
Hypothetical Documents or Knowledge Leakage?
Rethinking LLM-based Query Expansion

Anonymous ACL submission

Abstract

Query expansion methods powered by large001
language models (LLMs) have demonstrated002
effectiveness in zero-shot retrieval tasks. These003
methods assume that LLMs can generate hy-004
pothetical documents that, when incorporated005
into a query vector, enhance the retrieval of real006
evidence. However, we challenge this assump-007
tion by investigating whether knowledge leak-008
age in benchmarks contributes to the observed009
performance gains. Using fact verification as010
a testbed, we analyzed whether the generated011
documents contained information entailed by012
ground truth evidence and assessed their impact013
on performance. Our findings indicate that per-014
formance improvements occurred consistently015
only for claims whose generated documents016
included sentences entailed by ground truth ev-017
idence. This suggests that knowledge leakage018
may be present in these benchmarks, poten-019
tially inflating the perceived performance of020
query expansion methods, particularly in real-021
world scenarios that require retrieving niche or022
novel knowledge.023

1 Introduction024

Zero-shot retrieval aims to identify relevant doc-025

uments without requiring any relevance supervi-026

sion for training a retriever (Zhao et al., 2024).027

Because obtaining query-document pairs, such as028

MS-MARCO (Bajaj et al., 2016), for supervised029

training is challenging, developing zero-shot re-030

trieval methods is both difficult and highly desir-031

able for effectively addressing knowledge-intensive032

applications (Lewis et al., 2020), including ques-033

tion answering (Zhu et al., 2021) and fact verifica-034

tion (Guo et al., 2022).035

Recent studies have leveraged the natural lan-036

guage generation capabilities of large language037

models (LLMs) to enhance the performance of038

zero-shot retrieval (Thakur et al., 2021). LLM-039

based query expansion (QE) uses LLMs to gen-040

erate documents that extend a query (Jagerman041

Figure 1: Illustration of potential knowledge leakage in
LLM-based query expansion.

et al., 2023; Lei et al., 2024; Mackie et al., 2023a). 042

Approaches such as HyDE (Gao et al., 2023) and 043

Query2doc (Wang et al., 2023), which have been 044

widely adopted in recent research (Wang et al., 045

2024a; Chen et al., 2024; Yoon et al., 2024), have 046

achieved notable performance gains across various 047

benchmarks without retriever parameter updates. 048

These approaches prompt LLMs to generate doc- 049

uments that answer a question or verify a claim. 050

Although these generated documents, referred to as 051

hypothetical documents, may contain factual errors 052

or hallucinations, it is assumed that incorporating 053

them into a query can enhance retrieval of relevant 054

real documents (Gao et al., 2023). 055

In this paper, we challenge the underlying as- 056

sumption, as illustrated in Figure 1: Do LLMs 057

truly generate hypothetical documents, or are 058

they merely reproducing what they already know? 059

LLMs are extensively pretrained on vast corpora, 060

primarily collected from the web. As common re- 061

trieval targets, such as Wikipedia and web docu- 062

ments, are often included in these pretraining cor- 063

pora (Groeneveld et al., 2024; Touvron et al., 2023; 064

Du et al., 2022; Brown et al., 2020), many available 065

LLMs may already contain knowledge relevant to a 066

given query and retrieval targets, a phenomenon we 067

refer to as knowledge leakage. If knowledge leak- 068

age occurs, it could lead to an overestimation of 069
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the effectiveness of QE methods in real-world sce-070

narios, where generating documents for unknown071

knowledge is crucial for recent or niche queries.072

To understand whether knowledge leakage exists073

and how it influences benchmark performance, this074

study examines LLM-generated documents using075

fact verification as a testbed. We analyze whether076

these documents contain sentences entailed by gold077

evidence and assess their impact on performance.078

Across experiments involving three benchmarks079

and seven LLMs, we observed a consistent trend:080

query expansion methods were effective only when081

LLM-generated documents included sentences en-082

tailed by gold evidence. This finding suggests that083

the presence of knowledge leakage in these bench-084

marks, potentially inflating the perceived perfor-085

mance of LLM-based query expansion methods,086

particularly in real-world scenarios that require re-087

trieving niche or novel knowledge.088

2 Related Works089

LLM-based Query Expansion QE has been ex-090

plored as a means to enhance retrieval performance091

by enriching the initial query representation (Azad092

and Deepak, 2019). One widely studied approach093

is relevance feedback (Rocchio, 1971; Lavrenko094

and Croft, 2001; Amati and Van Rijsbergen, 2002),095

which leverages feedback signals to expand the096

query. Recent work has explored LLM’s genera-097

tive capabilities for QE (Zhu et al., 2023; Jager-098

man et al., 2023; Lei et al., 2024). Mackie et al.099

(2023b), for instance, introduced a method that100

utilizes LLM-generated documents as relevance101

feedback. Meanwhile, other researchers proposed102

HyDE (Gao et al., 2023) and Query2doc (Wang103

et al., 2023), which employs LLMs to generate hy-104

pothetical documents based on an initial query. De-105

spite their simplicity, these methods have demon-106

strated substantial effectiveness across benchmarks107

for zero-shot retrieval and knowledge-intensive108

tasks (Wang et al., 2024a), including fact verifi-109

cation (Yoon et al., 2024).110

Data Leakage and LLM Memorization Previ-111

ous research has investigated various forms of data112

leakage in LLMs (Kandpal et al., 2023; Samuel113

et al., 2025; Deng et al., 2024; Xu et al., 2024a).114

One study used perplexity to detect potential data115

leakage, uncovering substantial instances of train-116

ing or even test set misuse (Xu et al., 2024b). Deng117

et al. (2023) further examined data contamination118

by predicting masked tokens in test sets and found119

that GPT 3.5 could reconstruct missing portions 120

of MMLU (Hendrycks et al., 2020) test instances 121

with 57% accuracy. Other research has explored the 122

boundaries of LLM knowledge (Yin et al., 2023; 123

Dong et al., 2024; Burns et al., 2022; Kadavath 124

et al., 2022), including a refusal-aware instruction 125

tuning method that trains LLMs to reject uncertain 126

questions (Zhang et al., 2024)—where an LLM is 127

deemed uncertain if its generated response does not 128

match the ground truth. Another study leveraged 129

response consistency to estimate an LLM’s confi- 130

dence in its knowledge (Cheng et al., 2024). In this 131

work, we apply NLI (MacCartney, 2009) to LLM- 132

generated documents, referencing gold evidence, 133

to examine what an LLM knows. 134

3 Methodology 135

3.1 Task and Dataset 136

Fact verification aims to predict the veracity label 137

of a textual claim c. Depending on the dataset, the 138

veracity label can fall into one of three or four cat- 139

egories1: supported, refuted, not enough evidence, 140

or conflicting evidence. 141

The fact-verification task consists of two sub- 142

tasks: evidence retrieval and verdict prediction. In 143

evidence retrieval, a retrieval pipeline R(·) iden- 144

tifies an evidence set Ẽ = {ẽ1, · · · , ẽk} from a 145

knowledge store K (e.g., Wikipedia), used to verify 146

c. The performance of R is evaluated by comparing 147

Ẽ with E = {e1, · · · , el}, the gold evidence set. 148

Verdict prediction then determine the veracity label 149

of c based on Ẽ. 150

We chose fact verification as the target task 151

to test our hypothesis for two reasons. First, in 152

real-world fact-checking scenarios (Miranda et al., 153

2019; Nakov et al., 2021), retrieving evidence 154

about niche or novel knowledge is crucial. If QE 155

is effective only when the relevant knowledge has 156

been seen during language model pretraining, its 157

practical usefulness could be limited. Second, ver- 158

dict prediction is a classification task, thus facil- 159

itating clearer evaluation of how QE influences 160

final outcomes compared to generation-based tasks, 161

such as factual QA (Joshi et al., 2017; Kwiatkowski 162

et al., 2019). 163

We employ three datasets that provide annotated 164

evidence and corresponding veracity labels, along 165

with an external knowledge store: FEVER (Thorne 166

1AVeriTeC provides four categories, whereas FEVER and
SciFact use three, excluding conflicting evidence. In SciFact,
CONTRADICT is treated equivalently to refuted.
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et al., 2018), SciFact (Wadden et al., 2020),167

