we have ∥g̃ti∥2 = ∥λig
t
i∥2.

Then, we plug the optimal probability in Equation 27 into the above equation to obtain

δt∗ = E

[
N∑
i=1

1− p∗i
p∗i
∥g̃ti∥2

]
= E

 1

K − (N − l)

(
l∑

i=1

∥g̃ti∥

)2

−
l∑

i=1

∥g̃ti∥2
 .
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Using the fact that K∥g̃tN∥ ≤
∑N

i=1 ∥g̃ti∥, we have

δt∗ ≤ E

 1

K

(
N∑
i=1

∥g̃ti∥

)2

−
N∑
i=1

∥g̃ti∥2


= E

 1

K

(
N∑
i=1

∥g̃ti∥

)2
1−K

∑N
i=1 ∥g̃ti∥2(∑N
i=1 ∥g̃ti∥

)2



≤ N −K

NK
E

( N∑
i=1

∥g̃ti∥

)2
 .

For an independent uniform sampling St ∼ U(pi = K
N ) , we have

δt := E

∥∥∥∥∥∑
i∈St

λi

pi
gti −

N∑
i=1

λig
t
i

∥∥∥∥∥
2
 = E

[
N∑
i=1

1− K
N

K
N

∥g̃ti∥2
]
=

N −K

K
E

[
N∑
i=1

∥g̃ti∥2
]

For a uniform random sampling St ∼ U(pi = K
N ), we have

δU := E

∥∥∥∥∥∑
i∈St

λi

pi
gti −

N∑
i=1

λig
t
i

∥∥∥∥∥
2
 ≤ N −K

N − 1

N

K
E

[
N∑
i=1

∥g̃ti∥2
]
. (43)

Putting Equations together induces the improvement factor of optimal independent sampling respect-
ing uniform random sampling:

αt
∗ :=

δt∗
δU

=

E
[∥∥∥∑i∈S∗

λi

p∗
i
gti −

∑N
i=1 λig

t
i

∥∥∥2]
E
[∥∥∥∑i∈St

λi

pi
gti −

∑N
i=1 λigti

∥∥∥2] ≤
(N − 1)E

[(∑N
i=1 ∥g̃ti∥

)2]
N2E

[∑N
i=1 ∥g̃ti∥2

] <

E
[(∑N

i=1 ∥g̃ti∥
)2]

NE
[∑N

i=1 ∥g̃ti∥2
] ≤ 1.

(44)

Now we are ready to give our convergence analysis in detail.

Proof. We recall the updating rule during round t as:

xt+1 = xt − ηg
∑
i∈St

λig
t
i

pti
= xt − ηgd

t,where gti = xt − xt,R
i = ηl

R∑
r=1

∇Fi(x
t,r−1
i ).

Notation. For clear notation, we denote W = max{λi}i∈[N ], γt
∗ =

(N−K)αt
∗+K

K .

Upper bound of local drift. We need the upper bound of local drift at first. For r ∈ [R], we have

E
[∥∥gti∥∥2] =E

∥∥xt,r
i − xt

∥∥2 = E
∥∥∥xt,r−1

i − xt − ηl∇Fi(x
t,r−1
i )

∥∥∥2
=E

∥∥∥xt,r−1
i − xt − ηl

(
∇Fi(x

t,r−1
i )±∇fi

(
xt,r−1
i

)
±∇fi

(
xt
))∥∥∥2

≤
(
1 +

1

2R− 1

)
E
∥∥∥xt,r−1

i − xt
∥∥∥2 + 3E

∥∥∥ηl (∇Fi(x
t,r−1
i )−∇fi

(
xt,r−1
i

))∥∥∥2
+ 3E

[∥∥∥ηl (∇fi (xt,r−1
i

)
−∇fi

(
xt
))∥∥∥2]+ 3E

[∥∥ηl (∇fi (xt
))∥∥2]

≤
(
1 +

1

2R− 1
+ 3η2l L

2

)
E
∥∥∥xt,r−1

i − xt
∥∥∥2 + η2l (σ

2
l + 3

∥∥∇fi (xt
)∥∥2)
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Unrolling the recursion, we obtain

E
∥∥xt,r

i − xt
∥∥2 ≤ r−1∑

p=0

(
1 +

1

2R− 1
+ 3η2l L

2

)p

η2l

(
σ2
l + 3

∥∥∇fi (xt
)∥∥2)

≤(R− 1)

[(
1 +

1

R− 1

)R

− 1

]
η2l

(
σ2
l + 3

∥∥∇fi (xt
)∥∥2)

