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Abstract

Semantic Scene Completion (SSC) aims to perform geometric completion and
semantic segmentation simultaneously. Despite the promising results achieved
by existing studies, the inherently ill-posed nature of the task presents significant
challenges in diverse driving scenarios. This paper introduces TALoS, a novel
test-time adaptation approach for SSC that excavates the information available
in driving environments. Specifically, we focus on that observations made at a
certain moment can serve as Ground Truth (GT) for scene completion at another
moment. Given the characteristics of the LiDAR sensor, an observation of an
object at a certain location confirms both 1) the occupation of that location and
2) the absence of obstacles along the line of sight from the LiDAR to that point.
TALoS utilizes these observations to obtain self-supervision about occupancy and
emptiness, guiding the model to adapt to the scene in test time. In a similar manner,
we aggregate reliable SSC predictions among multiple moments and leverage them
as semantic pseudo-GT for adaptation. Further, to leverage future observations that
are not accessible at the current time, we present a dual optimization scheme using
the model in which the update is delayed until the future observation is available.
Evaluations on the SemanticKITTI validation and test sets demonstrate that TALoS
significantly improves the performance of the pre-trained SSC model. Our code is
available at https://github.com/blue-531/TALoS.

1 Introduction

LiDAR is a predominant 3D sensor in autonomous vehicles, effectively capturing the 3D geometry
of the surroundings as a point cloud. However, LiDAR inherently records the surface of objects,
leaving the areas behind initial contact points empty. Therefore, it is crucial for safety and driving
planning to predict the state of these hidden regions using only the limited information available.
Addressing these challenges, Semantic Scene Completion (SSC) has emerged as a pivotal research
topic, enabling simultaneous geometric completion and semantic segmentation of the surroundings.

Existing SSC studies have focused on tackling both tasks [1, 2, 3, 4, 5, 6, 7, 8, 9], mainly from an
architectural perspective. By amalgamating the models specialized for each task, these approaches
have shown promising results over the last few years. Nevertheless, the nature of the completion
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task—filling in the unseen parts from the given observation—heavily relies on the prior structural
distribution learned from the training dataset. Therefore, in our view, the classical SSC paradigm is
inevitably vulnerable to handling the diverse scene structures encountered in driving scenarios.

As a remedy, this paper pioneers a novel SSC approach based on Test-time Adaptation (TTA),
which adjusts a pre-trained model to adapt to each test environment. Due to the absence of ground
truths (GTs) during test time, the existing TTA studies for various fields have endeavored to design
optimization goals, like meta-learning or auxiliary tasks [10, 11, 12, 13, 14]. Instead, we focus on the
driving scenarios assumed by SSC, excavating the information helpful for adapting the model to the
scene in test time.

Our main idea is simple yet effective: an observation made at one moment could serve as
supervision for the SSC prediction at another moment. While traveling through an environment,
an autonomous vehicle can continuously observe the overall scene structures, including objects that
were previously occluded (or will be occluded later), which are concrete guidances for the adaptation
of scene completion. Given the characteristics of the LiDAR sensor, an observation of a point at a
specific spatial location at a specific moment confirms not only the occupation at that location itself
but also the absence of obstacles along the line of sight from the sensor to that location.

The proposed method, named Test-time Adaptation via Line of Sight (TALoS), is designed
to explicitly leverage these characteristics, obtaining self-supervision for geometric completion.
Additionally, we extend the TALoS framework for semantic recognition, another key goal of SSC,
by collecting the reliable regions only among the semantic segmentation results predicted at each
moment. Further, to leverage valuable future information that is not accessible at the time of the
current update, we devise a novel dual optimization scheme involving the model gradually updating
across the temporal dimension. This enables the model to continuously adapt to the surroundings at
test time without any manual guidance, ultimately achieving better SSC performance.

We verify the superiority of TALoS on the SemanticKITTI [15] benchmark. The results strongly
confirm that TALoS enhances not only geometric completion but also semantic segmentation per-
formance by large margins. With extensive experiments, including ablation studies, we analyze the
working logic of TALoS in detail and present its potential as a viable solution for practical SSC.

2 Related Works

2.1 Semantic scene completion

Starting from SSCNet [1], semantic scene completion task has been extensively studied [16, 2, 3, 4, 5,
6, 7, 8, 9, 17, 18, 19, 20, 21, 22, 23]. In SSC using LiDAR, as both tasks of geometric completion and
semantic understanding should be achieved simultaneously, the existing studies have mainly presented
architectural approaches. For example, LMSC [4] and UtD [8] utilize UNet-based structures with
multi-scale connections. JS3C-Net [5] and SSA-SC [6] propose architectures consisting of semantic
segmentation and completion networks to utilize them complementarily. Although these approaches
show promise, handling the diversities inherent in outdoor scenes remains a challenging problem. In
this light, we would like to introduce test-time adaptation to the field of semantic scene completion.

