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ABSTRACT

Recently, contrastive learning has been shown effective in fine-tuning pre-trained
language models (PLM) to learn sentence representations, which incorporates
perturbations into unlabeled sentences to augment semantically related positive ex-
amples for training. However, previous works mostly adopt heuristic perturbation
methods that are independent of the sentence representations. Since the perturba-
tions are unaware of the goal or process of sentence representation learning during
training, it is likely to lead to sub-optimal augmentations for conducting constrative
learning. To address this issue, we propose a new framework L2P-CSR that adopts
a learnable perturbation strategy for improving contrastive learning of sentence
representations. In our L2P-CSR, we design a safer perturbation mechanism that
only weakens the influence of tokens and features on the sentence representation,
which avoids dramatically changing the semantics of the sentence representations.
Besides, we devise a gradient-based algorithm to generate adaptive perturbations
specially for the dynamically updated sentence representation during training. Such
a way is more capable of augmenting high-quality examples that guide the sentence
representation learning. Extensive experiments on diverse sentence-related tasks
show that our approach outperforms competitive baselines.

1 INTRODUCTION

Unsupervised sentence representation learning is a fundamental problem in natural language pro-
cessing (NLP) Hill et al. (2016); Le & Mikolov (2014), which aims to learn effective sentence
representations that can benefit various downstream tasks. High-quality unsupervised sentence
representations are essential to low-resource domains or computationally expensive NLP tasks Cer
et al. (2017), including zero-shot semantic similarity comparison Agirre et al. (2016) and large-
scale document retrieval Le & Mikolov (2014). Recently, BERT-based pre-trained language models
(PLMs) Devlin et al. (2019) have achieved excellent performance on various NLP tasks. However,
since these PLMs are mainly pre-trained with token-level self-supervised loss (e.g., masked language
model), the derived sentence representations may not be best suited to sentence-level tasks Li et al.
(2020); Yan et al. (2021). Previous works find that the sentence representations from BERT-based
models are not uniformly distributed with respect to direction but occupy a narrow cone in the vector
space Ethayarajh (2019), which largely limits their semantic representation capacity.

To solve it, contrastive learning Chen et al. (2020); He et al. (2020) has been proposed to fine-tune
PLMs for refining the sentence representations. The basic idea is to pull semantically close neighbors
together while pushing apart non-neighbors. Concretely, given a set of unlabeled texts, existing
approaches first augment different but semantically related examples by incorporating perturbations
(e.g., token shuffling Yan et al. (2021) and dropout Gao et al. (2021)) into the original sentence.
Then the augmented data will be used as the positive example pairs to fine-tune PLMs to learn the
contrastive objective. In this way, both the alignment between semantically related positive pairs and
the uniformity of the whole representation space can be substantially improved.

To effectively conduct contrastive learning, it is key to design a proper perturbation strategy to
augment positive examples. However, existing works mostly rely on heuristic perturbation methods.
Despite the performance improvement, there are two major shortcomings that are likely to affect
the sentence representation learning. First, heuristic methods are usually unaware of the goal or
process of sentence representation learning, which can’t produce pertinent perturbations for adaptively
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improving the sentence representations. As a result, these augmented samples are likely to fall in a
constrained semantic space limited by the heuristic strategies, leading to sub-optimal performance
or even overfitting. Second, since PLMs are often over-parameterized Houlsby et al. (2019), the
derived sentence representations are sensitive to the perturbations in input Gao et al. (2021). Small
perturbations e.g., dropout, may result in significantly different representations. However, radical
heuristic perturbations (e.g., token cutoff and shuffling) have been widely used in previous works.
Although leading to substantial differences compared with original inputs, it may hurt the semantics
of the augmented examples and mislead the learning of the contrastive objective.

To address the above issues, we propose a new contrastive learning framework with a learnable
perturbation strategy for unsupervised sentence representation learning. The core idea is learning to
generate more informative perturbations that are adaptive to dynamically changing sentence repre-
sentations during training and meanwhile guarantee the semantic consistency in the representation
space. Specifically, we introduce a safer perturbation mechanism by using weakening masks to
halve the representations of perturbed tokens and features, and devise a gradient-based algorithm to
optimize the perturbations towards augmenting the most confusing views for sentence representation
learning. Compared with heuristic perturbations in previous works Yan et al. (2021), our perturbation
mechanism mainly focuses on weakening but not removing tokens or features, which avoids large
changes in the semantics of sentence representations. In addition, the gradient-based perturbation
algorithm can generate informative augmentations focusing on the most confusing views in sentence
representation learning during training. In this way, the perturbation approach can adaptively augment
the positive examples specially for the intermediate sentence representations that are not well learned,
which gradually improves the sentence representation capacity of PLMs.

