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ABSTRACT

This paper proposes a generalized exact path kernel gEPK which naturally de-
composes model predictions into localized input gradients or parameter gradients.
Many cutting edge out-of-distribution (OOD) detection methods are in effect pro-
jections onto a reduced representation of the gEPK parameter gradient subspace.
This decomposition is also shown to map the significant modes of variation that
define how model predictions depend on training input gradients at arbitrary test
points. These local features are independent of architecture and can be directly
compared between models. Furthermore this method also allows measurement of
signal manifold dimension and can inform theoretically principled methods for
OOD detection on pre-trained models.

1 INTRODUCTION

Out-of-distribution (OOD) detection for machine learning models is a new, quickly growing field
important to both reliability and robustness (Hendrycks & Dietterich, 2019; Biggio et al., 2014;
Hendrycks & Gimpel, 2017; Silva et al., 2023; Yang et al., 2021; ?). Recent results have empirically
shown that parameter gradients are highly informative for OOD detection (Behpour et al., 2023; ?;
Huang et al., 2021a). To our knowledge, this paper is the first to present theoretical justifications
which explain the surprising effectiveness of parameter gradients for OOD detection.

In this paper, we unite empirical insights in cutting edge OOD with recent theoretical development
in the representation of finite neural network models with tangent kernels (Bell et al., 2023; Chen
et al., 2021b; Domingos, 2020). Both of these bodies of work share approaches for decomposing
model predictions in terms of parameter gradients. However, the Exact Path Kernel (EPK) (Bell
et al., 2023) provides not only rigorous theoretical foundation for the use of this method for OOD,
but also naturally defines other decompositions which deepen and expand our understanding of
model predictions. The application of this theory is directly connected to recent state of the art OOD
detection methods.

In addition, this paper provides a connection between tangent kernel methods and dimension estima-
tion. At the core of this technique is the ability to extract individual training point sensitivities on test
predictions. This paper demonstrates a generalization (the gEPK) of the EPK from Bell et al. (2023),
which can exactly measure the input gradient ∇xtrainf(xtest; θtrained). It is shown that this quantity
provides all necessary information for measuring the dimension of the signal manifold Srinivas et al.
(2023) around a given test point.

In short, this work leverages the gEPK to:

• Generalize and explain the success of recent successful methods in OOD.
• Showcase OOD using natural gEPK based decomposition of model predictions in terms of

parameter gradients.
• Measure exact input variations and signal manifold dimension around arbitrary test points.

The primary contributions of this paper are theoretical in nature: establishing useful decompositions
based on the exact representation theorem in Section 3 and writing several leading OOD detection
methods in terms of this representation. The preliminary experimental results also support practical
tasks of out-of-distribution (OOD) detection and estimating signal manifold dimension.
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Figure 1: The gEPK naturally provides a measure of input dimension. This plot shows the CDF of the
explained variation of training point sensitivities ∇xtrainf(xtest; θtrained). Different datasets are color
coded to show differences in signal dimension. Decomposing the input space in this way provides a
view of the signal dimension around individual test points. For a toy problem (3 Gaussian distributions
embedded in 100 dimensional space) the model only observes between 2 and 3 unique variations
which contribute to 95% of the information required for prediction. Meanwhile the dimension of the
signal manifold observed by the model around MNIST and CIFAR test points is approximately 94
and 1064 respectively.

2 RELATED WORK

While there has been a significant amount of recent work studying the Neural Tangent Kernel
(NTK) (Jacot et al., 2018), there is still relatively little work exploring its exact counterpart, the path
kernels (Bell et al., 2023; Chen et al., 2021b; Domingos, 2020). While these other works are focused
on the precise equivalence between artificial neural networks and SVMs or Kernel machines, this
equivalence requires significant restrictions placed on the loss function and model used for a task.
This paper seeks to take advantage of this exact representation style without imposing such strict
requirements. To the best of our knowledge, this is the first work exploring this loosened equivalence.