and AVeriTeC (Schlichtkrull et al., 2023). While168

FEVER and SciFact contain verbatim extractions169

from K as gold evidence (i.e., E), AVeriTeC uses170

human-written evidence referencing K to verify171

claims. Table A1 summarizes the dataset statistics172

and shows that each dataset employs different types173

of knowledge sources as retrieval targets.174

3.2 LLM-based Query Expansion175

We evaluate two representative LLM-based QE176

methods that generate documents by leveraging an177

LLM’s parametric knowledge.178

Query2doc (Wang et al., 2023) generates a179

pseudo-document d based on a query q. It then180

forms an expanded query q+ by concatenating d181

with multiple copies of q (Equation 1).182

q+ = concat(q × n, d) (1)183

The expanded query q+ is then used to retrieve184

documents via BM25 (Lin et al., 2021). Following185

Jagerman et al. (2023), we set n as 5.186

HyDE (Gao et al., 2023) employs an LLM to187

generate hypothetical documents [d1, ..., dN ] to an-188

swer a query q. A dense retriever g(·) encodes q189

and each dk separately, and their encoded embed-190

dings are averaged to form the query vector vq+191

(Equation 2).192

vq+ =
1

N + 1

N∑
k=1

[g(dk) + g(q)] (2)193

Here, we set N to 1 in this study. We use Con-194

triever (Izacard et al., 2021) as g(·) with prompts195

provided in Appendix E.196

3.3 Matching Method197

Our goal is to determine whether an LLM-198

generated document d for a claim c contains a199

sentence entailed by the gold evidence E =200

{e1, · · · , em}. If such a sentence exists, it may in-201

dicate that the backbone LLM has already been ex-202

posed to the knowledge contained in E. We employ203

a matching algorithm based on natural language204

inference (NLI), assigning each claim c to one of205

two conditions: matched (M ) or unmatched (¬M ).206

The process has three steps. (1) Sentence Segmen-207

tation: Segment d into sentences and remove re-208

productions of c to construct S = {s1, · · · , sn}.209

(2) NLI Labeling: Use an NLI model to pre-210

dict a label l(i,j) for each pair (ei, sj) ∈ E × S,211

where l(i,j) ∈ {entailment, contradiction, neu- 212

tral}. (3) Label Aggregation: Aggregate all labels 213

{l(1,1), · · · , l(i,j), · · · , l(m,n)} into a single label l. 214

If at least one pair is labeled as entailment, assign 215

matched, otherwise assigns unmatched. 216

We use the sentence segmentation module pro- 217

vided by spaCy2, and employ GPT-4o-mini for NLI 218

(Figure A3). To filter out claim reproductions, we 219

apply ROUGE-2 (Lin, 2004) with a threshold of 220

0.95, based on manual inspection. 221

4 Experimental Results 222

We conducted evaluation experiments on three fact 223

verification benchmarks. Each LLM-based gener- 224

ation was repeated eight times, and we report the 225

average performance with the standard error. 226

Are LLM-based query expansion methods ef- 227

fective for fact verification? To assess the effec- 228

tiveness of Query2doc and HyDE, we compared 229

their performance against BM25 and Contriever 230

that use c as query, respectively, as baseline retriev- 231

ers. For evidence retrieval, we used Recall@k and 232

NDCG@k (k = 5) as evaluation metrics (Manning, 233

2009) on the FEVER and SciFact datasets, where 234

both the ground-truth evidence E and retrieved evi- 235

dence Ẽ come from the knowledge store K. In con- 236

trast, Ẽ in AveriTeC consists of human-written evi- 237

dence rather than extracts from K. Therefore, fol- 238

lowing previous studies (Schlichtkrull et al., 2023; 239

Chen et al., 2022), we applied the Hungarian al- 240

gorithm (Kuhn, 1955) with METEOR (Banerjee 241

and Lavie, 2005) and BERTScore (Zhang et al., 242

2020) on the top five retrieved sentences, comput- 243

ing token-level and embedding-level similarity, re- 244

spectively, based on a binary assignment between 245

generated and reference sequences. For verdict pre- 246

diction, we used GPT-4o-mini with the five re- 247

trieved evidence and evaluated performance using 248

macro F1. Evaluation details and results for k = 10 249

are provided in Appendix B and Appendix F. 250

As shown in Table A2, both Query2doc and 251

HyDE consistently outperformed BM25 and Con- 252

triever across all three datasets and for seven dif- 253

ferent backbone LLMs (three proprietary and four 254

open models). The performance gap between each 255

baseline and its respective expansion method was 256

statistically significant (p<0.001), demonstrating 257

the effectiveness of Query2doc and HyDE for ev- 258

idence retrieval and, consequently, verdict predic- 259

tion in these benchmarks. 260

2https://huggingface.co/spacy/en_core_web_lg
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Method Data
FEVER SciFact AVeriTeC

Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 36.4±0.1 29.3±0.1 55.6±0.1 55.1±0.2 47.9±0.1 52.5±0.5 19.1±0.0 12.4±0.0 32.6±0.1
M 40.5±0.1 32.8±0.1 58.4±0.0 63.3±0.4 57.1±0.3 53.7±0.3 21.6±0.1 17.6±0.1 38.3±0.3
¬M 23.8±0.3 18.5±0.2 44.9±0.1 45.9±0.4 37.6±0.3 49±0.4 17.4±0.0 9±0.0 27.6±0.1

HyDE
ALL 37.3±0.1 28.8±0.0 55.6±0.1 61.2±0.2 53.1±0.1 54±0.5 18.7±0.0 13.2±0.0 35.7±0.6
M 40±0.1 30.9±0.1 58.2±0.1 68.4±0.3 61.4±0.3 57.1±0.2 19.8±0.0 15.5±0.0 37±0.2
¬M 23.4±0.4 17.9±0.3 46.8±0.2 50.8±0.5 41.2±0.4 48.9±0.4 16.4±0.0 8.3±0.1 30.3±0.4

Table 1: Fact verification performance based on whether documents generated by query expansion methods with
GPT-4o-mini contain sentences entailed by gold evidence. Results for other LLMs are presented in Table A5.