Notably, SCPNet [3] proposes to use distillation during the training phase, transferring the knowledge
from the model using multiple scans to the model using a single scan. Although this approach also
aims to use information from various moments, the proposed TALoS is distinct as it leverages such
information online, adapting the model to the diverse driving sequence. Also, the recently published
OccFiner [24] is noteworthy, as it aims to enhance the already existing SSC model. However,
OccFiner is a post-processing method that refines the results of the pre-trained model, performing in
an offline manner, unlike our online TTA-based approach.

2.2 Test-time adaptation

Test-time Adaptation (TTA) aims to adapt a pre-trained model to target data in test time, without
access to the source domain data used for training. One widely used method involves attaching
additional self-supervised learning branches to the model [10, 11, 12]. In point cloud TTAs, using
auxiliary tasks such as point cloud reconstruction [13, 14] are actively studied. However, these
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approaches require the model to be trained with the additional branches, primarily in the training
stage on the source dataset.

To relieve the requirements on the training stage, various online optimization goals have been explored,
such as information maximization [25, 26, 27] and pseudo labeling [26, 28, 29, 30] schemes. Similar
approaches have also been proposed for the point cloud, as in [31, 32], using pseudo labeling.

Unfortunately, despite the natural fit between these TTA approaches and the goal of SSC, which
involves completing diverse driving environments, the use of TTA has been scarcely explored in the
SSC field. Against this background, we pioneer the TTA-based SSC method, especially focusing on
excavating the information from the point clouds consecutively observed at various moments.

3 Method

3.1 Problem definition

This section begins by defining the formulation of our approach and the notations used throughout
the paper. The Semantic Scene Completion (SSC) task aims to learn a mapping function from an
input point cloud to the completed voxel representation. We formally denote the input point cloud
X ∈ RN×3 as a set of points, where each point represents its XYZ coordinate. Following the
conventional SSC studies, the completion result is denoted as Y ∈ CL×W×H . Here, L,W,H are the
dimensions of the voxel grid, and C = {0, 1, . . . , C} is a set of class indices indicating whether a
voxel is empty (0) or belongs to a specific class (1, . . . , C).

As our approach is based on TTA, we assume the existence of a pre-trained SSC model F as follows:

p = F(X), (1)

where p ∈ [0, 1](C+1)×L×W×H is the probability of each voxel belonging to each class. The final
class prediction Ŷ can be obtained by applying an argmax function on p. In this context, the goal of
TALoS is to adjust the pre-trained model to adapt to an arbitrary test sample X by optimizing the
parameters, making them more suitable. Here, note that the proposed approach does not have explicit
requirements on F , such as the architectures or pre-training policies.

3.2 Test-time Adaptation via Line of Sight (TALoS)

The proposed TALoS targets a realistic application of the pre-trained SSC model, assuming an
autonomous vehicle drives through arbitrary environments in test time. In this scenario, we suppose
the point clouds captured by LiDAR are continuously provided as time proceeds, and accordingly,
the model should perform SSC for each given point cloud instantly. We denote the input sequence of
point clouds as {Xi}, where i = {1, . . .} indicates the moment when the point cloud is captured.

The main idea behind TALoS is that for guiding the model prediction of a certain moment (let i), the
observation made at another moment (let j) can serve as supervision. However, as the ego-vehicle
moves as time proceeds, the input point clouds captured at the two different moments, i.e., Xi and Xj ,
are on different LiDAR coordinates. To handle this, we use a transformation matrix Tj→i between
two coordinates to transform the jth point cloud Xj with respect to the ith coordinate system, by

Xj→i = Tj→iXj , (2)

where Xj→i is the transformed point cloud.

Subsequently, we exploit Xj→i to obtain a binary self-supervision for geometric completion, indi-
cating whether a voxel is empty or occupied. We implement this process as shown in Fig. 1. For
voxelization, we first define a voxel grid of a pre-defined size (L ×W × H), initialized with an
ignore index (255). Then, using Xj→i, we set the value of voxels containing at least one point to 1
(green color in Fig. 1), while keeping the other voxels as 255. Here, note that we discard the points
of the non-static classes (e.g., car), as such object can change their location between ith and jth
observation. For this rejection, we use pj , the model prediction at jth moment. The resulting binary
mask indicates which voxels are occupied at the jth moment with respect to the ith coordinate.

Additionally, we use the Line of Sight (LoS), an idea utilized in various fields [33, 34, 35], to further
identify which voxels should not be occupied. Considering LiDAR’s characteristics, the space
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Figure 1: Left: Visualization of constructing a binary map Vcomp
j→i from the transformed point cloud

Xj→i. Although we represent our process using a 2D grid for intuitive visualization, note that the
real process is performed on a 3D voxel. Right: The real example of the binary map projected on 2D.

between the LiDAR and the voxels filled with 1 should be empty. To check which voxels are crossed
by the LoS, we employ Bresenham’s algorithm [36]. For this process, we use the LiDAR position at
the jth moment converted to the ith coordinate system, not the ith LiDAR position. Finally, we set
the value of the identified voxels to 0 (red color in Fig. 1), indicating that the voxels should be empty.