There are several schools of thought, whether OOD data can be learned (Huang & Li, 2021; Mohseni
et al., 2020; He et al., 2015; Pillai et al., 2013; Fumera & Roli, 2002), which part of a model should
be interrogated in order to identify OOD examples (Liu et al., 2020; Lin et al., 2021), whether it is a
purely statistical question (Lee et al., 2018), or whether it can simply be solved with more data (Chen
et al., 2021a; De Silva et al.). The best performing recent approaches have all used relatively simple
modifications of model activation or model gradients (Djurisic et al., 2023; Xu et al., 2023; Sun
& Li, 2022; Sun et al., 2021). The first methods we explore relates to the use of model gradients
to construct statistics which separate in-distribution (ID) examples from OOD examples. This is
fundamentally a geometric approach which should be comparable with the method proposed by Sun
et al. (2022) (Gillette & Kur, 2022). The first prominent method of this type was proposed by Liang
et al. (2018). ODIN is still a notable method in this space, and has been followed by many more
gradient based approaches (Behpour et al., 2023; Huang et al., 2021b) and has caused some confusion
about why these methods work so well (Igoe et al., 2022)

Much recent work has been devoted to measurement of dimension for the subspace in which the input
data distribution live for machine-learning tasks. We will partition this work into works trying to
understand this intrinsic data dimension in model agnostic ways (Gillette & Kur, 2022; Yousefzadeh,
2021; Kaufman & Azencot, 2023; Gilmer et al., 2018; Gong et al., 2019; Glielmo et al., 2022; Facco
et al., 2018; Levina & Bickel, 2004) and works trying to understand or extract model’s understanding
of this subspace (Dominguez-Olmedo et al., 2023; Ansuini et al., 2019; Talwalkar et al., 2008;
Costa & Hero, 2004b; Giryes et al., 2014; Zheng et al., 2022). This paper proposes a new method
which bears more similarity to the latter. We believe that this approach is more relevant for studying
ANNs since they discover their own metric spaces. Understanding signal manifolds is both useful in
practice for more efficient low rank models (Yang et al., 2020; Swaminathan et al., 2020), and also
for uncertainty quantification and robustness (Costa & Hero, 2004a; Wang et al., 2021; Khoury &
Hadfield-Menell, 2018; Srinivas et al., 2023; Song et al., 2018; Snoek et al., 2019).
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3 THEORETICAL JUSTIFICATION : EXACT PATH KERNEL DECOMPOSITION

The theoretical foundation of this starts with a modified general form of an recent exact path kernel
representation result from Bell et al. (2023). We will reuse the structure of the Exact Path Kernel
(EPK) without relying on the reduction to a single kernel across training steps. In order to increase
generality, we will not assume the inner products may be reduced across steps, resulting in a
representation which is no longer strictly a kernel. This representation however, will allow exact
and careful decomposition of model predictions according to both input gradients and parameter
gradients without the strict requirements of the EPK. The function, φs,t(x), in the EPK sum defines a
bilinear subspace, the properties of which we will study in detail. The primary difference between
the representation we propose and the original EPK is the EPK maintained symmetry at the cost of
continuity, on the other hand the gEPK does not introduce a discontinuity.
Theorem 3.1 (Generalized Exact Path Kernel (gEPK)). Suppose f(·; θ) : Rd → Rk is a differentiable
parametric model with parameters θs ∈ RM and L is a loss function. Furthermore, suppose that
f has been trained by a series {s}Ss=0 of discrete steps composed from a sum of loss gradients for
the training set

∑N
i ε∇θL(f(xi), yi) on N training data XT starting from θ0, with learning rate

ε; as is the case with traditional gradient descent. Let t ∈ [0, 1] be an interpolation variable which
parameterizes the line connecting any θs to θs+1 so that θs(t) = θs + t(θs+1 − θs). Then for an
arbitrary test point x, the trained model prediction f(x; θS) can be written:

f(x; θS) = f(x; θ0) +

N∑
i=1

S∑
s=1

ε

(∫ 1

0

φs,t(x)dt

)
L′(f(xi; θs), yi) (φs,0(xi)) (1)

