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Abstract

Given the recent success of large language mod-001
els, a critical question for machine learning en-002
gineers is when to use few-shot prompting vs.003
fine-tuning. We explore this question in a med-004
ical setting, where data restrictions make only005
a small number of training examples realistic,006
and where the ability to adapt from one domain007
to another is critical. On two medical text clas-008
sification tasks, we find that fine-tuning outper-009
forms few-shot prompting with as little as 100010
labeled examples and that few-shot prompting011
has a greater risk of robustness problems.012

1 Introduction013

Adapting NLP models to new tasks and domains014

in the medical field is challenging. Patient privacy015

constraints severely limit the sharing of large, an-016

notated datasets across institutions. If data sharing017

is permitted, it often requires complex agreements,018

resource-intensive de-identification processes, and019

expert annotation to ensure no protected health in-020

formation (PHI) is disclosed. Under these condi-021

tions, large annotated corpora for fine-tuning mod-022

els are infeasible, highlighting the need for methods023

that can work with very limited data.024

Large language models (LLMs) have shown re-025

markable abilities in few-shot generalization, ef-026

fectively leveraging a handful of labeled examples027

to perform new tasks. The computational cost of028

LLM inference can be substantial, but smaller mod-029

els can require more data to achieve similar perfor-030

mance. This trade-off raises a practical question:031

Given a limited annotation budget, should we in-032

vest in fully fine-tuning a smaller model or leverage033

few-shot prompting of a large model?034

To address this question, we consider both tra-035

ditional fine-tuning and few-shot prompting ap-036

proaches. Our analysis is guided by the following037

research questions:038

RQ1: For a given task and a fixed number of la- 039

beled samples, which approach yields better per- 040

formance, fine-tuning or few-shot prompting? 041

RQ2: When using few-shot prompting, what model 042

size and how many examples are needed to 043

achieve reasonable performance? 044

RQ3: When using fine-tuning, what model size 045

and how many examples are needed to achieve 046

reasonable performance? 047

RQ4: When transferring a model to a new domain, 048

which approach is more robust, fine-tuning or 049

few-shot prompting? 050

We investigate these research questions by few- 051

shot prompting and fine-tuning language models 052

of various sizes on medical text classification tasks 053

over various domains. Our main contributions are: 054

• We determine the cross-over point where labeled 055

examples are better used for fine-tuning than for 056

few-shot prompting. For our medical NLP tasks, 057

with only 40 labeled examples, fine-tuning Llama 058

3.2 3B is better than prompting it. With only 160 059

labeled examples, fine-tuning the tiny RoBERTa 060

is better than prompting the huge Llama 3.1 70B. 061

• We find that few-shot prompted models are not 062

consistently more robust than fine-tuned models 063

on new domains. For our medical NLP tasks, 064

few-shot prompted models are slightly more ro- 065

bust on causal classification, but much less robust 066

on negation classification. 067

2 Related work 068

Both few-shot prompting and fine-tuning of LLMs 069

yields strong performance across a variety of NLP 070

tasks, including translation, question answering, 071

and text classification. Few-shot prompting has 072

shown impressive results in tasks ranging from ma- 073

chine translation and question answering to tabular 074

data classification and relation extraction (Brown 075

et al., 2020; Xu et al., 2023; Hegselmann et al., 076

2023; Ma et al., 2023; Touvron et al., 2023). Con- 077
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currently, fine-tuning LLMs has proven effective078