The obtained Vcomp
j→i ∈ {0, 1, 255}L×W×H then serves as supervision for pi, the ith prediction.

Here, pi is obtained by the pre-trained SSC model F as follows:

pi = F(Xi). (3)

Since pi is the prediction for all the classes, including the empty class, we convert it into the binary
prediction for completion, denoted as pcomp

i ∈ [0, 1]2×L×W×H . Here, the first element of pcomp
i

is simply p0
i , and the second one is maxc=1,...,C pc

i , the maximum value among the scores of the
non-empty classes. Here, pc

i represents the predicted probability of the voxels belonging to cth class
at ith moment.

Finally, the loss function using the binary completion map is as

Lcomp
j→i (pi) = Lce(p

comp
i ,Vcomp

j→i ) + Llovasz(p
comp
i ,Vcomp

j→i ), (4)

where Lce and Llovasz are cross-entropy loss and lovasz-softmax loss [37], respectively.

3.3 Extension for semantic perception

In the previous section, we described a method that leverages an observation made in one moment
(j) to obtain the binary occupancy map of another moment (i). As the method mainly focuses on
enhancing the model’s capability of understanding the test-time scene structure, i.e., scene completion,
this section further extends our approach to address the semantic perception of surroundings, another
key goal of SSC. Specifically, we carefully identify the reliable regions from the prediction of the
pre-trained model at each moment, and then build a consensus among these predictions across various
moments.

To achieve this, we first define a metric similar to [25, 26, 27], based on Shannon entropy [38]H, as
follows:

R = H(p) = −
C∑

c=0

pc logpc, (5)

where R ∈ [0, 1]L×W×H is the measured reliability. As reported in conventional works based
on confidence-based self-supervision, we also confirmed a high positive correlation between the
reliability R and the actual accuracy of voxel-wise classification, as in Fig. 2 left.

To identify the confident regions from the model predictions, we simply threshold the measured
reliability by a pre-defined value τ (0.75 in ours) as follows:

A(x, y, z) =

{
argmaxc p

c(x, y, z) if R(x, y, z) > τ

255 otherwise,
(6)
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Figure 2: Left: Verification of the reliability metric. The voxels having higher reliability show higher
semantic completion accuracy. Right: Examples of pseudo-GT (pGT) construction. The blue box
depicts the successful rejection of misprediction using reliability, while the red boxes show the benefit
of using the prediction of another moment, providing more completed pGT.

where (x, y, z) denotes the voxel coordinate. Here, A ∈ (C ∪ {255})L×W×H is the reliable self-
supervision, which can function as pseudo-GT for semantic segmentation.

Following the above process, we first acquire Aj using jth model prediction. Subsequently, we
project its coordinate to ith coordinate, similar to Equ. (2). After obtaining the projected pseudo-GT,
denoted as Aj→i, we aggregate it with Ai, the pseudo-GT obtained at the current moment i. In
detail, we replace only the unconfident voxels in Ai (indexed as 255) with the corresponding voxels
of Aj→i. Meanwhile, if the classes predicted by Ai and Aj→i differ on certain voxels and both
are confidently predicted, we conservatively drop those voxels as 255. As depicted in the colored
boxes in Fig. 2 right, this aggregation helps our framework to build a consensus among the semantic
perceptions performed at various moments, significantly enhancing the quality of pseudo-GT from
the perspective of SSC.

We denote the result of aggregation as Vsem
j→i ∈ (C∪{255})L×W×H . Since Vsem

j→i contains semantic
information about all the classes, we can utilize it as direct pseudo-GT for guiding pi. Accordingly,
the loss function is defined as:

Lsem
j→i(pi) = Lce(pi,V

sem
j→i) + Llovasz(pi,V

sem
j→i), (7)

where the notations are similar to those of Equ. (4).

3.4 Dual optimization scheme for gradual adaptation

The previous sections introduced how TALoS guides the prediction of a pre-trained SSC model at a
certain moment (i), leveraging observations made at another moment (j). From a methodological
perspective, the remaining step is to consider how to effectively adapt the model by selecting the
appropriate moments.

Essentially, we cannot observe the future. Therefore, assuming TTA in real driving scenarios, we
can only use past observations when updating the model at the current moment, which implies i > j.
However, from the perspective of the SSC task, the main region of interest is intuitively the forward
driving direction of the autonomous vehicle. This implies that guidance from future observations can
be more important and valuable than guidance from past observations.