L′(a, b) =
dL(a, b)

db
(2)

φs,t(x) ≡ ∇θf(x; θs(t)), (3)
θs(t) ≡ θs(0) + t(θs+1(0)− θs(0)), and (4)
ŷθs(0) ≡ f(x; θs(0)). (5)

Proof. Guided by the proof for Theorem 6 from Bell et al. (2023), let θ and f(·; θ) satisfy the
conditions of Theorem 3.1, and x be an arbitrary test point. We will measure the change in prediction
during one training step from ŷs = f(x; θs) to ŷs+1 = f(x; θs+1) according to its differential
along the interpolation from θs to θs+1. Since we are training using gradient descent, we can write

θs+1 ≡ θs +
dθs(t)

dt
. We derive a linear interpolate connecting these states using t ∈ [0, 1]:

dθs(t)

dt
= (θs+1 − θs) (6)∫

dθs(t)

dt
dt =

∫
(θs+1 − θs)dt (7)

θs(t) = θs + t(θs+1 − θs) (8)
One of the core insights of this definition is the distinction between training steps (defined by s) and
the path between training steps (defined by t). By separating these two terms allows a continuous
integration of the discrete behavior of practical neural networks. Since f is being trained using a sum
of gradients weighted by learning rate ε, we can write:

dθs(t)

dt
= −ε∇θL(f(XT ; θs(0)), yi) (9)

Applying chain rule and the above substitution, we can write the change in the prediction as

dŷ

dt
=

df(x; θs(t))

dt
=

M∑
j=1

df

∂θj
∂θj

dt
=

M∑
j=1

df(x; θs(t))

∂θj

(
−ε

∂L(f(XT ; θs(0)), YT )

∂θj

)
(10)

=

M∑
j=1

df(x; θs(t))

∂θj

(
−

N∑
i=1

εL′(f(xi; θs(0)), yi)
∂f(xi; θs(0))

∂θj

)
(11)

= −ε

N∑
i=1

∇θf(x; θs(t)) · L′(f(xi; θs(0)), yi)∇θf(xi; θs(0)) (12)
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Using the fundamental theorem of calculus, we can compute the change in the model’s output over
step s by integrating across t.

ys+1 − ys =

∫ 1

0

−ε

N∑
i=1

∇θf(x; θs(t)) · L′(f(xi; θs(0)), yi)∇θf(xi; θs(0))dt (13)

= −
N∑
i=1

ε

(∫ 1

0

∇θf(x; θs(t))dt

)
· L′(f(xi; θs(0)), yi)∇θf(xi; θs(0)) (14)

For all N training steps, we have

yN = f(x; θ0) +

N∑
s=1

ys+1 − ys (15)

= f(x; θ0)−
N∑
s=1

N∑
i=1

ε

(∫ 1

0

∇θf(x; θs(t))dt

)
· L′(f(xi; θs(0)), yi)∇θf(xi; θs(0)) (16)

Remark 1: While this theorem is not our main contribution, we provide it along with its brief proof
to provide a thorough and useful theoretical foundation for the main results which follow.
Remark 2: Many of the remarks from Bell et al. (2023) remain including that this representation
holds true for any contiguous subset of a gradient based model, e.g. when applied to only the middle
layers of an ANN or only to the final layer. This is since each contiguous subset of an ANN can
be treated as an ANN in its own right with the activations of the preceding layer as its inputs and
its activations as its outputs. In this case, the training data consisting of previous layer activations
may vary as the model evolves. One difference in this representation is that we do not introduce a
discontinuity into the input space. This sacrifices symmetry, which disqualifies the resulting formula
as a kernel, but retains many of the useful properties needed for OOD and dimension estimation.
Remark 3: Equation 16 allows decomposition of predictions into an initial (random) prediction
f(x; θ0) and a learned adjustment which separates the contribution of every training step s and
training datum i to the prediction.