To this end, we propose L2P-CSR, a general framework to Learn how to Perturb for Contrastive
learning of unsupervised Sentence Representations. In L2P-CSR, we first adopt randomly initialized
probability matrices to generate the token-level and feature-level weakening masks to perturb the
PLM. Then, we leverage a gradient-based algorithm to update the perturbations by considering the
intermediate sentence representations. Finally, based on the perturbations, we augment two different
representations of the same sentence for contrastive learning. We demonstrate that our L2P-CSR
outperforms competitive baselines on semantic textual similarity tasks and transfer tasks.

To our knowledge, our approach is the first attempt to explore learning to perturb for contrastive
learning of unsupervised sentence representations, which can adaptively generate informative aug-
mentations during the training of sentence representation models. Extensive experiments have
demonstrated the effectiveness of the proposed approach against a number of competitive baselines.

2 RELATED WORK

Sentence Representation Learning. Existing works of sentence representation learning can be
categorized into supervised Cer et al. (2018); Gao et al. (2021) and unsupervised approaches Hill et al.
(2016); Zhang et al. (2022). Supervised approaches rely on annotated datasets to train the encoder
network Cer et al. (2018); Zhang et al. (2021a) for producing sentence representations, e.g., NLI
datasets Williams et al. (2018). Unsupervised approaches consider deriving sentence representations
without labeled datasets. Early works find that simply pooling word embeddings Pennington et al.
(2014) leads to strong results. Recently, pre-trained language models Devlin et al. (2019) have
shown effectiveness in NLP tasks but their produced representations suffer from the anisotropy
problem Giorgi et al. (2021); Wu et al. (2020). Several works propose to regularize the representations,
e.g., flow-based approach Li et al. (2020) and whitening method Huang et al. (2021). Besides, recent
works Wang et al. (2021); Liu et al. (2021); Ni et al. (2021) adopt contrastive objectives with data
augmentation methods on unsupervised datasets to refine the representations of PLMs.

Contrastive Learning. Contrastive learning has been a popular technique in compute vision area
with solid performance He et al. (2020); Chen et al. (2020). Usually, it requires a set of positive
examples that are semantically related. A surge of works apply data augmentation strategies on
unlabeled data to augment positive examples, e.g., random cropping and rotation Chen et al. (2020);
Yan et al. (2021). For sentence representation learning, contrastive learning can achieve a better
alignment-uniformity balance. Several works adopt back translation Fang & Xie (2020), token
shuffle and cutoff Yan et al. (2021) to augment positive examples for representations learning.
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Figure 1: The L2P-CSR framework. We show the case that perturbs the representations of the first
two layers in the t-th iterative update.

Recently, SimCSE Gao et al. (2021) uses Dropout acts for augmentation, and performs well on STS
tasks. Besides, instead of data augmentation, SG-OPT Kim et al. (2021) utilizes the self-guidance
mechanism and VaSCL Zhang et al. (2021b) presents a virtual augmentation-oriented framework for
contrastive learning of unsupervised sentence representations.

3 PRELIMINARY

This work seeks to make use of unlabeled corpus to learn effective sentence representations that can
be directly utilized in downstream tasks, e.g., STS task Agirre et al. (2016). Given a set of unlabeled
sentences X = {x1, . . . , xn}, our goal is to learn a representation hi ∈ Rd for each sentence xi in
an unsupervised manner. We denote this process with a parameterized function hi = f(xi).

Here, we mainly focus on using BERT-based PLMs to generate sentence representations. For each
sentence consisting of a sequence of tokens as xi = {w1, w2, . . . , wm}, PLMs first project these
tokens into a token embedding matrix E(0) ∈ Rm×d via the embedding layer, and then a stack of
Transformer layers will gradually encode it to generate the l-th layer representations E(l) ∈ Rm×d.
Following existing works Li et al. (2020), we fine-tune the PLMs on the unlabeled corpus via our
proposed unsupervised learning method. For each sentence xi, we encode it by the fine-tuned PLMs
and take the representation of the [CLS] token from the last layer as its representation hi.