Do LLM-generated documents include ground261

truth evidence? Table A4 presents the propor-262

tion of matched claims across the three datasets263

and seven LLMs. In most cases, more than 40%264

of the claims were matched, with a few excep-265

tions. The lowest proportion (27.6%) was observed266

for SciFact when claims were expanded using267

HyDE with Gemini-1.5-flash—still a notable frac-268

tion. The highest proportion (83.5%) was observed269

for FEVER when using HyDE with GPT-4o-mini.270

Several examples of LLM-generated documents271

and gold evidence are provided in Table A8.272

How does performance vary with the match-273

ing condition? Table 1 presents fact-verification274

performance based on whether LLM-generated275

documents contained sentences entailed by gold276

evidence, focusing on GPT-4o-mini. Results for277

other LLMs are provided in Table A5. We ob-278

served a consistent trend across the three datasets,279

two expansion methods, and seven LLMs: matched280

claims (where LLM-generated documents contain281

sentences entailed by gold evidence) achieved sig-282

nificantly better performance than both all and283

unmatched claims, with statistical significance at284

p<0.001. Moreover, with a few exceptions, perfor-285

mance for unmatched claims was lower than that286

of the respective baseline method (Table A2).287

5 Discussion288

Documents generated by LLM-based query ex-289

pansion methods frequently included sentences290

that were entailed by ground-truth evidence, in-291

dicating potential knowledge leakage. By ap-292

plying an NLI-based matching algorithm, we exam-293

ined whether LLMs reproduced gold evidence in294

response to query expansion prompts. Our results295

suggest that the seven LLMs studied in this paper296

were likely exposed to knowledge sources from the297

three benchmarks during training. This observation298

aligns with prior research on data leakage (Kandpal299

et al., 2023; Samuel et al., 2025) and memorization300

in LLMs (Cheng et al., 2024; Burns et al., 2022), 301

representing the first empirical demonstration in 302

the context of fact verification and query expansion. 303

However, since we did not investigate the causal 304

relationship between knowledge exposure during 305

training and generation, we do not claim that the 306

estimated percentage reflects the exact proportion 307

of leaked documents. 308

Performance improvements from query expan- 309

sion were consistent only when LLM-generated 310

documents contained sentences entailed by gold 311

evidence. This finding suggests that the success 312

of hypothetical document generation, observed in 313

Table A2 and prior studies (Gao et al., 2023; Wang 314

et al., 2023; Yoon et al., 2024), may be largely at- 315

tributable to LLM’s internal knowledge encompass- 316

ing benchmark knowledge sources. Furthermore, 317

these results suggest that LLM-based query expan- 318

sion may be limited in real-world scenarios requir- 319

ing the retrieval of niche or novel knowledge, such 320

as fact verification in the wild. Future advances in 321

query expansion could incorporate external knowl- 322

edge sources to address these limitations, as demon- 323

strated in recent work (Lei et al., 2024). 324

6 Conclusion 325

This study examined the impact of two widely used 326

LLM-based query expansion methods on fact ver- 327

ification. By applying NLI to the LLM-generated 328

documents, we identified a consistent trend suggest- 329

ing that knowledge leakage may be present in these 330

benchmarks, potentially inflating the perceived per- 331

formance of these methods, particularly in real- 332

world scenarios involving niche or novel knowl- 333

edge. These findings highlight the need for future 334

research on LLM-based query expansion methods 335

that can effectively handle unknown queries, as 336

well as the development of evaluation frameworks 337

that more accurately reflect real-world settings. 338
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Limitations339

This study analyzed LLM behavior to identify po-340

tential indicators of memorization and their impact341

on performance but did not investigate whether342

training on specific knowledge directly led to the343

generation of corresponding knowledge. Therefore,344

we cannot establish a causal relationship between345

data leakage and generation in response to query ex-346

pansion prompts. Future research could further val-347

idate our methodology and findings by conducting348

experiments with synthetic data (Liu et al., 2024)349

or evaluating LLMs on genuinely novel knowl-350

edge (Kasai et al., 2024). To support the validity351

of the NLI-based automatic evaluation, we con-352

ducted a manual validation on sampled data and353

observed a consistent trend (Table A7) with that of354

the automatic method (Table 1).355

Ethics and Impact Statement356

We applied an NLI-based algorithm to investigate357

whether documents generated by LLM-based query358

expansion methods share underlying knowledge359

with gold evidence in fact verification benchmarks.360

Our findings suggest that knowledge leakage may361

exist; namely, LLMs may have been exposed to in-362

formation related to the benchmarks’ gold evidence363

during training and subsequently reproduced it in364

response to query-expansion prompts. This obser-365

vation has important implications for both fact ver-366

ification and broader benchmark-oriented NLP re-367

search, as it suggests that benchmark performance368

may be artificially inflated. Consequently, more369

trustworthy evaluation frameworks are needed to370

accurately reflect real-world scenarios.371

Despite these observations, some caution is war-372

rnted when interpreting these findings. First, this373

study did not provide definitive evidence of knowl-374

edge leakage; rather, it identifies plausible patterns.375

As outlined in the Limitations, the design of our376

research does not control for the causal relationship377

between model training data and the generated out-378

puts. Future research could address this gap by con-379

ducting (continued) pretraining experiments using380

synthetic data or genuinely novel knowledge. Sec-381

ond, because our analysis focuses on three datasets382

within the fact-verification domain, the findings are383

limited in scope. Further experiments are necessary384

to determine whether these findings generalize to385

other tasks, such as factual QA (Joshi et al., 2017;386

Kwiatkowski et al., 2019). While the methodology387

presented here could be adapted to those settings,388

there remains a risk that the NLI model itself may 389

introduce inaccuracies or biases toward particular 390

labels. We conducted manual validation of the NLI 391

results to mitigate these risks. Finally, we used 392

ChatGPT to proofread portions of this manuscript. 393
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Appendix 731

A Target Dataset 732

Dataset # claim # gold evidence
per claim

# documents
(knowledge source)

FEVER 6,666 1.66 5,416,536
(Wikipedia)

SciFact 693 1.8 5,183
(Paper abstracts)

AVeriTeC 3,563 2.77 2,623,538
(Web documents)

Table A1: Dataset statistics

This study used three fact verification bench- 733

marks. From the BEIR benchmark (Thakur et al., 734

2021), we used the test set for FEVER and the train 735

(505) and test (188) sets for SciFact. For AVeriTeC, 736

we used the train (3,063) and dev (500) sets, as 737

its test set is not publicly available. We excluded 738

claims for which gold evidence was unavailable. 739

Table A1 presents the descriptive statistics of the 740

three datasets used in our experiments. 741

B Evaluation Metrics 742

Below, we describe the details of evaluation metric 743

for evidence retrieval. Recall@K and NDCG@K 744

are widely used evaluation metrics for informa- 745

tion retrieval, adopted in this study for evaluating 746

evidence retrieval performance for FEVER and Sci- 747

Fact. Recall@K assesses the proportion of relevant 748

items retrieved within the top K results. NDCG@K 749

measures the quality of ranked results by consid- 750

ering both the relevance of retrieved documents 751

and their positions within the ranking. We used 752

pyrec_eval (Van Gysel and de Rijke, 2018) to mea- 753

sure Recall@K and NDCG@K. 754

S(Ŷ , Y ) =
1

|Y |
∑
ŷ∈Ŷ

∑
y∈Y

f(ŷ, y)X(ŷ, y) (3) 755

For AVeriTeC, where gold evidence is not 756

selected from a knowledge store but written 757

by human annotators, we used METEOR and 758

BERTScore with the Hungarian algorithm. Equa- 759

tion 3 presents the algorithm, where f is a pair- 760

wise scoring function, and X is a boolean func- 761

tion representing the assignment between the gen- 762

erated sequences Ŷ and the reference sequences 763
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Y . To measure token-level and embedding-level764

similarity, we used METEOR and BERTScore for765

f , respectively. METEOR was computed using766

NLTK (Bird et al., 2009), and BERTScore was767

calculated with DeBERTa-xlarge-MNLI3. We re-768

ported observations for varying k: Table A2 and769

Table 1 for k = 5, and Table A3 and Table A6 for770

k = 10.771

C Experimental Setups772

For HyDE, we encoded queries and documents us-773

ing Contriever4. For Query2doc, we used BM25774

provided in PySerini (Lin et al., 2021). Follow-775

ing the same settings in previous study (Gao et al.,776

2023), we set LLM hyperparameters as follows:777

temperature as 0.7, top_p as 1.0, and max_tokens778

as 512. We used the Mann–Whitney U test for sta-779

tistical testing on performance differences.780

D Computing Environment781

We ran experiments using two machines. The first782

machine has four Nvidia RTX A6000 GPUs (48GB783

per GPU) and 256GB RAM. The second machine784

has two Nvidia H100 GPUs (80GB per GPU) and785

480 RAM. The experiments were conducted in a786

computing environment with the following con-787

figuration: Python 3.11.10, PyTorch 2.3.1, Trans-788

formers 4.43.4, vLLM 0.5.3, pyrec-eval 0.5, Faiss789

1.8, Pyserini 0.40.0, NLTK 3.9.1, bert-score 0.3.13,790

rouge-score 0.1.2.791

We used GPT-4o-mini, Claude 3 Haiku, Gemini792

1.5 Flash via API, while Llama 3.1 (8B and 70B)793

and Mistral 7B, and Mixtral 8x7B were accessed794

through pretrained checkpoints. The model IDS795

and parameter sizes are provided below.796

• GPT-4o-mini: gpt-4o-mini-2024-07-18797

(Parameter size: unknown)798

• Claude-3-haiku:799

claude-3-haiku-20240307 (Parameter800

size: unknown)801

• Gemini-1.5-flash: gemini-1.5-flash (Pa-802

rameter size: unknown)803

• Llama-3.1-8b-it: https://huggingface.co804

/meta-llama/Llama-3.1-8B-Instruct805

(Parameter size: 8B)806

3https://huggingface.co/microsoft/deberta-xla
rge-mnli

4https://huggingface.co/facebook/contriever

Please write a wikipedia passage to verify the
claim.
Claim: [CLAIM]
Passage: [OUTPUT]