4 OOD IS ENABLED BY PARAMETER GRADIENTS
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Figure 2: OOD detection using difference in training vs. test gradients. As the purpose of this paper
is not to develop state of the art OOD detection methods, a comparison with recent benchmarks is
not provided. Instead, a proof of concept that the gEPK can perform OOD detection is given. Left
histogram shows norms of vectors projected onto the gradient weight space defined by the gEPK on
MNIST and FMNIST. Right plot shows the number of components required to explain 95% variation
in weight space across training for a toy problem (three Gaussian distributions embedded in 100
dimensions).

One natural application of the gEPK is the separation of predictions into vectors corresponding with
the test gradient φs,t(x) for a given test point x and each training vector weighted by its loss gradient
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dL(ŷi, yi)

dŷi
φs,0(xi). While the test vector depends on the choice of test point x, the subspace of

training gradient vectors is fixed. By the linear nature of this inner product, it is clear that no variation
in test data which is orthogonal to the training vector space can be reflected in a model’s prediction.
We can state this as a theorem:
Theorem 4.1 (Prediction Spanning Vectors).

B = {φs,0(xi); i ∈ {1, ..., N}, s ∈ {1, ..., S}} (17)

spans the subspace of test parameter gradients with non-zero learned adjustments.

Proof. Suppose for every s and t, φs,t(x) /∈ B. Then for every i, s, and t, ⟨φs,t(x), φs,0(xi)⟩ = 0.
Rewriting equation 16 we have:

yN = f(x; θ0)−
N∑
s=1

N∑
i=1

ε

∫ 1

0

L′(f(xi; θs(0)), yi)⟨φs,t(x), φs,0(xi)⟩dt (18)

We can immediately see that every term in the learned adjustment summation will be equal to
zero.

We will demonstrate that most cutting-edge OOD methods implicitly analyze the spectra of parts of
this subspace in order to discriminate in practice.

4.1 EXPRESSING PRIOR OOD METHODS WITH THE GEPK

We will now establish that most gradient based methods for OOD and some methods which do not
explicitly rely on gradients can be written as projections onto subsets of this span.

GradNorm The first well-known method to apply gradient information for OOD is ODIN: Out-of-
DIstribution detector for Neural Networks Liang et al. (2018). This method, inspired by adversarial
attacks, perturbs inputs by applying perturbations calculated from input gradients. The method then
relies on the difference in these perturbations for in-distribution versus out-of-distribution examples
to separate these in practice. This method directly inspired Huang et al. (2021a) to create GradNorm.
This method which occupied the cutting edge in 2021 computes the gradient of Kullback–Leibler
divergence with respect to model parameters so that:

1

C

C∑
i

∂LCE(f(x; θ), i)

∂ŷ
∇θf(x; θ) (19)

This looks like the left side of the inner product from the gEPK, however the scaling factor,
∂LCE(f(x; θ), i)

dŷ
, does not match. In fact, this approach is averaging across the parameter gradients

of this test point with respect to each of its class outputs, which we can see is only a related subset of
the full basis used by the model for predictions. This explains improvements made in later methods
that are using a more full basis. Another similar method, ExGrad (Igoe et al., 2022), has been
proposed which experiments with different similar decompositions and raises some questions about
what is special about gradients in OOD – we hope our result sheds some light on these questions.
Another comparable method proposed by Sun et al. (2022) may also be equivalent through the
connection we establish below in Section 1 between this decomposition and input gradients which
may relate with mapping data manifolds in the Voronoi/Delaunay (Gillette & Kur, 2022) sense.

