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Abstract

Given the recent success of large language mod-
els, a critical question for machine learning en-
gineers is when to use few-shot prompting vs.
fine-tuning. We explore this question in a med-
ical setting, where data restrictions make only
a small number of training examples realistic,
and where the ability to adapt from one domain
to another is critical. On two medical text clas-
sification tasks, we find that fine-tuning outper-
forms few-shot prompting with as little as 100
labeled examples and that few-shot prompting
has a greater risk of robustness problems.

1 Introduction

Adapting NLP models to new tasks and domains
in the medical field is challenging. Patient privacy
constraints severely limit the sharing of large, an-
notated datasets across institutions. If data sharing
is permitted, it often requires complex agreements,
resource-intensive de-identification processes, and
expert annotation to ensure no protected health in-
formation (PHI) is disclosed. Under these condi-
tions, large annotated corpora for fine-tuning mod-
els are infeasible, highlighting the need for methods
that can work with very limited data.

Large language models (LLMs) have shown re-
markable abilities in few-shot generalization, ef-
fectively leveraging a handful of labeled examples
to perform new tasks. The computational cost of
LLM inference can be substantial, but smaller mod-
els can require more data to achieve similar perfor-
mance. This trade-off raises a practical question:
Given a limited annotation budget, should we in-
vest in fully fine-tuning a smaller model or leverage
few-shot prompting of a large model?

To address this question, we consider both tra-
ditional fine-tuning and few-shot prompting ap-
proaches. Our analysis is guided by the following
research questions:

RQ1: For a given task and a fixed number of la-
beled samples, which approach yields better per-
formance, fine-tuning or few-shot prompting ?

RQ2: When using few-shot prompting, what model
size and how many examples are needed to
achieve reasonable performance?

RQ3: When using fine-tuning, what model size
and how many examples are needed to achieve
reasonable performance?

RQ4: When transferring a model to a new domain,
which approach is more robust, fine-tuning or
few-shot prompting?

We investigate these research questions by few-
shot prompting and fine-tuning language models
of various sizes on medical text classification tasks
over various domains. Our main contributions are:
* We determine the cross-over point where labeled

examples are better used for fine-tuning than for

few-shot prompting. For our medical NLP tasks,
with only 40 labeled examples, fine-tuning Llama

3.2 3B is better than prompting it. With only 160

labeled examples, fine-tuning the tiny ROBERTa

is better than prompting the huge Llama 3.1 70B.

* We find that few-shot prompted models are not
consistently more robust than fine-tuned models
on new domains. For our medical NLP tasks,
few-shot prompted models are slightly more ro-
bust on causal classification, but much less robust
on negation classification.

2 Related work

Both few-shot prompting and fine-tuning of LLMs
yields strong performance across a variety of NLP
tasks, including translation, question answering,
and text classification. Few-shot prompting has
shown impressive results in tasks ranging from ma-
chine translation and question answering to tabular
data classification and relation extraction (Brown
et al., 2020; Xu et al., 2023; Hegselmann et al.,
2023; Ma et al., 2023; Touvron et al., 2023). Con-



currently, fine-tuning LL.Ms has proven effective
not only for machine translation and classification
(Zhang et al., 2023; Hsieh et al., 2023; Edwards
and Camacho-Collados, 2024), but also for a broad
array of benchmark tasks (Chung et al., 2024).

In the medical domain, studies have investigated
the domain adaptation capabilities of LL.Ms via
prompting and fine-tuning (Van Veen et al., 2023;
Fan et al., 2023; Labrak et al., 2024). For exam-
ple, Van Veen et al. (2023) explores adaptation
strategies for domain shifts in radiology reports.
Research outside the medical field has developed
benchmarks to evaluate how fine-tuned and few-
shot prompted models withstand shifts across vari-
ous domains (Calderon et al., 2024). Recent work
has also examined introducing extra parameters to
improve LLMs’ resilience to domain shifts (Huang
et al., 2023; Ormazabal et al., 2023).

However, prior efforts have not systematically
investigated how performance compares as a func-
tion of available labeled data. They do not pinpoint
the exact threshold at which fine-tuned models con-
sistently outperform their few-shot prompted coun-
terparts. Our study fills this gap by examining a
range of data scenarios, offering practical guidance
on whether to invest in full fine-tuning or few-shot
prompting given a specific annotation budget.

3 Tasks and Datasets

We focus on two medical text classification tasks:
causal classification and negation classification.
Each includes two datasets from distinct domains,
allowing us to study domain adaptation settings.