(a) The prompt used for HyDE in the FEVER dataset.

Please write a scientific paper passage to sup-
port/refute the claim.
Claim: [CLAIM]
Passage: [OUTPUT]

(b) The prompt used for HyDE in the SciFact dataset.

Please write a fact-checking article to verify the
claim.
Claim: [CLAIM]
Passage: [OUTPUT]

(c) The prompt used for HyDE in the AVeriTeC dataset.

Write a passage that answers the following query:
[CLAIM]
[OUTPUT]

(d) The prompt used for Query2doc.

Figure A1: Prompts used for query expansion.

• Llama-3.1-70b-it: https://huggingface. 807

co/meta-llama/Llama-3.1-70B-Instruc 808

t (Parameter size: 70B) 809

• Mistral-7b-it: https://huggingface.co/m 810

istralai/Mistral-7B-Instruct-v0.3 811

(Parameter size: 7B) 812

• Mixtral-8x7b-it: https://huggingface.co 813

/mistralai/Mixtral-8x7B-Instruct-v0. 814

1 (Parameter size: 46.7B) 815

E Prompt 816

Query Expansion Figure A1a, A1b, and A1c il- 817

lustrate the HyDE prompts used in this study where 818

the original prompt is adapted to each dataset. For 819

Query2doc, we used the same prompt by following 820

the suggestion in Wang et al. (2023), as shown in 821

Figure A1d. 822

Verdict Prediction Figure A2 presents the 823

prompt used for verdict prediction with GPT-4o- 824

mini. 825
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Your task is to predict the verdict of a claim
based on the provided evidence. Select one of the
following labels: [LABEL]. Generate only the
label without additional explanation or content.

Claim: [CLAIM]

Evidence 1: [EVIDENCE 1]
. . .
Evidence 10: [EVIDENCE 10]

Label: [OUTPUT]

Figure A2: The prompt used for fact verification with
GPT-4o-mini.

Natural Language Inference We used GPT-4o-826

mini for natural language inference, employing a827

prompt proposed in a previous study (Wang et al.,828

2024b), as illustrated in Figure A3. To support its829

validity, two authors manually annotated the labels830

for a randomly selected set of 200 pairs following831

the guidelines presented in Figure A4. The GPT-832

based NLI model achieved an F1 score of 0.8 on833

the sampled data.834

F Supplementary Results835

LLM comparison for fact verification Table A2836

present the results for evidence retrieval and verdict837

prediction by varying backbone LLMs for query838

expansion. We observed that Llama-3.1-70b-it gen-839

erally performed well when used with Query2doc.840

For HyDE, while Llama-3.1-70b-it achieved the841

best performance on FEVER, Claude-3-haiku ob-842

tained higher evaluation scores in SciFact and843

AVeriTeC.844

Proportion of matched claims across different845

benchmarks Table A4 presents the distribution846

of matched claims across three datasets, varying847

the LLMs used for query expansion. On average,848

the estimated proportion was higher for FEVER849

than for the other two datasets. While FEVER was850

constructed using public Wikipedia documents, Sci-851

Fact is based on scientific literature, covering niche852

knowledge, and AVeriTeC is the most recent dataset853

based on web documents collected by human an-854

notators, covering recent knowledge. Given these855

characteristics, the highest proportion observed in856

FEVER partially supports the validity of the NLI-857

based estimation.858

Effects of retrieving more evidence Table A3859

presents the fact verification performance with an860

Given the premise sentence S1, determine if the
hypothesis sentence S2 is entailed or contradicted
or neutral, by three labels: entailment, contradic-
tion, neutral.
Respond only with one of the labels.
S1: [GOLD EVIDENCE]
S2: [LLM-GENERATED SENTENCE]
Label: [OUTPUT]

Figure A3: The prompt used for NLI.

Premise: [GOLD EVIDENCE]
Hypothesis:
[LLM-GENERATED SENTENCE]

Given the premise, determine whether the hypoth-
esis is entailed.

□ Entailment

□ Non-Entailment

Figure A4: Manual labeling guidelines for natural lan-
guage inference.

increased number of retrieved evidence (k = 10). 861

Performance improves in every case across differ- 862

ent LLMs and datasets compared to the results with 863

k = 5. Table A6 shows performance depending on 864

the matching condition, showing a consistent trend 865

with Table A5 when retrieving more evidence. 866

Manual annotation To support the validity of 867

the NLI-based matching algorithm, we conducted 868

manual annotations on a sampled dataset. Two 869

authors independently reviewed documents gen- 870

erated by Query2doc and HyDE for all 500 sam- 871

ples in the AVeriTeC development set, following 872

the guideline presented in Figure A5. A claim was 873

labeled as matched if the LLM-generated docu- 874

ment contained all or part of any gold evidence. 875

For the backbone LLMs, we used Claude-3-haiku 876

for HyDE and Llama-3.1-70b-it for Query2doc, 877

as these models achieved the best performance 878

for their respective methods. The two annotators 879

achieved a high-level of inter-annotator agreement, 880

with a Cohen’s kappa of 0.837 across 1,000 genera- 881

tions. The estimated proportion of matched claims 882

were 49.2% and 40.4%, respectively, closely align- 883

ing with those from the NLI-based method, with 884

differences falling within the error margin. 885

Table A7 presents performance depending on 886

manually annotated matching conditions, showing 887

a consistent trend with the results from the NLI- 888

based method (Table 1 and Table A5). 889
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Method
FEVER SciFact AVeriTeC

Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1
BM25 31 25 54 51.2 45.5 48.6 17.8 11.6 32

Performance by varying LLMs
GPT-4o-mini 36.4±0.1 29.3±0.1 55.6±0.1 55.1±0.2 47.9±0.1 52.5±0.5 19.1±0.0 12.4±0.0 32.6±0.1

Claude-3-haiku 35.2±0.1 28.3±0.1 55.4±0.1 56±0.1 48.2±0.1 52±0.5 19.3±0.0 12.5±0.0 33.1±0.1
Gemini-1.5-flash 36.2±0.1 29.2±0.1 55.8±0.1 56.2±0.2 49.4±0.1 52.2±0.5 18.9±0.0 12.5±0.0 33.3±0.2
Llama-3.1-8b-it 35.7±0.1 28.6±0.1 55.6±0.2 54.9±0.2 47.8±0.2 51.9±0.3 19±0.0 12.4±0.0 32.2±0.2

Llama-3.1-70b-it 38.3±0.1 31±0.1 56.1±0.1 56.4±0.3 49.2±0.1 52.4±0.7 19.3±0.1 12.7±0.0 33.4±0.2
Mistral-7b-it 35.1±0.3 28±0.2 55.4±0.2 55.1±0.1 47.9±0.1 51.9±0.6 19.2±0.0 12.6±0.0 32.8±0.1