4 APPROACH

Our proposed framework L2P-CSR is to improve the perturbation strategy of the contrastive learning
paradigm for sentence representation learning. In L2P-CSR, we devise a learnable perturbation
strategy containing a safer perturbation mechanism for semantic consistency and a gradient-based
algorithm to adapt the perturbations to the dynamically changing sentence representations during
training. Concretely, we design the token-level and feature-level weakening masks to halve part of
values from the representations of the first few layers as perturbations, and the weakening masks can
be iteratively updated by contrastive objective maximization. Then, we utilize the perturbations to
augment representations for contrastive learning. The overview of our L2P-CSR is shown in Fig. 1.
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4.1 PERTURBATION WITH WEAKENING MASKS

We aim to develop a perturbation mechanism that can not radically change the sentence semantics but
also introduces differences. Given the input sentence xi, we design the token-level and feature-level
perturbation masks to weaken its representations in the first k layers {E(l)}k−1

l=0 . 1

For the representations of each layer, we construct different token-level and feature-level masks. To
generate the token-level mask of the l-th layer, we first obtain a token-weakening probability vector
P(l)
tok = {pt1, pt2, . . . , ptm}, where pti ∈ [0, 1] denotes the probability whether the representation of

the i-th token should not be weakened. For feature-level mask, we also acquire a probability vector
P(l)
fea = {pf1 , p

f
2 , . . . , p

f
d} for the l-th layer, where pfj ∈ [0, 1] denotes the probability whether the

j-th feature should not be weakened. Based on the probability vectors, we can obtain the token-level
mask Mt = {αt

1, α
t
2, . . . α

t
m} and feature-level mask Mf = {αf

1 , α
f
2 , . . . α

f
d} as

αi =

{
1, pi ≥ ϕ

0, pi < ϕ
, (1)

where ϕ is a hyperparameter of the mask threshold, αi denotes the mask value of token (αt
i) or feature

(αf
i ), pi denotes the weakening probability of the i-th token (pti) or feature (pfi ). Then, we average

the token-level and feature-level weakening masks to produce the weakening mask M(l) for the
output representations of the l-th layer E(l). Specifically, for the j-th feature of the i-th token, its
corresponding value αij of the weakening mask M(l) is

αij = (αt
i + αf

j )/2. (2)

Finally, we incorporate the weakening mask as perturbations on the first k layers. For the l-th layer,
we directly multiply its output representations E(l) and the corresponding weakening mask M(l) as

Ẽ(l) = E(l) ×M(l). (3)

In this way, if a token or feature is selected to be weakened, its corresponding token representation
or feature values will be halved (i.e., × 1

2 ). Only if the token and the feature are both weakened, the
value will be zero. Compared with existing works using token cutoff or reordering Yan et al. (2021),
our approach conducts a weaker perturbation with more controllable variations on the sentence
representations. As a result, the representations from the last layer will be perturbed in a safer way,
which alleviates the information loss caused by perturbation but also introduce difference. For each
sentence xi, we generate two perturbed representations h̃i and h̃+

i by applying different weakening
masks using the above approach. The two representations will be utilized for contrastive learning.

4.2 LEARNING TO PERTURB FOR CONTRASTIVE LEARNING

Based on the above perturbation mechanism, we propose an algorithm for learning how to generate
the weakening masks for effective contrastive learning. We first initialize the weakening probability
vectors and then optimize these vectors to adapt to the intermediate sentence representations in each
step. Finally, we leverage these probability vectors to produce the weakening masks as perturbations
for contrastive learning.

For the output representations of the l-th layer, we first initialize the token-level and feature-level
weakening probability vectors from the uniform distribution as

P(l)
tok,P

(l)
fea ∼ U(0, 1). (4)

The weakening probability vectors are then utilized to generate the weakening masks M(l) for con-
trastive learning using Eq 1 and Eq 2. To make the weakening masks adapt to the dynamically
changing sentence representations during training, we optimize the weakening masks with the consid-
eration of the intermediate sentence representations. Inspired by virtual adversarial training Miyato
et al. (2017); Zhu et al. (2020), we design a contrastive loss maximization objective to produce

1For simplicity, we denote the output token embedding matrix from the embedding layer as the representation
of the 0-th layer E(0).
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gradients for perturbation update. However, the values of the weakening masks are discrete, which
cannot be directly optimized by gradient-based algorithms. Therefore, we propose to leverage the
gradients of the discrete weakening masks M(l)

t and M(l)
f to update the continuous-valued weakening

probability vectors P(l)
tok and P(l)

fea as

P(l)
tok = ΠP(l)

tok
∈[0,1]

(P(l)
tok + βg(M(l)

t )/||g(M(l)
t )||2), (5)

P(l)
fea = ΠP(l)

fea
∈[0,1]

(P(l)
fea + βg(M(l)

f )/||g(M(l)
f )||2), (6)

where we constrain P(l)
tok and P(l)

fea within [0, 1] since they reflect the probabilities, β is the learning

rate, ||·||2 is the L2-norm, and g(M(l)
t ) and g(M(l)

f ) are the gradients of M(l)
t and M(l)

f by maximizing
the contrastive loss between the two perturbed representations of the same sentence as

g(M(l)
t ) = ▽M(l)

t
LCL(h̃i, h̃

+
i ), (7)

g(M(l)
f ) = ▽M(l)

f

LCL(h̃i, h̃
+
i ). (8)

