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Abstract

As Large Language Models (LLMs) become001
increasingly prevalent in various domains, their002
ability to process inputs of any length and main-003
tain a degree of memory becomes essential.004
However, the one-off input of overly long texts005
is limited, as studies have shown that when in-006
put lengths exceed the LLMs’ pre-trained text007
length, there is a dramatic decline in text gener-008
ation capabilities. Moreover, simply extending009
the length of pre-training texts is impractical010
due to the difficulty in obtaining long text data011
and the substantial memory consumption costs012
this would entail for LLMs. Recent efforts have013
employed streaming inputs to alleviate the pres-014
sure of excessively long text inputs, but this015
approach can significantly impair the model’s016
long-term memory capabilities.017

Motivated by this challenge, we introduce018
Streaming Infinite Retentive LLM (SirLLM),019
which allows LLMs to maintain longer mem-020
ory during infinite-length dialogues without the021
need for fine-tuning. SirLLM utilizes the To-022
ken Entropy metric and a memory decay mech-023
anism to filter key phrases, endowing LLMs024
with both long-lasting and flexible memory. We025
designed three distinct tasks and constructed026
three datasets to measure the effectiveness of027
SirLLM from various angles: (1) DailyDialog;028
(2) Grocery Shopping; (3) Rock-Paper-Scissors.029
Our experimental results robustly demonstrate030
that SirLLM can achieve stable and significant031
improvements across different LLMs and tasks,032
compellingly proving its effectiveness. When033
having a coversation, "A sir could forget him-034
self," but SirLLM never does!035

1 Introduction036

The proliferation of large language models (LLMs)037

(Touvron et al., 2023a; Achiam et al., 2023; Jiang038

et al., 2023) has spurred the development of vari-039

ous NLP applications, including widely-used tools040

like chatbots (Bill and Eriksson, 2023; Pandya and041

Holia, 2023), writing assistants (Bhat et al., 2023),042

and programming assistants (Kazemitabaar et al., 043

2024). These applications, aiming to enhance user 044

interaction and conversational experience, often re- 045

quire infinite input length and a certain degree of 046

memory capability. However, current LLMs are 047

usually pre-trained on texts of limited length, and 048

studies have shown that their text generation ca- 049

pabilities dramatically decline when input lengths 050

exceed those of the pre-training texts (Xiao et al., 051

2023; Huang et al., 2023). Merely extending the 052

length of pre-training texts is impractical, as acquir- 053

ing infinitely long text data is exceedingly challeng- 054

ing, not to mention that it would result in substan- 055

tial memory consumption for LLMs. Therefore, 056

researching how to enable LLMs to handle infinite 057

input lengths while maintaining memory capability 058

is an urgent issue to be addressed. 059

With the emergence of this demand, researchers 060

have gradually shifted their focus towards explor- 061

ing ways to expand the input context length of 062

LLMs. A line of these studies has particularly fo- 063

cused on optimizing the attention mechanism of 064

LLMs. (Beltagy et al., 2020) first proposes the 065

Sliding-window attention, as shown in Figure 1 (a). 066

By restricting each token to only attend to a cer- 067

tain number of recent tokens, this method reduces 068

computational complexity. In deployment scenar- 069

ios, LLMs utilize a Key-Value (KV) cache to store 070

the key and value tensors of past tokens at each 071

generation step to effectively reduces the need to 072

recompute past key and value tensors, thereby sig- 073

nificantly lowering computational overhead. Con- 074

sequently, Sliding-window attention ensures a sta- 075

ble decoding speed even when the KV cache is full, 076

thereby allowing for longer texts during the pre- 077

training phase. However, Xiao et al. (2023) discov- 078

ered that this method does not truly achieve infinite 079

input length, as the model’s performance signifi- 080

cantly deteriorates once the input length exceeds 081

the size of the KV cache and intial tokens, how- 082

ever, receive a disproportionately higher amount of 083
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Figure 1: The visualization of SirLLM versus existing attention patterns.

Layer 26 Head 0 Layer 32 Head 0Layer 1 Head 0 Layer 6 Head 0

Figure 2: Attention sink phenomenon (Xiao et al., 2023). We visualize the average layer attention logits over 256
sentences, each with a length of 20, in Vicuna-7b-v1.3. We can see that in the shallow layers, a significant amount of
the attention score is dedicated to the first tokens and in the final layer, the model focuses more on the recent tokens.