Mixtral-8x7b-it 35.1±0.2 27.9±0.2 55.3±0.2 54.6±0.2 47.7±0.1 51.9±0.4 19.4±0.0 12.7±0.0 33.2±0.1

(a) Query2doc

Method
FEVER SciFact AVeriTeC

Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1
Contriever 26.8 20.2 53.1 55.1 47.3 51.2 17.6 12.6 33.9

Performance by varying LLMs
GPT-4o-mini 37.3±0.1 28.8±0.0 55.6±0.1 61.2±0.2 53.1±0.1 54±0.5 18.7±0.0 13.2±0.0 35.7±0.6

Claude-3-haiku 36.7±0.1 28.1±0.0 55.6±0.1 62.8±0.1 54.7±0.1 53.7±0.4 19.3±0.0 14±0.0 36.2±0.6
Gemini-1.5-flash 35±0.1 26.7±0.1 55.2±0.1 61±0.2 52.9±0.2 53.5±0.7 18 ±0.0 12.4±0.0 35.7±0.5
Llama-3.1-8b-it 36.7±0.1 28.4±0.1 55.4±0.1 61.2±0.2 53.4±0.2 53.6±0.7 18.9±0.0 13.6±0.0 35.5±0.4

Llama-3.1-70b-it 40.4±0.2 31.7±0.2 55.9±0.1 61.9±0.3 54.1±0.2 53.6±0.5 19±0.2 13.7±0.1 35.4±0.7
Mistral-7b-it 36.3±0.1 27.8±0.0 55.3±0.1 60.7±0.2 52.7±0.2 53.4±0.4 19±0.0 13.6±0.0 35.8±0.7

Mixtral-8x7b-it 37.6±0.1 29.1±0.1 55.7±0.1 61.3±0.2 53.1±0.1 53.3±0.3 19.2±0.0 13.7±0.0 35.8±0.7

(b) HyDE

Table A2: Fact verification performance using baseline retrievers and LLM-based query expansion methods, with
the number of retrieved evidence set to five (k = 5). We report the average performance of query expansion methods
along with standard errors, obtained by repeating the generations eight times.

Claim: [CLAIM]
Gold Evidence: [GOLD EVIDENCE]
LLM-generated Document:
[LLM-GENERATED DOCUMENT]

Determine whether the LLM-generated document
contains the whole or part of any gold evidence.

□ Included

□ Not Included

Figure A5: Manual labeling guidelines for determining
whether LLM-generated documents contain gold evi-
dence.

G Qualitative Analysis890

Table A8 presents examples of LLM-generated891

documents along with gold evidence. In example892

(a), the claim concerns Nigeria’s history, and the893

gold evidence specifies the period under military894

rule, which was reproduced in the generated docu-895

ment. Example (b) pertains to U.S. Supreme Court896

Justice Ruth Bader Ginsberg, where the gold evi-897

dence provides her bibliography and medical his-898

tory. The LLM-generated text includes this infor-899

mation along with specific years. Notably, it also900

introduces an additional fact about lung cancer,901

which is not covered by the gold evidence. Exam-902

ples (c) and (d) illustrate unmatched cases where903

the generated text contains factual errors. 904
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Method
FEVER SciFact AVeriTeC

Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1
BM25 37.1 27.1 55.3 58.4 48.3 50.6 21 15 33.1

Performance by varying LLMs
GPT-4o-mini 44.2±0.1 32±0.1 57±0.1 64±0.0 51.4±0.1 53.2±0.6 22.3±0.0 15.9±0.0 34.6±0.1

Claude-3-haiku 43.4±0.1 31±0.1 56.9±0.2 64.3±0.2 51.5±0.1 53±0.5 22.5±0.0 16±0.0 34.7±0.1
Gemini-1.5-flash 43.4±0.1 31.7±0.0 56.9±0.1 64.7±0.2 52.8±0.1 53.1±0.6 22.3±0.0 16.2±0.0 34.7±0.2
Llama-3.1-8b-it 43.6±0.1 31.3±0.1 56.8±0.1 63.2±0.3 51.2±0.1 53±0.5 22.3±0.0 15.9±0.0 34.5±0.1

Llama-3.1-70b-it 46.1±0.2 33.7±0.1 57.2±0.2 64.6±0.2 52.5±0.1 53.1±0.3 22.7±0.1 16.3±0.0 34.8±0.1
Mistral-7b-it 43.2±0.2 30.8±0.2 56.8±0.1 63.1±0.2 51±0.1 52.6±0.4 22.5±0.0 16.2±0.0 34.6±0.1

Mixtral-8x7b-it 43.4±0.2 30.8±0.2 56.8±0.2 63.6±0.2 51.3±0.1 52.8±0.4 22.6±0.0 16.1±0.0 34.9±0.1

(a) Query2doc

Method
FEVER SciFact AVeriTeC

Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1
Contriever 34.4 22.8 54.8 65 51.2 54 20.8 16.1 34.8

Performance by varying LLMs
GPT-4o-mini 46.7±0.1 32.1±0.0 56.7±0.1 70±0.1 56.7±0.1 54.6±0.3 22.3±0.0 17±0.0 36.6±0.4

Claude-3-haiku 46.2±0.0 31.4±0.0 56.7±0.1 71.6±0.2 58.3±0.1 55±0.3 22.8±0.0 17.8±0.0 37.6±0.3
Gemini-1.5-flash 44.2±0.1 29.9±0.1 56.5±0.1 69.8±0.1 56.6±0.2 54.8±0.3 21.6±0.0 16.3±0.0 37.1±0.8
Llama-3.1-8b-it 46.4±0.1 31.8±0.1 56.6±0.1 70.1±0.2 57±0.1 54.3±0.5 22.4±0.0 17.4±0.0 36.8±0.3

Llama-3.1-70b-it 49.7±0.2 35±0.2 57±0.1 70.8±0.2 57.8±0.2 55±0.5 22.5±0.2 17.5±0.1 36.7±0.9
Mistral-7b-it 46.1±0.1 31.2±0.0 56.5±0.1 69.8±0.2 56.4±0.2 54.8±0.3 22.7±0.0 17.5±0.0 37.3±0.5

Mixtral-8x7b-it 47.6±0.0 32.6±0.0 56.9±0.2 70.2±0.2 56.8±0.1 54.8±0.5 22.8±0.0 17.6±0.0 37.2±0.5

(b) HyDE

Table A3: Fact verification performance using baseline retrievers and LLM-based query expansion methods, with the
number of retrieved evidence set to ten (k = 10). We report the average performance of query expansion methods
along with standard errors, obtained by repeating the generations eight times.
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Method FEVER SciFact AVeriTeC
Query2doc 75.8±0.1 52.8±0.4 40.4±0.2