not only for machine translation and classification079

(Zhang et al., 2023; Hsieh et al., 2023; Edwards080

and Camacho-Collados, 2024), but also for a broad081

array of benchmark tasks (Chung et al., 2024).082

In the medical domain, studies have investigated083

the domain adaptation capabilities of LLMs via084

prompting and fine-tuning (Van Veen et al., 2023;085

Fan et al., 2023; Labrak et al., 2024). For exam-086

ple, Van Veen et al. (2023) explores adaptation087

strategies for domain shifts in radiology reports.088

Research outside the medical field has developed089

benchmarks to evaluate how fine-tuned and few-090

shot prompted models withstand shifts across vari-091

ous domains (Calderon et al., 2024). Recent work092

has also examined introducing extra parameters to093

improve LLMs’ resilience to domain shifts (Huang094

et al., 2023; Ormazabal et al., 2023).095

However, prior efforts have not systematically096

investigated how performance compares as a func-097

tion of available labeled data. They do not pinpoint098

the exact threshold at which fine-tuned models con-099

sistently outperform their few-shot prompted coun-100

terparts. Our study fills this gap by examining a101

range of data scenarios, offering practical guidance102

on whether to invest in full fine-tuning or few-shot103

prompting given a specific annotation budget.104

3 Tasks and Datasets105

We focus on two medical text classification tasks:106

causal classification and negation classification.107

Each includes two datasets from distinct domains,108

allowing us to study domain adaptation settings.109

Causal Classification. Yu et al. (2020) aims to110

detect when correlational findings are overstated as111

causal claims. It classifies claim sentences in press112

releases and PubMed articles into four categories:113

Correlational, Conditional causal, Direct causal,114

or Not claim. For instance, “Suicide risk greater115

for people living at higher elevations” is labeled116

as Correlational, while “Traffic noise increases the117

risk of having a stroke.” is Direct causal. We use118

press releases as the source domain and PubMed as119

the target domain, thus exploring adaptation from120

public-facing summaries to scientific abstracts.121

Negation Classification. Derived from SemEval122

2021 Task 10 (Laparra et al., 2021), this task iden-123

tifies whether a medical event (marked in the sen-124

tence) is negated by its context. For example, in125

“Has no <e> diarrhea </e> and no new lumps or126

masses”, the event diarrhea should be classified as 127

negated. We use i2b2 (Partners HealthCare) as the 128

source domain and MIMIC (Beth Israel ICU notes) 129

as the target domain, thus exploring adaptation be- 130

tween two distinct institutions. 131

We select these two tasks and four datasets for: 132

1. Simplicity: Both tasks involve straightforward 133

classification, minimizing the complexity of rea- 134

soning chains or prompt engineering. This al- 135

lows for more direct comparisons between fine- 136

tuning and few-shot prompting. 137

2. Medical Domain Relevance: Operating in the 138

medical domain aligns with practical constraints 139

on data sharing and annotation. The difficulty of 140

exchanging patient-related data underscores the 141

importance of domain adaptation techniques. 142

3. Challenging Domain Transfer: Our prelimi- 143

nary results on the negation classification task, 144

along with previous works (Laparra et al., 2021; 145

Su et al., 2022) show performance degradations 146

when models trained on one medical subdomain 147

are applied to another. 148

See Appendix A for additional dataset and evalua- 149

tion details. 150

4 Models and Approaches 151

Models. We consider two categories of models: 152

• Large generative: We use the open-source 153

LLaMA LLMs (Touvron et al., 2023) at vary- 154

ing scales: Llama-3.2-3B, Llama-3.1-8B, and 155

Llama-3.1-70B. 156

• Small encoder-only: We use the open-source 157

RoBERTa model (Liu, 2019), roberta-base. 158

Including both categories allows us to contrast full 159

fine-tuning of a smaller encoder-only model with 160

few-shot prompting of a larger generative model. 161

Few-Shot Prompting. For few-shot prompting, 162

we adopt a simple approach. We prepend the speci- 163

fied number of labeled source-domain input-output 164

pairs before the test instance, allowing the LLM to 165

infer patterns from these exemplars. This approach 166

avoids extensive prompt engineering, providing a 167

clear baseline for few-shot adaptation. 168

Fine-Tuning. For fine-tuning, we adopt the stan- 169

dard HuggingFace Trainer API (Wolf et al., 2020), 170

fine-tuning all model parameters on the speci- 171

fied number of labeled source-domain input-output 172

pairs. To remain practical, we limit fine-tuning to 173

RoBERTa-base and LLaMA-3.2-3B, given the com- 174

putational overhead of fine-tuning larger models. 175
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Figure 1: Fine-tuning (dashed lines) outperforms few shot prompting (solid lines) with only a few examples, for
both causal classification and negation classification. The shaded area shows the fine-tuning vs. few-shot-prompting
difference for the comparable Llama-3.3-2b models. Llama-3.3-2b when fine-tuned outperforms Llama-3.3-2b
when used few-shot with 40 or more examples. Even the tiny RoBERTa when fine-tuned outperforms the huge
Llama3.1-70b used few-shot with 160 or more examples.