attention, a phenomenon termed as ‘attention sink‘,084

as shown in Figure 2. Therefore, they proposed085

StreamLLM, as shown in Figure 1 (b). Stream-086

LLM enhances the potential of window attention087

by preserving the KV cache of the initial tokens,088

thereby achieving infinite length input in streaming089

conversations without finetuning. However, while090

Sliding-window Attention and StreamLLM ensure091

an expanded input length, each generated token092

only attends to recent tokens (and initial attention093

sink tokens), resulting in a loss of memory for094

earlier parts of the conversation. This leads to a sig-095

nificant forgetting issue in long-distance dialogues.096

Furthermore, as observed in Figure 2, the range097

of recent tokens that the model focuses on is not098

very extensive. This observation leads us to con-099

template whether it’s possible for the model to100

concentrate only on key terms during a conver-101

sation, filtering out less important tokens. By re-102

membering only the crucial information, the model103

might be able to maintain a longer memory span in104

the context of infinitely long conversations. More105

detailed related works please refer to Appendix A.106

In response to the aforementioned challenges,107

we propose the Streaming Infinite Retentive LLM108

(SirLLM) in this paper, as illustrated in Figure 1109

(d). Initially, we employ an LLM to calculate the110

token entropy metric for each input token, thereby111

assessing their significance. Subsequently, tokens112

with higher token entropy values, deemed as key 113

tokens, are preserved within the KV cache. This 114

method enhances the model’s memory capabilities 115

in the context of infinitely long streaming dialogues. 116

To validate the effectiveness of SirLLM, we con- 117

ducted experiments across three distinct tasks: (1) 118

DailyDialog: We created a multi-turn daily dia- 119

logue dataset based on the DailyDialog dataset (Li 120

et al., 2017a). (2) Grocery Shopping: We devel- 121

oped a grocery shopping dataset. Users first in- 122

form the LLM about the groceries they need to 123

purchase. Following this, users engage in multi- 124

turn dialogues with the LLM, culminating in the 125

users asking the LLM to recall the required gro- 126

ceries. (3) Rock-Paper-Scissors: We constructed 127

a rock-paper-scissors dataset featuring three types 128

of players, each with a preference for one of the 129

three moves (rock, paper, scissors). Players engage 130

in multiple rounds of rock-paper-scissors with the 131

LLM, which is tasked with analyzing the user’s 132

historical preferences to maximize its winning rate. 133

The results of these experiments effectively demon- 134

strate the enhanced memory capabilities of SirLLM 135

in infinite conversation. 136

2 Method 137

2.1 Preliminaries 138

Xiao et al. (2023) proposed StreamLLM. They dis-
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covered that the model disproportionately focuses
on initial tokens and break when removing initial
tokens’ KV cache. Therefore, based on the Sliding-
window attention, instead of throwing away all of
the previous KV cache except the recent token’s
KV cache, they keep the first initial tokens KV
cache as shown in Figure 1 (c). Figure 1 (c) il-
lustrates the StreamLLM process, which can be
formulated as follows. We define the indices of
the attention sink tokens and the recent tokens as
Idsink and Idrecent, respectively:

Idsink = {0, 1, ..., nsink}

Idrecent = {L− nrecent + 1, ..., l − 1, l}

where, nsink and nrecent denotes the KV cache139

size of the attention sink tokens and recent tokens140

respectively. l denotes the total length of the past141

key-value states.142

Then the StreamLLM only keeps the selected
tokens’ past key and value states:

KVcache = Kcache[Idsink, Idrecent]

where X[Id] indicates the selection of vectors from143

X using indices in using indices in Id.144

However, StreamLLM primarily focuses on re-145

cent tokens and the initial attention sink tokens.146

This raises an intriguing question: Could we con-147

serve cache space occupied by recent tokens by148

only preserving the past key-value states of crit-149

ical tokens? Such an approach would allow the150

model to access information from tokens over a151

longer time span, potentially enhancing its long-152

term memory and reducing the problem of forget-153

ting. To address this issue, our first step is to define154

a metric that can accurately measure the importance155

of each token.156

2.2 Token Entropy157

Recent work (Li et al., 2023) has focused on con-
text compression. This involves utilizing LLMs to
calculate the information contained in each token,
thereby compressing the input context to enhance
the model’s inference efficiency. Inspired by this,
we have designed a token entropy metric to assess
the significance of tokens. Given a input sequence
X = {x1, x2, ..., xn} , where xi denotes i-th token
and n denotes the total token number. We define
the token entropy of the i-th token as:

ei = −logP(xi|x0, x1, ..., xi−1)