In this way, the weakening probability vectors can learn to provide the most confusing weakening
masks for augmenting perturbed representations h̃i and h̃+

i . The two representations reflect two
most different views of the sentence representations. Finally, we adopt the cross-entropy contrastive
learning objective with in-batch negatives Chen et al. (2020) to learn the sentence representations as

LCL(h̃i, h̃
+
i ) = log

exp(sim(h̃i, h̃
+
i )/τ)∑

h̃−
i ∈{h̃−} exp(sim(h̃i, h̃

−
i )/τ)

, (9)

where {h̃−} is the negative example set for positive examples (h̃i, h̃
+
i ), τ is a temperature hyperpa-

rameter and sim(h̃i, h̃
+
i ) is the cosine similarity h̃⊤

i h̃+
i

||h̃i||·||h̃+
i || .

4.3 OVERVIEW OF L2P-CSR

Our framework L2P-CSR contains two important stages. In the first stage, we learn the perturbation to
adapt itself for the intermediate sentence representations. Concretely, we first initialize the token-level
and feature-level weakening probability vectors, and generate the corresponding weakening masks
to perturb the sentence representations. Then, we incorporate a gradient-based algorithm to adjust
the weakening probability vectors by maximizing the contrastive objective between two perturbed
representations of a sentence. In this process, the weakening masks are refreshed every time the
probability vectors are updated. After t-th iteration, we can obtain the weakening masks as the
perturbations that reflect the most different views of the same sentence. In the second step, we
leverage the weakening masks to augment the perturbed representations for contrastive learning. We
present the training algorithm in Supplementary Material.

Analysis. Existing works Yan et al. (2021); Gao et al. (2021) rely on heuristic strategy to augment
different views for contrastive learning. For the sentence xi, the learning objective is:

min
1

n

∑
(ϵ1,ϵ2)∼ppos

[LCL(f(xi + ϵ1), f(xi + ϵ2))] , (10)

where n is the sampling number, ϵ1 and ϵ2 are perturbations to augment different-view representations
for xi. Both perturbations are sampled from the pre-defined perturbation distribution ppos (e.g.,
random token cutoff). Since ppos is usually independent of sentence representations, the sampled
perturbations are also unaware of the goal or process of sentence representation learning. As a result,
the sampled perturbations can not adjust themselves to capture the semantic changes of intermediate
representations during training, and the sentence representations are easy to overfit into the fixed
perturbation distribution. In contrast, our approach proposes learnable perturbations which can adapt
with the intermediate representations to provide the most different views of the same sentence. Such
a process can be seen as a Min-Max game:
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min
1

n

∑
[LCL(f(xi + ϵ1), f(xi + ϵ2))] , (11)

where(ϵ1, ϵ2) ≈ argmax
ϵ1,ϵ2

{LCL(f(xi + ϵ1), f(xi + ϵ2))} .

In this way, the intermediate sentence representations can be utilized to generate more informative
perturbations, which help augment the most confusing positive examples specially for the intermediate
sentence representations. By learning such examples, the sentence representations can be gradually
improved and the overfitting risk can be reduced.

Discussion. Our work provides a framework that learns to perturb for contrastive learning of
sentence representations. As analyzed above, our approach is equivalent to a Min-Max game that
generates the most confusing perturbations for the intermediate sentence representations. To avoid the
perturbations drastically changing the semantics, we also devise a safer perturbation mechanism that
only halves the representations of perturbed tokens or feature. Compared with heuristic perturbation
methods (e.g., token cutoff and shuffling), the safer perturbation mechanism guarantees the semantic
consistency of perturbed representations, and the learning to perturb strategy adaptively improves the
informativeness of the perturbations. In this way, we are more capable of augmenting high-quality
examples to improve the sentence representations.

Our L2P-CSR is similar to virtual adversarial training methods Zhu et al. (2020) which add gradient-
based noise on the embedding layer for improving the smoothness. However, due to the over-
parameter nature of PLMs Houlsby et al. (2019), the added noise is easy to hurt the semantics of the
representations. Therefore, our L2P-CSR utilizes a safer perturbation strategy using the weakening
masks, which rarely erase the input information, and only reduce the influence of several tokens and
features on the sentence representation. In this way, the semantics consistency and the difference of
the sentence representations can be better balanced.