• RoBERTa: We treat the problem as sequence176

classification, adding a special <s> token at the177

input’s start and classifying the entire sentence178

based on its representation.179

• LLaMA-3.2-3B: We use a causal language mod-180

eling approach, training the model to generate181

the class label tokens given the input. The input182

tokens are masked from the loss calculation.183

5 Experimental Design and Data Budget184

To simulate realistic conditions, we assume that the185

amount of data available from the source domain is186

limited and must be thoroughly vetted for PHI. We187

therefore incrementally vary the number of labeled188

samples from 20 to 200 in steps of 20. At each step,189

we compare fine-tuning and few-shot prompting to190

examine how each method scales with increasing191

yet still modest annotation budgets.192

This incremental approach enables a systematic193

exploration of the trade-offs between data availabil-194

ity, annotation cost, computational expense, and195

final model quality. By focusing on small yet re-196

alistic data budgets, we offer insights that are rele-197

vant to practical medical NLP scenarios where data198

scarcity and privacy constraints are the norm.199

6 Results200

RQ1: Fine-Tuning vs. Few-Shot Prompting201

Figure 1 shows that as the number of labeled sam-202

ples increases even modestly, fine-tuned models203

outperform larger models that rely on few-shot204

prompting. For instance, in causal classification,205

fine-tuning a small model (the 125M parameter206

RoBERTa-base) on about 140 samples surpasses 207

the few-shot performance of LLaMA models with 208

3B, 8B, or even 70B parameters. Similarly, in 209

negation classification, a fine-tuned RoBERTa-base 210

model trained on roughly 160 samples outperforms 211

few-shot prompted LLaMA models of all sizes. 212

Few-shot prompting offers advantages under ex- 213

treme data scarcity with very large models. For 214

causal classification, having only 20 samples fa- 215

vors a few-shot 70B-parameter LLaMA model. For 216

negation classification, having 80 or fewer samples 217

favors the 70B model. This advantage disappears 218

once the available data crosses a minimal threshold 219

(40–100 samples) and fine-tuning a small model 220

becomes the more effective option. 221

RQ2: Few-Shot Prompting: Model Size and 222

Number of Examples 223

Few-shot prompting is a competitive option when a 224

large model is available and the number of samples 225

is extremely limited. The best few-shot prompt- 226

ing model that outperforms fine-tuning uses only 227

20 samples for causal classification and 80 sam- 228

ples for negation classification. In both cases, only 229

the large 70B-parameter LLaMA model outper- 230

forms fine-tuning; smaller LLaMA models fail to 231

exhibit this advantage. This aligns with prior work 232

(Touvron et al., 2023) that links stronger few-shot 233

performance to larger model sizes. 234

RQ3: Fine-Tuning: Model Size and Number of 235

Examples 236

Fine-tuning is a competitive option whenever a 237

modest number of samples (40-100) is available. 238
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Figure 2: For causal classification, few-shot prompting (solid lines) is slightly more robust to changes in domain than
fine-tuning (dashed lines), though neither approach sees large performance drops when models are trained/prompted
with examples from press releases but tested on PubMed. For negation classification, fine-tuning (dashed lines)
shows much smaller drops in performance than few-shot prompting (solid lines) when models are trained/prompted
with examples from i2b2 but tested on MIMIC. The shaded area shows the fine-tuning vs. few-shot-prompting
difference for the comparable Llama-3.3-2b models.