HyDE 83.5±0.1 59.1±0.7 68±0.3

(a) GPT-4o-mini

Method FEVER SciFact AVeriTeC
Query2doc 76.6±0.1 56.1±0.4 40.8±0.1

HyDE 77.8±0.1 53.8±0.2 62.3±0.2

(b) Claude-3-haiku

Method FEVER SciFact AVeriTeC
Query2doc 69.9±0.3 50.8±0.6 44.1±0.1

HyDE 70.2±0.3 27.6±0.7 59.6±0.3

(c) Gemini-1.5-flash

Method FEVER SciFact AVeriTeC
Query2doc 68.5±1.0 53.9±0.5 37.4±1.1

HyDE 73±0.9 48.2±0.6 53.8±1.0

(d) Llama-3.1-8b-it

Method FEVER SciFact AVeriTeC
Query2doc 78.3±0.7 57.5±0.3 48.1±0.8

HyDE 71.7±0.7 55±0.8 47±4.8

(e) Llama-3.1-70b-it

Method FEVER SciFact AVeriTeC
Query2doc 72.5±0.2 51.1±0.5 44.7±0.2

HyDE 75±0.2 49.4±0.8 55.6±0.3

(f) Mistral-7b-it

Method FEVER SciFact AVeriTeC
Query2doc 78.7±0.1 55.9±0.6 49.4±0.3

HyDE 81±0.1 54.7±0.7 56.7±1.3

(g) Mixtral-8x7b-it

Table A4: Proportion of expanded queries containing
sentences entailed by ground truth evidence across dif-
ferent LLM backbones.
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Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.2±0.1 28.3±0.1 55.4±0.1 56 ±0.1 48.2±0.1 52±0.5 19.3±0.0 12.5±0.0 33.1±0.1
M 38.7±0.1 31.2±0.1 58±0.0 63.7±0.3 56.7±0.3 54.1±0.2 22±0.0 17.7±0.0 38.8±0.3
¬M 23.8±0.1 18.5±0.1 44.7±0.1 46.2±0.6 37.2±0.4 48±0.5 17.4±0.0 8.9±0.0 27.6±0.1

HyDE
ALL 36.7±0.1 28.1±0.0 55.6±0.1 62.8±0.0 54.7±0.1 53.7±0.4 19.3±0.0 14 ±0.0 36.2±0.6
M 39.9±0.2 30.7±0.1 57.5±0.1 71.1±0.5 63.8±0.4 57.5±0.3 20.4±0.1 16.5±0.1 37.8±0.3
¬M 25.5±0.2 18.9±0.2 45 ±0.2 53 ±0.5 44.1±0.5 48.8±0.4 17.3±0.1 9.8 ±0.1 31.9±0.3

(a) Claude-3-haiku

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 36.2±0.1 29.2±0.1 55.8±0.1 56.2±0.2 49.4±0.1 52.2±0.5 18.9±0.0 12.5±0.0 33.3±0.2
M 38.5±0.1 31.4±0.0 58.8±0.0 63.4±0.5 56.9±0.4 55±0.5 20.5±0.0 16.5±0.1 38.1±0.4
¬M 30.7±0.1 24.1±0.1 48 ±0.2 48.9±0.4 41.6±0.3 48.7±0.3 17.6±0.0 9.4 ±0.1 28.5±0.2

HyDE
ALL 35±0.1 26.7±0.1 55.2±0.1 61±0.2 52.9±0.2 53.5±0.7 18±0.0 12.4±0.0 35.7±0.5
M 37.1±0.1 28.2±0.1 59±0.1 67.1±0.6 60.1±0.4 57.3±0.5 18.8±0.0 14.7±0.1 37.3±0.2
¬M 30.1±0.1 23.1±0.1 45±0.2 58.7±0.4 50.2±0.2 52 ±0.3 16.8±0.1 9.2±0.1 31.6±0.3

(b) Gemini-1.5-flash

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.7±0.1 28.6±0.1 55.6±0.2 54.9±0.2 47.8±0.2 51.9±0.3 19±0.0 12.4±0.0 32.2±0.2
M 39±0.2 31.4±0.2 58.6±0.1 63.9±0.4 57.5±0.4 55.1±0.4 21.7±0.1 17.3±0.1 36.6±0.3
¬M 28.5±0.3 22.3±0.3 48.5±0.3 44.2±0.6 36.5±0.4 47.6±0.3 17.4±0.0 9.4±0.1 28.5±0.1

HyDE
ALL 36.7±0.1 28.4±0.1 55.4±0.1 61.2±0.2 53.4±0.2 53.6±0.7 18.9±0.0 13.6±0.0 35.5±0.4
M 39.5±0.1 30.6±0.1 58.2±0.1 68.7±0.7 62.3±0.6 56.3±0.4 20±0.1 16.1±0.1 37.7±0.2
¬M 29.2±0.2 22.4±0.2 46.8±0.2 54.1±0.8 45.1±0.6 50.6±0.4 17.7±0.1 10.6±0.1 31.8±0.3

(c) Llama-3.1-8b-it

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 38.3±0.1 31±0.1 56.1±0.1 56.4±0.3 49.2±0.1 52.4±0.7 19.3±0.1 12.7±0.0 33.4±0.2
M 41.3±0.1 33.6±0.1 58.6±0.1 65±0.3 58.3±0.2 54.9±0.5 21.6±0.1 17.2±0.1 38.1±0.3
¬M 27.6±0.4 21.7±0.4 45.9±0.3 44.9±0.5 37 ±0.3 47.9±0.2 17.3±0.1 8.6±0.1 27.6±0.2

HyDE
ALL 40.4±0.2 31.7±0.2 55.9±0.1 61.9±0.3 54.1±0.2 53.6±0.5 19±0.2 13.7±0.1 35.4±0.7
M 44.3±0.5 35±0.5 58.4±0.1 69.2±0.4 62.1±0.4 56.7±0.3 20.9±0.2 17.3±0.3 38.3±0.2
¬M 30.4±0.3 23.3±0.3 48.9±0.2 52.9±0.7 44.3±0.6 48.9±0.5 17.4±0.1 10.6±0.2 31.5±0.4

(d) Llama-3.1-70b-it

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.1±0.3 28±0.2 55.4±0.2 55.1±0.1 47.9±0.1 51.9±0.6 19.2±0.0 12.6±0.0 32.8±0.1
M 39±0.2 31.3±0.2 58.2±0.1 64.8±0.3 58±0.2 54.8±0.5 21.5±0.1 17.3±0.1 37.5±0.5
¬M 24.8±0.4 19.1±0.3 46.7±0.2 44.9±0.5 37.2±0.3 48.3±0.3 17.4±0.0 8.8±0.1 27.7±0.2

HyDE
ALL 36.3±0.1 27.8±0.0 55.3±0.1 60.7±0.2 52.7±0.2 53.4±0.4 19±0.0 13.6±0.0 35.8±0.7
M 39.2±0.2 30.1±0.1 57.7±0.1 67.8±0.5 60.9±0.4 55.5±0.7 20.1±0.1 16±0.1 36.8±0.4
¬M 27.5±0.2 20.9±0.1 46.4±0.2 53.8±0.3 44.8±0.3 50.4±0.3 17.7±0.1 10.6±0.1 33.1±0.4

(e) Mistral-7b-it

Method Data FEVER SciFact AVeriTeC
Recall@5 NDCG@5 F1 Recall@5 NDCG@5 F1 METEOR BERTScore F1

Query2doc
ALL 35.1±0.2 27.9±0.2 55.3±0.2 54.6±0.2 47.7±0.1 51.9±0.4 19.4±0.0 12.7±0.0 33.2±0.1
M 38.6±0.2 30.9±0.2 57.8±0.1 63.5±0.5 57.3±0.4 54.1±0.3 21.5±0.1 17±0.1 37.3±0.3
¬M 22.3±0.3 17.1±0.2 44.3±0.2 43.4±0.4 35.6±0.3 47.8±0.3 17.3±0.1 8.4±0.1 27.7±0.3

HyDE
ALL 37.6±0.1 29.1±0.1 55.7±0.1 61.3±0.2 53.1±0.1 53.3±0.3 19.2±0.0 13.7±0.0 35.8±0.7
M 40.3±0.1 31.2±0.1 57.7±0.0 68.9±0.4 61.4±0.3 55.4±0.2 20.3±0.1 16.1±0.1 37.1±0.2
¬M 26.4±0.2 20.4±0.2 45.2±0.2 52.2±0.3 43.1±0.2 49.7±0.4 17.7±0.1 10.6±0.1 32.6±0.4