5 EXPERIMENT

5.1 EXPERIMENT SETUP

Following previous works Kim et al. (2021); Gao et al. (2021), we conduct experiments on seven
standard STS tasks and take the results as the main comparison of sentence embedding methods.
Besides, we also evaluate our approach on seven transfer tasks. For all these tasks, we use the
SentEval toolkit Conneau & Kiela (2018) for evaluation.

Semantic Textual Similarity Task. We evaluate methods on 7 STS tasks: STS 2012–2016 Agirre
et al. (2016; 2012; 2013; 2014; 2015) , STS Benchmark Cer et al. (2017) and SICK-
Relatedness Marelli et al. (2014). These datasets contain pairs of two sentences, whose similarity
scores are labeled from 0 to 5. The relevance between gold annotations and the scores predicted
by sentence representations are measured by the Spearman correlation. Following the suggestions
from previous works Gao et al. (2021); Yan et al. (2021), we directly compute the cosine similarity
between sentence embeddings for all STS tasks.

Transfer Tasks. We also evaluate methods on the following transfer tasks: MR Pang & Lee (2005),
CR Hu & Liu (2004), SUBJ Pang & Lee (2004), MPQA Wiebe et al. (2005), SST-2 Socher et al.
(2013), TREC Voorhees & Tice (2000) and MRPC Dolan & Brockett (2005). Following previous
works Gao et al. (2021), we incorporate a logistic regression classifier on top of (frozen) sentence
representations for different tasks, and follow default configurations from SentEval.

Baseline Methods. We compare L2P-CSR to the following sentence representation methods:

(1) GloVe Pennington et al. (2014): It averages GloVe embeddings of words as the representation.

(2) USE Cer et al. (2018): It utilizes the Transformer model to encode sentences and learns the
objective of reconstructing the surrounding sentences within a passage.

(3) CLS and Mean Devlin et al. (2019): These methods adopt the [CLS] embedding and mean
pooling of token representations as sentence representations, respectively.
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Table 1: Sentence embedding performance on STS tasks (Spearman’s correlation). The best per-
formance methods in each group are denoted in bold. †: results from Kim et al. (2021); ‡: results
from Gao et al. (2021); all other results are reproduced or reevaluated by ourselves.

Models STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Non-BERT GloVe (avg.)† 55.14 70.66 59.73 68.25 63.66 58.02 53.76 61.32
USE† 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22

BERT-base

CLS† 21.54 32.11 21.28 37.89 44.24 20.30 42.42 31.40
Mean† 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
+Flow‡ 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
+Whitening‡ 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
+Contrastive(BT)† 54.26 64.03 54.28 68.19 67.50 63.27 66.91 62.63
+SG-OPT† 66.84 80.13 71.23 81.56 77.17 77.23 68.16 74.62
+SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
+Ours 70.21 83.25 75.42 82.34 78.75 77.80 72.65 77.20
+Prompt 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
+Prompt+Ours 72.34 84.81 78.13 84.16 80.58 82.04 71.13 79.03

BERT-large

CLS† 27.44 30.76 22.59 29.98 42.74 26.75 43.44 31.96
Mean† 27.67 55.79 44.49 51.67 61.88 47.00 53.85 48.91
+Flow† 62.82 71.24 65.39 78.98 73.23 72.72 63.77 70.07
+Whitening 64.34 74.60 69.64 74.68 75.90 72.48 60.8 70.35
+Contrastive(BT)† 52.04 62.59 54.25 71.07 66.71 63.84 66.53 62.43
+SG-OPT† 67.02 79.42 70.38 81.72 76.35 76.16 70.20 74.46
+SimCSE 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
+Ours 71.44 85.09 76.88 84.71 80.00 79.75 74.55 78.92
+Prompt 73.29 86.39 77.90 85.18 79.97 81.92 71.26 79.42
+Prompt+Ours 73.14 86.78 78.67 85.77 80.32 82.23 72.57 79.93

RoBERTa-base

CLS† 16.67 45.57 30.36 55.08 56.98 45.41 61.89 44.57
Mean† 32.11 56.33 45.22 61.34 61.98 54.53 62.03 53.36
+Whitening‡ 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
+Contrastive(BT)† 62.34 78.60 68.65 79.31 77.49 79.93 71.97 74.04
+SG-OPT† 62.57 78.96 69.24 79.99 77.17 77.60 68.42 73.42
+SimCSE 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
+Ours 71.69 82.43 74.55 82.15 81.81 81.36 70.22 77.74
+Prompt 73.94 84.74 77.28 84.99 81.74 81.88 69.50 79.15
+Prompt+Ours 74.97 83.63 78.28 84.86 82.03 82.77 71.26 79.69