Both the causal and negation classification tasks239

show steady gains as the number of labeled exam-240

ples increases, regardless of model size. Though241

larger models outperform smaller models, these242

gains are modest compared to the gains from in-243

creasing the dataset size, and mostly disappear by244

200 samples. For example, in negation classifi-245

cation, once the count reaches 160 examples, the246

performance gap between a fine-tuned LLaMA-247

3.2-3B and a fine-tuned RoBERTa-base disappears.248

Thus, focusing on data quality and quantity yields249

greater returns than scaling up model size.250

RQ4: Domain Adaptation: Fine-Tuning or251

Few-Shot Prompting?252

The left half of Figure 2 shows that in causal classi-253

fication, few-shot prompting demonstrates slightly254

more robust domain generalization. The average255

performance change for models given training ex-256

amples from press releases and tested on exam-257

ples from PubMed is +0.03 for few-shot prompted258

models and -0.05 for fine-tuned models. Few-shot259

prompting is slightly better, but neither approach260

experiences catastrophic degradation, suggesting261

that both methods are mostly resilient when shift-262

ing from press releases to PubMed.263

The right half of Figure 2 shows that in nega-264

tion classification, both approaches see significant265

degradation, with few-shot prompted models be-266

ing much less robust. The average performance267

change for models given training examples from268

i2b2 data and tested on MIMIC notes is -0.26 for269

fine-tuned models and -0.45 for few-shot prompted270

models. For example, with 200 labeled samples, a 271

fine-tuned RoBERTa-base model incurs a perfor- 272

mance drop of about 0.2, while a 70B-parameter 273

LLaMA few-shot model’s performance plummets 274

by roughly 0.6. In scenarios where labeled target- 275

domain data is unavailable, fine-tuning a source- 276

domain model appears safer and more stable. 277

7 Conclusion 278

Our comparisons of few-shot learning and fine- 279

tuning on two medical text classification tasks 280

across four domains reveal a number of useful find- 281

ings for machine learning engineers. For tasks and 282

domains like ours, few-shot prompting is viable 283

only in cases of severe data scarcity, where only 284

20-80 labeled examples are available. When even 285

100 labeled examples are available, fine-tuning 286

a Llama3.2-3B model yields better performance 287

than using the much larger Llama3.1-70B with 288

a few-shot prompt. Fine-tuning the even smaller 289

RoBERTa model yields similar performance to the 290

larger fine-tuned Llama3.2-3B if as little as 200 la- 291

beled examples are available. If domain adaptation 292

is a concern, fine-tuning is the less risky option, 293

as few-shot prompting ranges from slightly more 294

robust across domains (0.08 better than fine-tuning) 295

to much less robust (0.19 worse than fine-tuning). 296

Future work is needed to see how these results gen- 297

eralize across tasks beyond text classification and 298

domains beyond medicine. 299

4



Limitations300

As this is a short article, the number of tasks, do-301

mains, and languages explored was limited: two302

medical text classification tasks and four domains,303

all in English. Future work should explore other304

tasks, such as information extraction or question305

answering, and other domains, such as social media306

or legal documents, as well as additional languages.307

Exploration of additional tasks is also necessary308

to understand when few-shot prompting will be-309

come less robust as it does in the negation classifi-310

cation task. One explanation of this phenomenon311

might be the high label imbalance: in the negation312

classification dataset, the source domain contained313

1,115 negations versus 4,430 non-negations, while314

the target domain contained 958 negations versus315

8,622 non-negations. By contrast, the causal classi-316

fication dataset maintained a more balanced label317

distribution: in the source domain, it included 738318

correlational, 568 direct causal, 486 no claim, and319

284 conditional causal instances; in the target do-320

main, 1,356 correlational, 998 direct causal, 494 no321

claim, and 213 conditional causal instances. But322

to confidently attribute this difference to label im-323

balance we would need to find other tasks with324

similar label imbalance that also show this phe-325

nomenon. Another explanation of the phenomenon326

might be divergence of annotation guidelines, e.g.,327

inherently negated words like afebrile are marked328

as negated in i2b2 but as non-negated in MIMIC.329

But to confidently attribute this difference to anno-330

tation guideline divergence, we would need to find331

other tasks with similar annotation divergences that332

also show this phenomenon.333