Causal Classification. Yu et al. (2020) aims to
detect when correlational findings are overstated as
causal claims. It classifies claim sentences in press
releases and PubMed articles into four categories:
Correlational, Conditional causal, Direct causal,
or Not claim. For instance, “Suicide risk greater
for people living at higher elevations” is labeled
as Correlational, while “Traffic noise increases the
risk of having a stroke.” is Direct causal. We use
press releases as the source domain and PubMed as
the target domain, thus exploring adaptation from
public-facing summaries to scientific abstracts.

Negation Classification. Derived from SemEval
2021 Task 10 (Laparra et al., 2021), this task iden-
tifies whether a medical event (marked in the sen-
tence) is negated by its context. For example, in
“Has no <e> diarrhea </e> and no new lumps or

masses”, the event diarrhea should be classified as
negated. We use i2b2 (Partners HealthCare) as the
source domain and MIMIC (Beth Israel ICU notes)
as the target domain, thus exploring adaptation be-
tween two distinct institutions.

We select these two tasks and four datasets for:

1. Simplicity: Both tasks involve straightforward
classification, minimizing the complexity of rea-
soning chains or prompt engineering. This al-
lows for more direct comparisons between fine-
tuning and few-shot prompting.

2. Medical Domain Relevance: Operating in the
medical domain aligns with practical constraints
on data sharing and annotation. The difficulty of
exchanging patient-related data underscores the
importance of domain adaptation techniques.

3. Challenging Domain Transfer: Our prelimi-
nary results on the negation classification task,
along with previous works (Laparra et al., 2021;
Su et al., 2022) show performance degradations
when models trained on one medical subdomain
are applied to another.

See Appendix A for additional dataset and evalua-

tion details.

4 Models and Approaches

Models. We consider two categories of models:

e Large generative: We use the open-source
LLaMA LLMs (Touvron et al., 2023) at vary-
ing scales: Llama-3.2-3B, L1ama-3.1-8B, and
Llama-3.1-70B.

* Small encoder-only: We use the open-source
RoBERTa model (Liu, 2019), roberta-base.
Including both categories allows us to contrast full
fine-tuning of a smaller encoder-only model with
few-shot prompting of a larger generative model.

Few-Shot Prompting. For few-shot prompting,
we adopt a simple approach. We prepend the speci-
fied number of labeled source-domain input-output
pairs before the test instance, allowing the LLM to
infer patterns from these exemplars. This approach
avoids extensive prompt engineering, providing a
clear baseline for few-shot adaptation.

Fine-Tuning. For fine-tuning, we adopt the stan-
dard HuggingFace Trainer API (Wolf et al., 2020),
fine-tuning all model parameters on the speci-
fied number of labeled source-domain input-output
pairs. To remain practical, we limit fine-tuning to
RoBERTa-base and LLaMA-3.2-3B, given the com-
putational overhead of fine-tuning larger models.
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Figure 1: Fine-tuning (dashed lines) outperforms few shot prompting (solid lines) with only a few examples, for
both causal classification and negation classification. The shaded area shows the fine-tuning vs. few-shot-prompting
difference for the comparable Llama-3.3-2b models. Llama-3.3-2b when fine-tuned outperforms Llama-3.3-2b
when used few-shot with 40 or more examples. Even the tiny RoOBERTa when fine-tuned outperforms the huge

Llama3.1-70b used few-shot with 160 or more examples.

* RoBERTa: We treat the problem as sequence
classification, adding a special <s> token at the
input’s start and classifying the entire sentence
based on its representation.

e LLaMA-3.2-3B: We use a causal language mod-
eling approach, training the model to generate
the class label tokens given the input. The input
tokens are masked from the loss calculation.

5 Experimental Design and Data Budget

To simulate realistic conditions, we assume that the
amount of data available from the source domain is
limited and must be thoroughly vetted for PHI. We
therefore incrementally vary the number of labeled
samples from 20 to 200 in steps of 20. At each step,
we compare fine-tuning and few-shot prompting to
examine how each method scales with increasing
yet still modest annotation budgets.

This incremental approach enables a systematic
exploration of the trade-offs between data availabil-
ity, annotation cost, computational expense, and
final model quality. By focusing on small yet re-
alistic data budgets, we offer insights that are rele-
vant to practical medical NLP scenarios where data
scarcity and privacy constraints are the norm.

6 Results
RQ1: Fine-Tuning vs. Few-Shot Prompting

Figure 1 shows that as the number of labeled sam-
ples increases even modestly, fine-tuned models
outperform larger models that rely on few-shot
prompting. For instance, in causal classification,
fine-tuning a small model (the 125M parameter

RoBERTa-base) on about 140 samples surpasses
the few-shot performance of LLaMA models with
3B, 8B, or even 70B parameters. Similarly, in
negation classification, a fine-tuned RoBERTa-base
model trained on roughly 160 samples outperforms
few-shot prompted LLaMA models of all sizes.