ReAct, DICE, ASH, and VRA Along with other recent work (Sun et al., 2021; Sun & Li,
2022; Xu et al., 2023), some of the cutting edge for OOD as of early 2023 involves activa-
tion truncation techniques like that neatly described by Djurisic et al. (2023). Given a model,
f(x; θ) = f extract(·; θextract) ◦ f represent(·; θrepresent) ◦ f classify(·; θclassify), and an input, x, a prediction,
f(x; θ), is computed forward through the network. This yields a vector of activations, A(x; θrepresent),
in the representation layer of the network. This representation is then pruned down to the pth per-
centile by setting any activations below that percentile to zero. Djurisic et al. (2023) mention that
ASH does not depend on statistics from the training data, however by chain rule, high activations
will correspond with high parameter gradients. Meaning this truncation is picking a representation
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Figure 3: Explained Variance Ratio of parameter gradients. Left: MNIST, Right: CIFAR. 95% of
variation can be explained with a relatively low number of components in both cases.

for which
〈
∇θf(x; θrepresent),

dL(ŷ(xi), yi)

dŷ
∇θf(xi; θrepresent)

〉
is high for many training points, xi.

This is effectively a projection onto the parameter tangent space of the training data with the highest
variation. This may explain some part of the performance advantage of these methods.

GradOrth Behpour et al. (2023) explicitly create a reference basis from parameter gradients on
training data for comparison. They do this for only the last layer of a network with mean squared
error (MSE) loss, allowing a nicely abbreviated expression for the gradient:

∇θL(x, y) = (θx− y)xT = ΩxT (20)

Treating Ω as an error vector, they prove that all variation of the output must be within the span
of the xT over the training set. They then pick a small subset of the training data and record its
activations RL

ID = [x1, x2, ..., xn] over which they compute the SVD, UL
IDΣL

ID(V L
ID)T = RL

ID.
This representation is then truncated to k principal components according to a threshold ϵth such that∥∥UL

IDΣL
ID,k(V

L
ID)T

∥∥2
F
≥ ϵth∥RL

I D∥2F . (21)

This basis SL = (UL
I D)k is now treated as the reference space onto which test points’ final layer

gradients can be projected. Their score is:

O(x) = (∇θLL(f(x; θL), y))SL(SL)T (22)

We note that this formulation requires a label y for each of the data being tested for inclusion in
the data distribution. Despite this drawback, the performance presented by Behpour et al. (2023) is
impressive.

4.2 GEPK FOR OOD

Theorem 4.1 provides a more general spanning result immediately. In fact, as we have illustrated in
Figure 2, we can pick a much reduced basis based only on the final training step which will span
most of the variation in models’ learned adjustments. Theorem 4.1 and the definition of SVD provide
the following:
Corollary 4.2. Let A be a matrix stacking the elements of B as rows. Then let UΣV T = A as in
SVD. Then Span(B) = Span(Rows(V )).

In the case that the number of training data exceed the number of parameters of a model, the same
result holds true for a basis computed only for gradients with respect to the final parameter states θS .
We will use a truncation, V ′ of this final training gradient basis which we examine in Fig. 3. This
truncation still explains most variation in all layers due to the convergence of training gradients to a
smaller subspace as shown in Fig. 2. In future it may be possible to argue statistical expectations
about the performance of a sketching approach to producing an equally performant basis without
expensive SVD.

We can see that most, if not all, of the above OOD methods can be represented by some set of
averaging or truncation assumptions on the basis V . These should be mostly caught by the truncated
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Figure 4: Left: Visualization of training point input gradients on test points compared between two
models. Positive contribution (black) and negative contribution (red) of each training datum to the
prediction for each test point. Elements in the grid are ∇xtrainf(xtest; θtrained). Right: By taking these
individual gradient contributions for a test point and computing the SVD across the training, the
significant modes of variation in the input space can be measured (sigma squared). Top is log scale of
the full spectrum, bottom shows the first 10 components. Note that this decomposition selects similar,
but not identical, modes of variation across test points and even across different models. Components
in SVD plots are sorted using Test Point A on Model A.

basis V . We test the usefullness of V ′ to perform OOD detection by projection onto its span using a
sum over the class outputs weighted by the loss gradients L′(f(xi; θS), yi) in Fig. 2. We note that
this scalling has only been extracted from the final training step, however this assumption is supported
by the convergence of this scaling over training. Indeed, this helps explain the high performance
of gradient based methods due to the implicit inclusion of the training parameter space in model
predictions. This serves to illuminate the otherwise confusing discrepancy raised by Igoe et al. (2022).