So, how can we leverage future information without actually observing it at the current moment? Our
key idea is to hold the model and its prediction at the current moment without updating and delay the
update until future observations become available.

We develop this idea as in Fig. 3. In detail, our approach involves two models of FM and FG. The
goal of FM is an instant adaptation on the sample of the current moment. Therefore, we initialize
FM every moment with the pre-trained model and discard it at the end of the moment. Here, FM

can be instantly updated at the moment i, using the past information already observed at jth moment.
The loss function for FM is defined as:

LM
j→i = L

comp
j→i (pM

i ) + Lsem
j→i(p

M
i ), (8)

where pM
i is the output of FM at ith moment.
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The update of ℱ𝐺 is delayed until 𝑘th moment.

ℱ𝐺is updated when arrive at kth moment,
where 𝐗𝑘 is available.

ℱ𝑀can be immediately updated at 𝑖th moment. 

Figure 3: Conceptual visualization of the dual optimization scheme. FM is instantly updated at
moment i, using the past information provided from jth moment. On the other hand, the update of
FG using ith prediction is delayed until kth moment, when the future information becomes available.
We unify the predictions of the models, pM

i and pG
i , to get the final prediction ptalos

i . The red dashed
line denotes the back-propagation.

However, as aforementioned, we want to also leverage future information at kth moment, which is
not available yet. For this, we define FG, which aims to gradually learn the overall scene distribution.
Therefore, FG is initialized only at the first step and continuously used for prediction. As in Fig. 3,
the inference of FG for Xi is instantly done and is used for the final output of the ith moment. On the
other hand, the update of FG should stand by, until Xk is available. In other words, once the model
FG arrives at kth moment (which was future at the time of prediction), the update is performed. The
loss function for FG is defined as:

LG
k→i = L

comp
k→i (p

G
i ) + Lsem

k→i(p
G
i ), (9)

where pG
i is the output of FG at ith moment.

This update cannot directly affect the prediction of FG made at ith moment, as it is already over in
the past from the perspective of kth moment when the update occurred. However, this continuous
accumulation of future information gradually enhances the model, allowing it to better learn the
overall scene structure as time progresses. We provide a detailed illustration in Algorithm 1.

In summary, the proposed TALoS framework involves two models, moment-wisely adapted FM and
gradually adapted FG. To obtain the final prediction ptalos

i of ith moment, we individually run FM

and FG using Xi as an input. Both results pM
i and pG

i are unified into a single voxel prediction.
Here, we use pM

i as a base, while trusting pG
i only for the voxels predicted as static categories (such

as roads or buildings) by pG
i . The rationale behind this strategy is that continual adaptation makes

FG gradually adapt to the overall sequence, leading to a better understanding of the distribution of
static objects. We empirically found that the continuous adaptation is more facilitated for the static
pattern than the movable objects having diverse distribution.

4 Experiments

4.1 Settings

Datasets & Metrics. We primarily experiment on SemanticKITTI [15], the standard benchmark
for SSC, comprising 22 LiDAR sequences. Sequences 00 to 10 are used for pre-training SSC
models, except for 08, which is employed as a validation set. For testing, we use sequences
11 to 21. Additionally, we verify TALoS on cross-dataset evaluation from SemanticKITTI to
SemanticPOSS [39]. From the 6 sequences of SemanticPOSS, we utilize only the validation sequence
(02). For more details, please refer to the supplementary material. For evaluation, we employ
intersection over union (IoU), a standard metric for semantic segmentation. We report both the
completion IoU (cIoU) for binary occupancy prediction and the mean IoU (mIoU) for all classes.
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Algorithm 1 Dual optimization scheme (single iteration)

1: Input: Moment-modelFM , Gradual-modelFG, Pre-trained SSC model parameters θ0, temporal
distance τ , and Buffer B

2: Output: Adapted gradual-model parameters θG
3: Initialize gradual-model parameters: θG ← θ0
4: for each timestep t = 1 to unknown T do
5: Initialize moment-model parameters: θM ← θ0
6: i, j ← t, t− τ
7: Receive current LiDAR observation Xi

8: Perform prediction with the moment-model: pM
i ← FM (Xi; θ

M )
9: Perform prediction with the gradual-model: pG

i ← FG(Xi; θ
G
i )

10: Save pM
i in the buffer B.

11: Save pG
i and the corresponding forward propagation graphs of FG to the buffer B.

12: if j >= 1 then
13: Load pM

j from the buffer B.
14: Compute LM

j→i using pM
i and pM

j

15: Update moment-model parameters: θM ← θM − η∇θMLM
j→i

16: Load pG
j and the corresponding forward propagation graphs of FG from the buffer B.