A token with higher token entropy indicates that it 158

contains more information and is therefore more 159

critical. In our experiments, we utilize the LLM to 160

calculate the generation probability of each token. 161

This approach allows us to obtain the entropy of 162

each token concurrently with its generation, with- 163

out necessitating additional computational effort. 164

Does higher token entropy equate to increased 165

LLM focus? To investigate whether tokens with 166

higher entropy indeed carry more information and 167

consequently garner more attention from LLMs, 168

we extracted 256 sentences from the Wikitext cor- 169

pus (Merity et al., 2017), focusing on the first 40 170

tokens of each sentence. To mitigate the attention 171

sink effect, we omitted the first token, starting our 172

analysis from the second token, thus providing a 173

clearer view of the model’s attention distribution 174

across other tokens. The 40 tokens were divided 175

into four segments based on token entropy, with 176

segment 1 having the lowest entropy and segment 177

4 the highest. We calculated the average attention 178

logits for each segment at every layer and plotted 179

these values in a scatter plot, as shown in Figure 3. 180

For a more tangible understanding, we also com- 181

puted the average attention logits across all layers 182

for each segment. The results show that tokens in 183

segments with higher entropy have higher atten- 184

tion logits. This pattern reinforces the hypothesis 185

that higher entropy tokens, which are presumably 186

less predictable and therefore more informative, 187

are given priority by the LLM’s attention mech- 188

anism. This finding supports the validity of the 189

token entropy metric as an indicator of a token’s 190

significance. 191

2.3 Streaming Infinite Retentive LLM 192

Upon obtaining the entropy values for each token, 193

we enhance the model’s memory capability by se- 194

lectively preserving the key-value states of only 195

the key tokens and propose Streaming Infinite Re- 196

tentive LLM (SirLLM) as shown in Figure 4. To 197

elaborate further, we maintain both a key-value 198

(KV) cache KVcache and a token entropy cache 199

E in parallel. The token entropy cache stores the 200

entropy values of tokens present in the KV cache. 201

When the number of tokens stored in C exceeds 202

the pre-training length L, we utilize E to select 203

the tokens with the higher token entropy, thereby 204

conserving space in the KV cache: 205

E = {e1, e2, ..., el}; Identropy = Topk(E)
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（Layer）

1 0.01520
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Figure 3: Scatter Plot of the average attention logits over
256 sentences at every layer. We divide the tokens into
four segments based on token entropy, with segment 1
having the lowest entropy and segment 4 the highest.
The figure indicates that as token entropy increases, so
does the attention that the LLM allocates to that token.

KVcache = KVcache[Idsink, Identropy]

E = E[Idsink, Identropy]

where Topk denotes the selection of the top k to-206

kens with the highest token entropy. Higher token207

entropy implies a lower probability of the model208

generating the word, indicating such words carry209

more information and are likely to be key tokens.210

Following StreamLLM, SirLLM concentrates211

on the token positions within the cache rather than212

their original positions in the text when determining213

relative distances and injecting positional informa-214

tion. For instance, if the current cache holds tokens215

[0, 1, 2, 3, 5, 7, 11, 12] and the model is in the216

process of decoding the 13th token, it assigns posi-217

tions as [0, 1, 2, 3, 4, 5, 6, 7] instead of using the218

original text positions.219

However, simply preserving tokens with the220

highest token entropy, as previously described, can221

lead to a limitation in the KV cache. After lengthy222

multi-turn dialogues with users, the cache may be-223

come restricted to a few tokens with very high224

entropy, making it difficult for the cache to adapt.225

This could result in a ’rigid memory’ within the226

model, lacking flexibility. An effective dialogue227

system should, like human memory, have a more228

flexible mechanism for long and short-term mem-229

ory: the more distant the memory, the easier it is230

for the model to forget it. This approach ensures231

the freshness of the LLM’s memory, thereby en-232

hancing the user’s conversational experience. To233

address this, we propose using a decay ratio ηdecay234

less than 1. After each round of dialogue, the stored235

entropy cache E is multiplied by this decay ratio236

E = E × ηdecay, allowing the model to naturally 237

forget older key information and focus more on 238

recent critical information. The overall process of 239

SirLLM can be referred to in Algorithm 1. 240

Algorithm 1 Streaming Infinite Retentive LLM

Input: i-th turn’s user input Ii = {x1, x2, ..., xn}
Output: i-th turn’s system response Ri =
{r1, r2, ..., rm}
for turn t in range(i) do

if KV cache size >L then
Identropy = Topk(E)
KVcache ← KVcache[Idsink, Identropy]
E ← E[Idsink, Identropy]

end if
Rt,KVcache = LLM(KVcache, It)
Et = Entropy([It, Rt]) = {e1, e2,
..., en+m}
E ← E + Et

E = E × ηdecay
end for

3 Experiments 241

3.1 Experimental Setup 242

We tested SirLLM on two different categories of 243

large models: Vicuna-13b-v1.3, Vicuna-7b-v1.3 244

(Zheng et al., 2023), Yi-34B-Chat, Yi-6B-Chat 1. 245

Following the evaluation methodologies used in 246

(Brown et al., 2020; Touvron et al., 2023b; Gao 247

et al., 2023), we evaluate the performance of Sir- 248

LLM on various datasets by appending different 249

option letters to the answers. We then calculate the 250

logits for each option and select the option with the 251

highest logits as the final answer. All experiments 252

were conducted on an NVIDIA A800 GPU. 253

3.1.1 Baslines 254

To comprehensively evaluate the effectiveness of 255

SirLLM, we utilized three baseline models: 256

StreamLLM: StreamLLM (Xiao et al., 2023) 257

preserves the key-value states of only the attention 258

sink tokens and recent tokens. 259

RandomLLM: RandomLLM maintains the key- 260

value states of the attention sink tokens as well as 261

a random selection of historical tokens. 262

IntervalLLM: Taking inspiration from (Child 263

et al., 2019), we developed IntervalLLM. This 264

1https://github.com/01-ai/Yi
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Figure 4: Framework overview of SirLLM. When the number of tokens stored in KV cache exceeds the pre-training
length L, SirLLM calculates the entropy of each token and selects the tokens with the higher token entropy, thereby
conserving space in the KV cache