RoBERTa-large

CLS† 19.25 22.97 14.93 33.41 38.01 12.52 40.63 25.96
Mean† 33.63 57.22 45.67 63.00 61.18 47.07 58.38 52.31
+Whitening 64.17 73.92 71.06 76.40 74.87 71.68 58.49 70.08
+Contrastive(BT)† 57.60 72.14 62.25 71.49 71.75 77.05 67.83 68.59
+SG-OPT† 64.29 76.36 68.48 80.10 76.60 78.14 67.97 73.13
+SimCSE 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
+Ours 73.29 84.08 76.65 85.47 82.70 82.15 72.36 79.53
+Prompt 73.24 83.08 77.97 84.03 81.57 82.85 73.28 79.43
+Prompt+Ours 73.65 84.08 78.29 85.36 82.15 83.70 73.47 80.10

(4) Flow Li et al. (2020): It is a flow-based model that applies mean pooling on the layer representa-
tions and maps the outputs to the Gaussian space as sentence representations.

(5) Whitening Huang et al. (2021):It uses the whitening operation to refine representations and
reduce dimensionality.

(6) Contrastive (BT) Fang & Xie (2020): It utilizes back-translation as data augmentation for the
contrastive learning of sentence representations.

(7) SG-OPT Kim et al. (2021): It proposes a contrastive learning method with a self-guidance
mechanism to improve sentence embeddings.

(8) SimCSE Gao et al. (2021): It propose a simple contrastive learning framework that utilizes
dropout as perturbation to make data augmentation.

(9) Prompt Jiang et al. (2022): It devises a manual template as the prompt to reduce the token
embedding bias, and uses the [MASK] embedding as the sentence representation. As it only revises
the input format, our proposed L2P-CSR can be combined with it to improve the perturbations.
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Table 2: Transfer task results of sentence embedding models (Accuracy). We highlight the highest
performance among models with the same base model.

Model MR CR SUBJ MPQA SST TREC MRPC Avg.

BERT-base

CLS‡ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
Mean‡ 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
+SimCSE‡ 80.41 85.30 94.46 88.43 85.39 87.60 71.13 84.67
+Ours 82.07 87.74 94.95 89.54 87.84 85.18 75.34 86.09

BERT-large

CLS 74.67 85.77 93.26 80.61 85.44 65.26 69.14 79.16
Mean 78.55 89.97 96.20 87.21 88.07 85.53 74.43 85.71
+SimCSE 84.48 88.95 95.43 88.10 88.88 83.82 74.58 86.32
+Ours 88.86 89.54 95.45 89.47 90.14 85.68 76.47 87.94

RoBERTa-base

CLS 58.09 69.09 84.60 71.69 79.47 31.64 70.71 66.47
Mean 75.67 88.78 96.16 86.12 87.50 83.05 73.63 84.42
+SimCSE‡ 79.67 84.61 91.68 85.96 84.73 84.20 64.93 82.25
+Ours 79.67 88.30 94.27 87.70 87.50 81.14 76.47 85.01

RoBERTa-large

CLS 58.21 69.38 93.25 75.13 83.03 56.91 70.76 72.38
Mean 68.19 89.81 96.92 88.82 89.33 86.94 74.90 84.99
+SimCSE‡ 80.83 85.30 91.68 86.10 85.06 89.20 75.65 84.83
+Ours 80.12 88.53 94.07 88.92 87.04 83.05 76.84 85.51

5.2 MAIN RESULTS

To verify the effectiveness of L2P-CSR, we select BERT/RoBERTa-base/large as the backbones.

Semantic Textual Similarity. Table 1 shows the results of different methods on 7 STS tasks. Based
on the results, we can find that non-BERT methods mostly perform better than native PLM repre-
sentations based baselines (i.e., CLS and Mean). The reason is that the PLM native representations
are easy to suffer from the anisotropy problem. For other PLM-based approaches, first, we can see
that Flow and Whitening achieve similar results and outperform the native PLM representations
based baselines by a margin. The reason is that the two methods adopt additional post-processing
strategies. Second, contrastive learning based methods mostly outperform other baselines. The reason
is that contrastive learning can improve both the alignment between semantically related positive
pairs and the uniformity of the whole representation space, which is helpful to improve sentence
representations. Furthermore, SimCSE performs better than most baselines. The reason is that the
dropout perturbation rarely changes the semantics of the sentence representations.

In addition, we can see that L2P-CSR performs better than all baselines without prompt. As a
comparison, our L2P-CRS incorporates a safer perturbation mechanism that only weakens the
influence of tokens and features on the sentence representations, and devises a learning algorithm
to adapt the perturbation to the dynamically updated sentence representations during training. In
this way, the safer mechanism guarantees the semantic consistency, and the learning algorithm helps
augment high-quality examples to guide the sentence representation learning.