17: Compute LG
i→j using pG

i and pG
j

18: Update moment-model parameters: θG ← θG − η∇θGLG
i→j

19: Perform prediction with the updated moment-model: pM
i ← FM (Xi; θ

M )
20: Perform prediction with the updated gradual-model: pG

i ← FG(Xi; θ
G
i )

21: end if
22: ptalos

i ← Agg(pM
i ,pG

i )
23: Return ptalos

i as the final SSC result of the current timestep i
24: end for
25: Return adapted gradual-model parameters θG

Implementation. We employ the officially provided SCPNet [3], which is pre-trained on the
SemanticKITTI [15] train set, as our baseline. To apply TALoS in test time, we only update the last
few layers of SCPNet. Additionally, to prevent SCPNet’s architecture from automatically making the
voxels far from existing points empty, we use a 3D convolution layer to expand the region of sparse
tensor computation. This ensures that distant voxels are properly involved in the test-time adaptation.
For optimization, we use Adam optimizers [40], where the learning rates are set to 3e-4 and 3e-5 for
FM and FG, respectively. For more details, refer to Section A.

4.2 Ablation studies

We conducted ablation studies to evaluate the effectiveness of each component of TALoS. The
configurations and results of the ablation studies are demonstrated in Table 1. First, we verify the
effectiveness of the loss functions we devised. The result of Exp A confirms that minimizing Lcomp

indeed increases both cIoU and mIoU performance over the baseline, helping the model adapt to
each test sample. In addition, Exp B shows that using Lsem is also effective, especially for semantic
perception, resulting in better mIoU performance. Further, Exp C using both losses achieves even
higher performance, demonstrating the effectiveness of the proposed TALoS.

Additionally, we check the validity of the dual optimization scheme, ablating either FM or FG. The
results of Exp C and Exp D show that the use of moment-wise adaptation and gradual adaptation are
both effective. Further, Exp E confirms that our dual scheme effectively unifies both gains into our
TALoS framework, significantly outperforming the baseline on both cIoU and mIoU.

4.3 Results on SemanticKITTI

Table 2 provides the performance of existing SSC methods on the SemanticKITTI test set. Compared
with SCPNet, which serves as our baseline, the proposed TALoS achieves significantly higher
performance on both cIoU and mIoU. Considering that SCPNet also involves knowledge distillation
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Table 1: The results of ablation studies for the proposed TALoS framework, conducted on Se-
manticKITTI val set. COMP and SEM denote the use of loss function defined in Equ. (4) and
Equ. (7), respectively. Meanwhile, MOMENT and GRADUAL represent the use of FM and FG for
the optimization scheme in Sec. 3.4, respectively. All metrics are in %. Best results are in bold.

Loss functions Dual optimization scheme Metrics
COMP SEM MOMENT GRADUAL mIoU cIoU

Baseline 37.56 50.24
A ✓ ✓ 37.97 52.81
B ✓ ✓ 38.35 52.47
C ✓ ✓ ✓ 38.38 52.95
D ✓ ✓ ✓ 38.81 55.94

E (Ours) ✓ ✓ ✓ ✓ 39.29 56.09

Car

Road

Parking

Sidewalk

Truck

Building

Fence

Vegetation

Terrain

Pole

Traffic sign

Baseline Ours Ground Truth

(a)

(a)

(b)

(b) Trunk

Figure 4: Qualitative comparisons between baseline (SCPNet) and ours TALoS on SemanticKITTI
val set. The highlighted regions depict the improvements achieved by TALoS, better completing the
scene while also recovering the mispredictions.

using future frames during training, this performance gain confirms that our TTA-based method is
more effective for leveraging future information. Figure 4 provides a qualitative comparison between
the baseline and ours, demonstrating the advantages of TALoS.

Additionally, it is noteworthy to mention the difference between ours and OccFiner [24]. OccFiner
is designed to refine the results of existing SSC methods in an offline manner. It first generates
predictions for a LiDAR sequence using an SSC method and then fuses these predictions post-driving
to refine the results. In contrast, TALoS aims to perform test-time adaptation instantly in an online
manner. We assume the sequential sensing of LiDAR data during driving, and TALoS gradually
enhances the model as the test-time adaptation progresses. As both methods have advantages in their
respective practical settings, we simply mention it here, rather than comparing them in Table 2.

4.4 Comparisons with the existing TTA methods

To demonstrate the benefit of our approach from the perspective of TTA, we integrated existing TTA
studies into our framework and tested them. The results can be found in Table 3. First, we performed
optimization via entropy minimization, as in TENT [25], instead of minimizing the proposed loss
functions. For this experiment, we exclusively use FM for clear comparison. This setting achieved
37.92% and 49.86% in mIoU and cIoU, respectively. Note that cIoU of this setting is slightly lower
than that of the baseline. Further, the setting of Exp C in Table 1, which also uses FM only, still
outperforms TENT in both metrics. These highlight the effectiveness of our losses, which utilize
observations made at various moments.