model, in addition to preserving attention sink to-265

kens, uniformly samples tokens from the histori-266

cal token sequence at fixed intervals. These inter-267

vals are adaptively determined, The size of these268

intervals is adaptively determined, calculated as269

interval = ⌊ history token length
cache size ⌋. This approach con-270

tinues until the cache size is fully utilized271

To ensure a fair comparison, in line with Stream-272

LLM, all models preserve the KV cache states of273

attention sink tokens with a uniform size of 4 and274

we report the average accuracy for RandomLLM275

3.2 Results276

To thoroughly validate the effectiveness of the Sir-277

LLM framework, we designed three distinct tasks,278

each assessing SirLLM from a different perspec-279

tive: (1) DailyDialog: This task evaluates Sir-280

LLM’s conversational coherence and memory ca-281

pabilities in everyday multi-turn dialogue scenar-282

ios. (2) Grocery Shopping: In this task, we focus283

on assessing SirLLM’s memory capabilities. Ini-284

tially, the LLM is informed about the groceries285

to be purchased. Subsequent rounds of common-286

sense QA with the LLM are conducted, culminat-287

ing in a query to ascertain if SirLLM remembers288

the required groceries. (3) Rock-Paper-Scissors: In289

this task, by engaging in multiple rounds of rock-290

paper-scissors with users having distinct throwing291

preferences, we test whether SirLLM can utilize292

its enhanced memory ability to analyze historical293

information, discern users’ throwing preferences,294

and thereby maximize its winning probability.295

3.2.1 DailyDialog296

Dataset Construction To assess the performance297

of SirLLM in everyday dialogue scenarios, we eval-298

uate SirLLM using the DailyDialog dataset (Li299

et al., 2017b). DailyDialog is a high-quality, multi-300

turn, open-domain English dialogue dataset. To 301

measure SirLLM’s effectiveness more intuitively, 302

we have reformatted DailyDialog into a multiple- 303

choice question format, where SirLLM is tasked 304

with selecting the most appropriate response. We 305

have selected a sample from the constructed Dai- 306

lyDialog dataset, as illustrated in Figure 7 in Ap- 307

pendix D. For more detailed statistics and construc- 308

tion process about the modified dataset, please refer 309

to Table 5 in Appendix B. From the Table 5, we ob- 310

serve that the average number of tokens per turn in 311

the modified DailyDialog dataset is approximately 312

461.55. Therefore, we have set the cache size to 313

512. It was found that 199 dialogs in the dataset 314

have token counts exceeding 512. In such longer 315

dialog scenarios, SirLLM can be highly effective. 316

By enabling the LLM to remember only key tokens, 317

SirLLM is endowed with a longer memory span. 318

This capability allows it to engage more effectively 319

in extended dialogues. 320

Results In the table 1, to ensure a fair compari- 321

son, each model is configured with a unified KV 322

cache size of 512. Table 1 displays the performance 323

of various models on the DailyDialog dataset. It 324

is evident that SirLLM demonstrates a clear ad- 325

vantage over three baseline models across four 326

different LLMs. It is noteworthy that SirLLM’s 327

performance remains consistently stable, whereas 328

RandomLLM and IntervalLLM sometimes even 329

lead to performance degradation. When employ- 330

ing Yi-34b, SirLLM achieved the highest accuracy 331

of 90.35% on the modified DailyDialog dataset, 332

marking an impressive 5.00% increase in accuracy 333

compared to StreamLLM. These results robustly 334

demonstrate SirLLM’s capability to enhance the 335

memory ability of LLMs, providing them with a 336

longer retention span and thereby offering users a 337
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# Entropy # Recent ηdecay ACC(%) ∆

Yi-6b Attention Sink Size: 4
Stream 0 508 1 76.90
Random 508 0 1 71.10 -5.80
Interval 508 0 1 65.20 -11.70

SirLLM 508 0 0.7 83.85 6.95

Yi-34b Attention Sink Size: 4
Stream 0 508 1 85.35
Random 508 0 1 82.17 -3.18
Interval 508 0 1 70.70 -14.65

SirLLM 508 0 0.7 90.35 5.00

Vicuna-7b Attention Sink Size: 4
Stream 0 508 1 57.55
Random 508 0 1 57.48 -0.13
Interval 508 0 1 54.45 -3.10

SirLLM 508 0 0.5 59.15 1.60

Vicuna-13b Attention Sink Size: 4
Stream 0 508 1 71.10
Random 508 0 1 69.27 -1.83
Interval 508 0 1 62.05 -9.05

SirLLM 508 0 0.6 71.40 0.30

Table 1: Results for the DailyDialog dataset are pre-
sented as follows: # Entropy and # Recent indicate the
cache sizes allocated for tokens with the highest entropy
and for recent tokens, respectively. ACC (%) represents
the accuracy. ∆ signifies the improvement of the model
relative to the baseline StreamLLM.