Few-shot prompting offers advantages under ex-
treme data scarcity with very large models. For
causal classification, having only 20 samples fa-
vors a few-shot 70B-parameter LL.aMA model. For
negation classification, having 80 or fewer samples
favors the 70B model. This advantage disappears
once the available data crosses a minimal threshold
(40-100 samples) and fine-tuning a small model
becomes the more effective option.

RQ2: Few-Shot Prompting: Model Size and
Number of Examples

Few-shot prompting is a competitive option when a
large model is available and the number of samples
is extremely limited. The best few-shot prompt-
ing model that outperforms fine-tuning uses only
20 samples for causal classification and 80 sam-
ples for negation classification. In both cases, only
the large 70B-parameter LLaMA model outper-
forms fine-tuning; smaller LLaMA models fail to
exhibit this advantage. This aligns with prior work
(Touvron et al., 2023) that links stronger few-shot
performance to larger model sizes.

RQ3: Fine-Tuning: Model Size and Number of
Examples

Fine-tuning is a competitive option whenever a
modest number of samples (40-100) is available.
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Figure 2: For causal classification, few-shot prompting (solid lines) is slightly more robust to changes in domain than
fine-tuning (dashed lines), though neither approach sees large performance drops when models are trained/prompted
with examples from press releases but tested on PubMed. For negation classification, fine-tuning (dashed lines)
shows much smaller drops in performance than few-shot prompting (solid lines) when models are trained/prompted
with examples from i2b2 but tested on MIMIC. The shaded area shows the fine-tuning vs. few-shot-prompting

difference for the comparable Llama-3.3-2b models.

Both the causal and negation classification tasks
show steady gains as the number of labeled exam-
ples increases, regardless of model size. Though
larger models outperform smaller models, these
gains are modest compared to the gains from in-
creasing the dataset size, and mostly disappear by
200 samples. For example, in negation classifi-
cation, once the count reaches 160 examples, the
performance gap between a fine-tuned LLaMA-
3.2-3B and a fine-tuned RoBERTa-base disappears.
Thus, focusing on data quality and quantity yields
greater returns than scaling up model size.

RQ4: Domain Adaptation: Fine-Tuning or
Few-Shot Prompting?

The left half of Figure 2 shows that in causal classi-
fication, few-shot prompting demonstrates slightly
more robust domain generalization. The average
performance change for models given training ex-
amples from press releases and tested on exam-
ples from PubMed is +0.03 for few-shot prompted
models and -0.05 for fine-tuned models. Few-shot
prompting is slightly better, but neither approach
experiences catastrophic degradation, suggesting
that both methods are mostly resilient when shift-
ing from press releases to PubMed.

The right half of Figure 2 shows that in nega-
tion classification, both approaches see significant
degradation, with few-shot prompted models be-
ing much less robust. The average performance
change for models given training examples from
12b2 data and tested on MIMIC notes is -0.26 for
fine-tuned models and -0.45 for few-shot prompted

models. For example, with 200 labeled samples, a
fine-tuned RoBERTa-base model incurs a perfor-
mance drop of about 0.2, while a 70B-parameter
LLaMA few-shot model’s performance plummets
by roughly 0.6. In scenarios where labeled target-
domain data is unavailable, fine-tuning a source-
domain model appears safer and more stable.

7 Conclusion

Our comparisons of few-shot learning and fine-
tuning on two medical text classification tasks
across four domains reveal a number of useful find-
ings for machine learning engineers. For tasks and
domains like ours, few-shot prompting is viable
only in cases of severe data scarcity, where only
20-80 labeled examples are available. When even
100 labeled examples are available, fine-tuning
a Llama3.2-3B model yields better performance
than using the much larger Llama3.1-70B with
a few-shot prompt. Fine-tuning the even smaller
RoBERTa model yields similar performance to the
larger fine-tuned Llama3.2-3B if as little as 200 la-
beled examples are available. If domain adaptation
is a concern, fine-tuning is the less risky option,
as few-shot prompting ranges from slightly more
robust across domains (0.08 better than fine-tuning)
to much less robust (0.19 worse than fine-tuning).
Future work is needed to see how these results gen-
eralize across tasks beyond text classification and
domains beyond medicine.



Limitations

As this is a short article, the number of tasks, do-
mains, and languages explored was limited: two
medical text classification tasks and four domains,
all in English. Future work should explore other
tasks, such as information extraction or question
answering, and other domains, such as social media
or legal documents, as well as additional languages.