In addition, we can see that comparison of test versus training loss gradients is unnecessary, which
allows testing on data without ground truth labels (an issue with many recent gradient based OOD
techniques). For most applications, the SVD of the parameter gradients over all of the training steps
and batches can be pre-computed and compared with test points as needed, although as we can
see from this body of work, many simplifying assumptions can be made which will preserve the
essential bases needed for performance, but still drastically reduce computational cost. Bottom line:
It is not necessarily sufficient to pick a basis that spans a target subspace and then truncate based
on its variations. The variations must be accurately measured with correct scaling in terms of their
contribution to the learned adjustments of a model.

5 SIGNAL MANIFOLD DIMENSION ESTIMATED WITH TRAINING INPUT
GRADIENTS

In order to understand the subspace on which a model is sensitive to variation, we may take gradients
decomposed into each of the training data. Take, for example, a model, f(x; θ), which satisfies the
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necessary conditions for expression as:

f(x; θtrained) = f(x; θ0(0)) +
∑
i

∑
s

∫ 1

0

φs,t(x)
dL(xi, yi)

df(xi; θs(0))
φs,0(xi)dt (23)

φs,t(x) = ∇θf(x; θs(t)) (24)

And θs(t) are the parameters of f for training step s and time t so that
∑

s

∫ 1

0
θs(t)dt integrates the

entire training path taken by the model during training. Given a test point x, we can evaluate its
subspace by taking, for each xi:

df(x; θtrained)

dxj
=

df(x; θ0(0))

dxj
+
∑
i

∑
s

∫ 1

0

d

(
φs,t(x)

dL(xi, yi)

df(xi; θs(0))
φs,0(xi)

)
dxj

dt (25)

=
∑
i

∑
s

∫ 1

0

φs,t(x)dt

(
d2L(xi, yi)

df(xi; θs(0))dxj
φs,0(xi) +

dL(xi, yi)

df(xi; θs(0))

dφs,0(xi)

dxj

)
(26)

We can see that these gradients will be zero except when i = j, thus we may summarize these
gradients as a matrix (tensor in the multi-class case), G, with

Gj =
∑
s

∫ 1

0

φs,t(x)dt

(
d2L(xi, yi)

df(xi; θs(0))dxj
φs,0(xi) +

dL(xi, yi)

df(xi; θs(0))

dφs,0(xi)

dxj

)
(27)

While written in this form, it appears we must keep second-order derivatives, however we note that
the inner product with ϕs,t(x) eliminates these extra dimensions, so that clever implementation still
only requires storage of vectors (low rank matrices in the multi-class case).

The rank of G represents the dimension of the subspace on which the model perceives a test point,
x, to live, and we can get more detailed information about the variation explained by the span of
this matrix by taking its SVD. We can exactly measure the variation explained by each orthogonal
component of the span(G) with respect to the given test point x. G(x) can be defined as a map from
x to the subspace perceived by the model around x. Any local variations in the input space which do
not lie on the subspace spanned by G(x) can not be perceived by the model, and will have no effect
on the models output.