smoother conversational experience.338

3.2.2 Grocery Shopping339

Dataset Construction To more vividly demon-340

strate SirLLM’s superior memory capabilities, we341

designed the second task, Grocery Shopping, based342

on the CommonsenseQA (CSQA) (Talmor et al.,343

2019) dataset to create the Grocery Shopping344

dataset. Specifically, in the first interaction, the345

user informs the LLM of the groceries they wish346

to purchase. This is followed by 20 rounds of com-347

monsense QA sessions with the LLM, where the348

questions are sourced from the train and develop-349

ment splits of the CSQA dataset and formatted as350

multiple-choice questions. After these 20 rounds,351

the user then asks the LLM to recall and select352

the required groceries from four options. This task353

is designed to test the LLM’s long-term memory354

through the grocery-related questions and its ability355

to maintain excellent short-term memory and rea-356

soning skills through the commonsense QA. The357

detailed dataset statistics can be found in Table 6358

in Appendix B and dataset samples can be found in359

Figure 8 in Appendix D. From the table, we can see360

that the average token length per dialog is 1223.81361

and all the 548 dialogs’ total token number exceeds362

1024. Therefore, we set the cache size for Grocery 363

Shopping as 1024. 364

Result In the Grocery Shopping task, to enable 365

the model to maintain a longer memory, we uni- 366

formly set the decay ratio to 1. The overall results 367

can be found in Table 2. 368

# Entropy # Recent ACCc ACCg ∆c ∆g

Yi-6b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 71.33 25.73
Random 1020 0 70.33 77.55 -1.00 51.82
Interval 1020 0 63.98 21.72 -7.20 -4.01

SirLLM 1020 0 72.44 99.27 1.11 73.54

Vicuna-7b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 50.84 28.65
Random 1020 0 50.97 85.04 0.13 56.39
Interval 1020 0 47.21 23.72 -3.63 -4.93

SirLLM 1020 0 51.04 96.17 0.20 67.52

Vicuna-13b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 60.10 24.45
SirLLM 1020 0 60.23 97.08 0.13 72.63

Yi-34b Attention Sink Size: 4; ηdecay = 1
Stream 0 1020 81.35 26.29
SirLLM 1020 0 81.44 89.60 0.09 63.31

Table 2: Results for the Grocery Shopping dataset: #
Entropy and # Recent indicate the cache sizes allocated
for tokens with the highest entropy and for recent tokens,
respectively. ACCc and ACCg represents the accuracy
for commonsense QA and Grocery Shopping, respec-
tively. ∆c and ∆g signify the improvement of the model
relative to the baseline StreamLLM.

Table 2 clearly indicates that SirLLM consis- 369

tently demonstrates an improvement in accuracy 370

across different models. Specifically, SirLLM 371

not only maintains its commonsense question- 372

answering abilities that require short-term mem- 373

ory but also shows a substantial enhancement in 374

memory capabilities for the Grocery Shopping task. 375

This outcome is attributed to SirLLM’s effective 376

utilization of larger cache space allocated for key 377

information, allowing it to maintain more contex- 378

tual information in extended dialogues. This un- 379

derscores SirLLM’s efficacy not only in specific 380

tasks but also in maintaining its memory advan- 381

tage across different types of tasks, which is crucial 382

for building a more adaptable and multifunctional 383

dialogue system. 384

3.2.3 Rock-Paper-Scissors 385

Dataset Construction To better observe the per- 386

formance of SirLLM in scenarios with infinitely 387

long streaming dialogue inputs, we constructed a 388

Rock-Paper-Scissors dataset. In this dataset, we 389

created three players with preferences for throw- 390
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# Entropy # Recent ηdecay
Paper Rock Scissors Average

win tie lose win tie lose win tie lose win

Yi-6b
Stream 0 1020 1 47.30 29.25 23.45 28.15 27.15 44.70 24.20 49.20 26.60 33.22
Random 1020 0 1 20.00 49.45 30.55 49.73 31.02 19.25 27.18 21.93 50.88 32.31
Interval 1020 0 1 19.45 50.15 30.40 50.00 30.90 19.10 27.35 20.8 51.85 32.27

SirLLM 1020 0 0.8 49.60 30.25 20.15 30.20 20.90 48.90 26.45 48.10 25.45 35.42
Yi-34b
Stream 0 1020 1 44.10 34.00 21.90 30.35 26.55 43.10 32.15 40.20 27.65 35.53
Random 1020 0 1 30.57 19.68 49.62 19.08 50.12 30.97 51.70 27.35 20.95 33.78
Interval 1020 0 1 45.40 26.05 28.55 35.45 24.30 40.25 26.20 46.15 27.65 35.68

SirLLM 1020 0 0.8 48.30 30.65 21.05 30.30 29.40 40.30 29.50 39.00 31.50 36.03
Vicuna-7b
Stream 0 1020 1 26.60 34.45 38.95 32.85 41.05 26.10 30.45 22.30 47.25 29.97
Random 1020 0 1 19.57 49.62 30.82 49.82 31.03 19.15 27.68 20.90 51.42 32.36
Interval 1020 0 1 29.15 37.95 32.90 24.40 45.80 29.80 28.25 35.05 36.70 27.27

SirLLM 1020 0 0.8 29.45 22.00 48.55 20.75 49.10 30.15 51.95 27.20 20.85 34.05
Vicuna-13b
Stream 0 1020 1 29.75 22.20 48.05 29.90 44.05 26.05 49.85 26.35 23.80 36.50
Random 1020 0 1 44.02 26.63 29.35 30.43 21.70 47.97 28.32 46.43 25.25 34.26
Interval 1020 0 1 29.80 22.65 47.55 21.80 45.65 32.50 50.25 27.80 21.90 33.95