≤5Rη2l

(
σ2
l + 3

∥∥∇fi (xt
)∥∥2) ≤ η2l

(
σ2
l + 3

∥∥∇fi (xt
)∥∥2) ,

(45)

where we use the fact that (1 + 1
R−1 )

R ≤ 5 for R > 1 and replace ηl ≤ 1√
5R

ηl. Therefore, we have

N∑
i=1

λ2
i ∥gti∥2 ≤

N∑
i=1

λ2
i η

2
l

(
σ2
l + 3

∥∥∇fi (xt
)∥∥2) ≤Wη2l (σ

2
l + 3σ2

g + 3∥f(xt)∥2), (46)

where we use the fact by Assumption 3.7 that
∑N

i=1 λi∥∇fi(xt)∥2 ≤ ∥∇f(xt)∥2 + σ2
g .

Descent lemma. Using the smoothness of f and taking expectations conditioned on x and over the
sampling St, we have

E
[
f(xt+1)

]
= f(xt − ηgd

t) ≤ f(xt)− ηg
〈
∇f(xt), dt

〉
+

L

2
η2gE

[
∥dt∥2

]
≤ f(xt)− ηg∥∇f(xt)∥2 + ηg

〈
∇f(xt),∇f(xt)− dt

〉
+

L

2
η2gE

[
∥dt∥2

]
≤ f(xt)− ηg

2
∥∇f(xt)∥2 + ηg

2
E
[
∥∇f(xt)− dt∥2

]
+

L

2
η2gE

[
∥dt∥2

]
,

(47)

where the last inequality follows since ⟨a, b⟩ ≤ 1
2∥a∥

2 + 1
2∥b∥

2,∀a, b ∈ Rd.
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We first investigate the expectation gap between global first-order gradient and utilized global
estimates,

E
[∥∥∇f(xt)− dt

∥∥2] = E

∥∥∥∥∥
N∑
i=1
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∥∥∥∥∥
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∥∥∥∥∥
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(48)
where we plug equation 46 at the last. If we replace ηl ≤ 1

Rηl and use the fact that W is proportional
to 1

N (omit factor NW ), we have

ηg
2
E
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Now, we focus on the quality of estimates,

E
[
∥dt∥2
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.

(50)

Here, we note that Q(St) is the main point in this paper. The term (A) indicates the intrinsic gap
for a sampling Oracle to approach its targets and the quality of the targets for optimization. Using
definition in equation 43 and equation 44, we have
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where γt
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K ∈ [1, N
K ] as we defined before. Then, we have
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(51)

where we let N
2(N−1) ≤ 1 the last inequality for simplicity of notation.

Putting together. Substituting corresponding terms in equation 47 with equation 49 and equation 51
to finish the descent lemma, we have

E
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L
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(52)
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Then, we rearrange the terms to obtain

E
[
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Taking a full expectation on both side and rearranging equation 52 and setting ηg ≤ 1
L to adapt L, we

obtain

ρtE∥∇f(xt)∥2 ≤ 2(E[f(xt)]− E[f(xt+1)])

ηg
+ βtηg + ϵ+Q(St), (54)

where we define
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,
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)
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Taking averaging of both sides of Equation 54 over from time 1 to T , we have
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T
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]
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Tηg
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t. Then, taking upper bound E
[
f(x1)− f(x+∞)

]
≤ M , ρ̂ := min{ρt}Tt=1,

setting ηg =
√
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to minimize the upper bound, ηl ≤ min( 1
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), we have
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,

which concludes the proof.

E FURTHER DISCUSSIONS

E.1 A SKETCH OF PROOF WITH CLIENT STRAGGLERS

We note the possibility that some clients are unavailable to participants due to local failure or being
busy in each round. To extend our analysis to the case, we assume there is a known distribution of
client availability A such that a subset At ∼ A of clients are available at the t-th communication
round. Let qi = Prob(i ∈ At) denote the probability that client i is available at round t. Based on the
setting, we update the definition of estimation gt:

gt :=
∑

i∈St⊆At

λig
t
i

qipti
,

where St ⊆ At indicates that we can only sample from available set. Then, we apply the estimation
to variance and obtain the following target:

Regret(T ) =
1

N2

(
T∑

t=1

N∑
i=1

π2
t (i)

qipi
−

T∑
t=1

min
p

N∑
i=1

π2
t (i)

qipi

)
.

Analogous to our analysis in Appendix C, we could obtain a similar bound of the above regret that
takes the availability into consideration.