To further clarify the superiority of our dual optimization scheme, we also implemented CoTTA [28],
a continuous TTA approach based on the widely used student-teacher scheme. We update both FM
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Table 2: Quantitative comparison between the existing SSC methods with our TALoS on Se-
manticKITTI [15] test set. We use an online benchmark server for evaluation.
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SSA-SC [6] 23.5 58.8 36.5 13.9 4.6 5.7 7.4 4.4 2.6 0.7 72.2 37.4 43.7 10.9 43.6 30.7 43.5 25.6 41.8 14.5 6.9
JS3C-Net [5] 23.8 56.6 33.3 14.4 8.8 7.2 12.7 8.0 5.1 0.4 64.7 34.9 39.9 14.1 39.4 30.4 43.1 19.6 40.5 18.9 15.9
S3CNet [16] 29.5 45.6 31.2 41.5 45.0 6.7 16.1 45.9 35.8 16.0 42.0 17.0 22.5 7.9 52.2 31.3 39.5 34.0 21.2 31.0 24.3
SCPNet [3] 36.7 56.1 46.4 33.2 34.9 13.8 29.1 28.2 24.7 1.8 68.5 51.3 49.8 30.7 38.8 44.7 46.4 40.1 48.7 40.4 25.1
TALoS 37.9 60.2 46.4 34.4 36.9 14.0 30.0 30.5 27.3 2.2 73.0 51.3 53.6 28.4 40.8 45.1 50.6 38.8 51.0 40.7 24.4

Table 3: Comparisons between the proposed TALoS and the existing TTA methods [25, 28]. We use
SCPNet baseline and conduct evaluation on SemanticKITTI val set.

Methods Baseline TENT [25] Ours (Exp. C) CoTTA [28] Ours
mIoU 37.56 37.92 38.38 36.55 39.29
cIoU 50.24 49.86 52.95 50.61 56.09

and FG are optimized using entropy minimization, where the update of FG is assisted by CoTTA
scheme. We verify that this setting achieves 36.55% of mIoU and 50.61% of cIoU, where the mIoU
decreases from the baseline. The results strongly confirm the superiority of the proposed optimization
goals and schemes, which effectively leverage the information from driving scenarios for SSC.

4.5 Experiments under the severe domain gap

We check the potential of TALoS under the test scenarios of a target domain considerably different
from the source domain. Specifically, we tested SCPNet pre-trained on SemanticKITTI, on the driving
sequences of SemanticPOSS. Unlike SemanticKITTI, which uses a 64-beam LiDAR, SemanticPOSS
is captured with a 40-beam and targets campus rather than on typical roads, resulting in significantly
different class distribution. Note that although TTA-based approaches could enhance performance by
adapting the pre-trained model to the scene, the capability of the initial model itself is still essential.

Table 4 compares our performance with that of the baseline, which uses the pre-trained SCPNet
without any adjustments. Unfortunately, due to the severe drastic gap between SemanticKITTI and
SemanticPOSS, the mIoU performance is actually low for both methods, as we expected. Therefore,
in this section, we would like to focus on the significant improvement achieved by TALoS over the
baseline. In particular, TALoS shows its potential by achieving an improvement of over 10 in cIoU,
which is less affected by changes in class distribution. We believe that combining TALoS with the
prior studies targeting domain gaps could be an interesting direction for future research.

4.6 Additional experiments

Playback experiment. We further clarify the advantages of our continual approach with an intuitive
experiment named “playback”. Specifically, we first run TALoS on the SemanticKITTI validation
sequence, from start to the end. During this first round, we save the weights of the gradual model FG

at a certain moment. Subsequently, we initialize the FG with the saved weights, and run TALoS once
again on the same sequence from the start. Here, during this playback round, we do not update the
continual model at all. If the FG indeed learned the distribution of the scene while not being biased
to a certain moment during the first round, the playback performance would be better than that of
the first round. Table 5 verifies this expectation, where the playback performs better compared to
not only the baseline but also the first round of TALoS. We also provide a qualitative comparison
between their results in Fig. 5, where the prediction of playback is clearly enhanced in terms of SSC.

Impact of number of iterations. Table 6 shows the impact of the number of iterations for updating
FM on the performance of TALoS. Notably, TALoS achieves significant gains in both mIoU and
cIoU, even with a single iteration. Performance is enhanced as the number of iterations increases;
however, we observe saturation after five iterations per sample. The results imply that the proposed
method efficiently excavates the information we targeted, fully leveraging it with only a few iterations.
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Table 4: Results of the cross-dataset evaluation, pre-training on SemanticKITTI [15], and evaluating
on SemanticPOSS [39]. We compare the performance of TALoS with the baseline (SCPNet).
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Ours 9.6 36.2 1.0 0.6 3.5 3.5 27.7 0.9 8.2 31.6 6.1 9.4 13.2

Table 5: Results of the playback exp.
Methods Baseline Ours Ours-Playback

cIoU 50.24 56.09 56.91
mIoU 37.56 39.29 39.38

Table 6: Impact of the number of iterations.
# of iterations 0 (baseline) 1 2 3 (ours) 5

cIoU 50.24 55.99 56.05 56.09 56.07
mIoU 37.56 39.09 39.22 39.29 39.31

Ground TruthOurs-PlaybackOursBaseline

Figure 5: The results of the playback experiment. The red boxes depict the sequential improvements,
implying that the gradual model indeed adapts to the scene as TTA proceeds.