SirLLM 1020 0 0.9 30.35 19.60 50.05 45.10 34.65 20.25 51.00 26.55 22.45 42.15

Table 3: Results for the Rock-Paper-Scissors dataset. # Entropy and # Recent denote the allocated cache sizes
for tokens with the highest entropy and for the most recent tokens, respectively. ’Rock,’ ’Paper,’ and ’Scissors’
correspond to players with a preference for each respective move. ’Win,’ ’Tie,’ and ’Lose’ represent the win rate
(%), tie rate (%), and loss rate (%), respectively.

ing rock, paper, or scissors, respectively. In each391

round, we inform the LLM of the previous round’s392

user move and the outcome, and then we ask the393

LLM to analyze the user’s throwing preferences to394

maximize its own winning rate for the next round.395

Detailed information about the dataset and the prob-396

abilities of each player’s moves can be found in397

Table 7 in Appendix B. A sample of the data is398

illustrated in Figure 9 in Appendix D. Unlike the399

DailyDialog and Grocery Shopping datasets, where400

the KV cache is reset to zero after each round, the401

Rock-Paper-Scissors task allows the LLM to en-402

gage in 2000 rounds of play without resetting the403

KV cache, achieving a truly infinite number of dia-404

logue turns. This aims to observe whether SirLLM405

can remember key information and more user his-406

torical preferences to better maximize its win rate.407

Result The results showcased in Table 3 for the408

Rock-Paper-Scissors dataset reveal that SirLLM409

consistently surpasses the baseline StreamLLM for410

players with varied throwing preferences. Upon411

closer examination of the data, it becomes appar-412

ent that SirLLM delivers a steady enhancement in413

win rates against players of different preferences,414

maintaining this enhanced performance uniformly415

across all the models evaluated. Furthermore, the416

decay mechanism integrated within SirLLM plays417

a crucial role in sustaining a balanced performance 418

over numerous rounds, as reflected by its uniformly 419

elevated win rates. This characteristic of SirLLM 420

proves especially advantageous in scenarios involv- 421

ing extended interactions, such as long-duration 422

Rock-Paper-Scissors games, where the model’s ca- 423

pacity to adapt and recall previous moves is imper- 424

ative for success. 425

4 Further Exploration 426

4.1 Few-shot 427

Brown et al. (2020) demonstrates that few-shot 428

learning can significantly aid models in reasoning 429

and answering questions. SirLLM, by eliminating 430

redundant KV cache, achieves enhanced memory 431

capabilities, which translates into improved perfor- 432

mance on the CSQA dataset. This improvement 433

could also be interpreted as SirLLM’s ability to in- 434

corporate more few-shot exemplars with less cache, 435

thereby attaining higher accuracy. On this premise, 436

we compared SirLLM with 1-shot, 2-shot, and 3- 437

shot learning approaches, with results as presented 438

in Table 4. In n-shot experiments, we prepend the 439

preceding n questions as few-shot exemplars before 440

each question, aiming to simulate an input format 441

similar to that of StreamLLM. As shown in the ta- 442

ble, SirLLM not only improves upon the baseline 443

7



Average logPPL

Figure 5: The perplexity of language modeling on 20K token text. The Sliding-window’s PPL escalates dramatically
once the token length exceeds the pre-trained length. In contrast, both SirLLM and StreamLLM, which incorporate
attention sink tokens, show stable performance. SirLLM and StreamLLM’s performances are almost identical,
effectively demonstrating that SirLLM’s memory mechanism does not impair the model’s answering performance
and can indeed reinforce the model’s memory capabilities.

ACCc ACCg ∆c ∆g

Yi-6b
Stream 71.33 25.73
1-shot 58.66 25.00 -12.67 -0.73
2-shot 63.95 25.36 -7.38 -0.37
3-shot 65.42 23.72 -5.91 -2.01

SirLLM 72.44 99.27 1.11 73.54

Yi-34b
Stream 81.35 26.29
1-shot 75.14 23.91 -6.21 -2.38
2-shot 78.50 24.64 -2.85 -1.65
3-shot 79.20 25.18 -2.15 -1.11

SirLLM 81.44 89.60 0.09 63.31

Vicuna-7b
Stream 50.84 28.65
1-shot 48.54 27.01 -2.30 -1.64
2-shot 49.11 27.19 -1.73 -1.46
3-shot 49.81 27.55 -1.03 -1.10

SirLLM 51.04 96.17 0.20 67.52

Vicuna-13b
Stream 60.10 24.45
1-shot 55.34 22.26 -4.76 -2.19
2-shot 58.94 26.46 -1.16 2.01
3-shot 60.44 27.01 0.34 2.56