On MNIST, G(x) creates a matrix which is of size 60000×784×10 (training points × input dimension
× class count). This matrix represents the exact measure of each training points contribution towards
a given test prediction. In order to simplify computation, we reduce this term to 60000 × 784 by
summing across the class dimension. This reduction is justified by the same theory as the psudo-NTK
presented by Mohamadi et al. (2023). Of note is that in practice this matrix is full rank on the input
space as seen in Figure 4. This is despite MNIST having significantly less degrees of variation than
its total input size (many pixels in input space are always 0). Figure 1 demonstrates that accounting
for 95% of the variation requires only 94 (12%) of the 784 components on average. Similarly, on
CIFAR accounting for 95% of explained variation requires 1064 (34%) of the 3096 components.
It is likely that different training techniques will provide significantly different signal manifolds
and consequently different numbers of components. We can also examine this subspace with less
granularity by taking the parameter gradients for each training point from its trained state. This
involves using each training point as a test point.

df(xj ; θtrained)

dxj
=

df(xj ; θ0(0))

dxj
+
∑
i

∑
s

∫ 1

0

d

(
φs,t(xj)

dL(xi, yi)

df(xi; θs(0))
φs,0(xi)

)
dxj

dt (28)

The left hand side is computable without path-decomposition and so can be computed for each training

datum to create a gradient matrix, Hθtrained . Another term,
df(xj ; θ0(0))

dxj
is also easily computable,

yielding another matrix Hθ0 . By comparing the rank and span of Hθtrained and Hθ0 we can understand
to what extent the model’s spatial representation of the data is due to the initial parameter selection
and how much is due to the training path. Also, Hθtrained provides sample of gradients across all
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Figure 5: Differences between observing gradients in input space vs. weight space. Left: CDF of
explained variation parameter space. Right: CDF of explained variation input space. Red solid
line indicates a model at random initialization while the blue solid line represents the fully trained
state. From random initialization, the number of principal components required to achieve 95%
explained variation decreases in both cases. Note that at random initialization, the weight space
gradients already have only a few directions accounting for significant variation. Disentangling the
data dimension using weight space gradients is less effective than doing so in input space (Shamir
et al., 2021).

training data, which in some sense must be spanned by the model’s implicit subspace basis. Despite
missing the granular subspace information, the rank of this gradient matrix and its explained variation
computed using SVD should be related to the model’s implicit subspace rank. It should be noted
that while there is a direct relationship between a models variations in input space and weight space,
Figure 5 shows that this mapping changes greatly from the beginning to end of training and that this
spectrum starts out wide (high dimensional) for θ0 and much more focused (low dimensional) for θT .

One interesting property of using input gradients for training data decomposed according to equa-
tion 27 is the ability to compare input gradients across models with different initial parameters
and even different architectures. Figure 4 demonstrates that two models with different random
initializations which have been trained on the same dataset have a signal manifold which shares
many components. This is a known result that has been explored in deep learning through properties
of adversarial transferability Szegedy et al. (2013). This demonstrates that the gEPK is capable of
measuring the degree to which two models rely on the same features directly. This discovery may
lead to the construction of models which are provably robust against transfer attacks.

6 CONCLUSION

This paper presented decompositions based on a general exact path kernel representation for neural
networks with a natural decomposition that connects existing out-of-distribution detection methods
to a theoretical baseline. This same representation reveals additional connections to dimension
estimation and adversarial transferability. These connections are demonstrated with experimental
results on computer vision datasets. The key insights provided by this decomposition are that
model predictions implicitly depend on the parameter tangent space on its training data and that this
dependence enables decomposition relative to a single test point by either parameter gradients, or
training input gradients. This allows users to connect how neural networks learn at training time with
how each training point influences the final decisions of a network. We have demonstrated that the
techniques used in practice for OOD are using a subset of the theoretical basis we propose. Taking
into account the entire training path will allow more rigorous methods for OOD detection. There
are many possible directions to continuing work in this area. These include better understanding of
how models depend on implicit prior distributions following (e.g. Nagler (2023)), supporting more
robust statistical learning under distribution shifts (e.g. Simchowitz et al. (2023)), and supporting
more robust learning.
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