5 Limitations

One of our approach’s main limitations is that it addresses point clouds only. As there exist a number
of SSC approaches using image data, exploring TTA for SSC in this setting could be an interesting
research direction. We believe that the main philosophy of this paper, using the observation of one
moment to guide the prediction of another moment, can be seamlessly extended to the image-based
approaches, enhancing the practicality of SSC.

Further, we are aware of that the current state of SSC performance is still in its infancy, and thereby
the gain achieved by TTA can be seem to less meaningful. However, we strongly believe that the
proposed TALoS can be a even more promising approach for autonomous driving, as the field of SSC
grows in the future.

6 Conclusion

This paper pioneers a novel Semantic Scene Completion (SSC) approach based on Test-time Adapta-
tion (TTA). The proposed method, named TALoS, focuses on that observation made at one moment
can serve as Ground Truth (GT) for scene completion at another moment. For this, we present
several approaches to acquiring self-supervision that can be helpful in adapting the model to the
scene in test time, from both the perspectives of geometric completion and semantic segmentation.
To further capitalize on future information that is inaccessible at the current time, we introduced a
dual optimization scheme that delays the model update until future observations become available.
Evaluations on the Semantic-KITTI validation and test sets confirmed that TALoS significantly
enhances the performance of the pre-trained SSC model, compared to the existing TTA approaches.
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A Implementation Details

This section provides more details about the implementation of our method. We utilize a voxel size of
256× 256× 32, following SCPNet [3]. For cross-domain evaluation, we use the class mapping from
semanticKITTI [15] to semanticPOSS [39] shown in Table A.1, following [41, 42]. All experiments
are conducted using a single NVIDIA RTX A6000.

Meanwhile, during the test-time adaptation using TALoS, we only updated the segmentation sub-
network and fixed the weights of the other modules of SCPNet. We experimentally observe that
updating the whole network achieves slightly higher performance but is marginal.

Table A.1: Class mapping from semanticKITTI [15] to semanticPOSS [39]
KITTI car bicycle person bicyclist road, sidewalk building fence vegetation trunk pole traffic sign
POSS car bike person rider ground building fence plants trunk pole traffic-sign

B Class-wise Results on SemanticKITTI Validation Set

We provide class-wise results on the SemanticKITTI validation set in Table B.2. Notably, the proposed
TALoS outperforms the baseline (SCPNet[3]) in most categories, in addition to the significant margins
in overall metrics, mIoU and cIoU. These results strongly confirm the superiority of our method.

Table B.2: Quantitative results on SemanticKITTI validation set.
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SCPNet [3] 37.6 50.2 51.2 25.8 37.7 57.6 43.8 22.9 18.8 4.2 70.8 61.5 53.0 15.3 33.6 32.2 38.9 33.9 52.9 39.8 19.8
TALoS 39.3 56.1 51.9 25.8 38.7 60.1 46.1 24.0 19.9 5.3 75.0 61.3 55.2 17.0 36.7 33.1 44.6 35.0 57.7 40.1 18.9

C Result on various baseline models

We conducted experiments using different architectures to prove that TALoS is a universally useful
approach to various SSC models. As shown in Table C.3, TALoS meaningfully enhances SSC
performance (mIoU) across different architectures and datasets. We utilized the baseline weights
trained from the training set of the dataset on which validation was to be performed. The results
imply that TALoS can be a promising solution for SSC in various settings.

Table C.3: Comparisons between the proposed TALoS and TENT [25] using various SSC models.
SSC method Dataset Baseline TENT [25] TALoS
SSCNet [1] KITTI-360 17.0 17.0 (+0.0) 17.4 (+0.4)
SSA-SC [6] SemanticKITTI 24.5 24.8 (+0.2) 25.3 (+0.8)
SCPNet [3] SemanticKITTI 37.6 37.9 (+0.3) 39.3 (+1.7)

D Additional Experimental Results

All the experiments in Section D are conducted on the SemanticKITTI validation set.