SirLLM 60.23 97.08 0.13 72.63

Table 4: Few-shot results for Grocery Shopping dataset

StreamLLM in both the CSQA and Grocery Shop-444

ping datasets, but it also maintains this enhanced445

performance despite the increment in the number446

of shots. This consistency underscores the model’s447

ability to leverage the rich information contained448

within the few-shot examples without becoming449

overwhelmed by the increased data.450

4.2 PPL for long text451

Following the approach of StreamLLM, we plotted452

the log Perplexity (logPPL) of SirLLM, Stream-453

LLM, and Sliding-window on texts spanning454

20,000 tokens across various LLMs, as depicted 455

in the Figure 5. The Figure reveals that while the 456

Sliding-window model exhibits volatility in PPL, 457

particularly beyond the length it was trained on, 458

SirLLM maintains a consistent and stable PPL, sug- 459

gesting a robustness to input length. The average 460

logPPL values in the accompanying table further 461

corroborate this, with SirLLM matching Stream- 462

LLM’s performance closely across both Vicuna-7b 463

and Yi-6b models. This indicates that SirLLM 464

and StreamLLM have comparable short-term mem- 465

ory capabilities, with SirLLM not adversely affect- 466

ing the model’s ability to retain information over 467

shorter durations. This alignment of PPL between 468

SirLLM and StreamLLM, despite SirLLM’s en- 469

hanced memory function, underscores the efficacy 470

of SirLLM’s design in managing longer context 471

without compromising the language model’s flu- 472

ency or coherence. 473

5 Conclusion 474

Addressing the critical challenges of managing in- 475

finite input lengths and maintaining memory capa- 476

bility, SirLLM harmonizes long dialogue retention 477

without the necessity of model fine-tuning by selec- 478

tively fortifies the model’s focus on pivotal informa- 479

tion. Through experiments across three tailor-made 480

tasks: DailyDialog, Grocery Shopping, and Rock- 481

Paper-Scissors, SirLLM has demonstrated a consis- 482

tent and stable improvement over existing models, 483

irrespective of the complexity and length of the 484

dialogues. The experimental outcomes validate 485

the robustness and versatility of SirLLM, making 486

it an invaluable asset for future explorations and 487

applications in natural language processing. 488

8



Limitation489

The limitations of SirLLM include: (1) Adaptation490

to Various Scenarios: Currently, users may need491

to manually adjust the decay ratio to achieve de-492

sired outcomes in different application scenarios.493

Developing an adaptive mechanism that automat-494

ically tunes the decay ratio based on specific con-495

texts presents a viable direction for future work.496

(2) Significance Discrepancy: What users consider497

important information may not always align with498

the model’s criteria, leading to potential omissions499

in memory retention. Therefore, a more accurate500

mechanism for cache retrieval and storage warrants501

detailed exploration in future research endeavors.502

This could ensure that the model better aligns with503

user priorities and improves overall recall accuracy.504
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A Additional Related Work696