Finally, we can see that contrastive learning with prompt Jiang et al. (2022) achieves the best
performance among all the baselines. The reason is that the manual prompt is able to reduce the
token embedding bias. By combining prompt and our L2P-CSR, we can see that the performance
of sentence representations can be further improved. It indicates that our approach is a general
framework and can effectively improve the perturbations of contrastive learning approaches.

Transfer Tasks. For Transfer tasks, we select commonly-used CLS and Mean as baselines. We
also select SimCSE since it performs well in STS tasks. We show the results in Table 2. Among all
the PLM-based methods, the performance order is mostly consistent across all datasets, i.e., CLS <
SimCSE < Mean < Ours. First, SimCSE performs not well. It indicates that the dropout perturbation
may be not suitable to learn representation for Transfer tasks. Second, we can see that Mean performs
well in several tasks. The reason may be that mean pooling the token representations can capture
token-level characteristics. Finally, L2P-CSR performs better than all baselines on average. The
reason is that our proposed learnable perturbation strategy makes the adaptive perturbations better
guide the contrastive learning of sentence representations.
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Table 3: Ablation and variation studies of our approach.

Model STS-B SICK-R
BERT-base+Ours 77.80 72.65
w/o feature mask 70.91 73.01
w/o token mask 74.05 70.71
w/o learning to perturb 75.09 70.34
BERT-base+Emb Noise 75.95 70.73
BERT-base+Continual Mask 75.05 70.54

Table 4: Results on a subset of tasks from GLUE.

Models WNLI QNLI QQP SST-2 STS-B
BERTbase 33.80 91.29 91.08 92.20 89.71
+Ours 36.62 91.56 91.14 93.35 89.86

Comparing the performance of different base models, we can find that large models always perform
better than their base versions. It indicates that more parameters lead to better representations.
Besides, BERT-based approaches perform better than RoBERTa-based ones. The reason is that
RoBERTa removes the next sentence prediction task, which can capture sentence-level semantics.

5.3 FURTHER ANALYSIS

Ablation Study. Our proposed L2P-CSR designs two weakening masks and a learning algorithm for
perturbation updates. To verify the effectiveness of these modules, we conduct an ablation study in
Table 3. First, we see that removing each module would lead to a performance drop. It indicates that
all these modules are important. Besides, removing the feature mask results in a larger performance
drop. One possible reason is that the feature dimensions are always high in PLMs, perturbing features
can better guide the contrastive learning. Emb Noise and Continual Mask are the variations of our
framework. Emb Noise follows the VAT paradigm Zhu et al. (2020) that adds gradient-based noise
on the embedding layer, and the Continual Mask directly utilizes the probability vectors to weaken
the representations. As shown in Table 3, they perform no better than our approach. The reason is
that they perturb more radically on the sentence representations, which may hurt their semantics.

GLUE Experiments. In this part, we consider evaluating if our L2P-CSR could enhance the sentence
representations when fine-tuning on downstream tasks. Therefore, we evaluate our framework using
BERT-base model on a subset of tasks from GLUE Wang et al. (2018), i.e., WNLI, QNLI, QQP, SST-
2, and STS-B. Instead of adding a logistic regression classifier on freezing sentence representations,
we fine-tune the learned model parameters by our approach on these tasks. Results are shown in
Table 4. First, we can find that our framework improves the performance of BERT-base in these tasks.
It indicates that our framework enhances sentence representations rather than hurting them. Second,
it can be found that our method brings about a larger improvement on the WNLI and SST-2 tasks. It
shows that our approach is particularly helpful for these tasks.

6 CONCLUSION

In this paper, we propose a framework L2P-CSR that learns to perturb for contrastive learning
of unsupervised sentence representations. In this framework, we incorporate a safer perturbation
mechanism that only weakens the representations from the perspectives of token and feature, and
design a gradient-based algorithm to optimize the perturbation to adapt itself to the dynamically
changing sentence representations during training. Our approach makes the perturbation able to
generate informative perturbations especially for the intermediate sentence representation, and
meanwhile guarantees semantic consistency. Experimental results have shown that our approach
outperforms several competitive baselines.
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Algorithm 1: The algorithm of our L2P-CSR framework.
Input: The unlabeled dataset X = {xi}ni=1, Pre-training language model f(·), Training epoch

number m, Gradient-based update steps for perturbations t, Perturbed layer number k,
Output: Fine-tuned PLM f(·).