D.1 Impact of threshold

We verify the impact of τ , the value thresholding the reliability for obtaining pseudo-GT, as in
Equ. (6). As shown in Table D.4, the proposed method is quite robust to the change of τ , and both
mIoU and cIoU are saturated after a certain point (0.75). Based on this result, we set the thresholding
value to 0.75 by default in the main paper.
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D.2 Effectiveness of noise

We verify the robustness of the proposed method against the errors that possibly exist in LiDAR
calibration, as shown in Table D.5. We model the error by disturbing the transformation matrix
in Equ. 2 with the noise sampled from the Gaussian distributions, which have standard deviation
values listed in the first column of the table. Specifically, we add the noise to the angles of rotation
and translation vectors, to acquire the disturbed projection matrices between the LiDAR coordinate
systems. The results show that performance decreases as the level of noise increases, as expected.
Nevertheless, we observe that the proposed TALoS achieves substantial performance even with the
noise, still meaningfully higher than the baseline. These results imply the robustness and practicality
of our method.

D.3 Impact of selecting moments

As the proposed TALoS explicitly leverages the observations made at various moments during
adaptation, it is essential to select proper moments. To verify this, we conduct experiments by varying
the chosen moments, as shown in Table D.6. For example, frame difference 1 in Table D.6 denotes
selecting j = i − 1 and k = i + 1 as moments. Here, we need to specially handle the boundary
cases, e.g., at the start of the sequence (j<0) or the last of the sequence (k is larger than the number
of all the samples in the sequence). For these cases, we simply do not use any losses relevant to those
moments. Furthermore, for frame difference 0, we use Ai, the pseudo-GT from the current moment,
as the only self-supervision.

The results in Table D.6 show that performance decreases if the selected moments are too far from
the current step, as the distant observation may not overlap with the current observation or overly
force the model to learn completely unpredictable regions, leading to bias. Considering these, we set
the frame difference to 1 by default in our setting.

Table D.4: Impact of changes in τ ,
the thresholding for reliability.

Reliability mIoU cIoU
0.65 39.14 55.42
0.7 39.24 55.8
0.75 39.29 56.09
0.8 39.28 56.05

Table D.5: Effectiveness of
noises conducted on semantic-
KITTI validation set.

Noise mIoU cIoU
0.05 38.58 54.09
0.03 38.76 54.49

0 39.29 56.09

Table D.6: Impact of selecting
different moments in TALoS.

Frame Diff. mIoU cIoU
0 38.66 54.81
1 39.29 56.09
2 39.21 55.94
3 39.14 55.92
4 39.09 55.91

D.4 Comparison with Fusion-based Approaches

To analyze the effect of FM , we compare our experiments with temporal fusion-based approaches.
Specifically, we devise naive temporal fusion methods for the previous and current timesteps in two
different ways, named early and late fusion. In early fusion, we merge the raw point clouds of both the
previous and current timesteps and use the fused point cloud as input for our baseline (the pre-trained
SCPNet). On the other hand, in late fusion, we separately obtain the predictions of the baseline at
each timestep and aggregate the results of different timesteps at the voxel level. Here, when the
predicted classes differ, we trust the one with lower entropy (which means higher confidence).

Table D.7 compares the performance of these fusion-based approaches with that of TALoS. For a fair
comparison, we also replicate the performance of Exp. C in Table 1 of the main paper to the 5th row.
Note that this setting exclusively uses FM . The results show that the cIoU gain of TALoS exceeds
the naive temporal fusions, both early and late. Also, for mIoU, the fusion-based methods even harm
the mIoU performance, while TALoS achieves significant gain. Finally, it is noteworthy that Exp. C,
with FM only, still outperforms all the other fusion-based methods. This is strong evidence that FM

indeed performs something more and better than the naive temporal fusion.

D.5 Computational overhead

We provide the required time per step of the baseline (SCPNet), conventional TTA methods, and
TALoS in Table D.8. We use SCPNet baseline and conduct evaluation on SemanticKITTI val
set. Given the significant performance gains of TALoS, the result shows a reasonable trade-off of
computational overhead and performance.
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Table D.8: Time and performance for proposed TALoS and existing TTA methods [25, 28].
Method Time per step (s) overhead (%) mIoU (%)
Baseline 2.26 - 37.56

TENT [25] 4.09 +81 37.92
CoTTA [28] 6.14 +171 36.55

TALoS 6.65 +194 39.29

Table D.7: Comparison with naive temporal fusion-based approaches.
Method mIoU (%) cIoU (%)
Baseline 37.56 50.24

Early fusion 35.86 52.85
Late fusion 37.11 52.49

Exp. C (with FM only) 38.38 52.95
TALoS 39.29 56.09
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the main claims reflecting the contributions and scope of our
paper in the abstract and introduction section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our methods in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the experiment settings or information needed to reproduce the
main experimental results throughout the main paper and the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release the code upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As our method is deterministic, we believe that we do not have to report the
statistical significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We clearly provide the information on the computer resources in the supple-
mental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm all the guidelines of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We believe that there is no special societal impact of this work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the source of the assets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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