E.2 DIFFERENCES BETWEEN BIASED CLIENT SAMPLING METHODS

This section discusses the main differences between unbiased client sampling and biased client
sampling methods. The proposed K-Vib sampler is an unbiased sampler for the first-order gradient
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of objective 1. Recent biased client sampling methods include Power-of-Choice (POC) (Cho et al.,
2020b) and DivFL (Balakrishnan et al., 2022). Concretely, POC requires all clients to upload local
empirical loss as prior knowledge and selects clients with the largest empirical loss. DivFL builds
a submodular based on the latest gradient from clients and selects clients to approximate all client
information. Therefore, these client sampling strategies build a biased gradient estimation that may
deviate from a fixed global goal.

FL with biased client sampling methods, such as POC and DivFL, can be considered dynamic
re-weighting algorithms adjusting pi. Analogous to the Equation 1, the basic objective of FL with
biased client sampling methods can be defined as follows (Li et al., 2020; Balakrishnan et al., 2022;
Cho et al., 2020b):

min
x∈X

f(x) :=

N∑
i=1

pifi(x) :=

N∑
i=1

piEξi∼Di
[Fi(x, ξi)], (55)

where p is the probability simplex, and pi is the probability of client i being sampled. The gradient
estimation is defined as gt = 1

K

∑
i∈St gi accordingly. The targets of biased FL client sampling are

determined by the sampling probability p as a replacement of λ in the original FedAvg objective 1.
Typically, the value of p is usually dynamic and implicit.

E.3 THEORETICAL COMPARISON WITH OSMD

The K-Vib sampler proposed in this paper is orthogonal with the recent work OSMD sampler Zhao
et al. (2022)4 in theoretical contribution. We justify our points below:

a) According to Equations (6) and (7) in OSMD, it proposes an online mirror descent procedure that
optimizes the additional estimates to replace the mixing strategy in Vrb Borsos et al. (2018). The
approach can be also utilized as an alternative method in Equation 9.

b) The improvement of the K-Vib sampler is obtained from the modification of the sampling procedure.
In contrast, the OSMD still follows the conventional random sampling procedure, as we discussed
in Lemma 2.2. Hence, our theoretical findings of applying the independent sampling procedure in
adaptive client sampling can be transferred to OSMD as well.

In short, the theoretical improvement of our work is different from the OSMD sampler. And, our
insights about utilizing the independent sampling procedure can be used to improve the OSMD
sampler. Meanwhile, the OSMD also suggests future work for the K-Vib sampler in optimizing the
additional estimates procedure instead of mixing.

F EXPERIMENTS DETAILS

Distribution of Datasets. The data distribution across clients is shown in Figure 6. The task setting
follows the FL literature (Li et al., 2020; Chen et al., 2020).

Hyper-parameters Setting. For all samplers, there is an implicit value G (Lipschitz gradient)
related to the hyper-parameters. We set G = 0.01 for the Synthetic dataset task and G = 0.1 for
FEMNIST tasks. We set η = 0.4 for Mabs (Salehi et al., 2017) as suggested by the original paper.
Vrb Borsos et al. (2018) also utilize mixing strategy θ = (N/T )

1
3 and regularization γ = G2 ∗N/θ.

For the case that N > T in FEMNIST tasks, we set θ = 0.3 following the official source code5. For
Avare El Hanchi & Stephens (2020), we set pmin = 1

5N , C = 1
1
N −pmin

and δ = 1 for constant-stepsize

as suggested in Appendix D of original paper. For the K-Vib sampler, we set θ = ( N
TK )1/3 and

γ = G2 N
Kθ . We also fix γ and θ = 0.3 for our sensitivity study in Figure 3.

Baselines with budget K. Our theoretical results in Theorem 3.4 and empirical results in Figure 2
reveal a key improvement of our work, that is, the linear speed up in online convex optimization.
In contrast, we provide additional experiments with the different budget K in Figure 7. Baseline
methods do not preserve the improvement property respecting large budget K in adaptive client

4we refer to the latest version https://arxiv.org/pdf/2112.14332.pdf
5https://github.com/zalanborsos/online-variance-reduction
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Figure 6: Distributed of federated datasets.
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Figure 7: Regret of baseline algorithms with different K

sampling for variance reduction. Moreover, with the increasing communication budget K, the optimal
sampling value is decreasing. As a result, the regret of baselines increases in Figure 7, indicating the
discrepancy to the optimal is enlarged.
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