(f) Mixtral-8x7b-it

Table A5: Fact verification performance depending on whether the document generated by query expansion methods
contains sentences entailed by gold evidence, with the number of retrieved evidence set to five (k = 5). We report
performance using different backbone LLMs for query expansion.
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Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 44.2±0.1 32±0.1 57±0.1 64±0.0 51.4±0.1 53.2±0.6 22.3±0.0 15.9±0.0 34.6±0.1
M 48.8±0.1 35.7±0.1 59.6±0.1 71.7±0.3 60.6±0.3 54.1±0.6 25.3±0.1 21.4±0.1 40.6±0.3
¬M 29.9±0.2 20.5±0.1 47.3±0.2 55.4±0.4 41.2±0.3 50.1±0.4 20.3±0.0 12.2±0.0 29.2±0.2

HyDE
ALL 46.7±0.1 32.1±0.0 56.7±0.1 70±0.1 56.7±0.1 54.6±0.3 22.3±0.0 17±0.0 36.6±0.4
M 50.2±0.1 34.5±0.0 58.8±0.0 76.5±0.3 64.8±0.2 57.7±0.2 23.6±0.0 19.5±0.0 38.1±0.2
¬M 29.4±0.4 20±0.3 44.2±0.2 60.5±0.4 44.9±0.4 49.5±0.3 19.4±0.1 11.8±0.1 31±0.1

(a) GPT-4o-mini

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.4±0.1 31±0.1 56.9±0.2 64.3±0.2 51.5±0.1 53±0.5 22.5±0.0 16±0.0 34.7±0.1
M 47.3±0.1 34.2±0.1 59.2±0.1 70.9±0.3 59.7±0.3 55.3±0.3 25.7±0.1 21.5±0.0 40.4±0.4
¬M 30.5±0.2 20.7±0.1 47.3±0.2 55.8±0.6 40.9±0.4 49.3±0.2 20.4±0.1 12.2±0.1 29.3±0.2

HyDE
ALL 46.2±0.0 31.4±0.0 56.7±0.1 71.6±0.2 58.3±0.1 55±0.3 22.8±0.0 17.8±0.0 37.6±0.3
M 50±0.1 34.3±0.1 58.5±0.1 78.9±0.3 67.1±0.4 58.7±0.2 24.2±0.1 20.4±0.1 38.9±0.2
¬M 32.8±0.3 21.4±0.2 46.6±0.2 63±0.6 48.1±0.6 50.5±0.3 20.5±0.1 13.5±0.1 33.6±0.3

(b) Claude-3-haiku

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.4±0.1 31.7±0.0 56.9±0.1 64.7±0.2 52.8±0.1 53.1±0.6 22.3±0.0 16.2±0.0 34.7±0.2
M 46.3±0.0 34.1±0.0 59.8±0.1 71.4±0.3 60.2±0.3 55.3±0.3 24.4±0.0 20.4±0.1 39.5±0.3
¬M 36.7±0.1 26.1±0.1 49.7±0.1 57.9±0.4 45.1± 0.3 49.9±0.3 20.7±0.0 12.8±0.0 29.9±0.3

HyDE
ALL 44.2±0.1 29.9±0.1 56.5±0.1 69.8±0.1 56.6±0.2 54.8±0.3 21.6±0.0 16.3±0.0 37.1±0.8
M 47.1±0.1 31.8±0.1 59.9±0.0 75.5±0.5 63.8±0.4 58.3±0.3 22.6±0.0 18.6±0.1 38.5±0.3
¬M 37.5±0.2 25.6±0.1 47.6±0.2 67.7±0.3 53.8±0.2 53.4±0.2 20.1±0.1 12.9±0.1 33.1±0.4

(c) Gemini-1.5-flash

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.6±0.1 31.3±0.1 56.8±0.1 63.2±0.3 51.2±0.1 53±0.5 22.3±0.0 15.9±0.0 34.5±0.1
M 47.2±0.1 34.3±0.2 59.5±0.0 71.2±0.3 60.6±0.4 55.7±0.4 25.4±0.1 21±0.1 38.5±0.1
¬M 35.8±0.3 24.8±0.3 50.4±0.2 53.8±0.7 40.2±0.5 49.3±0.2 20.4±0.0 12.8±0.1 30.7±0.2

HyDE
ALL 46.4±0.1 31.8±0.1 56.6±0.1 70.1±0.2 57.1±0.1 54.3±0.5 22.4±0.0 17.4±0.0 36.8±0.3
M 50±0.1 34.3±0.1 59.1±0.1 77.7±0.6 66.1±0.4 57.2±0.3 23.7±0.1 19.9±0.1 38.9±0.2
¬M 36.7±0.3 24.9±0.2 48.8±0.2 63±0.7 48.6±0.5 51.4±0.4 21±0.1 14.3±0.1 33.3±0.3

(d) Llama-3.1-8b-it

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 46.1±0.2 33.7±0.1 57.2±0.2 64.6±0.2 52.5±0.1 53.1±0.3 22.7±0.1 16.3±0.0 34.8±0.1
M 49.4±0.2 36.4±0.1 59.5±0.0 72.5±0.4 61.4±0.2 55.4±0.4 25.4±0.1 21.1±0.1 39.6±0.3
¬M 34.2±0.2 23.9±0.3 48.1±0.2 54±0.5 40.5±0.2 48.9±0.2 20.2±0.0 11.9±0.1 28.9±0.3

HyDE
ALL 22.5±0.2 17.5±0.1 36.7±0.9 70.8±0.2 57.8±0.2 55±0.5 49.7±0.2 35±0.2 57±0.1
M 54.4±0.4 38.6±0.4 59.3±0.0 77.5±0.5 65.6±0.4 57.8±0.3 24.7±0.2 21.3±0.3 39.6±0.3
¬M 37.9±0.2 25.9±0.2 50.7±0.2 62.7±0.6 48.2±0.6 50.8±0.3 20.7±0.1 14.2±0.2 32.9±0.4

(e) Llama-3.1-70b-it

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.2±0.2 30.8±0.2 56.8±0.1 63.1±0.2 51±0.1 52.6±0.4 22.5±0.0 16.2±0.0 34.6±0.1
M 47.5±0.2 34.3±0.2 59.2±0.0 71.5±0.4 60.8±0.3 55.1±0.2 25.2±0.1 21.1±0.1 39.8±0.3
¬M 31.8±0.4 21.5±0.3 48.9±0.1 54.3±0.5 40.8±0.2 49.4±0.3 20.4±0.0 12.2±0.1 29.3±0.2

HyDE
ALL 46.1±0.1 31.2±0.0 56.6±0.1 69.8±0.2 56.4±0.2 54.8±0.3 22.7±0.0 17.5±0.0 37.3±0.5
M 50±0.2 33.9±0.1 58.9±0.1 76.7±0.4 64.7±0.4 57.4±0.7 23.9±0.1 20.1±0.1 38.5±0.4
¬M 34.3±0.2 23.3±0.1 48.4±0.2 63±0.2 48.5±0.2 51.5±0.3 21.1±0.1 14.3±0.1 34.4±0.3

(f) Mistral-7b-it

Method Data FEVER SciFact AVeriTeC
Recall@10 NDCG@10 F1 Recall@10 NDCG@10 F1 METEOR BERTScore F1

Query2doc
ALL 43.4±0.2 30.8±0.2 56.8±0.2 63.6±0.2 51.3±0.1 52.8±0.4 22.6±0.0 16.1±0.0 34.9±0.1
M 47.3±0.2 33.9±0.2 59±0.1 71.3±0.5 60.6±0.4 54.6±0.6 25.1±0.1 20.7±0.1 39±0.2
¬M 28.7±0.3 19.2±0.2 46.7±0.2 53.8±0.5 39.5±0.3 49.2±0.4 20.2±0.1 11.7±0.1 29.5±0.2