Exploration of additional tasks is also necessary
to understand when few-shot prompting will be-
come less robust as it does in the negation classifi-
cation task. One explanation of this phenomenon
might be the high label imbalance: in the negation
classification dataset, the source domain contained
1,115 negations versus 4,430 non-negations, while
the target domain contained 958 negations versus
8,622 non-negations. By contrast, the causal classi-
fication dataset maintained a more balanced label
distribution: in the source domain, it included 738
correlational, 568 direct causal, 486 no claim, and
284 conditional causal instances; in the target do-
main, 1,356 correlational, 998 direct causal, 494 no
claim, and 213 conditional causal instances. But
to confidently attribute this difference to label im-
balance we would need to find other tasks with
similar label imbalance that also show this phe-
nomenon. Another explanation of the phenomenon
might be divergence of annotation guidelines, e.g.,
inherently negated words like afebrile are marked
as negated in i2b2 but as non-negated in MIMIC.
But to confidently attribute this difference to anno-
tation guideline divergence, we would need to find
other tasks with similar annotation divergences that
also show this phenomenon.

We did not explore strategies for balancing la-
bels, though both fine-tuning or few-shot prompt-
ing methods can sometimes benefit from label bal-
ancing. This was because we assumed a small
annotation budget (< 200 examples), and balanc-
ing labels requires annotating additional data and
then sampling down. So, for example, given that
negations constitute roughly 20% of the source do-
main data, to get 20 negation classification training
examples (10 negated and 10 non-negated), we
would need to annotate approximately 50 exam-
ples in total, from which we would expect around
10 negated and 40 non-negated instances. Future
work should explore whether the benefits of label
balancing outweigh the additional annotation costs.

We did not extensively engineer the prompts for
either the few-shot prompted models or the fine-

tuned models. The simplicity of our tasks meant
that simple input-output pairs as a prompt worked
sufficiently well. But it is possible that both the few-
shot prompted models and the fine-tuned models
might achieve higher performance with additional
prompt engineering.

Ethics Considerations

We use LLMs throughout our experiments. While
LLMs can potentially produce harmful or biased
content (Bianchi et al., 2024), we limit their usage
in this study to generating class labels for classifi-
cation tasks. This restricted application reduces the
likelihood of unintended harmful output.
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domain, the training set contains 1,000 samples and
the test set contains 1,076 samples. In the target
domain, the training set contains 1,000 samples
and the test set contains 2,061 samples.

For the negation classification task, we follow
the original SemEval 2021 Task 10 (Laparra et al.,
2021) data splits, using their development sets as
our training sets and their test sets as our test sets.
In the source domain, the training set has 1,109
samples and the test set has 4,436 samples. In the
target domain, the training set has 1,916 samples
and the test set has 7,664 samples.

All training and few-shot samples are randomly
drawn from the source domain training sets. We
always evaluate on the corresponding test sets. Fol-
lowing the original evaluation metrics, we report
the macro-averaged F; score for the causal classifi-
cation task. For the negation classification task, we
report the Fy score for the negated class.

B License Information

We comply with all relevant model licenses and
adhere to the intended uses defined by their cre-
ators. The LLaMA 3.1 models are provided un-
der the Llama 3.1 Community License Agreement,
while the LLaMA 3.2 models are distributed un-
der the Llama 3.2 Community License Agreement.
RoBERTa is released under the MIT License.

We use the HuggingFace Transformers library
(Wolf et al., 2020) for fine-tuning, which is licensed
under the Apache-2.0 license. For inference with
LLMs, we rely on the vLLM library, also licensed
under Apache-2.0.

All datasets are used in compliance with their
respective licenses. The causal classification data
from Yu et al. (2020) are released under the GPL-
3.0 license. The negation classification data from
SemEval 2021 Task 10 (Laparra et al., 2021) are
provided under the Apache-2.0 license.

C Implementation Details

We fine-tune all LLMs using their instruct versions
and perform few-shot prompting using their base
versions. Our preliminary experiments show that
instruct versions often produce extraneous text in
few-shot prompting settings, making performance
evaluation more difficult.

We run all experiments on NVIDIA A100 GPUs
with 80GB of VRAM. For models up to 3B param-
eters, we carry out both fine-tuning and few-shot
prompting on a single GPU. For the 8B model, we

use two GPUs for few-shot prompting, and for the
70B model, we rely on eight GPUs.

When fine-tuning the RoBERTa model, we set
the learning rate to 2 x 1075, use a batch size of
8, and train for 10 epochs. For the LLaMA 3.2 3B
model, we set the learning rate to 2 x 107>, use
a batch size of 4, and train for 5 epochs. During
few-shot prompting with LLMs, we use the default
maximum model input length without imposing
additional constraints.


https://www.llama.com/llama3_1/license/
https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
https://opensource.org/license/mit
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
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