Many works (Li et al., 2019a; Guo et al., 2022; Han697

et al., 2023; Ainslie et al., 2020; Chen et al., 2023)698

focused on expanding the input context length699

of LLMs by optimizing the attention mechanism.700

Beltagy et al. (2020) first proposes the sliding win-701

dow attention, which let each token to only attend702

to a certain number of recent tokens. When the703

KV cache is full sliding window attention would704

discard the earliest token to preserve a stable de-705

coding speed and performance. Child et al. (2019)706

proposed the fixed Sparse Transformer. Formally,707

this method initially preserves the key and value708

states of recent tokens as local context information.709

Subsequently, it employs a column attention mech-710

anism with a specified stride. This mechanism711

summarizes information from previous locations712

and propagates it to all future tokens, functioning713

as a form of global attention. Li et al. (2019b)714

proposed a LogSparse self-attention where each715

element can only to attend to itself and its previ-716

ous cells with an exponential step size. Xiao et al.717

(2023) introduced the attention sink phenomenon718

and proposed StreamLLM, a model specifically de-719

signed to achieve true infinite input length. Stream-720

LLM, during its attention calculation, maintains721

the focus on both the initial tokens and the recent722

tokens. This approach ensures stable performance723

in the context of infinite streaming conversations.724

However, the aforementioned approaches either725

save tokens with given stride, randomly select, or726

do not preserve the key-value (KV) cache of his-727

tory tokens, leading to significant forgetting issues728

in the model. SirLLM addresses this by utilizing729

the LLM itself to calculate token entropy, selec-730

tively preserving the KV cache of tokens with the731

highest entropy. This method effectively conserves732

memory space, ensuring that only the most crucial733

information is retained.734

Another related work is by Ge et al. (2023),735

which introduced FastGen, an adaptive KV cache736

compression method for Large Language Mod-737

els. FastGen implements four distinct compression738

strategies: Special Tokens, Punctuation, Locality,739

and Frequency. It begins by analyzing the behav-740

ior of various attention heads to select the most741

effective compression strategy for each. FastGen742

optimizes KV cache management when generating743

new tokens by applying the chosen compression744

strategy to each token, instead of merely appending745

new KV vectors. This method enhances memory746

efficiency without sacrificing model performance. 747

However, this work focuses more on KV cache 748

compression rather than infinite-length dialogue 749

system and enhancing the memory capabilities of 750

LLMs. 751

Another category of work related to our research 752

is context compression. (Li et al., 2023) com- 753

press the input context by selecting the lexical 754

units (tokens, phrases, sentences) with higher self- 755

information computed by a base language model. 756

(Berchansky et al., 2023) proposed a token filtering 757

method for optimizing retrieved long documents 758

to speed up the decoding process. This method 759

involves using mean cross-attention scores com- 760

puted at a specific layer across all attention heads 761

to eliminate less critical tokens. Then, only the 762

top k% of input tokens with the highest scores 763

are retained and used in predicting subsequent to- 764

kens. Although retrieval-based methods can iden- 765

tify more accurate contexts based on input, they 766

typically require greater computational and time 767

resources. In contrast, SirLLM does not necessi- 768

tate maintaining an additional vector database and 769

does not disrupt the model’s end-to-end computa- 770

tional process. SirLLM can significantly enhance 771

the model’s memory capabilities efficiently with- 772

out modifying the model’s architecture or requiring 773

fine-tuning. 774

B Dataset Statistics 775

B.1 DailyDialog 776

DailyDialog Statistics

#dialogs 518
#average turn 3.85
#average token (dialog) 461.55
#average word (dialog) 309.92
# dialogs (≥ 512) 199

Table 5: Detailed statistics of DailyDialog(modified)

We modified the test split of the DailyDialog 777

dataset to create a set of four-option multiple- 778

choice questions. This set includes one correct 779

option and three dummy choices, which are se- 780

lected from the validation split. Table 5 presents 781

the detailed statistics of the modified DailyDialog 782

dataset. In this table, #dialogs indicates the total 783

number of dialogs; #average turn refers to the av- 784

erage number of turns per dialog; #average token 785

(dialog) represents the average number of tokens 786
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per dialog, calculated using the Vicuna-7b-v1.3 tok-787

enizer; #average word (dialog) signifies the average788

number of words per dialog; and #dialogs (≥ 512)789

shows the count of dialogs where the total number790

of tokens exceeds 512.791

B.2 Grocery Shopping792

Grocery Shopping Statistics

#dialogs 548
#groceries 53
#average turn 22
#average token (dialog) 1223.81
#average word (dialog) 631.60
# dialogs (≥ 1024) 548

Table 6: Detailed statistics of Grocery Shopping

Table 6 presents the detailed statistics of the Gro-793

cery Shopping dataset. In this table, #dialogs indi-794

cates the total number of dialogs; #groceries rep-795

resents the number of different types of groceries;796

#average turn refers to the average number of turns797

per dialog; #average token (dialog) represents the798

average number of tokens per dialog, calculated799

using the Vicuna-7b-v1.3 tokenizer; #average word800

(dialog) signifies the average number of words per801

dialog; and #dialogs (≥ 1024) shows the count of802

dialogs where the total number of tokens exceeds803

1024.804

B.3 Rock-Paper-Scissors dataset805

Rock-Paper-Scissors Statistics
#rounds 2000
#average token (rounds) 54
#average word (rounds) 35

Player 1
(Rock)

rock 0.5
paper 0.3
scissors 0.2

Player 2
(Paper)

rock 0.2
paper 0.5
scissors 0.3

Player 3
(Scissors)

rock 0.3
paper 0.2
scissors 0.5

Table 7: Detailed statistics of Grocery Shopping

Table 7 presents the detailed statistics of the806

Rock-Paper-Scissors dataset. In this table, #rounds807

indicates the total number of Rock-Paper-Scissors808

rounds; #average token (rounds) represents the av- 809

erage number of tokens per rounds, calculated us- 810

ing the Vicuna-7b-v1.3 tokenizer; #average word 811

(rounds) signifies the average number of words 812

per round. In the table 7, the preferences for each 813

player’s moves and their corresponding probabil- 814

ities of throwing rock, paper, or scissors are also 815

listed. 816

C The Impact of Decay Ratio on Memory 817

Retention 818

To more vividly illustrate the impact of the decay 819

ratio on the memory capabilities of LLMs, we con- 820

ducted experiments using various decay ratios in 821

the Grocery Shopping task. The results of these 822

experiments are presented in Figure 6. From the 823

Figure 6, we can observe that when the decay ratio 824

is set below one, the model completely forgets the 825

groceries desired by the user after 20 rounds of 826

commonsense question and answer sessions. How- 827

ever, adjusting the decay ratio does not significantly 828

impact the model’s performance on tasks requiring 829

short-term memory, such as commonsense ques- 830

tion answering. By fine-tuning the decay ratio, we 831

can flexibly adapt the memory capabilities of the 832

LLM to suit different scenarios. This effectively 833

demonstrates the stability and efficacy of SirLLM’s 834

memory mechanism.
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Figure 6: Performance of different decay ratio in Gro-
cery Shopping dataset.

835

D Dataset Samples 836

12



DailyDialog

Figure 7: A sample from the DailyDialog dataset

Grocery Shopping

Grocery List

Figure 8: A sample from the Grocery Shopping dataset
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Rock-Paper-Scissors

Figure 9: A sample from the Rock-Paper-Scissors
dataset
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