1 Initialize f(·) from pre-trained checkpoint.
2 for i = 1, . . . ,m do
3 for batch ∈ X do
4 Initialize the weakening probability vectors P(l)

tok and P(l)
fea using Eq. 4

5 // Iteratively update the perturbations via contrastive objective maximization
6 for j = 1, . . . , t do
7 Generate the token-level and feature-level weakening masks M(l)

t and M(l)
f using

Eq. 1
8 Perturb the representations of the first k-th layer using Eq. 2 and Eq. 3
9 Generate perturbed sentence representations h̃i and h̃+

i by PLM f(·)
10 Calculate the gradient of weakening masks M(l)

t and M(l)
f using Eq. 7 and Eq. 8

11 Update the weakening probability vectors P(l)
tok and P(l)

fea using Eq. 5 and Eq. 6
12 end
13 // Using the perturbations to augment positive examples for contrastive learning
14 Generate the token-level and feature-level weakening masks M(l)

t and M(l)
f using Eq. 1

15 Perturb the representations of the first k-th PLM layer using Eq. 2 and Eq. 3
16 Generate perturbed sentence representations h̃i and h̃+

i by PLM f(·)
17 Update the sentence representations by SGD using contrastive learning objective Eq 9
18 end
19 end

A ALGORITHM

We present the overall algorithm in Algorithm 1, which depicts the detailed process of our framework
L2P-CSR. We first initialize PLM f(·) from its pre-trained checkpoint. Then, for each batch of
data, we adopt a learnable perturbation for contrastive learning. Concretely, we first initialize the
token-level and feature-level weakening probability vector P(l)

tok and P(l)
fea using Eq. 4. Then, we

iteratively update the perturbation via contrastive objective maximization. At each iteration, we first
generate the token-level weakening masks M(l)

t and feature-level weakening masks M(l)
f to perturb

the representations of the first k-th layer of the PLM, and then calculate the gradients of weakening
masks M(l)

t and M(l)
f to update the weakening probability vectors using Eq. 5 and Eq. 6. After t-turn

iterations, we can obtain the optimized weakening probability vectors to generate the most confusing
perturbed representations h̃i and h̃+

i . Finally, we perform contrastive learning using Eq 9 to update
the sentence representations. Specifically, we adopt h̃i and h̃+

i as positive examples, and utilize
stochastic gradient descent (SGD) to optimize the parameters of the sentence encoder (i.e., PLM).

B IMPLEMENTATION DETAILS

We implement our L2P-CSR based on Huggingface’s transformers packages 2. We start from pre-
trained checkpoints of BERT Devlin et al. (2019) or RoBERTa Liu et al. (2019), and add an MLP layer
on top of the [CLS] representation as the sentence embedding. Following SimCSE Gao et al. (2021),
we use 100,000 sentences randomly drawn from English Wikipedia as the training corpus. During
training, we train our models for 1 epoch with a batch size of 512 and temperature τ = 0.05 using
the AdamW optimizer. The learning rate of the model parameters is set as 1e-5 for RoBERTa-base
and 3e-5 for other models. The mask threshold ϕ is set as 0.05 and we weaken the embedding layer
and the first two layers. The learning rate of the weakening probability vectors is 0.5. We keep the

2https://github.com/huggingface/transformers
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Figure 2: Performance comparison w.r.t. ϕ and k.
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Weakening Mask (After K-turn Updates)
Emb Layer
(0-th Layer)
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Figure 3: Visualization of token masks. Gray denotes the representation of the token is weakened
(i.e., halved).

default dropout layer in PLMs. We evaluate the model every 150 training steps on the development
set of STS-B and keep the best checkpoint for the final evaluation on test sets.

C HYPER-PARAMETERS ANALYSIS

For hyper-parameter analysis, we study the masking threshold ϕ that is used to produce the masks, and
the Weakened layer number k. Both hyper-parameters are important in our framework. Concretely,
we evaluate our model with varying values of ϕ and k on the STS-B and SICK-R tasks using
BERT-base model. The results are shown in Figure. 2.

In Figure. 2a, we can see that too large or too small ϕ leads to a performance drop. One possible
reason is that larger ϕ may hurt the semantics of the representations and smaller ϕ cannot lead
to effective perturbations. In Figure. 2b, we can find that the best performance is achieved when
masks are applied on the first two or four layers. Since perturbing these layers are more suitable for
contrastive learning.

D CASE STUDY

In this part, we show the case study about the learnable perturbations in Fig 3. First, we can see that
after K-turn updates, the weakening masks can cover most keywords, e.g., brother and Phil. And
the masks for the two views are usually complementary since they weaken different keywords. It
indicates that our approach can encourage the perturbation to capture key semantics and augment
differential views. This characteristic is essential for effective contrastive learning. Besides, we can
see that in the lower layers (0-th), there are more weakened tokens than the higher layer (2-nd). The
reason may be that perturbation on lower layers is easier to generate differential representations.
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