We did not explore strategies for balancing la-334

bels, though both fine-tuning or few-shot prompt-335

ing methods can sometimes benefit from label bal-336

ancing. This was because we assumed a small337

annotation budget (≤ 200 examples), and balanc-338

ing labels requires annotating additional data and339

then sampling down. So, for example, given that340

negations constitute roughly 20% of the source do-341

main data, to get 20 negation classification training342

examples (10 negated and 10 non-negated), we343

would need to annotate approximately 50 exam-344

ples in total, from which we would expect around345

10 negated and 40 non-negated instances. Future346

work should explore whether the benefits of label347

balancing outweigh the additional annotation costs.348

We did not extensively engineer the prompts for349

either the few-shot prompted models or the fine-350

tuned models. The simplicity of our tasks meant 351

that simple input-output pairs as a prompt worked 352

sufficiently well. But it is possible that both the few- 353

shot prompted models and the fine-tuned models 354

might achieve higher performance with additional 355

prompt engineering. 356

Ethics Considerations 357

We use LLMs throughout our experiments. While 358

LLMs can potentially produce harmful or biased 359

content (Bianchi et al., 2024), we limit their usage 360

in this study to generating class labels for classifi- 361

cation tasks. This restricted application reduces the 362

likelihood of unintended harmful output. 363
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A Dataset Details 511

We use the datasets released by Yu et al. (2020) for 512

the causal classification task. From each domain, 513

we select the first 1,000 samples as the training set 514

and use the remainder as the test set. In the source 515
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domain, the training set contains 1,000 samples and516

the test set contains 1,076 samples. In the target517

domain, the training set contains 1,000 samples518

and the test set contains 2,061 samples.519

For the negation classification task, we follow520

the original SemEval 2021 Task 10 (Laparra et al.,521

2021) data splits, using their development sets as522

our training sets and their test sets as our test sets.523

In the source domain, the training set has 1,109524

samples and the test set has 4,436 samples. In the525

target domain, the training set has 1,916 samples526

and the test set has 7,664 samples.527

All training and few-shot samples are randomly528

drawn from the source domain training sets. We529

always evaluate on the corresponding test sets. Fol-530

lowing the original evaluation metrics, we report531

the macro-averaged F1 score for the causal classifi-532

cation task. For the negation classification task, we533

report the F1 score for the negated class.534

B License Information535

We comply with all relevant model licenses and536

adhere to the intended uses defined by their cre-537

ators. The LLaMA 3.1 models are provided un-538

der the Llama 3.1 Community License Agreement,539

while the LLaMA 3.2 models are distributed un-540

der the Llama 3.2 Community License Agreement.541

RoBERTa is released under the MIT License.542

We use the HuggingFace Transformers library543

(Wolf et al., 2020) for fine-tuning, which is licensed544

under the Apache-2.0 license. For inference with545

LLMs, we rely on the vLLM library, also licensed546

under Apache-2.0.547

All datasets are used in compliance with their548

respective licenses. The causal classification data549

from Yu et al. (2020) are released under the GPL-550

3.0 license. The negation classification data from551

SemEval 2021 Task 10 (Laparra et al., 2021) are552

provided under the Apache-2.0 license.553

C Implementation Details554

We fine-tune all LLMs using their instruct versions555

and perform few-shot prompting using their base556

versions. Our preliminary experiments show that557

instruct versions often produce extraneous text in558

few-shot prompting settings, making performance559

evaluation more difficult.560

We run all experiments on NVIDIA A100 GPUs561

with 80GB of VRAM. For models up to 3B param-562

eters, we carry out both fine-tuning and few-shot563

prompting on a single GPU. For the 8B model, we564

use two GPUs for few-shot prompting, and for the 565

70B model, we rely on eight GPUs. 566

When fine-tuning the RoBERTa model, we set 567

the learning rate to 2 × 10−5, use a batch size of 568

8, and train for 10 epochs. For the LLaMA 3.2 3B 569

model, we set the learning rate to 2 × 10−5, use 570

a batch size of 4, and train for 5 epochs. During 571

few-shot prompting with LLMs, we use the default 572

maximum model input length without imposing 573

additional constraints. 574
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