HyDE
ALL 47.6±0.0 32.6±0.0 56.9±0.2 70.2±0.2 56.8±0.1 54.8±0.5 22.8±0.0 17.6±0.0 37.2±0.5
M 50.9±0.1 34.9±0.0 58.8±0.0 77.7±0.1 65.2±0.2 56.8±0.3 24.2±0.0 20.1±0.1 38.7±0.3
¬M 33.5±0.3 22.8±0.2 47.2±0.1 61±0.4 46.6±0.3 51.7±0.4 21±0.1 14.3±0.1 33.8±0.4

(g) Mixtral-8x7b-it

Table A6: Fact verification performance depending on whether the document generated by query expansion methods
contains sentences entailed by gold evidence, with the number of retrieved evidence set to ten (k = 10). We report
performance using different backbone LLMs for query expansion.
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Method Data METEOR BERTScore F1

Query2doc
ALL 20.5 13.8 34.7
M 21.6 15.4 40.9
¬M 19.4 12.2 27.3

HyDE
ALL 19.9 14.7 38.7
M 20.7 16.1 40.9
¬M 18.8 12.5 33.6

(a) k = 5

Method Data METEOR BERTScore F1

Query2doc
ALL 23.6 17.3 36.7
M 24.9 19 45.2
¬M 22.2 15.5 26.6

HyDE
ALL 23.9 18.2 38.3
M 24.6 19.7 39.4
¬M 22.7 16.1 34.9

(b) k = 10

Table A7: Fact verification performance on 500 samples
from the AVeriTeC development set using manually
annotated NLI labels. For query expansion, we used
Llama-3.1-70b-it for Query2doc and Claude-3-haiku
for HyDE, as each model achieved the best performance
for its respective expansion method. GPT-4o-mini was
used for verdict prediction.
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Claim U.S. President Donald Trump and his wife, First Lady Melania Trump, have tested
positive for COVID-19

Gold Evidence

• Donald trump tweeted that he had tested positive for Covid 19
on 1st October 2020

• Donald trump tweeted that he and first lady Melania
had tested positive for Covid 19 on 1st October 2020

• The President’s physician, Navy Cmdr. Dr. Sean Conley, wrote that
he received confirmation of the positive tests on Thursday evening.

Generation

On October 1, 2020, it was announced that U.S. President Donald Trump and his
wife, First Lady Melania Trump, had tested positive for COVID-19. This news came
after one of the President’s closest advisors, Hope Hicks, had also tested positive
for the virus earlier that day. The President and the First Lady began experiencing
symptoms shortly after Hicks’ diagnosis and were subsequently tested. Both Trumps
received their positive test results in the early hours of October 2, 2020.
Following their diagnosis, the President and the First Lady immediately began
self-isolating in the White House. President Trump’s physician, Dr. Sean Conley,
issued a statement saying that the President and the First Lady would remain in
quarantine for the next 14 days, as per Centers for Disease Control and Prevention
(CDC) guidelines.
The news of the President’s positive test result sparked widespread concern and
reaction, with leaders from around the world offering their well wishes for a speedy
recovery. The diagnosis also led to increased scrutiny of the White House’s handling
of the pandemic, particularly with regards to the safety protocols in place at the time.
Fortunately, both President Trump and the First Lady made a full recovery from
the virus. President Trump was hospitalized for a few days at Walter Reed National
Military Medical Center, where he received treatment and was later discharged on
October 5, 2020.

(a) Matched example

Claim US Supreme Court Justice, Ruth Bader Ginsburg, fought cancer for decades before
she passed away in September 2020.

Gold Evidence

• Ruth Bader Ginsburg was a U.S. Supreme Court justice,
the second woman to be appointed to the position.

• On September 18, 2020, Justice Ruth Bader Ginsburg,
the second woman to serve on the Supreme Court of the United States,
passed away at the age of eighty-seven

• She died of complications from metastatic pancreatic cancer.
• colon cancer (first diagnosed in 1999), pancreatic cancer (2009)

Generation

Ruth Bader Ginsburg, a trailblazing U.S. Supreme Court Justice, demonstrated
unwavering resilience in the face of adversity, including her prolonged battle with
cancer. Throughout her life, she faced numerous health challenges, including colorec-
tal cancer in 1999, pancreatic cancer in 2009, and lung cancer in 2018. Furthermore,
in 2019, she underwent radiation therapy for a tumor on her pancreas. Despite these
setbacks, Ginsburg continued to serve on the Supreme Court, inspiring countless
individuals with her strength, determination, and unwavering commitment to her
work. Tragically, her courageous fight against cancer came to an end on September
18, 2020, when she passed away at the age of 87, leaving behind an enduring legacy
as a champion of gender equality, social justice, and the rule of law.

(b) Matched example
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Claim While serving as Town Supervisor on Grand Island, Nebraska, US Nate McMurray
voted to raise taxes on homeowners.

Gold Evidence

• Grand Island raised its tax levy on November 8th 2018.
• A Public Hearing was held on Thursday, November 8, 2018 at 7:00p.m.
for the purpose of hearing anyone who wants to comment on the proposed
2019 Town of Grand Island budget. Supervisor Nate McMurray closed
the Public Hearing.

Generation

After researching Nate McMurray’s political career, there is no evidence that he has
ever served as Town Supervisor on Grand Island, Nebraska. Grand Island is a city in
central Nebraska, not a town, and it does not have a position of Town Supervisor.
Nate McMurray is a former town councilman in the town of Grand Island, New
York, which is located in Erie County, New York, not Nebraska. However, there are
no reports or records indicating that McMurray voted to raise taxes on homeowners
while serving on the Grand Island, New York town council.
In conclusion, the claim that Nate McMurray voted to raise taxes on homeowners
while serving as Town Supervisor on Grand Island, Nebraska is false. Nate Mc-
Murray has never held a political position in the state of Nebraska, and the town of
Grand Island, Nebraska does not exist. This appears to be a fabricated claim with no
basis in fact.

(c) Unmatched example
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Claim U.S. mortalities this year are not materially different from the previous 5 years

Gold Evidence

• The cumulative number of deaths in 2020 is far greater than
the cumulative number of deaths of any year from 2015 to 2019,
as shown in the figures in link below.

• The Historical data on death rate shows that
there were more deaths recorded in the singular year 2020
compared to the death rate rate in each year from 2015-2019

Generation

**U.S. Mortality Rates Remain Steady, Showing No Significant Increase from
Previous Years**
According to recent data, mortality rates in the United States for this year are not
showing any significant deviations from the past five years. Despite concerns about
various health crises and trends, the overall number of deaths in the country has
remained relatively stable.
When analyzing the data, it becomes clear that the mortality rates for this year are
largely in line with the averages seen in the previous five years. This suggests that,
despite fluctuations in specific causes of death or regional variations, the overall
trend in mortality rates has not undergone a significant shift.
Several factors could be contributing to this stability, including advances in medical
technology, improvements in healthcare access and quality, and public health initia-
tives aimed at reducing mortality rates. Additionally, the country’s demographics,
such as population size and age distribution, have not changed dramatically enough
to impact mortality rates substantially.
While specific causes of death, such as deaths from accidents, diseases, or other
factors, may have seen some variation, the overall mortality rate has not been signif-
icantly affected. This steady trend is a positive sign, indicating that the country’s
healthcare system and public health efforts are effectively managing and mitigating
mortality risks.
It is essential to note, however, that mortality rates can fluctuate over time due to var-
ious factors, including emerging health crises, changes in population demographics,
or shifts in healthcare policies. Therefore, continuous monitoring and analysis of
mortality data are crucial to identifying potential trends and areas for improvement.
In conclusion, the current mortality rates in the United States are not materially
different from the previous five years, indicating a stable trend. This stability is a
testament to the country’s healthcare system and public health efforts, but it also
highlights the need for continued vigilance and monitoring to address potential
future challenges.

(d) Unmatched example

Table A8: Examples of generated documents and gold evidence for the target claims. Colored highlights indicate
information in the generated documents that overlaps with the gold evidence.
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